1
|
Dong H, Zhang Y, Zhou Y, Zhang M, Zhang L, Feng J, Wu W, Liu Y, Wang T. Gastrodia elata Blume extract alleviates sepsis-induced lung injury by suppressing IL-23/IL-17 A axis. Fitoterapia 2025; 184:106624. [PMID: 40398516 DOI: 10.1016/j.fitote.2025.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 05/03/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
The Compendium of Materia Medica recorded that the traditional Chinese medicine Gastrodia elata Blume (G. elata) has applications in antibacterial and antiviral. GE05 was prepared from the rhizome of G. elata and its active ingredients have been proven to alleviate inflammatory response. However, the protective effect and the underlying mechanism of G. elata in sepsis remain unclear. Our study aims to uncover the efficacy and molecular mechanisms of GE05 in ameliorating sepsis-induced lung injury. Here, we have shown that GE05 could inhibit the expression of inflammatory cytokines in peritoneal macrophages. Bioinformatics analysis showed the activation of interleukin (IL)-17 signaling pathway in acute lung injury (ALI) mice. We established septicemia models and showed that GE05 improves survival rates and protects against sepsis-induced lung injury by downregulating the IL-23/IL-17 A axis. Quantitative real- time PCR (qPCR) analysis and immunohistochemistry have indicated that IL-17 A inhibition reduces the release of chemokine ligand (Cxcl) 1, Cxcl2, granulocyte-macrophage colony stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF), mitigating neutrophil infiltration-induced lung tissue damage. Meanwhile, GE05 could inhibit the activation of the IL-17 A-related phosphatidylinositol 3-kinase/ c-Jun N-terminal kinase (PI3K/JNK) signaling pathway, suppressing the expression of tumor necrosis factor-alpha (TNF-α), IL-1β, and IL-6. These results demonstrated that GE05 is a promising agent that targets the IL-23/IL-17 A axis, providing new way for preventing and treating sepsis-induced lung injury.
Collapse
Affiliation(s)
- Huiqing Dong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Yun Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Menghui Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Lei Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Jing Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wanying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yifei Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Ting Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 101408, China; Yunnan Engineering Research Center of Green Planting and Processing of Gastrodia, Zhaotong University, Zhaotong 657000, Yunnan, China; Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| |
Collapse
|
2
|
Chen J, Zhou Y, Pang Y, Fu K, Luo Q, Sun L, Wu H, Lin Q, Su G, Chen X, Zhao L, Chen H. FAP-targeted radioligand therapy with 68Ga/ 177Lu-DOTA-2P(FAPI) 2 enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy. J Immunother Cancer 2025; 13:e010212. [PMID: 39800373 PMCID: PMC11749305 DOI: 10.1136/jitc-2024-010212] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, 68Ga/177Lu-DOTA-2P(FAPI)2, which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining 68Ga/177Lu-DOTA-2P(FAPI)2 radioligand therapy with PD-1/PD-L1 immunotherapy. METHODS Regarding the change in PD-L1 expression and DNA double-strand breaks induced by radiopharmaceuticals, CT26-FAP tumor cells were incubated with 68Ga and 177Lu labeled DOTA-2P(FAPI)2, respectively. Monotherapy with 68Ga-DOTA-2P(FAPI)2, 177Lu-DOTA-2P(FAPI)2, and PD-L1 immunotherapy as well as combination therapy (68Ga/177Lu-DOTA-2P(FAPI)2 and PD-L1 immunotherapy) were tested and evaluated to evaluate in vivo antitumor efficacy. Furthermore, immunohistochemical staining and single-cell RNA sequencing were used to analyze changes in the tumor microenvironment (TME) and elucidate the underlying mechanisms of action of this combination therapy. RESULTS Our findings indicated that FAP-targeting radiopharmaceuticals can induce DNA double-strand breaks and upregulate PD-L1 expression, with 177Lu-DOTA-2P(FAPI)2 proving to be more effective than 68Ga-DOTA-2P(FAPI)2. Both 68Ga-DOTA-2P(FAPI)2 and 177Lu-DOTA-2P(FAPI)2 radiopharmaceuticals significantly improved therapeutic outcomes when combined with anti-PD-L1 monoclonal antibody (αPD-L1 mAb). Notably, the combination of 177Lu-DOTA-2P(FAPI)2 with αPD-L1 mAb immunotherapy eliminated tumors in mouse models. Mice treated with this regimen not only exhibited exceptional responses to the initial immune checkpoint inhibitor therapy but also showed 100% tumor rejection on subsequent tumor cell re-inoculation. Further mechanistic studies have shown that 177Lu-DOTA-2P(FAPI)2 combined with αPD-L1 mAb can reprogram the TME, enhancing antitumor intercellular communication, which activates antitumor-related intercellular contacts such as FasL-Fas interactions between T cells and NK cells with tumor cells and increasing the proportion of infiltrating CD8+ T-cells while reducing regulatory T cells and inhibiting tumor progression. Our research also demonstrates that mature neutrophils play a role in enhancing the efficacy of the combined therapy, as shown in neutrophil-blocking experiments. CONCLUSIONS Our study robustly advocates for use of FAP-targeting radiopharmaceuticals, particularly 177Lu-DOTA-2P(FAPI)2, alongside immunotherapy in treating FAP-positive tumors. This combination therapy transforms the TME and enables a translatable approach to increasing the sensitivity to PD-1/PD-L1 immunotherapy, leading to improved complete remission rates and extended overall survival.
Collapse
Affiliation(s)
- Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kaili Fu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qicong Luo
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoqiang Su
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Yan L, Li J, Yang Y, Zhang X, Zhang C. Old drug, new use: Recent advances for G-CSF. Cytokine 2024; 184:156759. [PMID: 39293182 DOI: 10.1016/j.cyto.2024.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is a proinflammatory cytokine that primarily stimulates the survival, proliferation, differentiation and function of neutrophil granulocyte progenitor cells and mature neutrophils. Over the past years, G-CSF has mainly been used to cure patients with neutropenia and as a part of chemotherapy to induct the remission for refractory/relapse leukemia. Recent studies showed that C-CSF can been used as condition regimens and as a part of preventive methods after allogeneic transplantation to improve the survival of patients and also has immunoregulation, and has promote or inhibit the proliferation of solid tumors. Therefore, in this review, we firstly describe the structure for G-CSF. Then its functions and mechanism were reviewed including the neutrophil mobilization, differentiation, migration, and inhibiting apoptosis of neutrophils, and its immunoregulation. Finally, the clinical applications were further discussed.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Jing Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Yang Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing 400037 China; Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing 400037 China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037 China.
| |
Collapse
|
4
|
Tepebaşı MY, Aşcı H, Özmen Ö, Taner R, Temel EN, Garlı S. Cannabidiol ameliorates lipopolysaccharide-induced cardiovascular toxicity by its antioxidant and anti-inflammatory activity via regulating IL-6, Hif1α, STAT3, eNOS pathway. Mol Biol Rep 2024; 51:825. [PMID: 39023749 DOI: 10.1007/s11033-024-09772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Systemic inflammation causes several organ damage by activating the intracellular signaling mechanisms. Heart and aorta tissues are the structures mostly affected by this situation. By examining underlying processes, this study sought to determine whether cannabidiol (CBD) may have protective effects against the cardiovascular damage brought on by lipopolysaccharide (LPS). MATERIALS AND METHODS A total of 32 female rats were randomly allocated to one of four groups: control, lipopolysaccharide (LPS) (5 mg/kg, i.p., single dose), LPS + CBD (5 mg/kg, i.p., single dose), and CBD groups. The rats were killed six hours after receiving LPS, and tissues from the heart and aorta were taken. Histopathological and immunohistochemical analyzes were performed. Oxidative stress was evaluated biochemically by spectrophotometric method. Expression levels of genes were studied by RT-qPCR method. RESULTS Histopathological analysis of the LPS group showed moderate hyperemia, hemorrhages, edema, inflammation, and myocardial cell damage. There was a slight to moderate increase in Cox-1, G-CSF, and IL-3 immunoexpressions, along with enhanced expressions of IL-6, Hif1α, and STAT3 genes, and decreased expressions of eNOS genes. Additionally, there were increased levels of TOS and decreased TAS levels observed biochemically. CBD treatment effectively reversed and improved all of these observed changes. CONCLUSIONS CBD protects the heart and aorta against systemic inflammation through its antioxidant and anti-inflammatory activity via regulating IL-6, Hif1α, STAT3, and eNOS intracellular pathways.
Collapse
Affiliation(s)
| | - Halil Aşcı
- Department of Medical Pharmacology, Faculty of Medical, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Rümeysa Taner
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - Esra Nurlu Temel
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medical, Suleyman Demirel University, Isparta, Turkey
| | - Simge Garlı
- Mehmet Akif Ersoy University Experimental Animal Production and Experimental Research Center, Burdur, Turkey
| |
Collapse
|
5
|
Toya S, Struyf S, Huerta L, Morris P, Gavioli E, Minnella EM, Cesta MC, Allegretti M, Proost P. A narrative review of chemokine receptors CXCR1 and CXCR2 and their role in acute respiratory distress syndrome. Eur Respir Rev 2024; 33:230172. [PMID: 39048127 PMCID: PMC11267298 DOI: 10.1183/16000617.0172-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute respiratory failure characterised by extensive inflammatory injury to the alveolocapillary barrier leading to alveolar oedema, impaired gas exchange and, ultimately, hypoxaemia necessitating the use of supplemental oxygen combined with some degree of positive airway pressure. Although much heterogeneity exists regarding the aetiology, localisation and endotypic characterisation of ARDS, what remains largely undisputed is the role of the innate immune system, and in particular of neutrophils, in precipitating and propagating lung injury. Activated neutrophils, recruited to the lung through chemokine gradients, promote injury by releasing oxidants, proteases and neutrophil extracellular traps, which ultimately cause platelet aggregation, microvascular thrombosis and cellular death. Among various neutrophilic chemoattractants, interleukin-8/C-X-C motif ligand 8 and related chemokines, collectively called ELR+ chemokines, acting on neutrophils through the G protein-coupled receptors CXCR1 and CXCR2, are pivotal in orchestrating the neutrophil activation status and chemotaxis in the inflamed lung. This allows efficient elimination of infectious agents while at the same time minimising collateral damage to host tissue. Therefore, understanding how CXCR1 and CXCR2 receptors are regulated is important if we hope to effectively target them for therapeutic use in ARDS. In the following narrative review, we provide an overview of the role of ELR+ chemokines in acute lung injury (ALI) and ARDS, we summarise the relevant regulatory pathways of their cognisant receptors CXCR1/2 and highlight current preclinical and clinical evidence on the therapeutic role of CXCR1 and CXCR2 inhibition in animal models of ALI, as well as in ARDS patients.
Collapse
Affiliation(s)
| | - Sofie Struyf
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Luis Huerta
- Keck School of Medicine of USC, Department of Medicine, Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Peter Morris
- The University of Alabama at Birmingham, Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Birmingham, AL, USA
| | | | | | | | | | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| |
Collapse
|
6
|
Shilovskiy IP, Nikolskii AA, Timotievich ED, Kovchina VI, Vishnyakova LI, Yumashev KV, Vinogradova KV, Kaganova MM, Brylina VE, Tyulyubaev VV, Rusak TE, Dyneva ME, Kurbacheva OM, Kudlay DA, Khaitov MR. IL-4 regulates neutrophilic pulmonary inflammation in a mouse model of bronchial asthma. Cytokine 2024; 178:156563. [PMID: 38479048 DOI: 10.1016/j.cyto.2024.156563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024]
Abstract
Neutrophilic pulmonary inflammation in asthmatics substantially exacerbates the severity of the disease leading to resistance to conventional corticosteroid therapy. Many studies established the involvement of Th1- and Th17-cells and cytokines produced by them (IFNg, IL-17A, IL-17F etc.) in neutrophilic pulmonary inflammation. Recent studies revealed that IL-4 - a Th2-cytokine regulates neutrophil effector functions and migration. It was showed that IL-4 substantially reduces neutrophilic inflammation of the skin in a mouse model of cutaneous bacterial infection and blood neutrophilia in a mouse model systemic bacterial infection. However, there are no data available regarding the influence of IL-4 on non-infectious pulmonary inflammation. In the current study we investigated the effects of IL-4 in a previously developed mouse model of neutrophilic bronchial asthma. We showed that systemic administration of IL-4 significantly restricts neutrophilic inflammation of the respiratory tract probably through the suppression of Th1-/Th17-immune responses and downregulation of CXCR2. Additionally, pulmonary neutrophilic inflammation could be alleviated by IL-4-dependant polarization of N2 neutrophils and M2 macrophages, expressing anti-inflammatory TGFβ. Considering these, IL-4 might be used for reduction of exaggerated pulmonary neutrophilic inflammation and overcoming corticosteroid insensitivity of asthma patients.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation.
| | - A A Nikolskii
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - E D Timotievich
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - V I Kovchina
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - L I Vishnyakova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - K V Yumashev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - K V Vinogradova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - M M Kaganova
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - V E Brylina
- Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, 23, Academician Scriabin St., Moscow, Russian Federation
| | - V V Tyulyubaev
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, 2/4, Bolshaya Pirogovskaya, St., Moscow, Russian Federation
| | - T E Rusak
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, 2/4, Bolshaya Pirogovskaya, St., Moscow, Russian Federation
| | - M E Dyneva
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - O M Kurbacheva
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - D A Kudlay
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation
| | - M R Khaitov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, 115522, 24, Kashirskoe shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation, 117997, 1, Ostrovityanova St., Moscow, Russian Federation
| |
Collapse
|
7
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Liu Y, Song R, Lu Z, Zhao L, Zhan X, Li Y, Cao X. The RNA m 6A demethylase ALKBH5 drives emergency granulopoiesis and neutrophil mobilization by upregulating G-CSFR expression. Cell Mol Immunol 2024; 21:6-18. [PMID: 38114747 PMCID: PMC10757716 DOI: 10.1038/s41423-023-01115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Emergency granulopoiesis and neutrophil mobilization that can be triggered by granulocyte colony-stimulating factor (G-CSF) through its receptor G-CSFR are essential for antibacterial innate defense. However, the epigenetic modifiers crucial for intrinsically regulating G-CSFR expression and the antibacterial response of neutrophils remain largely unclear. N6-methyladenosine (m6A) RNA modification and the related demethylase alkB homolog 5 (ALKBH5) are key epigenetic regulators of immunity and inflammation, but their roles in neutrophil production and mobilization are still unknown. We used cecal ligation and puncture (CLP)-induced polymicrobial sepsis to model systemic bacterial infection, and we report that ALKBH5 is required for emergency granulopoiesis and neutrophil mobilization. ALKBH5 depletion significantly impaired the production of immature neutrophils in the bone marrow of septic mice. In addition, Alkbh5-deficient septic mice exhibited higher retention of mature neutrophils in the bone marrow and defective neutrophil release into the circulation, which led to fewer neutrophils at the infection site than in their wild-type littermates. During bacterial infection, ALKBH5 imprinted production- and mobilization-promoting transcriptome signatures in both mouse and human neutrophils. Mechanistically, ALKBH5 erased m6A methylation on the CSF3R mRNA to increase the mRNA stability and protein expression of G-CSFR, consequently upregulating cell surface G-CSFR expression and downstream STAT3 signaling in neutrophils. The RIP-qPCR results confirmed the direct binding of ALKBH5 to the CSF3R mRNA, and the binding strength declined upon bacterial infection, accounting for the decrease in G-CSFR expression on bacteria-infected neutrophils. Considering these results collectively, we define a new role of ALKBH5 in intrinsically driving neutrophil production and mobilization through m6A demethylation-dependent posttranscriptional regulation, indicating that m6A RNA modification in neutrophils is a potential target for treating bacterial infections and neutropenia.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Renjie Song
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhike Lu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lu Zhao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyi Zhan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yini Li
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
10
|
Valerio MS, Edwards JB, Dolan CP, Motherwell JM, Potter BK, Dearth CL, Goldman SM. Effect of Targeted Cytokine Inhibition on Progression of Post-Traumatic Osteoarthritis Following Intra-Articular Fracture. Int J Mol Sci 2023; 24:13606. [PMID: 37686412 PMCID: PMC10487447 DOI: 10.3390/ijms241713606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intra-articular fractures (IAF) result in significant and prolonged inflammation, increasing the chances of developing post-traumatic osteoarthritis (PTOA). Interleukin-one beta (IL-1β) and Tumor Necrosis Factor-alpha (TNF-α) are key inflammatory factors shown to be involved in osteochondral degradation following IAF. As such, use of targeted biologics such as Infliximab (INX), a TNF-α inhibitor, and Anakinra (ANR), an interleukin-one (IL-1) receptor antagonist (IL1RA), may protect against PTOA by damping the inflammatory response to IAF and reducing osteochondral degradation. To test this hypothesis, IAFs were induced in the hindlimb knee joints of rats treated with INX at 10 mg/kg/day, ANR at 100 g/kg/day, or saline (vehicle control) by subcutaneous infusion for a period of two weeks and healing was evaluated at 8-weeks post injury. Serum and synovial fluid (SF) were analyzed for soluble factors. In-vivo microcomputed tomography (µCT) scans assessed bone mineral density and bone morphometry measurements. Cationic CA4+ agent assessed articular cartilage composition via ex vivo µCT. Scoring according to the Osteoarthritis Research Society International (OARSI) guidelines was performed on stained histologic tibia sections at the 56-day endpoint on a 0-6 scale. Systemically, ANR reduced many pro-inflammatory cytokines and reduced osteochondral degradation markers Cross Linked C-Telopeptide Of Type II (CTXII, p < 0.05) and tartrate-resistant acid phosphatase (TRAP, p < 0.05). ANR treatment resulted in increased chemokines; macrophage-chemotractant protein-1 (MCP-1), MPC-3, macrophage inhibitory protein 2 (MIP2) with a concomitant decrease in proinflammatory interleukin-17A (IL17A) at 14 days post-injury within the SF. Microcomputed tomography (µCT) at 56 days post-injury revealed ANR Treatment decreased epiphyseal degree of anisotropy (DA) (p < 0.05) relative to saline. No differences were found with OARSI scoring but contrast-enhanced µCT revealed a reduction in glycosaminoglycan content with ANR treatment. These findings suggest targeted cytokine inhibition, specifically IL-1 signaling, as a monotherapy has minimal utility for improving IAF healing outcomes but may have utility for promoting a more permissive inflammatory environment that would allow more potent disease modifying osteoarthritis drugs to mitigate the progression of PTOA after IAF.
Collapse
Affiliation(s)
- Michael S. Valerio
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jorge B. Edwards
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Connor P. Dolan
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jessica M. Motherwell
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Benjamin K. Potter
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher L. Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Stephen M. Goldman
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Gao L, Peng L, Sherchan P, Tang H, Liu Y, Xiao J, Shi H, Luo Y, Tang J, Zhang JH, Xia Y. Inhibition of lysophosphatidic acid receptor 1 relieves PMN recruitment in CNS via LPA1/TSP1/CXCR2 pathway and alleviates disruption on blood-brain barrier following intracerebral haemorrhage in mice. Fluids Barriers CNS 2023; 20:33. [PMID: 37165450 PMCID: PMC10173532 DOI: 10.1186/s12987-023-00434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUD The frequencies of morbidity and impairment associated with spontaneous intracerebral haemorrhage (ICH) are comparatively high. Blood-brain barrier (BBB) integrity was compromised due to subsequent brain injury induced by ICH, which is crucial for a poor prognosis. Polymorphonuclear leukocyte (PMN) strongly modulate the disruption of BBB in the central nervous system (CNS). The lysophosphatidic acid receptor 1 (LPA1) mediated thrombospondin-1 (TSP1) regulation in astrocytes, which induce macrophage inflammatory protein 2(MIP2) secretion. MIP2 enhance PMN recruitment through CXC chemokine type 2 (CXCR2) activation. The purpose of this study was to investigate whether the LPA1-mediated inhibition of PMN recruitment and BBB protection after ICH is regulated by TSP1 and CXCR2 networks. METHODS ICH induction was performed in CD1 mice using collagenase administration. AM966, a targeted LPA1 antagonist, was orally administered 1 and 12 h following ICH. further identify possible LPA1-mediated BBB protection mechanisms, we intracerebroventricularly (ICV) administered a CXCR2 ligand MIP2, as well as TSP1 CRISPR activation (ACT) with AM966. Consequently, we performed neurobehavioral, brain water content (BWC), Evans blue staining (EBS), immunofluorescence (IF), and western blot (WB) analyses. RESULTS After ICH, astrocytes showed signs of LPA1, which peaked after 24 h, while PMN\ displayed evidence of CXCR2. The AM966-mediated LPA1 suppression relieved PMN recruitment, diminished brain oedema, demonstrated extravasation (as evidenced by EBS), protected BBB integrity, and enhanced neurologic activity following ICH. AM966 treatment strongly reduced TSP1, CXCR2, Occludin, and Claudin-5 expressions and PMN recruitment following ICH, and their expressions were restored by MIP2 and TSP1 CRISPR (ACT). CONCLUSIONS This study shows that LAP1 suppression reduced PMN recruitment after ICH in mice via TSP1/CXCR2 signalling, which minimized BBB disruption and improved the CNS's neurobehavioral functioning. Hence, LPA1 is a strong candidate for therapy to reduce PMN recruitment and offer protection of BBB integrity after ICH.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Li Peng
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, 570208, China
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Hong Tang
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jie Xiao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Yujie Luo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| | - Ying Xia
- Department of Neurosurgery, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou, 570208, China.
| |
Collapse
|
12
|
Ng LG, Liu Z, Kwok I, Ginhoux F. Origin and Heterogeneity of Tissue Myeloid Cells: A Focus on GMP-Derived Monocytes and Neutrophils. Annu Rev Immunol 2023; 41:375-404. [PMID: 37126421 DOI: 10.1146/annurev-immunol-081022-113627] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.
Collapse
Affiliation(s)
- Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China;
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore; ,
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institut Gustave Roussy, INSERM U1015, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
| |
Collapse
|
13
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
14
|
Li H, Guan J, Chen J, Sun W, Chen H, Wen Y, Chen Q, Xie S, Zhang X, Tao A, Yan J. Necroptosis signaling and NLRP3 inflammasome cross-talking in epithelium facilitate Pseudomonas aeruginosa mediated lung injury. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166613. [PMID: 36470578 DOI: 10.1016/j.bbadis.2022.166613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022]
Abstract
Pseudomonas aeruginosa induced acute lung injury is such a serious risk to public health, but the pathological regulation remains unclear. Here, we reported that PA mediated epithelial necroptosis plays an important role in pathological process. Pharmacological and genomic ablation of necroptosis signaling ameliorate PA mediated ALI and pulmonary inflammation. Our results further proved NLRP3 inflammasome to involve in the process. Mechanism investigation revealed the cross-talking between inflammasome activation and necroptosis that MLKL-dependent necroptosis signaling promotes the change of mitochondrial membrane potential for the release of reactive oxygen species (ROS), which is the important trigger for functional inflammasome activation. Furthermore, antioxidants such as Mito-TEMPO was confirmed to significantly restrain inflammasome activation in epithelium, resulting in a reduction in PA induced pulmonary inflammation. Taken together, our findings revealed that necroptosis-triggered NLRP3 inflammasome in epithelium plays a crucial role in PA mediated injury, which could be a potential therapeutic target for pulmonary inflammation.
Collapse
Affiliation(s)
- Haoyang Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Jieying Guan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Jiaqian Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Weimin Sun
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Honglv Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuhuan Wen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Qile Chen
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Shiyun Xie
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Xueyan Zhang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Yan
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
15
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Bai F, Fan C, Lin X, Wang HY, Wu B, Feng CL, Zhou R, Wu YW, Tang W. Hemin protects UVB-induced skin damage through inhibiting keratinocytes apoptosis and reducing neutrophil infiltration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 238:112604. [PMID: 36525776 DOI: 10.1016/j.jphotobiol.2022.112604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Ultraviolet-B (UVB) exposure on the skin triggers apoptosis, oxidative stress and acute inflammatory responses, which eventually increases the risk of various skin disorders. Hemin, an iron-binding porphyrin, has been clinically used for porphyria treatment. However, whether hemin contributes to the skin protection against UVB injury remains to be elucidated. Here, we found that hemin treatment (10 and 20 mg/kg) by intraperitoneal administration could dramatically relieve UVB irradiation-induced skin damage featured by erythema, edema, epidermal hyperplasia and collagen loss in C57BL/6 J mice. Importantly, hemin treatment attenuated UVB irradiation-triggered cell apoptosis in skin epidermis. Consistently, hemin (10, 20 μM) treatment decreased Caspase-3 activation and protected against UVB-induced apoptosis in HaCaT cells. Besides, hemin treatment reduced the infiltration of neutrophils in skin under UVB irradiation, thus restrained neutrophil extracellular traps (NET) formation and myeloperoxidase (MPO) release. We further revealed that hemin inhibited the expression of inflammation associated cytokines and chemokines in UVB-induced HaCaT cells and blocked the chemotaxis of dHL-60 cells to preconditioned media from HaCaT culture upon UVB irradiation. Furthermore, hemin inhibited the excessive maturation and mobilization of bone marrow neutrophils and rectified the proportion of abnormally elevated neutrophils in the blood under UVB irradiation. In conclusion, our study showed that hemin treatment protects against UVB-induced skin damage through inhibiting keratinocytes apoptosis, and suppressing neutrophils infiltration in the skin via externally restraining the keratinocyte attraction and internally regulating bone marrow neutrophil maturation and mobilization, suggesting that hemin is an effective drug candidate for the therapy of UVB damage.
Collapse
Affiliation(s)
- Fang Bai
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Fan
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xi Lin
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao-Yu Wang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zhou
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Kerr MD, McBride DA, Johnson WT, Chumber AK, Najibi AJ, Seo BR, Stafford AG, Scadden DT, Mooney DJ, Shah NJ. Immune-responsive biodegradable scaffolds for enhancing neutrophil regeneration. Bioeng Transl Med 2023; 8:e10309. [PMID: 36684088 PMCID: PMC9842036 DOI: 10.1002/btm2.10309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/17/2022] [Accepted: 03/03/2022] [Indexed: 01/30/2023] Open
Abstract
Neutrophils are essential effector cells for mediating rapid host defense and their insufficiency arising from therapy-induced side-effects, termed neutropenia, can lead to immunodeficiency-associated complications. In autologous hematopoietic stem cell transplantation (HSCT), neutropenia is a complication that limits therapeutic efficacy. Here, we report the development and in vivo evaluation of an injectable, biodegradable hyaluronic acid (HA)-based scaffold, termed HA cryogel, with myeloid responsive degradation behavior. In mouse models of immune deficiency, we show that the infiltration of functional myeloid-lineage cells, specifically neutrophils, is essential to mediate HA cryogel degradation. Post-HSCT neutropenia in recipient mice delayed degradation of HA cryogels by up to 3 weeks. We harnessed the neutrophil-responsive degradation to sustain the release of granulocyte colony stimulating factor (G-CSF) from HA cryogels. Sustained release of G-CSF from HA cryogels enhanced post-HSCT neutrophil recovery, comparable to pegylated G-CSF, which, in turn, accelerated cryogel degradation. HA cryogels are a potential approach for enhancing neutrophils and concurrently assessing immune recovery in neutropenic hosts.
Collapse
Affiliation(s)
- Matthew D. Kerr
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - David A. McBride
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Wade T. Johnson
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Arun K. Chumber
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - Alexander G. Stafford
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - David T. Scadden
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMassachusettsUSA
- Harvard Stem Cell InstituteCambridgeMassachusettsUSA
- Center for Regenerative MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMassachusettsUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
18
|
Masgrau-Alsina S, Wackerbarth LM, Lim DS, Sperandio M. MST1 controls murine neutrophil homeostasis via the G-CSFR/STAT3 axis. Front Immunol 2022; 13:1038936. [PMID: 36618429 PMCID: PMC9816424 DOI: 10.3389/fimmu.2022.1038936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The release of neutrophils from the bone marrow into the blood circulation is essential for neutrophil homeostasis and the protection of the organism from invading microorganisms. Granulocyte colony-stimulating factor (G-CSF) plays a pivotal role in this process and guides granulopoiesis as well as the release of bone marrow neutrophils into the blood stream both during homeostasis and in case of infection through activation of the G-CSF receptor/signal transduction and activation of transcription 3 (STAT3) signaling pathway. Here, we investigated the role of the mammalian sterile 20-like kinase 1 (MST1) for neutrophil homeostasis and neutrophil mobilization. We found increased plasma levels of G-CSF in Mst1 -/- mice compared to wild type mice both under homeostatic conditions as well as after stimulation with the proinflammatory cytokine TNF-α. In addition, G-CSF-induced mobilization of neutrophils from the bone marrow into the blood circulation in vivo was markedly reduced in the absence of MST1. Interestingly, this was not accompanied by differences in the number of blood neutrophils. Addressing the underlying molecular mechanism of MST1-regulated neutrophil mobilization, we found reduced STAT3 phosphorylation and impaired upregulation of CXCR2 in Mst1 -/- bone marrow neutrophils compared to wild type cells, while JAK2 phosphorylation was not altered. Taken together, we identify MST1 as a critical modulator of neutrophil homeostasis and neutrophil mobilization from the bone marrow, which adds another important aspect to the complex role of MST1 in regulating innate immunity.
Collapse
Affiliation(s)
- Sergi Masgrau-Alsina
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Dae-sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany,*Correspondence: Markus Sperandio,
| |
Collapse
|
19
|
Ito R, Katano I, Kwok IWH, Ng LG, Ida-Tanaka M, Ohno Y, Mu Y, Morita H, Nishinaka E, Nishime C, Mochizuki M, Kawai K, Chien TH, Yunqian Z, Yiping F, Hua LH, Celhar T, Yen Chan JK, Takahashi T, Goto M, Ogura T, Takahashi R, Ito M. Efficient differentiation of human neutrophils with recapitulation of emergency granulopoiesis in human G-CSF knockin humanized mice. Cell Rep 2022; 41:111841. [PMID: 36543125 DOI: 10.1016/j.celrep.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are critical mediators during the early stages of innate inflammation in response to bacterial or fungal infections. A human hematopoietic system reconstituted in humanized mice aids in the study of human hematology and immunology. However, the poor development of human neutrophils is a well-known limitation of humanized mice. Here, we generate a human granulocyte colony-stimulating factor (hG-CSF) knockin (KI) NOD/Shi-scid-IL2rgnull (NOG) mouse in which hG-CSF is systemically expressed while the mouse G-CSF receptor is disrupted. These mice generate high numbers of mature human neutrophils, which can be readily mobilized into the periphery, compared with conventional NOG mice. Moreover, these neutrophils exhibit infection-mediated emergency granulopoiesis and are capable of efficient phagocytosis and reactive oxygen species production. Thus, hG-CSF KI mice provide a useful model for studying the development of human neutrophils, emergency granulopoiesis, and a potential therapeutic model for sepsis.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| | - Ikumi Katano
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Immanuel W H Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Miyuki Ida-Tanaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yusuke Ohno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yunmei Mu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hanako Morita
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Eiko Nishinaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Chiyoko Nishime
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Misa Mochizuki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tay Hui Chien
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhao Yunqian
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Fan Yiping
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Liew Hui Hua
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Teja Celhar
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
20
|
Dudek K, Szacawa E, Wasiak M, Bednarek D, Reichert M. The Effect of Pegbovigrastim Injection on Phagocytic and Oxidative Burst Activities of Peripheral Blood Granulocytes and Monocytes in Calves Challenged with Mycoplasma bovis. Pathogens 2022; 11:1317. [PMID: 36365068 PMCID: PMC9693237 DOI: 10.3390/pathogens11111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2023] Open
Abstract
Mycoplasma bovis (M. bovis) is an important pathogen affecting cattle, causing various diseases including pneumonia which mainly occurring in calves. Control of M. bovis infections is difficult due to the lack of commercial vaccines in most parts of the world and increasing trends of antimicrobial resistance in field isolates of the pathogen; therefore, it seems reasonable to look for new solutions for the prevention of the infection. Pegbovigrastim is a pegylated form of naturally occurring circulating cytokine in cattle that affects bovine leukocytes and some cell functions. Most studies on pegbovigrastim have focused on reducing the occurrence of mastitis and other diseases occurring during the periparturient period in cows, while this study attempts to use pegbovigrastim in the prevention of respiratory diseases in calves, which are largely caused by M. bovis. Based on previous observations on the immunostimulatory properties of pegbovigrastim in cattle, for the first time, the effect of its injection on the number and phagocytic and oxidative burst activities of peripheral blood granulocytes and monocytes in calves experimentally infected with M. bovis was investigated. Pegbovigrastim administration in the calves significantly stimulated an increase in peripheral blood granulocyte and monocyte counts and phagocytic activity of the cells, especially granulocytes, which was also generally expressed in the course of M. bovis infection. In response to pegbovigrastim administration, a general increase in the oxygen burst activity of the cells was observed. This effect was also shown despite ongoing infection with M. bovis which, taken together, may indicate a beneficial effect of pegbovigrastim injection on the immunity of the affected animals.
Collapse
Affiliation(s)
- Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland
| | - Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland
| | - Magdalena Wasiak
- Department of Pathology, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland
| | - Dariusz Bednarek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland
| | - Michał Reichert
- Department of Pathology, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100 Pulawy, Poland
| |
Collapse
|
21
|
Zheng Y, Sefik E, Astle J, Karatepe K, Öz HH, Solis AG, Jackson R, Luo HR, Bruscia EM, Halene S, Shan L, Flavell RA. Human neutrophil development and functionality are enabled in a humanized mouse model. Proc Natl Acad Sci U S A 2022; 119:e2121077119. [PMID: 36269862 PMCID: PMC9618085 DOI: 10.1073/pnas.2121077119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/09/2022] [Indexed: 02/03/2023] Open
Abstract
Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.
Collapse
Affiliation(s)
- Yunjiang Zheng
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - Esen Sefik
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - John Astle
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kutay Karatepe
- Department of Cell Biology, Yale University, New Haven, CT 06520
- Yale Stem Cell Center, Yale University, New Haven, CT 06520
| | - Hasan H. Öz
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Angel G. Solis
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruaidhrí Jackson
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hongbo R. Luo
- Department of Laboratory Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Emanuela M. Bruscia
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Liang Shan
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Richard A. Flavell
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute (HHMI), New Haven, CT 06520
| |
Collapse
|
22
|
|
23
|
Liu Y, Song R, Zhao L, Lu Z, Li Y, Zhan X, Lu F, Yang J, Niu Y, Cao X. m 6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration. Signal Transduct Target Ther 2022; 7:194. [PMID: 35764614 PMCID: PMC9240034 DOI: 10.1038/s41392-022-01020-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/29/2022] Open
Abstract
Neutrophil migration into the site of infection is necessary for antibacterial innate defense, whereas impaired neutrophil migration may result in excessive inflammation and even sepsis. The neutrophil migration directed by extracellular signals such as chemokines has been extensively studied, yet the intrinsic mechanism for determining neutrophil ability to migrate needs further investigation. N6-methyladenosine (m6A) RNA modification is important in immunity and inflammation, and our preliminary data indicate downregulation of RNA m6A demethylase alkB homolog 5 (ALKBH5) in neutrophils during bacterial infection. Whether m6A modification and ALKBH5 might intrinsically modulate neutrophil innate response remain unknown. Here we report that ALKBH5 is required for antibacterial innate defense by enhancing intrinsic ability of neutrophil migration. We found that deficiency of ALKBH5 increased mortality of mice with polymicrobial sepsis induced by cecal ligation and puncture (CLP), and Alkbh5-deficient CLP mice exhibited higher bacterial burden and massive proinflammatory cytokine production in the peritoneal cavity and blood because of less neutrophil migration. Alkbh5-deficient neutrophils had lower CXCR2 expression, thus exhibiting impaired migration toward chemokine CXCL2. Mechanistically, ALKBH5-mediated m6A demethylation empowered neutrophils with high migration capability through altering the RNA decay, consequently regulating protein expression of its targets, neutrophil migration-related molecules, including increased expression of neutrophil migration-promoting CXCR2 and NLRP12, but decreased expression of neutrophil migration-suppressive PTGER4, TNC, and WNK1. Our findings reveal a previously unknown role of ALKBH5 in imprinting migration-promoting transcriptome signatures in neutrophils and intrinsically promoting neutrophil migration for antibacterial defense, highlighting the potential application of targeting neutrophil m6A modification in controlling bacterial infections.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China. .,Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Renjie Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Lu Zhao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Zhike Lu
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Yini Li
- School of Life Sciences, Westlake University, 310024, Hangzhou, China
| | - Xinyi Zhan
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Fengjiao Lu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Jiang Yang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005, Beijing, China. .,Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
24
|
Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R, Kargl J. Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. Int J Mol Sci 2022; 23:3218. [PMID: 35328639 PMCID: PMC8951452 DOI: 10.3390/ijms23063218] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
Neutrophils are immune cells with reported phenotypic and functional plasticity. Tumor-associated neutrophils display many roles during cancer progression. Several tumor microenvironment (TME)-derived factors orchestrate neutrophil release from the bone marrow, recruitment and functional polarization, while simultaneously neutrophils are active stimulators of the TME by secreting factors that affect immune interactions and subsequently tumor progression. Successful immunotherapies for many cancer types and stages depend on the targeting of tumor-infiltrating lymphocytes. Neutrophils impact the success of immunotherapies, such as immune checkpoint blockade therapies, by displaying lymphocyte suppressive properties. The identification and characterization of distinct neutrophil subpopulations or polarization states with pro- and antitumor phenotypes and the identification of the major TME-derived factors of neutrophil polarization would allow us to harness the full potential of neutrophils as complementary targets in anticancer precision therapies.
Collapse
Affiliation(s)
| | | | | | | | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria; (S.R.); (P.V.-C.); (Z.N.M.); (R.S.)
| |
Collapse
|
25
|
Olimpio F, da Silva JRM, Vieira RP, Oliveira CR, Aimbire F. Lacticaseibacillus rhamnosus modulates the inflammatory response and the subsequent lung damage in a murine model of acute lung inflammation. Clinics (Sao Paulo) 2022; 77:100021. [PMID: 35303586 PMCID: PMC8931357 DOI: 10.1016/j.clinsp.2022.100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The present study investigated the anti-inflammatory effect of the probiotic Lacticaseibacillus rhamnosus (Lr) on lung inflammation induced by Lipopolysaccharide (LPS) of Escherichia coli in C57BL/6 mice. METHODS C57BL/6 mice were divided into four groups: control, LPS, Lr (1 day) + LPS, and Lr (14 days) + LPS. Total and differential cells from Bronchoalveolar Lavage Fluid (BALF) were counted in a Neubauer 40X chamber, and pro-and anti-inflammatory cytokines (IL-1β, IL-6, CXCL-1, TNF-α, TGF-β, and IL-10) were measured by ELISA assay. The analysis of whole leukocytes in blood was performed using the automated system Sysmex 800i. Morphometry of pulmonary tissue evaluated alveolar hemorrhage, alveolar collapse, and inflammatory cells. Pulmonary vascular permeability was assessed by Evans blue dye extravasation, and bronchoconstriction was evaluated in a tissue bath station. The transcription factor NF-kB was evaluated by ELISA, and its gene expression and TLR-2, TLR-4, MMP-9, MMP-12, and TIMP by PCR. RESULTS The probiotic Lr had a protective effect against the inflammatory responses induced by LPS. Lr significantly reduced pro-inflammatory cells in the airways, lung parenchyma, and blood leukocytes. Furthermore, Lr reduced the production of pro-inflammatory cytokines and chemokines in BALF and the expression of TLRs, MMPs, and NF-kB in lung tissue and maintained the expression of TIMP in treated animals promoting a protective effect on lung tissue. CONCLUSIONS The results of the study indicate that pre-treatment with the probiotic Lr may be a promising way to mitigate lung inflammation in endotoxemia.
Collapse
Affiliation(s)
- Fabiana Olimpio
- Department of Medicine, Programa de Pós-graduação em Medicina Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - José Roberto Mateus da Silva
- Institute of Science and Technology, Programa de Pós-graduação em Engenharia Biomédica, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rodolfo P Vieira
- Department of Human Movement Sciences, Universidade Federal de São Paulo (UNIFESP), Santos, SP, Brazil
| | - Carlos R Oliveira
- Institute of Science and Technology, Programa de Pós-graduação em Engenharia Biomédica, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Flavio Aimbire
- Department of Medicine, Programa de Pós-graduação em Medicina Translacional, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Institute of Science and Technology, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
26
|
Van Nevel S, Declercq J, Holtappels G, Lambrecht BN, Bachert C. Granulocyte Colony-Stimulating Factor: Missing Link for Stratification of Type 2-high and Type 2-low Chronic Rhinosinusitis Patients. J Allergy Clin Immunol 2022; 149:1655-1665.e5. [DOI: 10.1016/j.jaci.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
|
27
|
Malengier-Devlies B, Metzemaekers M, Wouters C, Proost P, Matthys P. Neutrophil Homeostasis and Emergency Granulopoiesis: The Example of Systemic Juvenile Idiopathic Arthritis. Front Immunol 2021; 12:766620. [PMID: 34966386 PMCID: PMC8710701 DOI: 10.3389/fimmu.2021.766620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are key pathogen exterminators of the innate immune system endowed with oxidative and non-oxidative defense mechanisms. More recently, a more complex role for neutrophils as decision shaping cells that instruct other leukocytes to fine-tune innate and adaptive immune responses has come into view. Under homeostatic conditions, neutrophils are short-lived cells that are continuously released from the bone marrow. Their development starts with undifferentiated hematopoietic stem cells that pass through different immature subtypes to eventually become fully equipped, mature neutrophils capable of launching fast and robust immune responses. During severe (systemic) inflammation, there is an increased need for neutrophils. The hematopoietic system rapidly adapts to this increased demand by switching from steady-state blood cell production to emergency granulopoiesis. During emergency granulopoiesis, the de novo production of neutrophils by the bone marrow and at extramedullary sites is augmented, while additional mature neutrophils are rapidly released from the marginated pools. Although neutrophils are indispensable for host protection against microorganisms, excessive activation causes tissue damage in neutrophil-rich diseases. Therefore, tight regulation of neutrophil homeostasis is imperative. In this review, we discuss the kinetics of neutrophil ontogenesis in homeostatic conditions and during emergency myelopoiesis and provide an overview of the different molecular players involved in this regulation. We substantiate this review with the example of an autoinflammatory disease, i.e. systemic juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Bert Malengier-Devlies
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Metzemaekers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Division of Pediatric Rheumatology, University Hospitals Leuven, Leuven, Belgium.,European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at University Hospital Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Sun Z, Huang W, Zheng Y, Liu P, Yang W, Guo Z, Kong D, Lv Q, Zhou X, Du Z, Jiang H, Jiang Y. Fpr2/CXCL1/2 Controls Rapid Neutrophil Infiltration to Inhibit Streptococcus agalactiae Infection. Front Immunol 2021; 12:786602. [PMID: 34899755 PMCID: PMC8652123 DOI: 10.3389/fimmu.2021.786602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
Streptococcus agalactiae, also known as group B streptococcus (GBS), can cause pneumonia, meningitis, and bacteremia, making it a pathogen that can increase the risk of death in newborns and immunodeficient individuals. Neutrophils are the first barrier to a host's innate immune defense against these infections. Fpr2(Formyl peptide receptor 2) is an important chemotactic receptor of neutrophils, though its activation would cause pro- and anti-inflammatory effects. In this study, we found that mice without Fpr2 receptor were highly susceptible to GBS infections. These mice demonstrated decreased chemotaxis to neutrophils, decreased bactericidal ability of neutrophils, and high mortality. RNA-seq and Luminex assay indicated that Fpr2 activates key signal molecules downstream and produces chemokines CXCL1/2 to chemotaxis neutrophils. Like Fpr2-/-, CXCL1/2 or neutrophil depletion impairs host's ability to defend against GBS infection. Altogether, these data indicate that Fpr2 contributes to a host's ability to control GBS infection and that a lack of Fpr2 was associated with selective impairment during the production of chemokines CXCL1 and CXCL2 as well as neutrophil recruitment. Here, We clarified that Fpr2, as a chemotactic receptor, could not only directly chemotactic neutrophils, but also regulate the production of chemokines to control infection by chemotactic neutrophils.
Collapse
Affiliation(s)
- Zeyu Sun
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenbo Yang
- Changchun University of Chinese Medicine, Changchun, China
| | - Zinan Guo
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Martin KR, Wong HL, Witko-Sarsat V, Wicks IP. G-CSF - A double edge sword in neutrophil mediated immunity. Semin Immunol 2021; 54:101516. [PMID: 34728120 DOI: 10.1016/j.smim.2021.101516] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/23/2021] [Indexed: 11/15/2022]
Abstract
Neutrophils are vital for the innate immune system's control of pathogens and neutrophil deficiency can render the host susceptible to life-threatening infections. Neutrophil responses must also be tightly regulated because excessive production, recruitment or activation of neutrophils can cause tissue damage in both acute and chronic inflammatory diseases. Granulocyte colony stimulating factor (G-CSF) is a key regulator of neutrophil biology, from production, differentiation, and release of neutrophil precursors in the bone marrow (BM) to modulating the function of mature neutrophils outside of the BM, particularly at sites of inflammation. G-CSF acts by binding to its cognate cell surface receptor on target cells, causing the activation of intracellular signalling pathways mediating the proliferation, differentiation, function, and survival of cells in the neutrophil lineage. Studies in humans and mice demonstrate that G-CSF contributes to protecting the host against infection, but conversely, it can play a deleterious role in inflammatory diseases. As such, neutrophils and the G-CSF pathway may provide novel therapeutic targets. This review will focus on understanding the role G-CSF plays in the balance between effective neutrophil mediated host defence versus neutrophil-mediated inflammation and tissue damage in various inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Katherine R Martin
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Huon L Wong
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | | | - Ian P Wicks
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
30
|
Hidalgo A, Casanova-Acebes M. Dimensions of neutrophil life and fate. Semin Immunol 2021; 57:101506. [PMID: 34711490 DOI: 10.1016/j.smim.2021.101506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023]
Abstract
The earliest reported observations on neutrophils date from 1879 to 1880, when Paul Ehrlich utilized a set of coal tar dyes to interrogate differential staining properties of the granules from white blood cells. While acidic and basic dyes identified eosinophils and basophils respectively, neutrophils were revealed by neutral dyes. Unknowingly, his work staining blood films set the stage for one of the most exciting features of immune cells discovered in the last decade, myeloid heterogeneity. Since then, advances in live imaging and high-resolution sequencing technologies have revolutionized how we analyze and envision those cells that Ehrich fixed in blood smears. Neutrophil plasticity and heterotypic interactions with immune and non-immune compartments are increasingly appreciated as an important part of their biology. In this review, we highlight early and recent work that will help the reader to appreciate our current view of the neutrophil life cycle -from maturation to elimination-, and how neutrophils behave and dynamically modulate tissue immunity, both in steady-state and in disease.
Collapse
Affiliation(s)
- Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - María Casanova-Acebes
- Cancer Immunity Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncologicas Carlos III, Madrid, Spain.
| |
Collapse
|
31
|
Sreejit G, Johnson J, Jaggers RM, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Neutrophils in cardiovascular disease: warmongers, peacemakers, or both? Cardiovasc Res 2021; 118:2596-2609. [PMID: 34534269 PMCID: PMC9890471 DOI: 10.1093/cvr/cvab302] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Amsterdam University Medical Centre, Location Academic Medical Centre Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
32
|
Theyab A, Algahtani M, Alsharif KF, Hawsawi YM, Alghamdi A, Alghamdi A, Akinwale J. New insight into the mechanism of granulocyte colony-stimulating factor (G-CSF) that induces the mobilization of neutrophils. ACTA ACUST UNITED AC 2021; 26:628-636. [PMID: 34494505 DOI: 10.1080/16078454.2021.1965725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 20 years, granulocyte colony-stimulating factor (G-CSF) has driven the attention of researchers as a therapeutic agent for curing patients suffering from neutropenia. Despite the successful use of G-CSF, it currently requires daily injections, which are inconvenient, expensive, and distressing for children. Therefore, an alternative strategy for using G-CSF for treatment is needed. Understanding the G-CSF structure, expression, mechanism of action, and how it induces neutrophils mobilization is crucial to producing promising cancer therapy. The ability of G-CSF to mobilize hematopoietic stem cells from the bone marrow into the blood circulation was consequently exploited and altered the practice of hematopoietic stem cell transplantation. This is the motivation for the current review, which sheds light on the history of G-CSF and then focuses on the mechanism of action upon binding to its receptor (G-CSFR) and how that had led to the stimulation of neutrophils mobilization. The findings of this review show new insight into the mechanism of G-CSF that induces neutrophils mobilization. Thus, Understanding the G-CSF will provide a more effective treatment for all neutropenia patients.
Collapse
Affiliation(s)
- Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, Collage of Applied Medical Science, Taif University, Saudi Arabia
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Abdulaziz Alghamdi
- Department of internal medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | | | - Jude Akinwale
- Discovery - Protein Production at Crescendo Biologics Limited, Cambridge, England, United Kingdom
| |
Collapse
|
33
|
|
34
|
Chakrabarti A, Mar JS, Choy DF, Cao Y, Rathore N, Yang X, Tew GW, Li O, Woodruff PG, Brightling CE, Grimbaldeston M, Christenson SA, Bafadhel M, Rosenberger CM. High serum granulocyte-colony stimulating factor characterises neutrophilic COPD exacerbations associated with dysbiosis. ERJ Open Res 2021; 7:00836-2020. [PMID: 34350278 PMCID: PMC8326681 DOI: 10.1183/23120541.00836-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/09/2021] [Indexed: 11/05/2022] Open
Abstract
Introduction COPD exacerbations are heterogeneous and can be triggered by bacterial, viral, or noninfectious insults. Exacerbations are also heterogeneous in neutrophilic or eosinophilic inflammatory responses. A noninvasive peripheral biomarker of COPD exacerbations characterised by bacterial/neutrophilic inflammation is lacking. Granulocyte-colony stimulating factor (G-CSF) is a key cytokine elevated during bacterial infection and mediates survival, proliferation, differentiation and function of neutrophils. Objective We hypothesised that high peripheral G-CSF would be indicative of COPD exacerbations with a neutrophilic and bacterial phenotype associated with microbial dysbiosis. Methods Serum G-CSF was measured during hospitalised exacerbation (day 0 or D0) and after 30 days of recovery (Day30 or D30) in 37 subjects. In a second cohort, serum and sputum cytokines were measured in 59 COPD patients during stable disease, at exacerbation, and at 2-weeks and 6-weeks following exacerbation. Results Serum G-CSF was increased during exacerbation in a subset of patients. These exacerbations were enriched for bacterial but not viral or type-2 biologies. The median serum G-CSF level was 1.6-fold higher in bacterial exacerbation compared to nonbacterial exacerbation (22 pg·mL−1versus 13 pg·mL−1, p=0.0007). Serum G-CSF classified bacterial exacerbations with an area under the curve (AUC) for the receiver operating characteristic (ROC) curve equal to 0.76. Exacerbations with a two-fold or greater increase in serum G-CSF were characterised by neutrophilic inflammation, with increased sputum and blood neutrophils, and high sputum interleukin (IL)-1β, IL-6 and serum amyloid A1 (SAA1) levels. These exacerbations were preceded by dysbiosis, with decreased microbiome diversity and enrichment of respiratory pathogens such as Haemophilus and Moraxella. Furthermore, serum G-CSF at exacerbation classified neutrophilic-dysbiotic exacerbations (AUC for the ROC curve equal to 0.75). Conclusions High serum G-CSF enriches for COPD exacerbations characterised by neutrophilic inflammation with underlying bacterial dysbiosis. Noninvasive biomarkers to characterise #AECOPD subtypes are limited. High serum G-CSF enriches for COPD exacerbations associated with bacterial infection and neutrophilic inflammation preceded by lung microbial dysbiosis.https://bit.ly/3rck3M6
Collapse
Affiliation(s)
| | - Jordan S Mar
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA, USA
| | - David F Choy
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Yi Cao
- Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Nisha Rathore
- Biomarker Discovery OMNI, Genentech Inc., South San Francisco, CA, USA
| | - Xiaoying Yang
- Biostatistics, Genentech Inc., South San Francisco, CA, USA
| | - Gaik W Tew
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Olga Li
- OMNI Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | | | | | | | | | - Mona Bafadhel
- Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
35
|
Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci U S A 2021; 118:2019097118. [PMID: 33397815 DOI: 10.1073/pnas.2019097118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.
Collapse
|
36
|
Yu D, Xu C, Tu H, Ye A, Wu L. miR-384-5p regulates inflammation in Candida albicans-induced acute lung injury by downregulating PGC1β and enhancing the activation of Candida albicans-triggered signaling pathways. Sci Prog 2021; 104:368504211014361. [PMID: 33970047 PMCID: PMC10358457 DOI: 10.1177/00368504211014361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute lung injury (ALI) is one of the most prevalent respiratory syndromes of excessive inflammatory reaction during lung infection. Candida albicans (C. albicans) infection is among the leading causes of ALI. MicroRNAs (miRNAs) regulate the expression of target mRNAs, including those involved in inflammatory processes, by binding to the 3'UTR. To date, the roles of miRNAs in C. albicans-induced ALI remain unclear. In this study, we investigated the role of miR-384-5p in C. albicans-induced ALI and its underlying molecular mechanism. RT-PCR, Western blot, ELISA, Myeloperoxidase (MPO) assay, microRNA target analysis, transient transfection, and luciferase reporter assay were utilized. In vivo study was conducted on mouse model. The expression of miR-384-5p was upregulated and positively correlated with inflammatory cytokine production in lung tissues and RAW264.7 and J774A.1 macrophages infected with C. albicans. The miR-384-5p inhibitor alleviated the inflammatory reaction induced by C. albicans. Target prediction analysis revealed that PGC1β was a target of miR-384-5p, which was further validated by the PGC1β 3'-UTR luciferase assay and the inverse correlation between the expression of miR-384-5p and PGC1β in C. albicans-infected ALI tissues and macrophages. Moreover, macrophages transfected with miR-384-5p mimic exhibited reduced levels of PGC1β. The suppression of the expression of PGC1β by C. albicans infection in the macrophages was abrogated by miR-384-5p inhibitor. Then, we demonstrated that PGC1β played an inhibitory role in C. albicans-induced production of inflammatory cytokines. Furthermore, suppression of miR-384-5p in macrophages inhibited the activation of the NF-κB, MAPK, and Akt signaling pathways triggered by C. albicans, but not the STAT3 pathway. These results demonstrate that miR-384-5p contributes to C. albicans-induced ALI at least in part by targeting PGC1β and enhancing the activation of the NF-κB, MAPK, and Akt inflammatory signaling pathways. Thus, targeting miR-384-5p might exert a protective effect on C. albicans-induced ALI.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chunquan Xu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Hongxiang Tu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Aifang Ye
- Translational Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Lingjian Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
37
|
Park J, Kim H, Kwon KW, Choi HH, Kang SM, Hong JJ, Shin SJ. Toll-like receptor 4 signaling-mediated responses are critically engaged in optimal host protection against highly virulent Mycobacterium tuberculosis K infection. Virulence 2021; 11:430-445. [PMID: 32403973 PMCID: PMC7239029 DOI: 10.1080/21505594.2020.1766401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Toll-like receptors (TLRs) play critical roles in the innate recognition of Mycobacterium tuberculosis (Mtb) by host immune cells. However, controversy has arisen regarding the role of TLR4 in determining the outcomes of Mtb infection. To address this controversy, the function of TLR4 in the induction of an optimal protective immune response against the highly virulent Mtb K-infection was comparatively investigated in C3 H/HeJ (TLR4-deficient mutant) and C3 H/HeN (TLR4-competent wild-type) mice. Interestingly, following Mtb infection, C3 H/HeJ mice showed a more severe disease phenotype than C3 H/HeN mice, exhibiting reduced weight and a marked increase in bacterial burden along with necrotic lung inflammation. Analysis of the immune cell composition revealed significantly increased neutrophils in the lung and significant production of IL-10 accompanied by the impairment of the protective Th1 response in C3 H/HeJ mice. Reducing the neutrophil numbers by treating C3 H/HeJ mice with an anti-Ly6 G monoclonal antibody (mAb) and blocking IL-10 signaling with an anti-IL-10 receptor mAb reduced the excessive lung inflammation and bacterial burden in C3 H/HeJ mice. Therefore, abundant IL-10 signaling and neutrophils have detrimental effects in TLR4-deficient mice during Mtb infection. However, the blockade of IL-10 signaling produced an increase in the CD11bhiLy6 Ghi neutrophil population, but the phenotypes of these neutrophils were different from those of the CD11bintLy6 Gint neutrophils from mice with controlled infections. Collectively, these results show that TLR4 positively contributes to the generation of an optimal protective immunity against Mtb infection. Furthermore, investigating the TLR4-mediated response will provide insight for the development of effective control measures against tuberculosis.
Collapse
Affiliation(s)
- Jaehun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Liu M, Li W, Song F, Zhang L, Sun X. Silencing of lncRNA MIAT alleviates LPS-induced pneumonia via regulating miR-147a/NKAP/NF-κB axis. Aging (Albany NY) 2020; 13:2506-2518. [PMID: 33318298 PMCID: PMC7880384 DOI: 10.18632/aging.202284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
Purpose: Pneumonia is a respiratory disease with an increasing incidence in recent years. More and more studies have revealed that lncRNAs can regulate the transcriptional expression of target genes at different stage. Herein, we aimed to explore the effect of lncRNA MIAT in LPS-induced pneumonia, and further illuminate the possible underlying mechanisms. Method and results: Mice were intraperitoneally injected with LPS, and the lung inflammation was evaluated. Microarray showed lncRNA MIAT was up-regulated in LPS-induced pulmonary inflammation. And qRT-PCR and FISH assay indicated that MIAT was increased in mice with LPS injection. Functional analysis showed sh-MIAT inhibited LPS-induced inflammation response, inhibited apoptosis level and protected lung function. As well, si-MIAT removed the injury of LPS on mouse lung epithelial TC-1 cells, and inhibited the activation of NF-κB signaling. Furthermore, MIAT acted as a sponge of miR-147a, and miR-147a directly targeted NKAP. Functionally, AMO-147a or NKAP remitted the beneficial effects of si-MIAT on LPS-induced inflammation response of TC-1 cells. Conclusion: Deletion of MIAT protected against LPS-induced lung inflammation via regulating miR-147a/NKAP, which might provide new insight for pneumonia treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Pediatrics, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Weixin Li
- Department of Infectious Diseases, Jinan Hospital of Integrated Traditional Chinese and Western Medicine, Jinan, Shandong Province, China
| | - Fuxing Song
- Department of Pediatrics, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ling Zhang
- Department of Pediatrics, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Xianjun Sun
- Department of Pediatrics, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
39
|
Jing W, Guo X, Qin F, Li Y, Wang G, Bi Y, Jin X, Han L, Dong X, Zhao Y. G-CSF shifts erythropoiesis from bone marrow into spleen in the setting of systemic inflammation. Life Sci Alliance 2020; 4:4/1/e202000737. [PMID: 33234677 PMCID: PMC7723243 DOI: 10.26508/lsa.202000737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
The anemia of inflammation is related in part to abnormal erythropoiesis in bone marrow. G-CSF regulates granulopoiesis and is increased during systemic inflammation. Here, we have showed that high levels of G-CSF are associated with repression of bone marrow erythropoiesis and expansion of splenic erythropoiesis in Escherichia coli-infected mice and lipopolysaccharide-treated mice. Under lipopolysaccharide-induced systemic inflammatory conditions in mice, G-CSF neutralization with antibody alleviated the blockage of bone marrow erythropoiesis, prevented the enhancement of splenic erythropoiesis, ameliorated splenomegaly, and reduced the brittleness of spleen. We further demonstrated that after lipopolysaccharide treatment, TLR4-knockout mice display low levels of G-CSF, healthy bone marrow erythropoiesis, almost no stress erythropoiesis in the spleen, and normal size and toughness of spleen. In addition, we found HIF-mediated erythropoietin production is essential for splenic erythropoiesis in the setting of G-CSF-induced suppression of bone marrow erythropoiesis. Our findings identify G-CSF as a critical mediator of inflammation-associated erythropoiesis dysfunction in bone marrow and offer insight into the mechanism of G-CSF-induced splenic erythropoiesis. We provide experimentally significant dimension to the biology of G-CSF.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xing Guo
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Qin
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Li
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ganyu Wang
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxuan Bi
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xing Jin
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lihui Han
- Department of Immunology, Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyuan Dong
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China .,Department of Immunology, Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
40
|
Lin L, Hwang BJ, Li N, Googe P, Diaz LA, Miao E, Vilen B, Thomas NE, Ting J, Liu Z. Non-Cell-Autonomous Activity of the Hemidesmosomal Protein BP180/Collagen XVII in Granulopoiesis in Humanized NC16A Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2786-2794. [PMID: 32998984 PMCID: PMC7658030 DOI: 10.4049/jimmunol.2000784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/03/2020] [Indexed: 12/27/2022]
Abstract
BP180 (also termed type XVII collagen) is a hemidesmosomal protein and plays a critical role in cell-cell matrix adhesion in the skin; however, its other biological functions are largely unclear. In this study, we generated a BP180 functional-deficient mouse strain by deleting its extracellular domain of humanized NC16A (termed ΔNC16A mice). We found that BP180 is expressed by bone marrow mesenchymal stem cells (BM-MSC), and its functional deficiency leads to myeloid hyperplasia. Altered granulopoiesis in ΔNC16A mice is through bone marrow stromal cells evidenced by bone marrow transplantation. Furthermore, the level of G-CSF in bone marrow and circulation were significantly increased in ΔNC16A mice as compared with wild-type mice. The increased G-CSF was accompanied by an increased activation of the NF-κB signaling pathway in bone marrow and BM-MSC of ΔNC16A mice. Blockade of G-CSF restored normal granulopoiesis in ΔNC16A mice. Inhibition of NF-κB signaling pathway significantly reduces the release of G-CSF from ΔNC16A BM-MSC in vitro and the level of serum G-CSF in ΔNC16A mice. To our knowledge, these findings provide the first direct evidence that BP180 plays an important role in granulopoiesis through regulating NF-κB signaling pathway in BM-MSC.
Collapse
Affiliation(s)
- Lin Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Oral Biology Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bin-Jin Hwang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paul Googe
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ed Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Barbara Vilen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny Ting
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and
| |
Collapse
|
41
|
Groeneweg L, Hidalgo A, A-Gonzalez N. Emerging roles of infiltrating granulocytes and monocytes in homeostasis. Cell Mol Life Sci 2020; 77:3823-3830. [PMID: 32248248 PMCID: PMC7508737 DOI: 10.1007/s00018-020-03509-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The infiltration of naïve tissues by myeloid cells has been long related to their clearance and the physiological cell turnover, however, increasing evidence shows that they can additionally fulfill specific, non-immune functions in different tissues. There is also growing evidence to support that infiltrated granulocytes and monocytes respond to different environments by modulating gene expression and cytokine production, which in turn contribute to the normal function of the host tissue. This review will address the roles of immigrated myeloid cells in different tissues and their crosstalk with the host tissue environments.
Collapse
Affiliation(s)
- Linda Groeneweg
- Institute of Immunology, University of Münster, Münster, Germany
| | - Andres Hidalgo
- Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | - Noelia A-Gonzalez
- Institute of Immunology, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
42
|
Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat Commun 2020; 11:3547. [PMID: 32669546 PMCID: PMC7363928 DOI: 10.1038/s41467-020-17402-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection.
Collapse
|
43
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
44
|
Winchell CG, Mishra BB, Phuah JY, Saqib M, Nelson SJ, Maiello P, Causgrove CM, Ameel CL, Stein B, Borish HJ, White AG, Klein EC, Zimmerman MD, Dartois V, Lin PL, Sassetti CM, Flynn JL. Evaluation of IL-1 Blockade as an Adjunct to Linezolid Therapy for Tuberculosis in Mice and Macaques. Front Immunol 2020; 11:891. [PMID: 32477361 PMCID: PMC7235418 DOI: 10.3389/fimmu.2020.00891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In 2017 over 550,000 estimated new cases of multi-drug/rifampicin resistant tuberculosis (MDR/RR-TB) occurred, emphasizing a need for new treatment strategies. Linezolid (LZD) is a potent antibiotic for drug-resistant Gram-positive infections and is an effective treatment for TB. However, extended LZD use can lead to LZD-associated host toxicities, most commonly bone marrow suppression. LZD toxicities may be mediated by IL-1, an inflammatory pathway important for early immunity during M. tuberculosis infection. However, IL-1 can contribute to pathology and disease severity late in TB progression. Since IL-1 may contribute to LZD toxicity and does influence TB pathology, we targeted this pathway with a potential host-directed therapy (HDT). We hypothesized LZD efficacy could be enhanced by modulation of IL-1 pathway to reduce bone marrow toxicity and TB associated-inflammation. We used two animal models of TB to test our hypothesis, a TB-susceptible mouse model and clinically relevant cynomolgus macaques. Antagonizing IL-1 in mice with established infection reduced lung neutrophil numbers and partially restored the erythroid progenitor populations that are depleted by LZD. In macaques, we found no conclusive evidence of bone marrow suppression associated with LZD, indicating our treatment time may have been short enough to avoid the toxicities observed in humans. Though treatment was only 4 weeks (the FDA approved regimen at the time of study), we observed sterilization of the majority of granulomas regardless of co-administration of the FDA-approved IL-1 receptor antagonist (IL-1Rn), also known as Anakinra. However, total lung inflammation was significantly reduced in macaques treated with IL-1Rn and LZD compared to LZD alone. Importantly, IL-1Rn administration did not impair the host response against Mtb or LZD efficacy in either animal model. Together, our data support that inhibition of IL-1 in combination with LZD has potential to be an effective HDT for TB and the need for further research in this area.
Collapse
Affiliation(s)
- Caylin G. Winchell
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bibhuti B. Mishra
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Jia Yao Phuah
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chelsea M. Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Brianne Stein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Edwin C. Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of the University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
45
|
Ao T, Kikuta J, Sudo T, Uchida Y, Kobayashi K, Ishii M. Local sympathetic neurons promote neutrophil egress from the bone marrow at the onset of acute inflammation. Int Immunol 2020; 32:727-736. [DOI: 10.1093/intimm/dxaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
Abstract
The sympathetic nervous system plays critical roles in the differentiation, maturation and recruitment of immune cells under homeostatic conditions, and in responses to environmental stimuli, although its role in the migratory control of immune cells during acute inflammation remains unclear. In this study, using an advanced intravital bone imaging system established in our laboratory, we demonstrated that the sympathetic nervous system locally regulates neutrophil egress from the bone marrow for mobilization to inflammatory foci. We found that sympathetic neurons were located close to blood vessels in the bone marrow cavity; moreover, upon lipopolysaccharide (LPS) administration, local sympathectomy delayed neutrophil egress from the bone marrow and increased the proportion of neutrophils that remained in place. We also showed that vascular endothelial cells produced C-X-C motif chemokine ligand 1 (CXCL1), which is responsible for neutrophil egress out of the bone marrow. Its expression was up-regulated during acute inflammation, and was suppressed by β-adrenergic receptor blockade, which was accompanied with inhibition of neutrophil egress into the systemic circulation. Furthermore, systemic β-adrenergic signaling blockade decreased the recruitment of neutrophils in the lung under conditions of acute systemic inflammation. Taken together, the results of this study first suggested a new regulatory system, wherein local sympathetic nervous activation promoted neutrophil egress by enhancing Cxcl1 expression in bone marrow endothelial cells in a β-adrenergic signaling-dependent manner, contributing to the recruitment of neutrophils at the onset of inflammation in vivo.
Collapse
Affiliation(s)
- Tomoka Ao
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takao Sudo
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institute of Natural Sciences, Aichi, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 2020; 17:433-450. [PMID: 32238918 PMCID: PMC7192912 DOI: 10.1038/s41423-020-0412-0] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium.
| |
Collapse
|
47
|
The role of CXCR2 in acute inflammatory responses and its antagonists as anti-inflammatory therapeutics. Curr Opin Hematol 2020; 26:28-33. [PMID: 30407218 DOI: 10.1097/moh.0000000000000476] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW CXCR2 is key stimulant of immune cell migration and recruitment, especially of neutrophils. Alleviating excessive neutrophil accumulation and infiltration could prevent prolonged tissue damage in inflammatory disorders. This review focuses on recent advances in our understanding of the role of CXCR2 in regulating neutrophil migration and the use of CXCR2 antagonists for therapeutic benefit in inflammatory disorders. RECENT FINDINGS Recent studies have provided new insights into how CXCR2 signaling regulates hematopoietic cell mobilization and function in both health and disease. We also summarize several CXCR2 regulatory mechanisms during infection and inflammation such as via Wip1, T-bet, P-selectin glycoprotein ligand-1, granulocyte-colony-stimulating factor, and microbiome. Moreover, we provide an update of studies investigating CXCR2 blockade in the laboratory and in clinical trials. SUMMARY Neutrophil homeostasis, migration, and recruitment must be precisely regulated. The CXCR2 signaling pathway is a potential target for modifying neutrophil dynamics in inflammatory disorders. We discuss the recent clinical use of CXCR2 antagonists for controlling inflammation.
Collapse
|
48
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
The Role of Circular RNAs in Brain Injury. Neuroscience 2020; 428:50-59. [PMID: 31917349 DOI: 10.1016/j.neuroscience.2019.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
Circular RNAs are an increasingly important topic in non-coding RNA biology, drawing considerable attention in recent years. Accumulating evidence suggests a critical role for circular RNAs in both early and latent stages of disease pathogenesis. Circular RNAs are abundantly expressed in brain tissue, with significant implications for neural development and disease progression. Disruption of these processes, including those seen in response to brain injury, can have serious consequences such as hemiplegia, aphasia, coma, and death. In this review, we describe the role of circular RNAs in the context of brain injury and explore the potential connection between circular RNAs, brain hypoxic ischemic injury, ischemia-reperfusion injury, and traumatic injury.
Collapse
|
50
|
Noh JR, Kim JH, Na SY, Lee IB, Seo YJ, Choi JH, Seo Y, Lee TG, Choi HS, Kim YH, Lee CH. Hepatocyte CREBH deficiency aggravates inflammatory liver injury following chemokine-dependent neutrophil infiltration through upregulation of NF-κB p65 in mice. Arch Toxicol 2019; 94:509-522. [DOI: 10.1007/s00204-019-02633-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
|