1
|
She Z, Zeng F, Wu S. A zwitterionic chromophore as both a biomarker-activatable optical imaging probe and a therapeutic agent for the detection and treatment of acute lung injury with bacterial infection. Biomater Sci 2025; 13:3006-3015. [PMID: 40243112 DOI: 10.1039/d5bm00419e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Acute lung injury (ALI), often complicated by bacterial infection, poses significant challenges in diagnosis and treatment. Nitric oxide (NO) plays a key role in the pathophysiology of ALI, making it an ideal biomarker for early detection. In this study, we developed a zwitterionic chromophore, ZW-N, designed as both a biomarker-activatable imaging probe and a therapeutic agent for ALI with bacterial infection. The chromophore ZW-N integrates quaternary ammonium groups for antimicrobial activity and zwitterionic sulfonate groups to enhance biocompatibility and water solubility. Built on a flexible propanyl linker that couples two heptamethine cyanine dyes, ZW-N enables biomarker-responsive dual-modal imaging via optoacoustic (OA) imaging and near-infrared second-window (NIR-II) fluorescence imaging. Moreover, the chromophore ZW-N demonstrates therapeutic efficacy when combined with the clinically used antioxidant N-acetylcysteine (NAC) to treat ALI with bacterial infection. This dual-functional chromophore offers a promising platform for non-invasive, real-time monitoring of ALI, providing significant potential for improved detection and a more effective treatment strategy.
Collapse
Affiliation(s)
- Zunpan She
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Bai YS, Wang DL, Lee MC, Wang CC, Fang WH, Chuang SW, Chen YH, Su H, Chen CJ, Su SL. Dissect Gender-Dependent Susceptibility SNPs in Progressive Osteoarthritis Using Regulator Motif Candidate of Genetic Association Strategy (RMCGA). Int J Mol Sci 2025; 26:4117. [PMID: 40362356 PMCID: PMC12071535 DOI: 10.3390/ijms26094117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The role of gender in osteoarthritis (OA) has been reported. However, knowledge on whether gender-specific regulatory SNPs are determining factors in OA is limited. We aimed to identify susceptible gender-specific SNPs of transcription factor binding sites in OA. We used a modified NF-κB binding motif from an RNA sequencing data-inferred OA-associated upstream regulator to define genome-wide potential NF-κB binding sites, which were aligned to the Taiwan BioBank SNP database to identify susceptible SNPs. A case-control study was conducted to verify SNPs with OA determined by a logistic model. The functional assessment was validated using the Genotype-Tissue Expression Portal database. We collected 533 OA patients and 614 healthy controls. Two of nine novel OA-associated SNPs were identified to be significant. For males, the variant of rs73164856 in the aldose reductase gene enhancer was identified to be a protective factor of severe OA patients [odds ratio (OR): 0.17, 95% confidence interval (CI): 0.04-0.73]. For females, the variant of the rs545654 in the neuronal NOS (nNOS) gene was identified to be a detrimental factor of severe OA patients (OR: 2.07, 95% CI: 1.15-3.73). The gene expression analysis demonstrated a lower expression of the AKR1B15 gene (p = 0.00019) upon the rs73164856 T allele; meanwhile, it showed a higher expression of the nNOS gene (p = 1.2 × 10-17) upon the rs545654 T allele. This study identifies susceptible gender-specific SNPs of NF-κB binding sites in severe OA and validates the RMCGA, which sheds light on genetic determinants by gender in advanced OA.
Collapse
Affiliation(s)
- Yin-Shiuan Bai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (Y.-S.B.); (D.-L.W.)
| | - Ding-Lian Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (Y.-S.B.); (D.-L.W.)
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan; (M.-C.L.); (S.-W.C.); (Y.-H.C.); (H.S.)
| | - Meng-Chang Lee
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan; (M.-C.L.); (S.-W.C.); (Y.-H.C.); (H.S.)
| | - Chih-Chien Wang
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan;
- School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan;
| | - Wen-Hui Fang
- School of Medicine, National Defense Medical Center, Taipei 114201, Taiwan;
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Su-Wen Chuang
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan; (M.-C.L.); (S.-W.C.); (Y.-H.C.); (H.S.)
| | - Yu-Hsuan Chen
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan; (M.-C.L.); (S.-W.C.); (Y.-H.C.); (H.S.)
| | - Hao Su
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan; (M.-C.L.); (S.-W.C.); (Y.-H.C.); (H.S.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan
| | - Cheng-Jung Chen
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan;
- Taichung Veterans General Hospital Chiayi Branch, Chiayi City 60090, Taiwan
| | - Sui-Lung Su
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (Y.-S.B.); (D.-L.W.)
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan; (M.-C.L.); (S.-W.C.); (Y.-H.C.); (H.S.)
| |
Collapse
|
3
|
Kobayashi T, Pham LT, Kobayashi M, Yamanaka K, Itakura A, Waki H. Inhibitory effect of exercise on elevated blood pressure and fetal growth restriction during pregnancy in Dahl salt-sensitive rats. Physiol Rep 2025; 13:e70298. [PMID: 40205775 PMCID: PMC11982524 DOI: 10.14814/phy2.70298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Exercise is effective in preventing gestational hypertension, but its mechanism remains unclear. This study investigates the effects of exercise on Dahl salt-sensitive (DSS) rats, which develop elevated blood pressure and fetal growth restriction during pregnancy. DSS rats were divided into exercise and non-exercise groups, with Sprague-Dawley rats as controls. Exercise consisted of voluntary running, starting 4 weeks prior to pregnancy until the last trimester. Cardiovascular parameters, molecular characteristics of the brain and placenta, and fetal conditions were evaluated. Exercise significantly improved elevated blood pressure at early pregnancy and was associated with improved baroreceptor reflex gain. Gene expression analysis in the rostral ventrolateral medulla (RVLM) showed exercise-induced downregulation of nitric oxide synthase and upregulation of superoxide dismutase. These genetic changes suggest that exercise impacts circulatory regulation mechanisms, contributing to blood pressure improvement. In addition, placental analysis revealed a marked increase in placental growth factor expression due to exercise. In conclusion, exercise alleviates elevated blood pressure at early gestation and fetal growth restriction in DSS rats. Genetic modifications in the RVLM may play a critical role in exercise-induced cardiovascular improvements. This study highlights the potential of exercise as a therapeutic approach for managing gestational elevated blood pressure and fetal growth restriction and provides insights into its underlying mechanisms.
Collapse
Affiliation(s)
- Toru Kobayashi
- Department of Obstetrics and GynecologyJuntendo UniversityTokyoJapan
- Department of Obstetrics and Gynecology, Graduate School of MedicineJuntendo UniversityTokyoJapan
- Department of Physiology, Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
| | - Linh Thuy Pham
- Institute of Health and Sports Science & MedicineJuntendo UniversityChibaJapan
| | - Mutsumi Kobayashi
- Department of Obstetrics and GynecologyJuntendo UniversityTokyoJapan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
| | - Atsuo Itakura
- Department of Obstetrics and GynecologyJuntendo UniversityTokyoJapan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
- Institute of Health and Sports Science & MedicineJuntendo UniversityChibaJapan
| |
Collapse
|
4
|
Yao L, Zhang G, Wang Y, Liu Z, Liang J, Sun J, Li S, Tian T, Lin Y. Development of an Inhalable DNA Tetrahedron MicroRNA Sponge. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414336. [PMID: 39578322 DOI: 10.1002/adma.202414336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/10/2024] [Indexed: 11/24/2024]
Abstract
In designing aerosolized drugs, the challenge lies in achieving optimal penetration and retention. Existing delivery systems prioritize larger particles for prolonged intrapulmonary retention, compromising penetration speed. Conversely, smaller nanoparticles face rapid clearance and limited retention. RNA sponges featuring multiple microRNA binding sites exhibit promising potential for gene expression regulation. However, the complex structure of the frequently utilized cyclic RNA sponge impedes rapid penetration and cellular uptake, restricting its application. This study proposes an innovative approach using a compact tetrahedral framework of nucleic acid to construct an inhalable microRNA sponge. Distinguished by its simplified structure, this microRNA sponge ensures effective microRNA inhibition, rapid tissue penetration, and prolonged residency through prompt endocytosis. Validated in acute lung inflammation models, the approach demonstrates swift restoration of local immune homeostasis. This design addresses the critical need for aerosol vehicles that balance efficient penetration and sustained retention, offering a promising solution for effective gene expression regulation.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiafei Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
6
|
She Z, Li R, Zeng F, Wu S. Homo-Dyad with Outer Hydration Layer Approach for Developing NIR-II Chromophore of High Stability and Water-Solubility as Injectable and Sprayable Optical Probe. Adv Healthc Mater 2024; 13:e2400791. [PMID: 38588220 DOI: 10.1002/adhm.202400791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Dyes with extended conjugate structures are the focus of extensive design and synthesis efforts, aiming to confer unique and improved optical and electronic properties. Such advancements render these dyes applicable across a wide spectrum of uses, ranging from second-window near-infrared (NIR-II) bioimaging to organic photovoltaics. Nevertheless, the inherent benefits of long conjugation are often accompanied by persistent challenges like aggregation, fluorescence quenching, absorption blueshift, and low stability and poor water solubility. Herein, a unique structural design strategy termed "homo-dyad with outer hydration layer" is introduced to address these inherent problems, tailored for the development of imaging probes exhibiting long absorption/emission wavelengths. This approach involves bringing two heptamethine cyanines together through a flexible linker, forming a homo-dyad structure, while strategically attaching four polyethylene glycol (PEG9) chains to the terminal heterocycles. This approach imparts excellent water solubility, biocompatibility, and enhanced chemical, photo-, and spectral stability for the dyes. Utilizing this strategy, a biomarker-activatable probe (HD-FL-4PEG9-N) for NIR-II fluorescent and 3D multispectral optoacoustic tomography imaging is developed, and its effectiveness in disease visualization. It can not only serve as an injectable probe for acute kidney injury imaging due to its high water solubility, but also a sprayable probe for imaging bacterial-infected wounds.
Collapse
Affiliation(s)
- Zunpan She
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rong Li
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
7
|
Garcia-Leon MJ, Liboni C, Mittelheisser V, Bochler L, Follain G, Mouriaux C, Busnelli I, Larnicol A, Colin F, Peralta M, Osmani N, Gensbittel V, Bourdon C, Samaniego R, Pichot A, Paul N, Molitor A, Carapito R, Jandrot-Perrus M, Lefebvre O, Mangin PH, Goetz JG. Platelets favor the outgrowth of established metastases. Nat Commun 2024; 15:3297. [PMID: 38740748 DOI: 10.1038/s41467-024-47516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.
Collapse
Affiliation(s)
- Maria J Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
- Domain therapeutics, Parc d'Innovation - 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg - Illkirch, France.
| | - Cristina Liboni
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Louis Bochler
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarisse Mouriaux
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Colin
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marina Peralta
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Catherine Bourdon
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Unidad de Microscopía Confocal, Madrid, Spain
| | - Angélique Pichot
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Nicodème Paul
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Anne Molitor
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Raphaël Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | | | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Pierre H Mangin
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
8
|
Sun L, Ouyang J, She Z, Li R, Zeng F, Yao Z, Wu S. Injectable-Hydrogel-Based Tissue Sealant for Hemostasis, Bacteria Inhibition, and Pro-Angiogenesis in Organ Bleeding Wounds and Therapeutic Outcome Monitoring Via NIR-II Optical Imaging. Adv Healthc Mater 2024; 13:e2303997. [PMID: 38281086 DOI: 10.1002/adhm.202303997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/20/2024] [Indexed: 01/29/2024]
Abstract
Sudden hemorrhage stemming from internal organ wounds poses a grave and potentially fatal risk if left untreated. Injectable-hydrogel-based tissue sealants featuring multiple actions, including fit-to-shape in situ gelation, rapid hemostasis, pro-angiogenic, anti-bacterial and outcome tracking, are ideal for the management of organ trauma wounds. Herein, an injectable-hydrogel tissue sealant AN@CD-PEG&TQ which consists of four-arm 4-arm poly(ethylene glycol) (PEG-SC) succinimidyl carbonate), AN@CD nanoprobe, and two bioactive peptides (anti-microbial peptide Tet213 and pro-angiogenic peptide QK) is developed. Among them, AN@CD nanoparticles form through host/guest complexation of amino-group-containing β-cyclodextrin and adamantyl group, enabling in situ biomarker (NO)-activatable optoacoustic/NIR-II: Near-infrared second biological window fluorescent imaging. The ample ─NH2 groups on the surface of AN@CD readily engage in rapid cross-linking with succinimidyl ester groups located at the ends of four-arm PEG-SC. This cross-linking expedites the gelation process without necessitating additional initiators or cross-linking agents; thus, significantly enhancing both hydrogel's application convenience and biocompatibility. Bioactive peptides (Tet213 and QK) safeguard against possible bacterial infections, facilitate angiogenesis, and eventually, improve organ wounds healing. This hydrogel-based tissue sealant demonstrates superior therapeutic and bioimaging performance in various mouse models including liver hemorrhage, gastric perforation, and bacterial-infected skin wound mouse models, highlighting its potential as a high-performance wound sealant for organ bleeding wound management.
Collapse
Affiliation(s)
- Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zunpan She
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rong Li
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhicheng Yao
- Department of Hepatobiliary & Pancreatic Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Vairappan B, Wright G, M S, Ravikumar TS. Candesartan cilexetil ameliorates NOSTRIN-NO dependent portal hypertension in cirrhosis and ACLF. Eur J Pharmacol 2023; 958:176010. [PMID: 37634841 DOI: 10.1016/j.ejphar.2023.176010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
In decompensated cirrhosis, the severity of portal hypertension (PHT) is associated with increased hepatic endothelial nitric oxide synthase (eNOS) trafficking inducer (Nostrin), but the mechanism remains unclear. AIM: To investigate: (1) Whether in cirrhosis-PHT models, ± superimposed inflammation to mimic acute-on-chronic liver failure (ACLF) modulates hepatic nitric oxide synthase trafficking inducer (NOSTRIN) expression, nitric oxide (NO) synthesis, and/or endothelial dysfunction (ED); and (2) Whether the "angiotensin II type 1 receptor blocker" candesartan cilexetil (CC) affects this pathway. CD-1 mice received intraperitoneal carbon tetrachloride injections (CCl4 15% v/v in corn oil, 0.5 mL/kg) twice weekly for 12 wk to induce cirrhosis. After 12 wk, mice were randomized to receive 2-wk oral administration of CC (8 mg/kg) ± LPS. At sacrifice, plasma (biochemical indicators, cytokines, and angiotensin II) and liver tissues (histopathology, Sirius-red stains, and molecular studies) were analysed. Moreover, Nostrin gene knockdown was tested in human umbilical vein endothelial cells (HUVECs). When compared to naïve animals, CCl4-treated animals showed markedly elevated hepatic Nostrin expression (P < 0.0001), while hepatic peNOS expression (measure of eNOS activity) was significantly reduced (P < 0.05). LPS challenge further increased Nostrin and reduced peNOS expression (P < 0.05 for both) in cirrhotic animals. Portal pressure and subsequent hepatic vascular resistance were also increased in all cirrhotic animals following LPS challenge. In CCl4 ± LPS-treated animals, CC treatment significantly reduced Nostrin (P < 0.05) and increased hepatic cGMP (P < 0.01). NOSIP, caveolin-1, NFκB, and iNOS protein expression were significantly increased in CCl4-treated animals (P < 0.05 for all). CC treatment non-significantly lowered NOSIP and caveolin-1 expression while iNOS and NFκB expression was significantly reduced in CCl4 + LPS-treated animals (P < 0.05 for both). Furthermore, Nostrin knockdown significantly improved peNOS expression and associated NO synthesis and reduced inflammation in HUVECs. This study is the first to indicate a potential mechanistic role for the Nostrin-eNOS-NO pathway in cirrhosis and ACLF development. Moreover, this pathway provides a potential therapeutic target given the ameliorative response to Candesartan treatment.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India.
| | - Gavin Wright
- Basildon & Thurrock University Hospitals NHS Foundation Trust, UK; Mid and South Essex NHS Foundation Trust, UK
| | - Sundhar M
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India
| | - T S Ravikumar
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
10
|
Tan S, Tang H, Wang Y, Xie P, Li H, Zhang Z, Zhou J. Tumor cell-derived exosomes regulate macrophage polarization: Emerging directions in the study of tumor genesis and development. Heliyon 2023; 9:e19296. [PMID: 37662730 PMCID: PMC10474436 DOI: 10.1016/j.heliyon.2023.e19296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023] Open
Abstract
As an extracellular vesicle, exosomes play an important role in intercellular information transmission, delivering cargos of the parent cell, such as RNA, DNA, proteins, and lipids, activating different signaling pathways in the target cell and regulating inflammation, angiogenesis, and tumor progression. In particular, exosomes secreted by tumor cells can change the function of surrounding cells, creating a microenvironment conducive to tumor growth and metastasis. For example, after macrophages phagocytose exosomes and accept their cargos, they activate macrophage polarization-related signaling pathways and polarize macrophages into M1 or M2 types to exert antitumor or protumor functions. Currently, the study of exosomes affecting the polarization of macrophages has attracted increasing attention. Therefore, this paper reviews relevant studies in this field to better understand the mechanism of exosome-induced macrophage polarization and provide evidence for exploring novel targets for tumor therapy and new diagnostic markers in the future.
Collapse
Affiliation(s)
- Siyuan Tan
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haodong Tang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Yang Wang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Peng Xie
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Surgery, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu Province, China
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing, 210009, Jiangsu Province, China
| |
Collapse
|
11
|
Zhao Y, Liu Y, Wu J, Kong D, Zhao S, Li G, Li W. Swamp eel aldehyde reductase is involved in response to nitrosative stress via regulating NO/GSH levels. JOURNAL OF FISH BIOLOGY 2023; 103:529-543. [PMID: 37266950 DOI: 10.1111/jfb.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Aldehyde reductase (ALR) plays key roles in the detoxification of toxic aldehyde. In this study, the authors cloned the swamp eel ALR gene using rapid amplification of cDNA ends-PCR (RACE-PCR). The recombinant protein (rALR) was expressed in Escherichia coli and purified using a Ni2+ -NTA chelating column. The rALR protein exhibited efficient reductive activity towards several aldehydes, ketones and S-nitrosoglutathione (GSNO). A spot assay suggested that the recombinant E. coli strain expressing rALR showed better resistance to formaldehyde, sodium nitrite and GSNO stress, suggesting that swamp eel ALR is crucial for redox homeostasis in vivo. Consequently, the authors investigated the effect of rALR on the oxidative parameters of the liver in swamp eels challenged with Aeromonas hydrophila. The hepatic glutathione (GSH) content significantly increased, and the hepatic NO content and levels of reactive oxygen species and reactive nitrogen species significantly decreased when rALR was administered. In addition, the mRNA expression of hepatic Alr, HO1 and Nrf2 was significantly upregulated, whereas the expression levels of NF-κB, IL-1β and NOS1 were significantly downregulated in the rALR-administered group. Collectively, these results suggest that ALR is involved in the response to nitrosative stress by regulating GSH/NO levels in the swamp eel.
Collapse
Affiliation(s)
- Yuhe Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Yang Liu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Sifan Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Guopan Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Brand RM, Dudley B, Karloski E, Zyhowski A, Raphael R, Pitlor D, Metter EJ, Pai R, Lee K, Brand RE, Uttam S. Immune microenvironment profiling of normal appearing colorectal mucosa biopsied over repeat patient visits reproducibly separates lynch syndrome patients based on their history of colon cancer. Front Oncol 2023; 13:1174831. [PMID: 37637062 PMCID: PMC10457127 DOI: 10.3389/fonc.2023.1174831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Lynch syndrome (LS) is the most common hereditary cause of colorectal cancer (CRC), increasing lifetime risk of CRC by up to 70%. Despite this higher lifetime risk, disease penetrance in LS patients is highly variable and most LS patients undergoing CRC surveillance will not develop CRC. Therefore, biomarkers that can correctly and consistently predict CRC risk in LS patients are needed to both optimize LS patient surveillance and help identify better prevention strategies that reduce risk of CRC development in the subset of high-risk LS patients. Methods Normal-appearing colorectal tissue biopsies were obtained during repeat surveillance colonoscopies of LS patients with and without a history of CRC, healthy controls (HC), and patients with a history of sporadic CRC. Biopsies were cultured in an ex-vivo explant system and their supernatants were assayed via multiplexed ELISA to profile the local immune signaling microenvironment. High quality cytokines were identified using the rxCOV fidelity metric. These cytokines were used to perform elastic-net penalized logistic regression-based biomarker selection by computing a new measure - overall selection probability - that quantifies the ability of each marker to discriminate between patient cohorts being compared. Results Our study demonstrated that cytokine based local immune microenvironment profiling was reproducible over repeat visits and sensitive to patient LS-status and CRC history. Furthermore, we identified sets of cytokines whose differential expression was predictive of LS-status in patients when compared to sporadic CRC patients and in identifying those LS patients with or without a history of CRC. Enrichment analysis based on these biomarkers revealed an LS and CRC status dependent constitutive inflammatory state of the normal appearing colonic mucosa. Discussion This prospective pilot study demonstrated that immune profiling of normal appearing colonic mucosa discriminates LS patients with a prior history of CRC from those without it, as well as patients with a history of sporadic CRC from HC. Importantly, it suggests the existence of immune signatures specific to LS-status and CRC history. We anticipate that our findings have the potential to assess CRC risk in individuals with LS and help in preemptively mitigating it by optimizing surveillance and identifying candidate prevention targets. Further studies are required to validate our findings in an independent cohort of LS patients over multiple visits.
Collapse
Affiliation(s)
- Rhonda M. Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Magee Womens Research Institute, Pittsburgh, PA, United States
| | - Beth Dudley
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eve Karloski
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ashley Zyhowski
- Magee Womens Research Institute, Pittsburgh, PA, United States
| | - Rebecca Raphael
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Danielle Pitlor
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - E. Jeffrey Metter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Reet Pai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kenneth Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Randall E. Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shikhar Uttam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Akshaya BS, Premraj K, Iswarya C, Muthusamy S, Ibrahim HIM, Khalil HE, Gunasekaran V, Vickram S, Senthil Kumar V, Palanisamy S, Thirugnanasambantham K. Cinnamaldehyde inhibits Enterococcus faecalis biofilm formation and promotes clearance of its colonization by modulation of phagocytes in vitro. Microb Pathog 2023:106157. [PMID: 37268049 DOI: 10.1016/j.micpath.2023.106157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
The nosocomial pathogen, Enterococcus faecalis plays a crucial role in the pathogenesis of variety of infections including endocarditis, urinary tract, and recurrent root canal infections. Primary virulence factors of E. faecalis such as biofilm formation, gelatinase production and suppression of host innate immune response can severely harm host tissue. Thus, novel treatments are needed to prevent E. faecalis biofilm development and pathogenicity due to the worrisome rise in enterococcal resistance to antibiotics. The primary phytochemical in cinnamon essential oils, cinnamaldehyde, has shown promising efficacy against a variety of infections. Here, we looked into how cinnamaldehyde affected the growth of biofilms, the activity of the enzyme gelatinase, and gene expression in E. faecalis. In addition, we looked at the influence of cinnamaldehyde on RAW264.7 macrophages' interaction with biofilm and planktonic E. faecalis in terms of intracellular bacterial clearance, NO generation, and macrophage migration in vitro. According to our research, cinnamaldehyde attenuated the biofilm formation potential of planktonic E. faecalis and gelatinase activity of the biofilm at non-lethal concentrations. The expression of the quorum sensing fsr locus and its downstream gene gelE in biofilms were also found to be significantly downregulated by cinnamaldehyde. Results also demonstrated that cinnamaldehyde treatment increased NO production, intracellular bacterial clearance, and migration of RAW264.7 macrophages in presence of both biofilm and planktonic E. faecalis. Overall these results suggest that cinnamaldehyde has the ability to inhibit E. faecalis biofilm formation and modulate host innate immune response for better clearance of bacterial colonization.
Collapse
Affiliation(s)
- Balasubramanian Sennammal Akshaya
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India
| | - Kumar Premraj
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India
| | - Christian Iswarya
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, India
| | - Hairul-Islam Mohamed Ibrahim
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Biological Science College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Vaishnavi Gunasekaran
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Venugopal Senthil Kumar
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Tamil Nadu State Council for Science and Technology, DOTE Campus, Chennai, 600025, Tamil Nadu, India
| | - Senthilkumar Palanisamy
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Sundararaja Nagar, Pondicherry, 605004, India; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| |
Collapse
|
14
|
Jiang W, Cheng Y, Wang Y, Wu J, Rong Z, Sun L, Zhou Y, Zhang K. Involvement of Abnormal p-α-syn Accumulation and TLR2-Mediated Inflammation of Schwann Cells in Enteric Autonomic Nerve Dysfunction of Parkinson's Disease: an Animal Model Study. Mol Neurobiol 2023:10.1007/s12035-023-03345-4. [PMID: 37148524 DOI: 10.1007/s12035-023-03345-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
The study was designed to investigate the pathogenesis of gastrointestinal (GI) impairment in Parkinson's disease (PD). We utilized 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) and probenecid (250 mg/kg) to prepare a PD mice model. MPTP modeling was first confirmed. GI motility was measured using stool collection test and enteric plexus loss was also detected. Intestinal phosphorylated α-synuclein (p-α-syn), inflammation, and S100 were assessed using western blotting. Association between Toll-like receptor 2(TLR2) and GI function was validated by Pearson's correlations. Immunofluorescence was applied to show co-localizations of intestinal p-α-syn, inflammation, and Schwann cells (SCs). CU-CPT22 (3 mg/kg, a TLR1/TLR2 inhibitor) was adopted then. Success in modeling, damaged GI neuron and function, and activated intestinal p-α-syn, inflammation, and SCs responses were observed in MPTP group, with TLR2 related to GI damage. Increased p-α-syn and inflammatory factors were shown in SCs of myenteron for MPTP mice. Recovered fecal water content and depression of inflammation, p-α-syn deposition, and SCs activity were noticed after TLR2 suppression. The study investigates a novel mechanism of PD GI autonomic dysfunction, demonstrating that p-α-syn accumulation and TLR2 signaling of SCs were involved in disrupted gut homeostasis and treatments targeting TLR2-mediated pathway might be a possible therapy for PD.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ye Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Wu
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Zhe Rong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Yan Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
15
|
Coelho DR, Palma FR, Paviani V, LaFond KM, Huang Y, Wang D, Wray B, Rao S, Yue F, Bonini MG, Gantner BN. SOCS1 regulates a subset of NFκB-target genes through direct chromatin binding and defines macrophage functional phenotypes. iScience 2023; 26:106442. [PMID: 37020964 PMCID: PMC10068561 DOI: 10.1016/j.isci.2023.106442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Suppressor of cytokine signaling-1 (SOCS1) exerts control over inflammation by targeting p65 nuclear factor-κB (NF-κB) for degradation in addition to its canonical role regulating cytokine signaling. We report here that SOCS1 does not operate on all p65 targets equally, instead localizing to a select subset of pro-inflammatory genes. Promoter-specific interactions of SOCS1 and p65 determine the subset of genes activated by NF-κB during systemic inflammation, with profound consequences for cytokine responses, immune cell mobilization, and tissue injury. Nitric oxide synthase-1 (NOS1)-derived nitric oxide (NO) is required and sufficient for the displacement of SOCS1 from chromatin, permitting full inflammatory transcription. Single-cell transcriptomic analysis of NOS1-deficient animals led to detection of a regulatory macrophage subset that exerts potent suppression on inflammatory cytokine responses and tissue remodeling. These results provide the first example of a redox-sensitive, gene-specific mechanism for converting macrophages from regulating inflammation to cells licensed to promote aggressive and potentially injurious inflammation.
Collapse
Affiliation(s)
- Diego R. Coelho
- Department of Medicine/Division of Endocrinology and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine/Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Flavio R. Palma
- Department of Medicine/Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Veronica Paviani
- Department of Medicine/Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Katy M. LaFond
- Department of Medicine/Division of Endocrinology and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yunping Huang
- Department of Medicine/Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Dongmei Wang
- Center for Cancer Genomics, Robert H. Lurie Comprehensive Cancer Center of Chicago and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brian Wray
- Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Sridhar Rao
- Versiti Blood Research Institute and Department of Pediatrics/Division of Hematology, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Feng Yue
- Center for Cancer Genomics, Robert H. Lurie Comprehensive Cancer Center of Chicago and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marcelo G. Bonini
- Department of Medicine/Division of Hematology Oncology, Northwestern University Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Chicago, IL 60611, USA
| | - Benjamin N. Gantner
- Department of Medicine/Division of Endocrinology and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Barra JM, Kozlovskaya V, Burnette KS, Banerjee RR, Fraker CA, Kharlampieva E, Tse HM. Localized cytotoxic T cell-associated antigen 4 and antioxidant islet encapsulation alters macrophage signaling and induces regulatory and anergic T cells to enhance allograft survival. Am J Transplant 2023; 23:498-511. [PMID: 36731781 PMCID: PMC10291560 DOI: 10.1016/j.ajt.2023.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
The loss of functional β-cell mass is a hallmark of type 1 diabetes. Islet transplantation represents a promising alternative approach, but immune-mediated graft destruction remains a major challenge. We sought to use islet encapsulation technologies to improve graft survival and function without systemic immunosuppression. We hypothesized islet encapsulation with nanothin coatings consisting of tannic acid (TA), an antioxidant; poly(N-vinylpyrrolidone) (PVPON), a biocompatible polymer; and cytotoxic T cell-associated antigen 4 immunoglobulin (CTLA-4-Ig), an inhibitory immune receptor, will elicit localized immunosuppression to prolong islet allograft function and suppress effector T cell responses. In the absence of systemic immunosuppression, we demonstrated (PVPON/TA/CTLA-4-Ig)-encapsulated NOD.Rag islet grafts maintain function significantly longer than control IgG-containing (PVPON/TA/IgG) and nonencapsulated controls after transplantation into diabetic C57BL/6 mice. This protection coincided with diminished proinflammatory macrophage responses mediated by signal transducer and activator of transcription 1 signaling, decreased proinflammatory T cell effector responses, and CTLA-4-Ig-specific concomitant increases in anergic CD4+ T cells and regulatory T cells. Our results provide evidence that conjugation of CTLA-4-Ig to (PVPON/TA) coatings can suppress T cell activation, enhance regulatory T cell populations, prolong islet allograft survival, and induce localized immunosuppression after transplantation.
Collapse
Affiliation(s)
- Jessie M Barra
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - KaLia S Burnette
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, Florida, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
17
|
Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Biosci Rep 2023; 43:232519. [PMID: 36718668 PMCID: PMC10011338 DOI: 10.1042/bsr20220200] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Obesity, a major global health concern, is characterized by serious imbalance between energy intake and expenditure leading to excess accumulation of fat in adipose tissue (AT). A state of chronic low-grade AT inflammation is prevalent during obesity. The adipose tissue macrophages (ATM) with astounding heterogeneity and complex regulation play a decisive role in mediating obesity-induced insulin resistance. Adipose-derived macrophages were broadly classified as proinflammatory M1 and anti-inflammatory M2 subtypes but recent reports have proclaimed several novel and intermediate profiles, which are crucial in understanding the dynamics of macrophage phenotypes during development of obesity. Lipid-laden hypertrophic adipocytes release various chemotactic signals that aggravate macrophage infiltration into AT skewing toward mostly proinflammatory status. The ratio of M1-like to M2-like macrophages is increased substantially resulting in copious secretion of proinflammatory mediators such as TNFα, IL-6, IL-1β, MCP-1, fetuin-A (FetA), etc. further worsening insulin resistance. Several AT-derived factors could influence ATM content and activation. Apart from being detrimental, ATM exerts beneficial effects during obesity. Recent studies have highlighted the prime role of AT-resident macrophage subpopulations in not only effective clearance of excess fat and dying adipocytes but also in controlling vascular integrity, adipocyte secretions, and fibrosis within obese AT. The role of ATM subpopulations as friend or foe is determined by an intricate interplay of such factors arising within hyperlipidemic microenvironment of obese AT. The present review article highlights some of the key research advances in ATM function and regulation, and appreciates the complex dynamics of ATM in the pathophysiologic scenario of obesity-associated insulin resistance.
Collapse
|
18
|
Brand RM, Dudley B, Karloski E, Zyhowski A, Raphael R, Pitlor D, Metter EJ, Pai R, Lee K, Brand RE, Uttam S. Immune Microenvironment Profiling of Normal Appearing Colorectal Mucosa Biopsied Over Repeat Patient Visits Reproduciably Separates Lynch Syndrome Patients Based on Their History of Colon Cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.03.23286594. [PMID: 36945451 PMCID: PMC10029019 DOI: 10.1101/2023.03.03.23286594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Introduction Lynch syndrome (LS) is the most common hereditary cause of colorectal cancer (CRC), increasing lifetime risk of CRC by up to 70%. Despite this higher lifetime risk, disease penetrance in LS patients is highly variable and most LS patients undergoing CRC surveillance will not develop CRC. Therefore, biomarkers that can correctly and consistently predict CRC risk in LS patients are needed to both optimize LS patient surveillance and help identify better prevention strategies that reduce risk of CRC development in the subset of high-risk LS patients. Methods Normal-appearing colorectal tissue biopsies were obtained during repeat surveillance colonoscopies of LS patients with and without a history of CRC, healthy controls (HC), and patients with a history of sporadic CRC. Biopsies were cultured in an ex-vivo explant system and their supernatants were assayed via multiplexed ELISA to profile the local immune signaling microenvironment. High quality cytokine signatures were identified using rx COV fidelity metric. These signatures were used to perform biomarker selection by computing their selection probability based on penalized logistic regression. Results Our study demonstrated that cytokine based local immune microenvironment profiling was reproducible over repeat visits and sensitive to patient LS-status and CRC history. Furthermore, we identified sets of biomarkers whose differential expression was predictive of LS-status in patients when compared to sporadic CRC patients and in identifying those LS patients with or without a history of CRC. Enrichment analysis based on these biomarkers revealed an LS and CRC status dependent constitutive inflammatory state of the normal appearing colonic mucosa. Discussion This prospective pilot study demonstrated that immune profiling of normal appearing colonic mucosa discriminates LS patients with a prior history of CRC from those without it, as well as patients with a history of sporadic CRC from HC. Importantly, it suggests existence of immune signatures specific to LS-status and CRC history. We anticipate that our findings have the potential to assess CRC risk in individuals with LS and help in preemptively mitigating it by optimizing surveillance and identifying candidate prevention targets. Further studies are required to validate our findings in an independent cohort of LS patients over multiple visits.
Collapse
|
19
|
Patra D, Roy S, Arora L, Kabeer SW, Singh S, Dey U, Banerjee D, Sinha A, Dasgupta S, Tikoo K, Kumar A, Pal D. miR-210-3p Promotes Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Targeting SOCS1-Mediated NF-κB Pathway. Diabetes 2023; 72:375-388. [PMID: 36469307 DOI: 10.2337/db22-0284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Under the condition of chronic obesity, an increased level of free fatty acids along with low oxygen tension in the adipose tissue creates a pathophysiological adipose tissue microenvironment (ATenv), leading to the impairment of adipocyte function and insulin resistance. Here, we found the synergistic effect of hypoxia and lipid (H + L) surge in fostering adipose tissue macrophage (ATM) inflammation and polarization. ATenv significantly increased miR-210-3p expression in ATMs which promotes NF-κB activation-dependent proinflammatory cytokine expression along with the downregulation of anti-inflammatory cytokine expression. Interestingly, delivery of miR-210-3p mimic significantly increased macrophage inflammation in the absence of H + L co-stimulation, while miR-210-3p inhibitor notably compromised H + L-induced macrophage inflammation through increased production of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of the NF-κB inflammatory signaling pathway. Mechanistically, miR-210 directly binds to the 3'-UTR of SOCS1 mRNA and silences its expression, thus preventing proteasomal degradation of NF-κB p65. Direct delivery of anti-miR-210-3p LNA in the ATenv markedly rescued mice from obesity-induced adipose tissue inflammation and insulin resistance. Thus, miR-210-3p inhibition in ATMs could serve as a novel therapeutic strategy for managing obesity-induced type 2 diabetes.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Soumyajit Roy
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Leena Arora
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Satpal Singh
- Department of Gastro Surgery, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Upalabdha Dey
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Dipanjan Banerjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Archana Sinha
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, India
| |
Collapse
|
20
|
Gupta K, Mathew AB, Chakrapani H, Saini DK. H 2S contributed from CSE during cellular senescence suppresses inflammation and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119388. [PMID: 36372112 DOI: 10.1016/j.bbamcr.2022.119388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.
Collapse
Affiliation(s)
- Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abraham Binoy Mathew
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Center for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
21
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
22
|
The Patatin-Like Phospholipase Domain Containing Protein 7 Regulates Macrophage Classical Activation through SIRT1/NF-κB and p38 MAPK Pathways. Int J Mol Sci 2022; 23:ijms232314983. [PMID: 36499308 PMCID: PMC9739533 DOI: 10.3390/ijms232314983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lipid that modulates macrophage polarization during immune responses, inflammation, and tissue remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) is a lysophospholipase with a preference for LPC. However, the role of PNPLA7 in macrophage polarization as an LPC hydrolase has not been explored. In the current study, we found that PNPLA7 is highly expressed in naïve macrophages and downregulated upon lipopolysaccharide (LPS)-induced polarization towards the classically activated (M1) phenotype. Consistently, overexpression of PNPLA7 suppressed the expression of proinflammatory M1 marker genes, including interleukin 1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), whereas knockdown of PNPLA7 augmented the inflammatory gene expression in LPS-challenged macrophages. PNPLA7 overexpression and knockdown increased and decreased Sirtuin1 (SIRT1) mRNA and protein levels, respectively, and affected the acetylation of the nuclear factor-kappa B (NF-κB) p65 subunit, a key transcription factor in M1 polarization. In addition, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK) were suppressed and enhanced by PNPLA7 overexpression and knockdown, respectively. Taken together, these findings suggest that PNPLA7 suppresses M1 polarization of LPS-challenged macrophages by modulating SIRT1/NF-κB- and p38 MAPK-dependent pathways.
Collapse
|
23
|
Xu W, Lu H, Yuan Y, Deng Z, Zheng L, Li H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways. Foods 2022; 11:foods11162439. [PMID: 36010439 PMCID: PMC9407528 DOI: 10.3390/foods11162439] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence shows that oxidative stress and inflammation contribute to the development of cardiovascular disease. It has been suggested that propolis possesses antioxidant and anti-inflammatory activities. In this study, the antioxidant and anti-inflammatory effects of the main flavonoids of propolis (chrysin, pinocembrin, galangin, and pinobanksin) and propolis extract were researched. The results showed that the cellular ROS (Reactive oxygen species) levels, antioxidant enzymes, Nrf2 (Nuclear factor erythroid 2-related factor 2) nuclear translocation, and the expression of NQO1 (NAD(P)H:quinone oxidoreductase 1) and HO-1 (heme oxygenase 1) were regulated by different concentrations of individual flavonoids and propolis extract, which showed good antioxidant and pro-oxidant effects. For example, ROS levels were decreased; SOD and CAT activities were increased; and the expression of HO-1 protein was increased by chrysin. The results demonstrated that NO (Nitric Oxide), NOS (Nitric Oxide Synthase), and the activation of the NF-κB signaling pathway were inhibited in a dose-dependent manner by different concentrations of individual flavonoids and propolis extract. Moreover, the results revealed that the phytochemicals presented antioxidant effects at lower concentrations but pro-oxidant effects and stronger anti-inflammatory effects at higher concentrations. To maintain the balance of antioxidant and anti-inflammatory effects, it is possible that phytochemicals activate the Nrf2 pathway and inhibited the NF-κB (Nuclear factor kappa B) pathway.
Collapse
Affiliation(s)
- Wenzhen Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Han Lu
- Guiyang Center for Disease Control and Prevention, Guiyang 550018, China
| | - Yuan Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-15979100756
| |
Collapse
|
24
|
Solanki K, Rajpoot S, Bezsonov EE, Orekhov AN, Saluja R, Wary A, Axen C, Wary K, Baig MS. The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 2022; 10:e13651. [PMID: 35821897 PMCID: PMC9271274 DOI: 10.7717/peerj.13651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The nitric oxide synthases (NOS; EC 1.14.13.39) use L-arginine as a substrate to produce nitric oxide (NO) as a by-product in the tissue microenvironment. NOS1 represents the predominant NO-producing enzyme highly enriched in the brain and known to mediate multiple functions, ranging from learning and memory development to maintaining synaptic plasticity and neuronal development, Alzheimer's disease (AD), psychiatric disorders and behavioral deficits. However, accumulating evidence indicate both canonical and non-canonical roles of NOS1-derived NO in several other tissues and chronic diseases. A better understanding of NOS1-derived NO signaling, and identification and characterization of NO-metabolites in non-neuronal tissues could become useful in diagnosis and prognosis of diseases associated with NOS1 expression. Continued investigation on the roles of NOS1, therefore, will synthesize new knowledge and aid in the discovery of small molecules which could be used to titrate the activities of NOS1-derived NO signaling and NO-metabolites. Here, we address the significance of NOS1 and its byproduct NO in modifying pathophysiological events, which could be beneficial in understanding both the disease mechanisms and therapeutics.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Anita Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cassondra Axen
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kishore Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| |
Collapse
|
25
|
Man MQ, Wakefield JS, Mauro TM, Elias PM. Regulatory Role of Nitric Oxide in Cutaneous Inflammation. Inflammation 2022; 45:949-964. [PMID: 35094214 PMCID: PMC11249049 DOI: 10.1007/s10753-021-01615-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO), a signaling molecule, regulates biological functions in multiple organs/tissues, including the epidermis, where it impacts permeability barrier homeostasis, wound healing, and antimicrobial defense. In addition, NO participates in cutaneous inflammation, where it exhibits pro-inflammatory properties via the cyclooxygenase/prostaglandin pathway, migration of inflammatory cells, and cytokine production. Yet, NO can also inhibit cutaneous inflammation through inhibition of T cell proliferation and leukocyte migration/infiltration, enhancement of T cell apoptosis, as well as through down-regulation of cytokine production. Topical applications of NO-releasing products can alleviate atopic dermatitis in humans and in murine disease models. The underlying mechanisms of these discrepant effects of NO on cutaneous inflammation remain unknown. In this review, we briefly review the regulatory role of NO in cutaneous inflammation and its potential, underlying mechanisms.
Collapse
Affiliation(s)
- Mao-Qiang Man
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA.
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China.
| | - Joan S Wakefield
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA
| | - Theodora M Mauro
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA
| | - Peter M Elias
- Dermatology Service Veterans Affairs Medical Center, Department of Dermatology, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Huang WY, Jeong I, Han BK, Kim MJ, Hong J, Ahn SII, Heo W, Pan JH, Kim JK, Shin EC, Kim YJ. Chrysanthemum Zawadskii Herbich var. latilobum (Maxim.) Kitamura water extract prevents BALB/c mice lung injury from particulate matter 10 toxicity. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2064435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Wen Yan Huang
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Inhye Jeong
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jiyoun Hong
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Sung-I. I. Ahn
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Wan Heo
- Department of Food Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungcheongbuk-do, Republic of Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
- BK21 FOUR Research Education Team for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| |
Collapse
|
27
|
Apaza Ticona L, Slowing K, Serban AM, Humanes Bastante M, Hernáiz MJ. Wound healing, anti-inflammatory and anti-melanogenic activities of ursane-type triterpenes from Semialarium mexicanum (Miers) Mennega. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115009. [PMID: 35077827 DOI: 10.1016/j.jep.2022.115009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The bark of Semialarium mexicanum commonly known as 'Cancerina' is used as an infusion in Central America and Mexico to treat various wound infections, as well as skin and vaginal ulcers. AIM OF THE STUDY This study aimed to determine the wound healing, anti-inflammatory and anti-melanogenic activities of the aqueous extract of Semialarium mexicanum and to identify the compounds related to these activities. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Semialarium mexicanum was carried out, selecting the sub-extracts and fractions depending on their wound healing, anti-inflammatory and anti-melanogenic activities in the RAW 264.7, NIH/3T3 and B16-F10 cells. RESULTS Three compounds were obtained and characterised by nuclear magnetic resonance and mass spectrometry. These compounds are (3β)-3-Hydroxy-urs-12-en-28-oic acid (1), (3β)-Urs-12-ene-3,28-diol (2) and (2α, 19α)-2,19-Dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Regarding the anti-inflammatory activity, the three compounds inhibited the production of NF-κB and NO, however, compound 3 was the most active with IC50 values of 8.15-8.19 μM and 8.94-9.14 μM, respectively, in all cell lines. The anti-melanogenic activity of these compounds was evaluated by the inhibition of tyrosinase and melanin in the B16-F10 cell line. The three compounds showed anti-melanogenic activity, however, compound 3 was the most active with an IC50 of 8.03 μM for the inhibition of tyrosinase production, and an IC50 of 8.53 μM for the inhibition of melanin production. Finally, concerning the wound healing activity, the three compounds presented proliferative activity in all the tested cell lines, however, compound 3 showed higher cell proliferation percentages than compounds 1 and 2 (88.89-89.60% compared to 64.92-65.71% and 71.53-71.99%, respectively). CONCLUSION The wound healing, anti-inflammatory and anti-melanogenic activity of the aqueous extract of Semialarium mexicanum was tested and analysed in the present study, after having isolated three ursane-type triterpenes.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - Marcos Humanes Bastante
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| | - María J Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
28
|
Chen Y, Zhong W, Xie Z, Li B, Li H, Gao K, Ning Z. Suppressor of cytokine signaling 1 (SOCS1) inhibits antiviral responses to facilitate Senecavirus A infection by regulating the NF-κB signaling pathway. Virus Res 2022; 313:198748. [PMID: 35304133 DOI: 10.1016/j.virusres.2022.198748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022]
Abstract
Senecavirus A (SVA) is a new virus inducing porcine idiopathic vesicular disease that causes significant economic losses. Although some progress has been made in etiological research, the role of host factors in SVA infection remains unclear. This study investigated the role of the host factor, suppressor of cytokine signaling 1 (SOCS1), in SVA infection. The expression of SOCS1 was significantly upregulated with infection of SVA in a dose-dependent manner, and SOCS1 inhibited the expression of type I interferons (IFN-α, IFN-β) and the production of interferon stimulating genes (ISGs) (ISG56, ISG54, PKR), thereby facilitating viral replication. Further results showed that inhibition of antiviral responses of SOCS1 was achieved by regulating the NF-κB signaling pathway, which attenuates the production of IFNs and pro-inflammatory cytokines. These findings provide a new perspective of SVA pathogenesis and may partially explain the persistence of this infection. Moreover, the data indicate that targeting SOCS1 can help in developing new agents against SVA infection.
Collapse
Affiliation(s)
- Yongjie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenxin Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kuipeng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China.
| |
Collapse
|
29
|
Pal G, Anwer K, Alshetaili A, Jena J, Sehgal A, Singh S, Sharma N, Sharma A, Al-Brakati A, Bungau S, Behl T. Effects of NO modulators and antioxidants on endocrine and cellular markers in rats under repetitive restraint stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12043-12053. [PMID: 34561803 DOI: 10.1007/s11356-021-16592-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The aim of the study was to evaluate the effects of NO modulators and antioxidant treatments on endocrine (plasma corticosterone), cellular (heat shock protein 70 [HSP-70] and nuclear factor κB [NF-κB]), and oxidative stress markers in repetitively stressed rats. Repetitive (restraint) stress (RS 1hr/day × 21 days) enhanced the levels of cellular and endocrine stress markers in the rat blood and altered pro-oxidant-antioxidant balance differentially in the control and test groups. Exposure to repetitive RS enhanced malondialdehyde (MDA) levels, lowered reduced glutathione (GSH), and superoxide dismutase (SOD) levels as well as nitric oxide (NOx) levels. NO precursor L-arginine and NO synthase inhibitors were found to differentially modulate stress-induced mechanism in altering NF-κB, HSP-70, and corticosterone levels. The antioxidant L-ascorbic acid (L-AA) significantly suppressed RS(×21)-induced elevation of NF-κB and HSP-70 levels, depicting protective effects, as also evidenced by reversal of elevated corticosterone levels. The results suggest that NO modulators and antioxidants differentially influence repetitive stress-induced changes in endocrine and cellular markers, and the complex interaction between NO and cellular markers like HSP70 and NF-κB plays a crucial modulatory role in this phenomenon.
Collapse
Affiliation(s)
- Giridhari Pal
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| | - Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Jyotirmoyee Jena
- VSS Medical College, Sambalpur University, Sambalpur, Odisha, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| |
Collapse
|
30
|
Evolution of the protein corona affects macrophage polarization. Int J Biol Macromol 2021; 191:192-200. [PMID: 34547310 DOI: 10.1016/j.ijbiomac.2021.09.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
When nanoparticles (NPs) come into contact with bioenvironments, a protein corona forms on the NP surface. Previous reports showed that the constituents of the corona change with time. However, how different protein corona compositions influence cells, especially immune cells, has received less attention. Macrophages are important immune cells that can be polarized into a pro-inflammatory (M1) or anti-inflammatory (M2) phenotype. In this study, AuNPs were incubated with human plasma for different periods to obtain time-related AuNP-coronas, and the influences of time-related AuNP-coronas on macrophage polarization were investigated. The macrophage morphology, biomarkers, cytokine secretion studies show that the pristine AuNPs and 4 h-AuNP-corona induced macrophage cells into M2 phenotype, while the co-incubation of 12 h-AuNP-corona and macrophage cells result in M1 phenotype. Further proteomic analysis showed that the compositions of protein corona were changing constantly after AuNPs contacted with plasma. When the incubation time increased to 12 h, the immune proteins in protein corona were increased significantly, which play a key role in modulation of the different macrophages polarization. Our findings demonstrated that plasma incubation time is an important parameter that needs to be taken into account in the study of nano-immune interactions and safe use of NPs in biological systems. Moreover, our finding can be a new efficient strategy for activating inflammatory or anti-inflammatory in medical treatment.
Collapse
|
31
|
Transcriptome profiling reveals new insights into the roles of neuronal nitric oxide synthase on macrophage polarization towards classically activated phenotype. PLoS One 2021; 16:e0257908. [PMID: 34587205 PMCID: PMC8480887 DOI: 10.1371/journal.pone.0257908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
In response to various stimuli, naïve macrophages usually polarize to M1 (classically activated) or M2 (alternatively activated) cells with distinct biological functions. Neuronal nitric oxide synthase (NOS1) is involved in M1 macrophage polarization at an early stage. Here, we show for the first time that NOS1 is dispensable for M2 macrophage polarization for the first time. Further, differentially expressed genes (DEGs) regulated by NOS1 signaling in M1-polarized macrophages stimulated with lipopolysaccharide (LPS) were characterized by transcriptome analysis of wild-type (WT) and NOS1 knockout mouse macrophages. Thousands of affected genes were detected 2 h post LPS challenge, and this wide-ranging effect became greater with a longer stimulation time (8 h post LPS). NOS1 deficiency caused dysregulated expression of hundreds of LPS-responsive genes. Most DEGs were enriched in biological processes related to transcription and regulation of the immune and inflammatory response. At 2 h post-LPS, the toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction, and NOD-like receptor signaling pathway were the major pathways affected, whereas the main pathways affected at 8 h post-LPS were Th1 and Th2 cell differentiation, FoxO, and AMPK signaling pathway. Identified DEGs were validated by real-time quantitative PCR and interacted in a complicated signaling pathway network. Collectively, our data show that NOS1 is dispensable for M2 macrophage polarization and reveal novel insights in the role of NOS1 signaling at different stages of M1 macrophage polarization through distinct TLR4 plasma membrane-localized and endosome-internalized signaling pathways.
Collapse
|
32
|
Chatterji A, Banerjee D, Billiar TR, Sengupta R. Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases. Free Radic Biol Med 2021; 172:604-621. [PMID: 34245859 DOI: 10.1016/j.freeradbiomed.2021.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
S-nitrosylation is a very fundamental post-translational modification of protein and non-protein thiols due the involvement of it in a variety of cellular processes including activation/inhibition of several ion channels such as ryanodine receptor in the cardiovascular system; blood vessel dilation; cGMP signaling and neurotransmission. S-nitrosothiol homeostasis in the cell is tightly regulated and perturbations in homeostasis result in an altered redox state leading to a plethora of disease conditions. However, the exact role of S-nitrosylated proteins and nitrosative stress metabolites in inflammation and in inflammation modulation is not well-reviewed. The cell utilizes its intricate defense mechanisms i.e. cellular denitrosylases such as Thioredoxin (Trx) and S-nitrosoglutathione reductase (GSNOR) systems to combat nitric oxide (NO) pathology which has also gained current attraction as novel anti-inflammatory molecules. This review attempts to provide state-of-the-art knowledge from past and present research on the mechanistic role of nitrosative stress intermediates (RNS, OONO-, PSNO) in pulmonary and autoimmune diseases and how cellular denitrosylases particularly GSNOR and Trx via imparting opposing effects can modulate and reduce inflammation in several health and disease conditions. This review would also bring into notice the existing gaps in current research where denitrosylases can be utilized for ameliorating inflammation that would leave avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Ajanta Chatterji
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Debasmita Banerjee
- Department of Molecular Biology and Biotechnology, University of Kalyani, Block C, Nadia, Kalyani, West Bengal, 741235, India
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 5213, USA
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
33
|
Rajpoot S, Wary KK, Ibbott R, Liu D, Saqib U, Thurston TLM, Baig MS. TIRAP in the Mechanism of Inflammation. Front Immunol 2021; 12:697588. [PMID: 34305934 PMCID: PMC8297548 DOI: 10.3389/fimmu.2021.697588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP) represents a key intracellular signalling molecule regulating diverse immune responses. Its capacity to function as an adaptor molecule has been widely investigated in relation to Toll-like Receptor (TLR)-mediated innate immune signalling. Since the discovery of TIRAP in 2001, initial studies were mainly focused on its role as an adaptor protein that couples Myeloid differentiation factor 88 (MyD88) with TLRs, to activate MyD88-dependent TLRs signalling. Subsequent studies delineated TIRAP’s role as a transducer of signalling events through its interaction with non-TLR signalling mediators. Indeed, the ability of TIRAP to interact with an array of intracellular signalling mediators suggests its central role in various immune responses. Therefore, continued studies that elucidate the molecular basis of various TIRAP-protein interactions and how they affect the signalling magnitude, should provide key information on the inflammatory disease mechanisms. This review summarizes the TIRAP recruitment to activated receptors and discusses the mechanism of interactions in relation to the signalling that precede acute and chronic inflammatory diseases. Furthermore, we highlighted the significance of TIRAP-TIR domain containing binding sites for several intracellular inflammatory signalling molecules. Collectively, we discuss the importance of the TIR domain in TIRAP as a key interface involved in protein interactions which could hence serve as a therapeutic target to dampen the extent of acute and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Rachel Ibbott
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States.,School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, United States.,Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Uzma Saqib
- Discipline of Chemistry, Indian Institute of Technology Indore (IITI), Indore, India
| | - Teresa L M Thurston
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| |
Collapse
|
34
|
Hu Q, Shi J, Zhang J, Wang Y, Guo Y, Zhang Z. Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Jiao Zhang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yi Wang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Centre for Nanomedicine, Hubei Engineering Research Centre for Novel Drug Delivery System Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
35
|
Karki P, Cha B, Zhang CO, Li Y, Ke Y, Promnares K, Kaibuchi K, Yoshimura A, Birukov KG, Birukova AA. Microtubule-dependent mechanism of anti-inflammatory effect of SOCS1 in endothelial dysfunction and lung injury. FASEB J 2021; 35:e21388. [PMID: 33724556 PMCID: PMC10069762 DOI: 10.1096/fj.202001477rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Suppressors of cytokine signaling (SOCS) provide negative regulation of inflammatory reaction. The role and precise cellular mechanisms of SOCS1 in control of endothelial dysfunction and barrier compromise associated with acute lung injury remain unexplored. Our results show that siRNA-mediated SOCS1 knockdown augmented lipopolysaccharide (LPS)-induced pulmonary endothelial cell (EC) permeability and enhanced inflammatory response. Consistent with in vitro data, EC-specific SOCS1 knockout mice developed more severe lung vascular leak and accumulation of inflammatory cells in bronchoalveolar lavage fluid. SOCS1 overexpression exhibited protective effects against LPS-induced endothelial permeability and inflammation, which were dependent on microtubule (MT) integrity. Biochemical and image analysis of unstimulated EC showed SOCS1 association with the MT, while challenge with LPS or MT depolymerizing agent colchicine impaired this association. SOCS1 directly interacted with N2 domains of MT-associated proteins CLIP-170 and CLASP2. Furthermore, N-terminal region of SOCS1 was indispensable for these interactions and SOCS1-ΔN mutant lacking N-terminal 59 amino acids failed to rescue LPS-induced endothelial dysfunction. Depletion of endogenous CLIP-170 or CLASP2 abolished SOCS1 interaction with Toll-like receptor-4 and Janus kinase-2 leading to impairment of SOCS1 inhibitory effects on LPS-induced inflammation. Altogether, these findings suggest that endothelial barrier protective and anti-inflammatory effects of SOCS1 are critically dependent on its targeting to the MT.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Boyoung Cha
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
36
|
Guo C, Islam R, Zhang S, Fang J. Metabolic reprogramming of macrophages and its involvement in inflammatory diseases. EXCLI JOURNAL 2021; 20:628-641. [PMID: 33883988 PMCID: PMC8056050 DOI: 10.17179/excli2020-3053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/03/2021] [Indexed: 12/28/2022]
Abstract
Macrophages are critical effector cells of the innate immune system. The presence of microbes or the stimulation by inflammatory factors triggers the metabolic reprogramming of macrophages or macrophage polarization into two phenotypes: the classically activated macrophages (M1) displaying a pro-inflammatory phenotype and the alternatively activated macrophages (M2) having anti-inflammatory functions. The imbalance between the two phenotypes has been linked with various pathological states, such as fibrosis, hepatitis, colitis, and tumor progression. An avenue of potential therapeutic strategies based on macrophage polarization has emerged. Therefore, it is essential to understand the mechanisms of macrophage polarization. In this review, we focus on the macrophage polarization process and discuss the stimuli-dependent conversion into M1 and M2 phenotypes. We also present the metabolic patterns supporting their specific functions. The factors and signaling cascades involved in intra-class switching are also detailed. Finally, the role of macrophage polarization in disease progression is discussed.
Collapse
Affiliation(s)
- Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei 230032, China
| | - Rayhanul Islam
- Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Shichen Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, China
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, and Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, No 81 Meishan Road, Hefei 230032, China.,Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| |
Collapse
|
37
|
Dao VTV, Elbatreek MH, Fuchß T, Grädler U, Schmidt HHHW, Shah AM, Wallace A, Knowles R. Nitric Oxide Synthase Inhibitors into the Clinic at Last. Handb Exp Pharmacol 2021; 264:169-204. [PMID: 32797331 DOI: 10.1007/164_2020_382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Thomas Fuchß
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Ulrich Grädler
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Alan Wallace
- Health and Life Sciences, Coventry University, Coventry, UK
| | - Richard Knowles
- Knowles Consulting Ltd., The Stevenage Bioscience Catalyst, Stevenage, UK.
| |
Collapse
|
38
|
Roy A, Saqib U, Baig MS. NOS1-mediated macrophage and endothelial cell interaction in the progression of atherosclerosis. Cell Biol Int 2021; 45:1191-1201. [PMID: 33501735 DOI: 10.1002/cbin.11558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 01/24/2021] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease arising due to an imbalance in lipid metabolism and maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Interactions between monocytes/macrophages and endothelial cells play an essential role in the pathogenesis of atherosclerosis. In our current study, nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) has been identified as a regulator of macrophage and endothelial cell interaction. Oxidized LDL (OxLDL) activates NOS1, which results in the expression of CD40 ligand in macrophages. OxLDL-stimulated macrophages produce some soluble factors which increase the CD40 receptor expression in endothelial cells. This increases the interaction between the macrophages and endothelial cells, which leads to an increase in the inflammatory response. Inhibition of NOS1-derived NO might serve as an effective strategy to reduce foam cell formation and limit the extent of atherosclerotic plaque expansion.
Collapse
Affiliation(s)
- Anjali Roy
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Uzma Saqib
- Discipline of Chemistry, Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| |
Collapse
|
39
|
Li S, Zhou Y, Yang C, Fan S, Huang L, Zhou T, Wang Q, Zhao R, Tang C, Tao M, Liu S. Comparative analyses of hypothalamus transcriptomes reveal fertility-, growth-, and immune-related genes and signal pathways in different ploidy cyprinid fish. Genomics 2021; 113:595-605. [PMID: 33485949 DOI: 10.1016/j.ygeno.2021.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022]
Abstract
Triploid crucian carp (TCC) is obtained by hybridization of female diploid red crucian carp (Carassius auratus red var., RCC) and male allotetraploid hybrids. In this study, high-throughput sequencing was used to conduct the transcriptome analysis of the female hypothalamus of diploid RCC, diploid common carp (Cyprinus carpio L., CC) and TCC. The key functional expression genes of the hypothalamus were obtained through functional gene annotation and differential gene expression screening. A total of 71.56 G data and 47,572 genes were obtained through sequencing and genome mapping, respectively. The Fuzzy Analysis Clustering assigned the differentially expressed genes (DEGs) into eight groups, two of which, overdominance expression (6005, 12.62%) and underdominance expression (3849, 8.09%) in TCC were further studied. KEGG enrichment analysis showed that the DEGs in overdominance were mainly enriched in four pathways. The expression of several fertility-related genes was lower levels in TCC, whereas the expression of several growth-related genes and immune-related genes was higher levels in TCC. Besides, 15 DEGs were verified by quantitative real-time PCR (qPCR). The present study can provide a reference for breeding sterility, fast-growth, and disease-resistant varieties by distant hybridization.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Siyu Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Lu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Tian Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Qiubei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Rurong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Chenchen Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha 410081, Hunan, PR China.
| |
Collapse
|
40
|
Rosanortriterpenes A-B, Two Promising Agents from Rosa laevigata var. leiocapus, Alleviate Inflammatory Responses and Liver Fibrosis in In Vitro Cell Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8872945. [PMID: 33224259 PMCID: PMC7673933 DOI: 10.1155/2020/8872945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 11/18/2022]
Abstract
Rosanortriterpenes A–B (RTA and RTB), two nortriterpenoids, are characteristic constituents in the fruits of Rosa laevigata var. leiocapus. However, pharmacological studies on these compounds are still scarce. In the present study, we aim to investigate the anti-inflammatory mechanisms associated with the effects of RTA–B in RAW264.7 macrophages and LO2 cells by detecting cell viabilities, nitric oxide (NO) production, tumour necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) production. Simultaneously, the anti-inflammatory action mechanisms of these two compounds were illustrated through western blot assay. Besides, the antihepatic fibrosis activities of these compounds have also been explored. The results demonstrated that RTA and RTB inhibited the production of NO, TNF-α, and IL-6 and suppressed liver fibrosis. RTA and RTB treatment also greatly inhibited the activation of NF-kappaB (NF-κB) pathway. Our study confirmed the promising anti-inflammatory and anti-liver fibrosis actions of RTA–B, suggesting that they might be developed as alternative and promising drugs for the treatment of hepatic inflammatory and fibrotic diseases.
Collapse
|
41
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
42
|
Batista LFS, Torrecilha RBP, Silva RB, Utsunomiya YT, Silva TBF, Tomokane TY, Pacheco AD, Bosco AM, Paulan SC, Rossi CN, Costa GNO, Marcondes M, Ciarlini PC, Nunes CM, Matta VLR, Laurenti MD. Chromosomal segments may explain the antibody response cooperation for canine leishmaniasis pathogenesis. Vet Parasitol 2020; 288:109276. [PMID: 33152678 DOI: 10.1016/j.vetpar.2020.109276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
Visceral leishmaniasis (VL) is marked by hyperactivation of a humoral response secreting high quantity of immunoglobulins (Igs) that are inaccessible to intracellular parasites. Here we investigated the contributions of the antibody response to the canine leishmaniasis pathogenesis. Using correlation and genome-wide association analysis, we investigated the relationship of anti-Leishmania infantum immunoglobulin classes levels with parasite burden, clinical response, renal/hepatic biochemical, and oxidative stress markers in dogs from endemic areas of VL. Immunoglobulin G (IgG) and IgA were positively correlated with parasite burden on lymph node and blood. Increased IgG, IgA and IgE levels were associated with severe canine leishmaniasis (CanL) whereas IgM was elevated in uninfected exposed dogs. Correlations of IgM, IgG and IgA with creatinine, urea, AST and ALT levels in the serum were suggested an involvement of those Igs with renal and hepatic changes. The correlogram of oxidative radicals and antioxidants revealed a likely relationship of IgM, IgG and IgA with oxidative stress and lipid peroxidation in the blood, suggested as mechanisms mediating tissue damage and CanL worsening. The gene mapping on chromosomal segments associated with the quantitative variation of immunoglobulin classes identified genetic signatures involved with reactive oxygen species generation, phagolysosome maturation and rupture, free iron availability, Th1/Th2 differenciation and, immunoglobulin clearance. The findings demonstrated the roles of the antibody response as resistance or susceptibility markers and mediators of CanL pathogenesis. In addition we pinpointed candidate genes as potential targets for the therapy against the damage caused by exacerbated antibody response and parasitism in VL.
Collapse
Affiliation(s)
- Luís F S Batista
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Rafaela B P Torrecilha
- Departamento De Medicina Veterinária Preventiva e Reprodução Animal, Faculdade De Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, CEP: 14884-900, Brazil.
| | - Rafaela B Silva
- Escola de Saúde, Universidade Salvador, Salvador, Bahia, CEP: 41720-200, Brazil.
| | - Yuri T Utsunomiya
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Thaís B F Silva
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Thaíse Y Tomokane
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Acácio D Pacheco
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Anelise M Bosco
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Silvana C Paulan
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Claudio N Rossi
- Departamento de Clínica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, CEP 05508-270, Brazil.
| | - Gustavo N O Costa
- Departamento De Medicina Veterinária Preventiva e Reprodução Animal, Faculdade De Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, CEP: 14884-900, Brazil.
| | - Mary Marcondes
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Paulo C Ciarlini
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Cáris M Nunes
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Univ Estadual Paulista, Araçatuba, São Paulo, CEP: 16015-050, Brazil.
| | - Vânia L R Matta
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| | - Márcia D Laurenti
- Laboratório De Patologia De Doenças Infecciosas, Faculdade De Medicina, Universidade De São Paulo, São Paulo, CEP: 01246903, Brazil.
| |
Collapse
|
43
|
Pahlavani N, Malekahmadi M, Firouzi S, Rostami D, Sedaghat A, Moghaddam AB, Ferns GA, Navashenaq JG, Reazvani R, Safarian M, Ghayour-Mobarhan M. Molecular and cellular mechanisms of the effects of Propolis in inflammation, oxidative stress and glycemic control in chronic diseases. Nutr Metab (Lond) 2020; 17:65. [PMID: 32817750 PMCID: PMC7425411 DOI: 10.1186/s12986-020-00485-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Propolis is a sticky, resinous material gather from plants and is blended with wax and other constituents. It is reported to have anti-inflammatory, anti-oxidative and blood glucose-lowering properties. This review aims to summarise evidences for the cellular and molecular mechanism of Propolis in inflammation, oxidative stress, and glycemic control. Propolis stimulate the production and secretion of anti-inflammatory cytokines and to inhibit the production of inflammatory cytokines and due to its various antioxidant and poly-phenolic compounds may has a role in control and treating some of the chronic diseases. Most studies have shown that Propolis may affect metabolic factors including plasma insulin levels, and it has proposed that it could be used in the prevention and treatment of T2D Mellitus. In general, to demonstrate the definite effects of Propolis on chronic diseases, more studies are required using larger sample sizes and various doses of Propolis, using better characterized and standardized agents.
Collapse
Affiliation(s)
- Naseh Pahlavani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Mahsa Malekahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Safieh Firouzi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Daryoush Rostami
- Department of Anesthesia, School of Paramedical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Alireza Sedaghat
- Cardiac Anesthesia Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Bagheri Moghaddam
- Department of Internal Medicine and Critical Care, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH UK
| | | | - Reza Reazvani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Mohammad Safarian
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Vakil Abad Blvd., Opposite to Mellat Park, Mashhad, 99199-91766 Iran
- Cardiovascular Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Pope NJ, Powell SM, Wigle JC, Denton ML. Wavelength- and irradiance-dependent changes in intracellular nitric oxide level. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-20. [PMID: 32790251 PMCID: PMC7423318 DOI: 10.1117/1.jbo.25.8.085001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Photobiomodulation (PBM) refers to the beneficial effects of low-energy light absorption. Although there is a large body of literature describing downstream physiological benefits of PBM, there is a limited understanding of the molecular mechanisms underlying these effects. At present, the most popular hypothesis is that light absorption induces release of nitric oxide (NO) from the active site of cytochrome c oxidase (COX), allowing it to bind O2 instead. This is believed to increase mitochondrial respiration, and result in greater overall health of the cell due to increased adenosine triphosphate production. AIM Although NO itself is a powerful signaling molecule involved in a host of biological responses, less attention has been devoted to NO mechanisms in the context of PBM. The purpose of our work is to investigate wavelength-specific effects on intracellular NO release in living cells. APPROACH We have conducted in-depth dosimetry analyses of NO production and function in an in vitro retinal model in response to low-energy exposure to one or more wavelengths of laser light. RESULTS We found statistically significant wavelength-dependent elevations (10% to 30%) in intracellular NO levels following laser exposures at 447, 532, 635, or 808 nm. Sequential or simultaneous exposures to light at two different wavelengths enhanced the NO modulation up to 50% of unexposed controls. Additionally, the immediate increases in cellular NO levels were independent of the function of NO synthase, depended greatly on the substrate source of electrons entering the electron transport chain, and did not result in increased levels of cyclic guanosine monophosphate. CONCLUSIONS Our study concludes the simple model of light-mediated release of NO from COX is unlikely to explain the wide variety of PBM effects reported in the literature. Our multiwavelength method provides a novel tool for studying immediate and early mechanisms of PBM as well as exploring intracellular NO signaling networks.
Collapse
Affiliation(s)
- Nathaniel J. Pope
- Oak Ridge Institute of Science and Education, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, Texas, United States
| | - Samantha M. Powell
- National Research Council, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, Texas, United States
| | - Jeffrey C. Wigle
- Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, Texas, United States
| | - Michael L. Denton
- Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, Texas, United States
| |
Collapse
|
45
|
Ye L, Li G, Goebel A, Raju AV, Kong F, Lv Y, Li K, Zhu Y, Raja S, He P, Li F, Mwangi SM, Hu W, Srinivasan S. Caspase-11-mediated enteric neuronal pyroptosis underlies Western diet-induced colonic dysmotility. J Clin Invest 2020; 130:3621-3636. [PMID: 32484462 PMCID: PMC7324173 DOI: 10.1172/jci130176] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric neuronal degeneration, as seen in inflammatory bowel disease, obesity, and diabetes, can lead to gastrointestinal dysmotility. Pyroptosis is a novel form of programmed cell death but little is known about its role in enteric neuronal degeneration. We observed higher levels of cleaved caspase-1, a marker of pyroptosis, in myenteric ganglia of overweight and obese human subjects compared with normal-weight subjects. Western diet-fed (WD-fed) mice exhibited increased myenteric neuronal pyroptosis, delayed colonic transit, and impaired electric field stimulation-induced colonic relaxation responses. WD increased TLR4 expression and cleaved caspase-1 in myenteric nitrergic neurons. Overactivation of nitrergic neuronal NF-κB signaling resulted in increased pyroptosis and delayed colonic motility. In caspase-11-deficient mice, WD did not induce nitrergic myenteric neuronal pyroptosis and colonic dysmotility. To understand the contributions of saturated fatty acids and bacterial products to the steps leading to enteric neurodegeneration, we performed in vitro experiments using mouse enteric neurons. Palmitate and lipopolysaccharide (LPS) increased nitrergic, but not cholinergic, enteric neuronal pyroptosis. LPS gained entry to the cytosol in the presence of palmitate, activating caspase-11 and gasdermin D, leading to pyroptosis. These results support a role of the caspase-11-mediated pyroptotic pathway in WD-induced myenteric nitrergic neuronal degeneration and colonic dysmotility, providing important therapeutic targets for enteric neuropathy.
Collapse
Affiliation(s)
- Lan Ye
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Ge Li
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Anna Goebel
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Abhinav V. Raju
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Feng Kong
- Second Hospital of Shandong University, Jinan, China
| | - Yanfei Lv
- Second Hospital of Shandong University, Jinan, China
| | - Kailin Li
- Second Hospital of Shandong University, Jinan, China
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shreya Raja
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fang Li
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Simon Musyoka Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Gastroenterology Research, Atlanta VA Health Care System, Decatur, Georgia, USA
| |
Collapse
|
46
|
Kulshrestha R, Dhanda H, Pandey A, Singh A, Kumar R. Immunopathogenesis and therapeutic potential of macrophage influx in diffuse parenchymal lung diseases. Expert Rev Respir Med 2020; 14:917-928. [PMID: 32600077 DOI: 10.1080/17476348.2020.1776117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The diffuse parenchymal lung diseases (DPLD)/interstitial lung diseases (ILD) are progressive lung disorders with usually unclear etiology, poor long-term survival and no effective treatment. Their pathogenesis is characterized by alveolar epithelial cell injury, inflammation, epithelial-mesenchymal transition, and parenchymal fibrosis. Macrophages play diverse roles in their development, both in the acute phase and in tissue repair. AREAS COVERED In this review, we summarize the current state of knowledge regarding the role of macrophages and their phenotypes in the immunopathogenesis of DPLDs; CVD-ILD, UIP, NSIP, DIP, RB-ILD, AIP, HP, Sarcoidosis, etc. Our goal is to update the understanding of the immune mechanisms underlying the initiation and progression of fibrosis in DPLDs. This will help in identification of biomarkers and in developing novel therapeutic strategies for DPLDs. A thorough literature search of the published studies in PubMed (from 1975 to 2020) was done. EXPERT OPINION The macrophage associated inflammatory markers needs to be explored for their potential as biomarkers of disease activity and progression. Pharmacological targeting of macrophage activation may reduce the risk of macrophage activation syndrome (MAS) and help improving the survival and prognosis of these patients.
Collapse
Affiliation(s)
| | - Himanshu Dhanda
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Apoorva Pandey
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Amit Singh
- Department of Pathology, V.P.Chest Institute , New Delhi, India
| | - Raj Kumar
- Department of Pulmonary Medicine, V.P.Chest Institute , New Delhi, India
| |
Collapse
|
47
|
Roy A, Saqib U, Wary K, Baig MS. Macrophage neuronal nitric oxide synthase (NOS1) controls the inflammatory response and foam cell formation in atherosclerosis. Int Immunopharmacol 2020; 83:106382. [DOI: 10.1016/j.intimp.2020.106382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023]
|
48
|
Nitric Oxide Stimulates Acute Pancreatitis Pain via Activating the NF- κB Signaling Pathway and Inhibiting the Kappa Opioid Receptor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9230958. [PMID: 32454946 PMCID: PMC7231422 DOI: 10.1155/2020/9230958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/03/2022]
Abstract
Pain is the most important clinical feature of acute pancreatitis (AP); however, its specific mechanism is currently unclear. In this study, we showed that AP caused an increase in nitric oxide (NO) secretion, activated the NF-κB pathway in the dorsal root ganglia (DRGs), and caused pain. We established an AP model in vivo and tested the expression of NO, the kappa opioid receptor (KOR), and pain factors. We showed that NO in AP was significantly elevated and increased the expression of pain factors. Next, by treating DRGs in vitro, it was found that NO activated the NF-κB pathway; conversely, NF-κB had no effect on NO. Moreover, inhibition of NF-κB promoted the KOR, whereas NF-κB did not change after KOR activation. Finally, behavioral experiments showed that a NO donor increased the pain behavior of mice, while a NO scavenger, NF-κB inhibitor, or KOR agonist attenuated the pain response in mice. These results suggest that iNOS/NO/NF-κB/KOR may be a key mechanism of pain in AP, providing a theoretical basis for the use of peripheral-restricted KOR agonists for pain treatment in AP.
Collapse
|
49
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
50
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|