1
|
Patel JM. Pediatric Systemic Autoinflammatory Disorders: An Overview. Curr Allergy Asthma Rep 2025; 25:23. [PMID: 40299118 DOI: 10.1007/s11882-025-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE OF REVIEW Systemic autoinflammatory disorders (SAIDs) are a group of diseases that are characterized by recurrent or persistent unprovoked attacks of inflammation resulting from innate immunity dysregulation and leading to significant sequelae in many cases. The concept of autoinflammatory disorders has been widely studied in the last 28 years since the genetic mutation responsible for familial Mediterranean fever (FMF) was discovered. These disorders are mainly hereditary autoinflammatory diseases with key immunological pathways affected and particularly involving inflammasomes, nuclear factor-κB dysregulation and interferon upregulation. This article serves as an overview of pediatric systemic autoinflammatory disorders, their presentation, workup, complications, and therapeutic management. RECENT FINDINGS Advances in genetic analysis have allowed for the rapid identification of mutations responsible for many autoinflammatory disorders. Advances in biomolecular techniques, which have allowed for identifying key players such as inflammasomes, have led to treatment options that have significantly improved morbidity and mortality in affected patients. This review provides an overview of the proposed pathogenesis, presenting features, potential complications and suggested therapies of systemic autoinflammatory disorders. Providers should have a high clinical suspicion for autoinflammatory disorders in children who present with fever, a heightened inflammatory response and negative evaluation for an infectious, malignant, and autoimmune etiology. Understanding and identifying these disorders in a timely manner and implementing prompt treatment allow for the best possible outcome for these patients.
Collapse
Affiliation(s)
- Julisa M Patel
- Allergy-Immunology and Pediatric Rheumatology Division, Department of Pediatrics, Children's Hospital of Georgia, Augusta University Medical Center, 1120 15th Street, BG 102, Augusta, GA, 30912, USA.
| |
Collapse
|
2
|
Oda H, Annibaldi A, Kastner DL, Aksentijevich I. Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases. Annu Rev Immunol 2025; 43:313-342. [PMID: 40279314 DOI: 10.1146/annurev-immunol-090222-105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death-induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses-inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death-induced inflammation in humans-and provide a possible road map to countering this process across the spectrum of rare and common illnesses.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany;
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| |
Collapse
|
3
|
Wang C, Wang W, Hui X, Hou J, Zhou Q, Li Q, Wu Q, Ni Q, Wu B, Sun J, Wang X. Case report and literature review: clinical manifestations and treatment of human RelA deficiency. Front Immunol 2025; 16:1529654. [PMID: 40134438 PMCID: PMC11934250 DOI: 10.3389/fimmu.2025.1529654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/20/2025] [Indexed: 03/27/2025] Open
Abstract
RelA deficiency resulting from mutations in the human RELA gene is a recently identified inborn errors of immunity (IEI). The RELA gene encodes the RelA (p65) protein, one of the five transcription factors of the NF-κB family, which plays a critical role in the regulation of transcriptional programs essential for the development and maintenance of the immune system, skeletal system, and epithelial tissues. RelA deficiency is classified as RelA haploinsufficiency and RelA dominant-negative. The mainly pathogenesis is that impaired NF-κB activation in fibroblasts, which leads to the downregulation of NF-κB-dependent antiapoptotic protein expression and cytokine transcription, renders fibroblasts susceptible to TNF-induced apoptosis. Clinical manifestations of RelA deficiency are typically characterized by recurrent oral ulcers or Behçet's disease-like manifestations. Since the first report in 2016, only a few dozen cases of RelA deficiency have been documented worldwide. Treatment strategies have not been standardized, with current mainstream approaches primarily involving immunosuppressive therapies, including TNF inhibitors or glucocorticoids. In this study, we report the clinical phenotypes of three patients with RelA deficiency from two families, along with one novel pathogenic mutation (c.1166_1184del, p.Q389fs) in the RELA gene. This expands the spectrum of pathogenic mutations associated with the RELA gene and clinical manifestations of RelA deficiency. Additionally, we provide a comprehensive summary of the genetic phenotypes, clinical characteristics, and treatment strategies of all previously reported cases of RelA deficiency. Our aim is to increase awareness of this rare IEI and to offer insights that may guide its treatment.
Collapse
Affiliation(s)
- Chenghao Wang
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Qifan Li
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Qi Wu
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Qi Ni
- Clinical Genetic Center, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Clinical Genetic Center, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, National Children Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| |
Collapse
|
4
|
Belot A, Tusseau M, Cognard J, Georgin‐Lavialle S, Boursier G, Hedrich CM. How (Ultra-)Rare Gene Variants Improve Our Understanding of More Common Autoimmune and Inflammatory Diseases. ACR Open Rheumatol 2025; 7:e70003. [PMID: 39964335 PMCID: PMC11834591 DOI: 10.1002/acr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
The aim of this study was to explore the impact of rare and ultra-rare genetic variants on the understanding and treatment of autoimmune and autoinflammatory diseases with a focus on systemic lupus erythematosus (SLE) and Behçet syndrome. This review summarizes current research on the monogenic causes of SLE and Behçet syndrome, highlighting the various pathways that can be responsible for these unique phenotypes. In monogenic SLE, the identification of complement and DNASE1L3 deficiencies has elucidated mechanisms of apoptotic body accumulation and extracellular nucleic acid sensing. Type I interferonopathies underline the specific role of DNA/RNA sensing and the interferon overexpression in the development of systemic autoimmunity. Other significant genetic defects include Toll-like receptor hypersignaling and JAK/STATopathies, which contribute to the breakdown of immune tolerance. To date, genetic defects directly affecting B and T cell biology only account for a minority of identified causes of monogenic lupus, highlighting the importance of a tight regulation of mechanistic target of rapamycin and RAS (Rat sarcoma GTPase)/MAPK (mitogen-activated protein kinase) signaling in lupus. In Behçet syndrome, rare variants in TNFAIP3, RELA, and NFKB1 genes have been identified, underscoring the importance of NF-κB overactivation. Additional monogenic diseases such as ELF4, WDR1 mutations and trisomy 8 further illustrate the genetic complexity of this condition. Observations from genetic studies in SLE and Behçet syndrome highlight the complexity of systemic inflammatory diseases in which distinct molecular defects caused by single-gene mutations can promote lupus or Behçet syndromes, often unrecognizable from their genetically complex "classical" forms. Insights gained from studying rare genetic variants enhance our understanding of immune function in health and disease, paving the way for targeted therapies and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Belot
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and Autoimmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisLyonFrance
| | - Maud Tusseau
- Centre International de Recherche en Infectiologie, University of Lyon, Inserm U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, National Referee Centre for Rheumatic and AutoImmune and Systemic Diseases in Children, and Hôpital Femme Mère Enfant and Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France, and French National Reference Center of Autoinflammatory Diseases and AmyloidosisParisFrance
| | - Jade Cognard
- American Memorial Hospital, Centre Hospitalier Universitaire Reims, Reims Champagne‐Ardenne UniversityReimsFrance
| | - Sophie Georgin‐Lavialle
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Sorbonne Université, Hôpital Tenon, DMU 3ID, AP‐HPParisFrance
| | - Guilaine Boursier
- French National Reference Center of Autoinflammatory Diseases and Amyloidosis, Paris, France, and Centre Hospitalier Universitaire Montpellier, University of MontpellierMontpellierFrance
| | - Christian M. Hedrich
- Institute of Life Course and Medical Sciences, University of Liverpool and Alder Hey Children's NHS Foundation TrustLiverpoolUnited Kingdom
| |
Collapse
|
5
|
Burleigh A, Omoyinmi E, Papadopoulou C, Al-Abadi E, Hong Y, Price-Kuehne F, Moraitis E, Titheradge H, Montesi F, Xu D, Eleftheriou D, Brogan P. Genetic testing of Behçet's disease using next-generation sequencing to identify monogenic mimics and HLA-B*51. Rheumatology (Oxford) 2024; 63:3457-3470. [PMID: 38006337 PMCID: PMC11636563 DOI: 10.1093/rheumatology/kead628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVE Several monogenic autoinflammatory disorders and primary immunodeficiencies can present early in life with features that may be mistaken for Behçet's disease (BD). We aimed to develop a genetic analysis workflow to identify rare monogenic BD-like diseases and establish the contribution of HLA haplotype in a cohort of patients from the UK. METHODS Patients with clinically suspected BD were recruited from four BD specialist care centres in the UK. All participants underwent whole-exome sequencing (WES), and genetic analysis thereafter by (i) examining genes known to cause monogenic immunodeficiency, autoinflammation or vasculitis by virtual panel application; (ii) scrutiny of variants prioritized by Exomiser using Human Phenotype Ontology (HPO); (iii) identification of copy number variants using ExomeDepth; and (iv) HLA-typing using OptiType. RESULTS Thirty-one patients were recruited: median age 15 (4-52), and median disease onset age 5 (0-20). Nine/31 (29%) patients had monogenic disease mimicking BD: five cases of Haploinsufficiency of A20 with novel TNFAIP3 variants (p.T76I, p. M112Tfs*8, p. S548Dfs*128, p. C657Vfs*14, p. E661Nfs*36); one case of ISG15 deficiency with a novel nonsense variant (ISG15: p.Q16X) and 1p36.33 microdeletion; one case of common variable immune deficiency (TNFRSF13B: p.A181E); and two cases of TNF receptor-associated periodic syndrome (TNFRSF1A: p.R92Q). Of the remaining 22 patients, eight (36%) were HLA-B*51 positive. CONCLUSION We describe a novel genetic workflow for BD, which can efficiently detect known and potentially novel monogenic forms of BD, whilst additionally providing HLA-typing. Our results highlight the importance of genetic testing before BD diagnosis, as this has an impact on choice of therapy, prognosis and genetic counselling.
Collapse
Affiliation(s)
- Alice Burleigh
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, London, UK
| | - Ebun Omoyinmi
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Charalampia Papadopoulou
- Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Eslam Al-Abadi
- Childhood Arthritis and Rheumatic Diseases Unit, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Ying Hong
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Fiona Price-Kuehne
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Elena Moraitis
- Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Hannah Titheradge
- Clinical Genetics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
- Clinical Sciences Department, University of Birmingham, Birmingham, UK
| | - Francesca Montesi
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Diane Xu
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Despina Eleftheriou
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, London, UK
- Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Paul Brogan
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
- Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Vorsteveld EE, Van der Made CI, Smeekens SP, Schuurs-Hoeijmakers JH, Astuti G, Diepstra H, Gilissen C, Hoenselaar E, Janssen A, van Roozendaal K, Engelen JSV, Steyaert W, Weiss MM, Yntema HG, Mantere T, AlZahrani MS, van Aerde K, Derfalvi B, Faqeih EA, Henriet SSV, van Hoof E, Idressi E, Issekutz TB, Jongmans MCJ, Keski-Filppula R, Krapels I, Te Loo M, Mulders-Manders CM, Ten Oever J, Potjewijd J, Sarhan NT, Slot MC, Terhal PA, Thijs H, Vandersteen A, Vanhoutte EK, van de Veerdonk F, van Well G, Netea MG, Simons A, Hoischen A. Clinical exome sequencing data from patients with inborn errors of immunity: Cohort level diagnostic yield and the benefit of systematic reanalysis. Clin Immunol 2024; 268:110375. [PMID: 39369972 DOI: 10.1016/j.clim.2024.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
While next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review. The molecular diagnostic yield after standard exome analysis was 11.8 %. Through systematic reanalysis, we identified variants of interest in 5.2 % of undiagnosed patients, with 76.7 % being (candidate) disease-causing, providing a (candidate) diagnosis in 15.2 % of our cohort. We find a 1.7 percentage point increase in conclusive molecular diagnoses. We find a high degree of actionability in patients with a genetic diagnosis (76.4 %). Despite the modest absolute diagnostic gain, these data support the benefit of iterative exome reanalysis in IEI patients, conveying the notion that our current understanding of genes and variants involved in IEI is by far not saturated.
Collapse
Affiliation(s)
- Emil E Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caspar I Van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sanne P Smeekens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Galuh Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen Diepstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Hoenselaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alice Janssen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kees van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Wouter Steyaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mofareh S AlZahrani
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Koen van Aerde
- Department of Paediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Beata Derfalvi
- Division of Immunology, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stefanie S V Henriet
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elise van Hoof
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eman Idressi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Thomas B Issekutz
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maroeska Te Loo
- Department of Pediatric Hematology, Amalia children's hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Ten Oever
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith Potjewijd
- Department of Internal Medicine, Division of Experimental and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nora Tarig Sarhan
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Marjan C Slot
- Department of Allergology and Clinical Immunology, Maastricht UMC+, Maastricht, The Netherlands
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Herman Thijs
- Department of Pediatrics, Gelre Ziekenhuizen Zutphen, The Netherlands
| | - Anthony Vandersteen
- Division of Medical Genetics, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Els K Vanhoutte
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gijs van Well
- Department of Paediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Kozu KT, Nascimento RRNRD, Aires PP, Cordeiro RA, Moura TCLD, Sztajnbok FR, Pereira IA, Almeida de Jesus A, Perazzio SF. Inflammatory turmoil within: an exploration of autoinflammatory disease genetic underpinnings, clinical presentations, and therapeutic approaches. Adv Rheumatol 2024; 64:62. [PMID: 39175060 DOI: 10.1186/s42358-024-00404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) arise from dysregulated innate immune system activity, which leads to systemic inflammation. These disorders, encompassing a diverse array of genetic defects classified as inborn errors of immunity, are significant diagnostic challenges due to their genetic heterogeneity and varied clinical presentations. Although recent advances in genetic sequencing have facilitated pathogenic gene discovery, approximately 40% of SAIDs patients lack molecular diagnoses. SAIDs have distinct clinical phenotypes, and targeted therapeutic approaches are needed. This review aims to underscore the complexity and clinical significance of SAIDs, focusing on prototypical disorders grouped according to their pathophysiology as follows: (i) inflammasomopathies, characterized by excessive activation of inflammasomes, which induces notable IL-1β release; (ii) relopathies, which are monogenic disorders characterized by dysregulation within the NF-κB signaling pathway; (iii) IL-18/IL-36 signaling pathway defect-induced SAIDs, autoinflammatory conditions defined by a dysregulated balance of IL-18/IL-36 cytokine signaling, leading to uncontrolled inflammation and tissue damage, mainly in the skin; (iv) type I interferonopathies, a diverse group of disorders characterized by uncontrolled production of type I interferons (IFNs), notably interferon α, β, and ε; (v) anti-inflammatory signaling pathway impairment-induced SAIDs, a spectrum of conditions characterized by IL-10 and TGFβ anti-inflammatory pathway disruption; and (vi) miscellaneous and polygenic SAIDs. The latter group includes VEXAS syndrome, chronic recurrent multifocal osteomyelitis/chronic nonbacterial osteomyelitis, Schnitzler syndrome, and Still's disease, among others, illustrating the heterogeneity of SAIDs and the difficulty in creating a comprehensive classification. Therapeutic strategies involving targeted agents, such as JAK inhibitors, IL-1 blockers, and TNF inhibitors, are tailored to the specific disease phenotypes.
Collapse
Affiliation(s)
- Kátia Tomie Kozu
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil
| | | | - Patrícia Pontes Aires
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil
| | | | | | - Flavio Roberto Sztajnbok
- Federal University of Rio de Janeiro: Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sandro Félix Perazzio
- Universidade de Sao Paulo, Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
- Universidade Federal de Sao Paulo, Escola Paulista de Medicina (Unifesp EPM), Rua Otonis, 863, Vila Clementino, São Paulo, SP, 04025-002, Brazil.
- Division of Immunology and Rheumatology, Fleury Laboratories, Sao Paulo, SP, Brazil.
| |
Collapse
|
9
|
Elhani I, Aouba A, Riller Q, Vergneault H, Boursier G, Rieux-Laucat F, Hentgen V, Georgin-Lavialle S. [A20 haploinsufficiency: what do clinicians need to know?]. Rev Med Interne 2024; 45:415-422. [PMID: 38160098 DOI: 10.1016/j.revmed.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
A20 Haploinsufficiency (HA20) is a monogenic autoinflammatory disease associated with an autosomal dominant mutation in the TNFAIP3 gene. It induces a defect in the inactivation of the pro-inflammatory NF-κB pathway. Less than 200 cases have been described worldwide. The clinical picture of the disease is essentially based on the association of recurrent fever and/or biologic inflammatory syndrome, aphtosis, often bipolar, and cutaneous folliculitis. However, the clinical spectrum of HA20 is very broad, including gastrointestinal (mainly colonic ulceration), articular, cutaneous, pericardial and lymph node involvement, as well as frequent association with organ-specific or non-specific autoimmune manifestations and/or autoantibodies, including antinuclear antibodies and anti-dsDNA. As a result, the diagnosis of a number of systemic or organic disorders, most notably Behçet's disease, Crohn's disease, and sometimes even systemic lupus, has been corrected to HA20 by molecular research for a heterozygous mutation with functional deficiency of TNFAIP3. Although the first signs of the disease often appear in the first years of life, the diagnosis is often made in adulthood and requires the involvement of both paediatric and adult physicians. Treatment for HA20 is not codified and relies on conventional or biological immunomodulators and immunosuppressants adapted to the patient's symptomatology. This review highlights the enormous diagnostic challenges in this autoinflammatory disease.
Collapse
Affiliation(s)
- I Elhani
- Centre de référence des maladies auto-inflammatoires rares et des amyloses, service de pédiatrie générale, hôpital de Versailles, Versailles, France; Sorbonne université, centre de recherche Saint-Antoine (CRSA) INSERM UMRS-938.
| | - A Aouba
- Département de médecine Interne et immunologie clinique, Normandie Univ, UNICAEN, UR4650 PSIR, CHU de Caen Normandie, Caen, France
| | - Q Riller
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - H Vergneault
- AP-HP, hôpital Tenon, Service de médecine interne, Paris, France
| | - G Boursier
- Centre national de référence des maladies auto-inflammatoires et des amyloses d'origine inflammatoire (CEREMAIA), Montpellier, France; Laboratoire de Génétique des Maladies rares et autoinflammatoires, Service de Génétique moléculaire et cytogénomique, CHU Montpellier, Univ Montpellier, Montpellier, France
| | - F Rieux-Laucat
- Université Paris Cité, Institut Imagine, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - V Hentgen
- Centre de référence des maladies auto-inflammatoires rares et des amyloses, service de pédiatrie générale, hôpital de Versailles, Versailles, France
| | - S Georgin-Lavialle
- Sorbonne université, centre de recherche Saint-Antoine (CRSA) INSERM UMRS-938; AP-HP, hôpital Tenon, Service de médecine interne, Paris, France.
| |
Collapse
|
10
|
Lalle G, Lautraite R, Bouherrou K, Plaschka M, Pignata A, Voisin A, Twardowski J, Perrin-Niquet M, Stéphan P, Durget S, Tonon L, Ardin M, Degletagne C, Viari A, Belgarbi Dutron L, Davoust N, Postler TS, Zhao J, Caux C, Caramel J, Dalle S, Cassier PA, Klein U, Schmidt-Supprian M, Liblau R, Ghosh S, Grinberg-Bleyer Y. NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer. J Exp Med 2024; 221:e20231348. [PMID: 38563819 PMCID: PMC10986815 DOI: 10.1084/jem.20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.
Collapse
Affiliation(s)
- Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Lautraite
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurora Pignata
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Durget
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maude Ardin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Degletagne
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Viari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure of Lyon, CNRS UMR 5239, INSERM U1293, Lyon, France
| | - Thomas S. Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christophe Caux
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Staels F, Bücken L, De Vuyst L, Willemsen M, Van Nieuwenhove E, Gerbaux M, Neumann J, Malviya V, Van Meerbeeck L, Haughton J, Seldeslachts L, Gouwy M, Martinod K, Vande Velde G, Proost P, Yshii L, Schlenner S, Schrijvers R, Liston A, Humblet-Baron S. OTULIN haploinsufficiency predisposes to environmentally directed inflammation. Front Immunol 2024; 15:983686. [PMID: 38827742 PMCID: PMC11140568 DOI: 10.3389/fimmu.2024.983686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/29/2024] [Indexed: 06/04/2024] Open
Abstract
Recently, OTULIN haploinsufficiency was linked to enhanced susceptibility to Staphylococcus aureus infections accompanied by local necrosis and systemic inflammation. The pathogenesis observed in haploinsufficient patients differs from the hyperinflammation seen in classical OTULIN-related autoinflammatory syndrome (ORAS) patients and is characterized by increased susceptibility of dermal fibroblasts to S. aureus alpha toxin-inflicted cytotoxic damage. Immunological abnormalities were not observed in OTULIN haploinsufficient patients, suggesting a non-hematopoietic basis. In this research report, we investigated an Otulin+/- mouse model after in vivo provocation with lipopolysaccharide (LPS) to explore the potential role of hematopoietic-driven inflammation in OTULIN haploinsufficiency. We observed a hyperinflammatory signature in LPS-provoked Otulin+/- mice, which was driven by CD64+ monocytes and macrophages. Bone marrow-derived macrophages (BMDMs) of Otulin+/- mice demonstrated higher proinflammatory cytokine secretion after in vitro stimulation with LPS or polyinosinic:polycytidylic acid (Poly(I:C)). Our experiments in full and mixed bone marrow chimeric mice suggest that, in contrast to humans, the observed inflammation was mainly driven by the hematopoietic compartment with cell-extrinsic effects likely contributing to inflammatory outcomes. Using an OTULIN haploinsufficient mouse model, we validated the role of OTULIN in the regulation of environmentally directed inflammation.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Leoni Bücken
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Leana De Vuyst
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Lize Van Meerbeeck
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Jeason Haughton
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Department of Microbiology, Immunology and Transplantation, Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Department of Microbiology, Immunology and Transplantation, Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology, Immunology and Transplantation, Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Lidia Yshii
- Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Oda H, Manthiram K, Chavan PP, Rieser E, Veli Ö, Kaya Ö, Rauch C, Nakabo S, Kuehn HS, Swart M, Wang Y, Çelik NI, Molitor A, Ziaee V, Movahedi N, Shahrooei M, Parvaneh N, Alipour-Olyei N, Carapito R, Xu Q, Preite S, Beck DB, Chae JJ, Nehrebecky M, Ombrello AK, Hoffmann P, Romeo T, Deuitch NT, Matthíasardóttir B, Mullikin J, Komarow H, Stoddard J, Niemela J, Dobbs K, Sweeney CL, Anderton H, Lawlor KE, Yoshitomi H, Yang D, Boehm M, Davis J, Mudd P, Randazzo D, Tsai WL, Gadina M, Kaplan MJ, Toguchida J, Mayer CT, Rosenzweig SD, Notarangelo LD, Iwai K, Silke J, Schwartzberg PL, Boisson B, Casanova JL, Bahram S, Rao AP, Peltzer N, Walczak H, Lalaoui N, Aksentijevich I, Kastner DL. Biallelic human SHARPIN loss of function induces autoinflammation and immunodeficiency. Nat Immunol 2024; 25:764-777. [PMID: 38609546 PMCID: PMC11626442 DOI: 10.1038/s41590-024-01817-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.
Collapse
Affiliation(s)
- Hirotsugu Oda
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Kalpana Manthiram
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pallavi Pimpale Chavan
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Rieser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Önay Veli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Öykü Kaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Charles Rauch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Shuichiro Nakabo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Mariël Swart
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Yanli Wang
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nisa Ilgim Çelik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Vahid Ziaee
- Division of Rheumatology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran, Iran
| | - Nasim Movahedi
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Lab, 22 Bahman St., Ashrafi Esfahani Blvd, Tehran, Iran
| | - Nima Parvaneh
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Alipour-Olyei
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Qin Xu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Silvia Preite
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David B Beck
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jae Jin Chae
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michele Nehrebecky
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrycja Hoffmann
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tina Romeo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - James Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hirsh Komarow
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Julie Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Dobbs
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Colin L Sweeney
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly Anderton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kate E Lawlor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hiroyuki Yoshitomi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dan Yang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeremy Davis
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA
| | - Davide Randazzo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wanxia Li Tsai
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Junya Toguchida
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Christian T Mayer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiro Iwai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d'Immunologie et d'Hématologie, CRBS, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | | | - Nieves Peltzer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Henning Walczak
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation, UCL Cancer Institute, University College, London, UK
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Sato Y, Osada E, Manome Y. Non-canonical NFKB signaling endows suppressive function through FOXP3-dependent regulatory T cell program. Heliyon 2023; 9:e22911. [PMID: 38125410 PMCID: PMC10730750 DOI: 10.1016/j.heliyon.2023.e22911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Regulatory T cells (Tregs) play a central role in modulating adaptive immune responses in humans and mice. The precise biological role of non-canonical nuclear factor 'κ-light-chain-enhancer' of activated B cells (NFKB) signaling in human Tregs has yet to be fully elucidated. To gain insight into this process, a Treg-like cell line (MT-2) was genetically modified using CRISPR/Cas9. Interestingly, NFKB2 knockout MT-2 cells exhibited downregulation of FOXP3, while NFKB1 knockout did not. Additionally, mRNA expression of FOXP3-dependent molecules was significantly reduced in NFKB2 knockout MT-2 cells. To better understand the functional role of the NFKB signaling, the NFKB1/NFKB2 loci of human primary Tregs were genetically edited using CRISPR/Cas9. Similar to MT-2 cells, NFKB2 knockout human Tregs displayed significantly reduced FOXP3 expression. Furthermore, NFKB2 knockout human Tregs showed downregulation of FOXP3-dependent molecules and a diminished suppressive function compared to wild-type and NFKB1 knockout Tregs. These findings indicate that non-canonical NFKB signaling maintains a Treg-like phenotype and suppressive function in human Tregs through the FOXP3-dependent regulatory T cell program.
Collapse
Affiliation(s)
- Yohei Sato
- Corresponding author. 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, Japan.
| | | | - Yoshinobu Manome
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
15
|
Jeong DC. Systemic autoinflammatory disorders. Clin Exp Pediatr 2023; 66:432-438. [PMID: 37321573 PMCID: PMC10556796 DOI: 10.3345/cep.2022.01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023] Open
Abstract
Inflammation is a physiologic defense mechanism against an out-side attack. Usually, it resolves after the removal of noxious causes, but systemic autoinflammatory disorders (SAIDs) have recurrent or repeated acute inflammation through uncontrolled gene function, which can present as gain-of-function or loss-of-function of a gene during inflammation. Most SAIDs are hereditary autoinflammatory diseases and develop by dysregulation of innate immunity through various pathways including inflammasomes, endoplasmic reticulum stress, nuclear factor-κB dysregulation, and interferon production. The clinical manifestations include periodic fever with various skin findings such as neutrophilic urticarial dermatosis, or vasculitic lesions. Some SAID cases stem from immunodeficiency or allergic reactions related to monogenic mutation. The diagnosis of SAIDs is based on clinical findings of systemic inflammation and genetic confirmation, and have to exclude infections or malignancies. Moreover, a genetic study is essential for clinical features to be suspect SAID with or without a family history. Treatment is based on understanding the immunopathology of SAID, and targeted therapy to control disease flares, reduce recurrent acute phases and prevent serious complications. Diagnosing and treating SAID requires understanding its comprehensive clinical features and pathogenesis related to genetic mutation.
Collapse
Affiliation(s)
- Dae Chul Jeong
- Division of Pediatric Clinical Immunology, Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
16
|
Moriya K, Nakano T, Honda Y, Tsumura M, Ogishi M, Sonoda M, Nishitani-Isa M, Uchida T, Hbibi M, Mizoguchi Y, Ishimura M, Izawa K, Asano T, Kakuta F, Abukawa D, Rinchai D, Zhang P, Kambe N, Bousfiha A, Yasumi T, Boisson B, Puel A, Casanova JL, Nishikomori R, Ohga S, Okada S, Sasahara Y, Kure S. Human RELA dominant-negative mutations underlie type I interferonopathy with autoinflammation and autoimmunity. J Exp Med 2023; 220:e20212276. [PMID: 37273177 PMCID: PMC10242411 DOI: 10.1084/jem.20212276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/28/2022] [Accepted: 04/07/2023] [Indexed: 06/06/2023] Open
Abstract
Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.
Collapse
Affiliation(s)
- Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Nakano
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takashi Uchida
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohamed Hbibi
- Pediatric Service University Hospital Center Hassan II Fès, Faculty of Medicine and Pharmacy Sidi Mohamed Ben Abdellah University, Fès, Morocco
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Fumihiko Kakuta
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Daiki Abukawa
- Division of General Pediatrics and Gastroenterology, Miyagi Children’s Hospital, Miyagi, Japan
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Aziz Bousfiha
- Faculty of Medicine and Pharmacy. Hassan II University, Casablanca, Morocco
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Ashari KA, Hausmann JS, Dedeoglu F. Update on autoinflammatory diseases. Curr Opin Rheumatol 2023:00002281-990000000-00061. [PMID: 37433216 DOI: 10.1097/bor.0000000000000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Although the concept of systemic autoinflammatory diseases (SAIDs) is still very young, our knowledge about them is exponentially growing. In the current review, we aim to discuss novel SAIDs and autoinflammatory pathways discovered in the last couple of years. RECENT FINDINGS Advances in immunology and genetics have led to the discovery of new pathways involved in autoinflammation, as well as several new SAIDs, including retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache (ROSAH syndrome), vacuoles, E1 enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome, TBK1 deficiency, NEMO deleted exon 5 autoinflammatory syndrome (NDAS), and disabling pansclerotic morphea. Progress in immunobiology and genetics has also brought forth novel treatments for SAIDs. Personalized medicine has made significant progress in areas such as cytokine-targeted therapies and gene therapies. However, much work remains, especially in measuring and improving the quality of life in patients with SAIDs. SUMMARY In the current review, we discuss the novelties in the world of SAIDs, including mechanistic pathways of autoinflammation, pathogenesis, and treatment. We hope this review helps rheumatologists to gain an updated understanding of SAIDs.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence
- Department of Pediatrics, Tehran University of Medical Sciences
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jonathan S Hausmann
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
- Division of Rheumatology, Dermatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
| |
Collapse
|
18
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
19
|
Sharfe N, Dalal I, Naghdi Z, Lefaudeux D, Vong L, Dadi H, Navarro H, Tasher D, Ovadia A, Zangen T, Ater D, Ngan B, Hoffmann A, Roifman CM. NFκB pathway dysregulation due to reduced RelB expression leads to severe autoimmune disorders and declining immunity. J Autoimmun 2023; 137:102946. [PMID: 36402602 DOI: 10.1016/j.jaut.2022.102946] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Genetic aberrations in the NFκB pathway lead to primary immunodeficiencies with various degrees of severity. We previously demonstrated that complete ablation of the RelB transcription factor, a key component of the alternative pathway, results in an early manifested combined immunodeficiency requiring stem cell transplantation. OBJECTIVE To study the molecular basis of a progressive severe autoimmunity and immunodeficiency in three patients. METHODS Whole exome sequencing was performed to identify the genetic defect. Molecular and cellular techniques were utilized to assess the variant impact on NFκB signaling, canonical and alternative pathway crosstalk, as well as the resultant effects on immune function. RESULTS Patients presented with multiple autoimmune progressive severe manifestations encompassing the liver, gut, lung, and skin, becoming debilitating in the second decade of life. This was accompanied by a deterioration of the immune system, demonstrating an age-related decline in naïve T cells and responses to mitogens, accompanied by a gradual loss of all circulating CD19+ cells. Whole exome sequencing identified a novel homozygous c. C1091T (P364L) transition in RELB. The P364L RelB protein was unstable, with extremely low expression, but retained some function and could be transiently and partially upregulated following Toll-like receptor stimulation. Stimulation of P364L patient fibroblasts resulted in a marked rise in a cluster of pro-inflammatory hyper-expressed transcripts consistent with the removal of RelB inhibitory effect on RelA function. This is likely the main driver of autoimmune manifestations in these patients. CONCLUSION Incomplete loss of RelB provided a unique opportunity to gain insights into NFκB's pathway interactions as well as the pathogenesis of autoimmunity. The P364L RelB mutation leads to gradual decline in immune function with progression of severe debilitating autoimmunity.
Collapse
Affiliation(s)
- Nigel Sharfe
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Ilan Dalal
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Zahra Naghdi
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Diane Lefaudeux
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Linda Vong
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Harjit Dadi
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada
| | - Hector Navarro
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Diana Tasher
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Ovadia
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tzili Zangen
- Pediatric Department, E. Wolfson Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Ater
- Pediatric Pulmonology Unit, Assuta Medical Center, Tel Aviv, Israel
| | - Bo Ngan
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Chaim M Roifman
- The Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, Division of Immunology/Allergy, Department of Pediatrics, Hospital for Sick Children, and the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Du Y, Liu M, Nigrovic PA, Dedeoglu F, Lee PY. Biologics and JAK inhibitors for the treatment of monogenic systemic autoinflammatory diseases in children. J Allergy Clin Immunol 2023; 151:607-618. [PMID: 36707349 PMCID: PMC9992337 DOI: 10.1016/j.jaci.2022.12.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) are caused by aberrant activation of 1 or more inflammatory pathways in an antigen-independent manner. Monogenic forms of SAIDs typically manifest during childhood, and early treatment is essential to minimize morbidity and mortality. On the basis of the mechanism of disease and the dominant cytokine(s) that propagates inflammation, monogenic SAIDs can be grouped into major categories including inflammasomopathies/disorders of IL-1, interferonopathies, and disorders of nuclear factor-κB and/or aberrant TNF activity. This classification scheme has direct therapeutic relevance given the availability of biologic agents and small-molecule inhibitors that specifically target these pathways. Here, we review the experience of using biologics that target IL-1 and TNF as well as using Janus kinase inhibitors for the treatment of monogenic SAIDs in pediatric patients. We provide an evidence-based guide for the use of these medications and discuss their mechanism of action, safety profile, and strategies for therapeutic monitoring.
Collapse
Affiliation(s)
- Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou
| | - Meng Liu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston.
| |
Collapse
|
21
|
An JW, Pimpale-Chavan P, Stone DL, Bandeira M, Dedeoglu F, Lo J, Bohnsack J, Rosenzweig S, Schnappauf O, Dissanayake D, Hiraki LT, Kastner DL, Pelajo C, Laxer RM, Aksentijevich I. Case report: Novel variants in RELA associated with familial Behcet's-like disease. Front Immunol 2023; 14:1127085. [PMID: 36926348 PMCID: PMC10011480 DOI: 10.3389/fimmu.2023.1127085] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
RELA haploinsufficiency is a recently described autoinflammatory condition presenting with intermittent fevers and mucocutaneous ulcerations. The RELA gene encodes the p65 protein, one of five NF-κB family transcription factors. As RELA is an essential regulator of mucosal homeostasis, haploinsufficiency leads to decreased NF-κB signaling which promotes TNF-driven mucosal apoptosis with impaired epithelial recovery. Thus far, only eight cases have been reported in the literature. Here, we report four families with three novel and one previously described pathogenic variant in RELA. These four families included 23 affected individuals for which genetic testing was available in 16. Almost half of these patients had been previously diagnosed with more common rheumatologic entities (such as Behcet's Disease; BD) prior to the discovery of their pathogenic RELA variants. The most common clinical features were orogenital ulcers, rash, joint inflammation, and fever. The least common were conjunctivitis and recurrent infections. Clinical variability was remarkable even among familial cases, and incomplete penetrance was observed. Patients in our series were treated with a variety of medications, and benefit was observed with glucocorticoids, colchicine, and TNF inhibitors. Altogether, our work adds to the current literature and doubles the number of reported cases with RELA-Associated Inflammatory Disease (RAID). It reaffirms the central importance of the NF-κB pathway in immunity and inflammation, as well as the important regulatory role of RELA in mucosal homeostasis. RELA associated inflammatory disease should be considered in all patients with BD, particularly those with early onset and/or with a strong family history.
Collapse
Affiliation(s)
- Jason W An
- Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Pallavi Pimpale-Chavan
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah L Stone
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marcia Bandeira
- Division of Rheumatology, Hospital Pequeno Príncipe e Hospital de Clínicas, University Federal do Parana, Curitiba, Brazil
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey Lo
- Division of Immunology, Rheumatology Program, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - John Bohnsack
- Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Sofia Rosenzweig
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oskar Schnappauf
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dilan Dissanayake
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Linda T Hiraki
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Christina Pelajo
- Division of Rheumatology, Hospital Pequeno Príncipe e Hospital de Clínicas, University Federal do Parana, Curitiba, Brazil
| | - Ronald M Laxer
- Division of Rheumatology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
22
|
Louvrier C, Awad F, Cosnes A, El Khouri E, Assrawi E, Daskalopoulou A, Copin B, Bocquet H, Chantot Bastaraud S, Arenas Garcia A, Dastot Le Moal F, De La Grange P, Duquesnoy P, Guerrera CI, Piterboth W, Ortonne N, Chosidow O, Karabina SA, Amselem S, Giurgea I. RNF213-associated urticarial lesions with hypercytokinemia. J Allergy Clin Immunol 2022; 150:1545-1555. [PMID: 35780935 DOI: 10.1016/j.jaci.2022.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Urticarial lesions are observed in both cutaneous and systemic disorders. Familial forms of urticarial syndromes are rare and can be encountered in systemic autoinflammatory diseases. OBJECTIVE We sought to investigate a large family with dominantly inherited chronic urticarial lesions associated with hypercytokinemia. METHODS We performed a genetic linkage analysis in 14 patients from a 5-generation family, as well as whole-exome sequencing, cytokine profiling, and transcriptomic analyses on samples from 2 patients. The identified candidate protein was studied after in vitro expression of the corresponding normal and mutated recombinant proteins. An unsupervised proteomic approach was used to unveil the associated protein network. RESULTS The disease phenotype of the most affected family members is characterized by chronic urticarial flares associated with extremely high plasma levels of proinflammatory (IL-1β, IL-6, and TNF-α) and anti-inflammatory (IL-10 and IL-1 receptor antagonist [IL-1RA]) cytokines, with no secondary organ dysfunction, no susceptibility to infections, no fever, and normal C-reactive protein levels. Monocyte transcriptomic analyses identified an immunotolerant profile in the most affected patient. The affected family members carried a loss-of-function mutation in RNF213 that encodes mysterin, a protein with a poorly known physiologic role. We identified the deubiquitinase CYLD, a major regulator of inflammation, as an RNF213 partner and showed that CYLD expression is inhibited by wild-type but not mutant RNF213. CONCLUSION We identified a new entity characterized by chronic urticarial lesions associated with a clinically blunted hypercytokinemia. This disease, which is due to loss of function of RNF213, reveals mysterin's key role in the complex molecular network of innate immunity.
Collapse
Affiliation(s)
- Camille Louvrier
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Fawaz Awad
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Anne Cosnes
- Faculté de Santé de Créteil and Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France
| | - Elma El Khouri
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Eman Assrawi
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Aphrodite Daskalopoulou
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Bruno Copin
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Hélène Bocquet
- Faculté de Santé de Créteil and Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France
| | - Sandra Chantot Bastaraud
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Angela Arenas Garcia
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Florence Dastot Le Moal
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | | | - Philippe Duquesnoy
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Chiara I Guerrera
- Plateforme protéomique Necker, Université de Paris, Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS3633, Paris, France
| | - William Piterboth
- Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France
| | - Nicolas Ortonne
- Département d'Anatomo-Pathologie, APHP, Hôpital Henri-Mondor, Créteil, France
| | - Olivier Chosidow
- Faculté de Santé de Créteil and Service de Dermatologie, APHP, Hôpital Henri-Mondor, Université Paris-Est, Créteil, France; Research Group Dynamic, EA7380, Faculté de Santé de Créteil, Ecole Nationale Vétérinaire d'Alfort, USC ANSES, Université Paris-Est Créteil, Créteil, France
| | - Sonia A Karabina
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France
| | - Serge Amselem
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France.
| | - Irina Giurgea
- Sorbonne Université, Inserm, Childhood Genetic Disorders, Hôpital Armand-Trousseau, Paris, France; Département de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Armand-Trousseau, Paris, France.
| |
Collapse
|
23
|
Abstract
Tumour necrosis factor (TNF) is a central cytokine in inflammatory reactions, and biologics that neutralize TNF are among the most successful drugs for the treatment of chronic inflammatory and autoimmune pathologies. In recent years, it became clear that TNF drives inflammatory responses not only directly by inducing inflammatory gene expression but also indirectly by inducing cell death, instigating inflammatory immune reactions and disease development. Hence, inhibitors of cell death are being considered as a new therapy for TNF-dependent inflammatory diseases.
Collapse
|
24
|
Pasqualucci L, Klein U. NF-κB Mutations in Germinal Center B-Cell Lymphomas: Relation to NF-κB Function in Normal B Cells. Biomedicines 2022; 10:2450. [PMID: 36289712 PMCID: PMC9599362 DOI: 10.3390/biomedicines10102450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most B cell lymphomas arise from the oncogenic transformation of B cells that have undergone the germinal center (GC) reaction of the T cell-dependent immune response, where high-affinity memory B cells and plasma cells are generated. The high proliferation of GC B cells coupled with occasional errors in the DNA-modifying processes of somatic hypermutation and class switch recombination put the cell at a risk to obtain transforming genetic aberrations, which may activate proto-oncogenes or inactivate tumour suppressor genes. Several subtypes of GC lymphomas harbor genetic mutations leading to constitutive, aberrant activation of the nuclear factor-κB (NF-κB) signaling pathway. In normal B cells, NF-κB has crucial biological roles in development and physiology. GC lymphomas highjack these activities to promote tumour-cell growth and survival. It has become increasingly clear that the separate canonical and non-canonical routes of the NF-κB pathway and the five downstream NF-κB transcription factors have distinct functions in the successive stages of GC B-cell development. These findings may have direct implications for understanding how aberrant NF-κB activation promotes the genesis of various GC lymphomas corresponding to the developmentally distinct GC B-cell subsets. The knowledge arising from these studies may be explored for the development of precision medicine approaches aimed at more effective treatments of the corresponding tumours with specific NF-κB inhibitors, thus reducing systemic toxicity. We here provide an overview on the patterns of genetic NF-κB mutations encountered in the various GC lymphomas and discuss the consequences of aberrant NF-κB activation in those malignancies as related to the biology of NF-κB in their putative normal cellular counterparts.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology & Cell Biology, The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Ulf Klein
- Division of Haematology & Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK
| |
Collapse
|
25
|
Sazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, et alSazonovs A, Stevens CR, Venkataraman GR, Yuan K, Avila B, Abreu MT, Ahmad T, Allez M, Ananthakrishnan AN, Atzmon G, Baras A, Barrett JC, Barzilai N, Beaugerie L, Beecham A, Bernstein CN, Bitton A, Bokemeyer B, Chan A, Chung D, Cleynen I, Cosnes J, Cutler DJ, Daly A, Damas OM, Datta LW, Dawany N, Devoto M, Dodge S, Ellinghaus E, Fachal L, Farkkila M, Faubion W, Ferreira M, Franchimont D, Gabriel SB, Ge T, Georges M, Gettler K, Giri M, Glaser B, Goerg S, Goyette P, Graham D, Hämäläinen E, Haritunians T, Heap GA, Hiltunen M, Hoeppner M, Horowitz JE, Irving P, Iyer V, Jalas C, Kelsen J, Khalili H, Kirschner BS, Kontula K, Koskela JT, Kugathasan S, Kupcinskas J, Lamb CA, Laudes M, Lévesque C, Levine AP, Lewis JD, Liefferinckx C, Loescher BS, Louis E, Mansfield J, May S, McCauley JL, Mengesha E, Mni M, Moayyedi P, Moran CJ, Newberry RD, O'Charoen S, Okou DT, Oldenburg B, Ostrer H, Palotie A, Paquette J, Pekow J, Peter I, Pierik MJ, Ponsioen CY, Pontikos N, Prescott N, Pulver AE, Rahmouni S, Rice DL, Saavalainen P, Sands B, Sartor RB, Schiff ER, Schreiber S, Schumm LP, Segal AW, Seksik P, Shawky R, Sheikh SZ, Silverberg MS, Simmons A, Skeiceviciene J, Sokol H, Solomonson M, Somineni H, Sun D, Targan S, Turner D, Uhlig HH, van der Meulen AE, Vermeire S, Verstockt S, Voskuil MD, Winter HS, Young J, Duerr RH, Franke A, Brant SR, Cho J, Weersma RK, Parkes M, Xavier RJ, Rivas MA, Rioux JD, McGovern DPB, Huang H, Anderson CA, Daly MJ. Large-scale sequencing identifies multiple genes and rare variants associated with Crohn's disease susceptibility. Nat Genet 2022; 54:1275-1283. [PMID: 36038634 PMCID: PMC9700438 DOI: 10.1038/s41588-022-01156-2] [Show More Authors] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/12/2022] [Indexed: 01/18/2023]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci associated with Crohn's disease (CD). However, as with all complex diseases, robust identification of the genes dysregulated by noncoding variants typically driving GWAS discoveries has been challenging. Here, to complement GWASs and better define actionable biological targets, we analyzed sequence data from more than 30,000 patients with CD and 80,000 population controls. We directly implicate ten genes in general onset CD for the first time to our knowledge via association to coding variation, four of which lie within established CD GWAS loci. In nine instances, a single coding variant is significantly associated, and in the tenth, ATG4C, we see additionally a significantly increased burden of very rare coding variants in CD cases. In addition to reiterating the central role of innate and adaptive immune cells as well as autophagy in CD pathogenesis, these newly associated genes highlight the emerging role of mesenchymal cells in the development and maintenance of intestinal inflammation.
Collapse
Affiliation(s)
- Aleksejs Sazonovs
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christine R Stevens
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kai Yuan
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Brandon Avila
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria T Abreu
- Crohn's and Colitis Center, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Matthieu Allez
- Hopital Saint-Louis, APHP, Universite de Paris, INSERM U1160, Paris, France
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Crohn's and Colitis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gil Atzmon
- Department for Human Biology, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Jeffrey C Barrett
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- The Institute for Aging Research, The Nathan Shock Center of Excellence in the Basic Biology of Aging and the Paul F. Glenn Center for the Biology of Human Aging Research at Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Laurent Beaugerie
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Alain Bitton
- McGill University and McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernd Bokemeyer
- Department of Internal Medicine, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Womens Hospital, Boston, MA, USA
| | | | | | - Jacques Cosnes
- Professeur Chef de Service chez APHP and Universite Paris-6, Paris, France
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Allan Daly
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Noor Dawany
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcella Devoto
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- University of Rome Sapienza, Rome, Italy
- IRGB - CNR, Cagliari, Italy
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sheila Dodge
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eva Ellinghaus
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Laura Fachal
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Stacey B Gabriel
- Genomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tian Ge
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kyle Gettler
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mamta Giri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Philippe Goyette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Daniel Graham
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marc Hoeppner
- Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Peter Irving
- Department of Gastroenterology, Guys and Saint Thomas Hospital, London, UK
- School of Immunology and Microbial Sciences, Kings College London, London, UK
| | - Vivek Iyer
- Human Genetics Informatics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chaim Jalas
- Director of Genetic Resources and Services, Center for Rare Jewish Genetic Disorders, Bonei Olam, Brooklyn, NY, USA
| | - Judith Kelsen
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Khalili
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Barbara S Kirschner
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Kimmo Kontula
- Department of Medicine, Helsinki University Hospital, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Jukka T Koskela
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Subra Kugathasan
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Chloé Lévesque
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | | | - James D Lewis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Crohn's and Colitis Foundation, New York, NY, USA
| | | | - Britt-Sabina Loescher
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - John Mansfield
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sandra May
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Myriam Mni
- University of Liège, ULG, Liège, Belgium
| | | | | | | | | | - David T Okou
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Institut National de Sante Publique (INSP), Abidjan, Côte d'Ivoire
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harry Ostrer
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aarno Palotie
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jean Paquette
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
| | - Joel Pekow
- Department of Gastroenterology, University of Chicago Medicine, Chicago, IL, USA
| | - Inga Peter
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marieke J Pierik
- Department of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | | | - Natalie Prescott
- Department of Medical and Molecular Genetics, Kings College London, London, UK
| | - Ann E Pulver
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Daniel L Rice
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Päivi Saavalainen
- Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - Bruce Sands
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Stefan Schreiber
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - L Philip Schumm
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | | | - Philippe Seksik
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Rasha Shawky
- IBD BioResource, NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Shehzad Z Sheikh
- Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Alison Simmons
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jurgita Skeiceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Universite, Saint Antoine Hospital, Paris, France
| | - Matthew Solomonson
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hari Somineni
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dylan Sun
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Stephan Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Turner
- Shaare Zedek Medical Center, Jerusalem, Israel
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, Experimental Medicine Division, University of Oxford, Oxford, UK
- Department of Pediatrics, John Radcliffe Hospital, Oxford, UK
| | - Andrea E van der Meulen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Séverine Vermeire
- University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Andre Franke
- Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Crohn's Colitis Center of New Jersey, Department of Medicine, Rutgers Robert Wood Johnson Medical School and Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick and Piscataway, NJ, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Miles Parkes
- Department of Gastroenterology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ramnik J Xavier
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Kurt Isselbacher Professor of Medicine at Harvard Medical School, Cambridge, MA, USA
- Core Institute Member, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Immunology Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John D Rioux
- Research Center Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Carl A Anderson
- Genomics of Inflammation and Immunity Group, Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Mark J Daly
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol 2022; 18:435-447. [PMID: 35523963 PMCID: PMC9075716 DOI: 10.1038/s41584-022-00778-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Ubiquitylation is an essential post-translational modification that regulates intracellular signalling networks by triggering proteasomal substrate degradation, changing the activity of substrates or mediating changes in proteins that interact with substrates. Hundreds of enzymes participate in reversible ubiquitylation of proteins, some acting globally and others targeting specific proteins. Ubiquitylation is essential for innate immune responses, as it facilitates rapid regulation of inflammatory pathways, thereby ensuring sufficient but not excessive responses. A growing number of inborn errors of immunity are attributed to dysregulated ubiquitylation. These genetic disorders exhibit broad clinical manifestations, ranging from susceptibility to infection to autoinflammatory and/or autoimmune features, lymphoproliferation and propensity to malignancy. Many autoinflammatory disorders result from disruption of components of the ubiquitylation machinery and lead to overactivation of innate immune cells. An understanding of the disorders of ubiquitylation in autoinflammatory diseases could enable the development of novel management strategies.
Collapse
Affiliation(s)
- David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Human Genetics and Genomics, New York University, New York, NY, USA
- Division of Rheumatology, Department of Medicine, New York University, New York, NY, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Wobma H, Perkins R, Bartnikas L, Dedeoğlu F, Chou J, Vleugels RA, Lo MS, Janssen E, Henderson LA, Whangbo J, Vargas SO, Fishman M, Krone KA, Casey A. Genetic diagnosis of immune dysregulation can lead to targeted therapy for interstitial lung disease: A case series and single center approach. Pediatr Pulmonol 2022; 57:1577-1587. [PMID: 35426264 PMCID: PMC9627679 DOI: 10.1002/ppul.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022]
Abstract
In recent years, a growing number of monogenic disorders have been described that are characterized by immune dysregulation. A subset of these "primary immune regulatory disorders" can cause severe interstitial lung disease, often recognized in late childhood or adolescence. Patients presenting to pulmonary clinic may have long and complex medical histories, but lack a unifying genetic diagnosis. It is crucial for pulmonologists to recognize features suggestive of multisystem immune dysregulation and to initiate genetic workup, since targeted therapies based on underlying genetics may halt or even reverse pulmonary disease progression. Through such an approach, our center has been able to diagnose and treat a cohort of patients with interstitial lung disease from gene defects that affect immune regulation. Here we present representative cases related to pathogenic variants in three distinct pathways and summarize disease manifestations and treatment approaches. We conclude with a discussion of our perspective on the outstanding challenges for diagnosing and managing these complex life-threatening and chronic disorders.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan Perkins
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lisa Bartnikas
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoğlu
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ruth Ann Vleugels
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer Whangbo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Martha Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katie A Krone
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Tanaka T, Shiba T, Honda Y, Izawa K, Yasumi T, Saito MK, Nishikomori R. Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Front Immunol 2022; 13:870535. [PMID: 35603217 PMCID: PMC9120581 DOI: 10.3389/fimmu.2022.870535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of autoinflammation, first proposed in 1999, refers to a seemingly unprovoked episode of sterile inflammation manifesting as unexplained fever, skin rashes, and arthralgia. Autoinflammatory diseases are caused mainly by hereditary abnormalities of innate immunity, without the production of autoantibodies or autoreactive T cells. The revolutionary discovery of induced pluripotent stem cells (iPSCs), whereby a patient’s somatic cells can be reprogrammed into an embryonic pluripotent state by forced expression of a defined set of transcription factors, has the transformative potential to enable in vitro disease modeling and drug candidate screening, as well as to provide a resource for cell replacement therapy. Recent reports demonstrate that recapitulating a disease phenotype in vitro is feasible for numerous monogenic diseases, including autoinflammatory diseases. In this review, we provide a comprehensive overview of current advances in research into autoinflammatory diseases involving iPSC-derived monocytes/macrophages. This review may aid in the planning of new studies of autoinflammatory diseases.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Japanese Red Cross Otsu Hospital, Otsu, Japan
- *Correspondence: Takayuki Tanaka,
| | - Takeshi Shiba
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
29
|
Lecerf K, Koboldt DC, Kuehn HS, Jayaraman V, Lee K, Mihalic Mosher T, Yonkof JR, Mori M, Hickey SE, Franklin S, Drew J, Akoghlanian S, Sivaraman V, Rosenzweig SD, Wilson RK, Abraham RS. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology (Oxford) 2022; 62:347-359. [PMID: 35412596 PMCID: PMC9960492 DOI: 10.1093/rheumatology/keac227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To explore and define the molecular cause(s) of a multi-generational kindred affected by Bechet's-like mucocutaneous ulcerations and immune dysregulation. METHODS Whole genome sequencing and confirmatory Sanger sequencing were performed. Components of the NFκB pathway were quantified by immunoblotting, and function was assessed by cytokine production (IL-6, TNF-α, IL-1β) after lipopolysaccharide (LPS) stimulation. Detailed immunophenotyping of T-cell and B-cell subsets was performed in four patients from this cohort. RESULTS A novel variant in the RELA gene, p. Tyr349LeufsTer13, was identified. This variant results in premature truncation of the protein before the serine (S) 536 residue, a key phosphorylation site, resulting in enhanced degradation of the p65 protein. Immunoblotting revealed significantly decreased phosphorylated [p]p65 and pIκBα. The decrease in [p]p65 may suggest reduced heterodimer formation between p50/p65 (NFκB1/RelA). Immunophenotyping revealed decreased naïve T cells, increased memory T cells, and expanded senescent T-cell populations in one patient (P1). P1 also had substantially higher IL-6 and TNF-α levels post-stimulation compared with the other three patients. CONCLUSION Family members with this novel RELA variant have a clinical phenotype similar to other reported RELA cases with predominant chronic mucocutaneous ulceration; however, the clinical phenotype broadens to include Behçet's syndrome and IBD. Here we describe the clinical, immunological and genetic evaluation of a large kindred to further expand identification of patients with autosomal dominant RELA deficiency, facilitating earlier diagnosis and intervention. The functional impairment of the canonical NFκB pathway suggests that this variant is causal for the clinical phenotype in these patients.
Collapse
Affiliation(s)
- Kelsey Lecerf
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital,Division of Allergy and Immunology, Department of Otolaryngology, The Ohio State University Wexner Medical Center
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Department of Pathology, The Ohio State University Wexner College of Medicine, Columbus, OH
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Ambry Genetics, Aliso Viejo, CA
| | | | - Mari Mori
- Division of Genetic and Genomic Medicine
| | | | - Samuel Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Joanne Drew
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Roshini S Abraham
- Correspondence to: Roshini S. Abraham, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH-43205, USA. E-mail:
| |
Collapse
|
30
|
Papoutsopoulou S, Morris L, Bayliff A, Mair T, England H, Stagi M, Bergey F, Alam MT, Sheibani-Tezerji R, Rosenstiel P, Müller W, Martins Dos Santos VAP, Campbell BJ. Effects of Human RelA Transgene on Murine Macrophage Inflammatory Responses. Biomedicines 2022; 10:biomedicines10040757. [PMID: 35453507 PMCID: PMC9027775 DOI: 10.3390/biomedicines10040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 413 34 Larissa, Greece
- Correspondence: (S.P.); (B.J.C.)
| | - Lorna Morris
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Andrew Bayliff
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Thomas Mair
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
| | - Hazel England
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Massimiliano Stagi
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK;
| | - François Bergey
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi P.O. Box 15551, United Arab Emirates
| | - Raheleh Sheibani-Tezerji
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, 6708 WE Kiel, Germany; (R.S.-T.); (P.R.)
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.E.); (W.M.)
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Markelstr. 39A, 12163 Berlin, Germany; (L.M.); (F.B.); (V.A.P.M.D.S.)
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, P.O. Box 8033, 6700 EJ Wageningen, The Netherlands
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Department of Infection Biology & Microbiomes, Institute of Infection Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GE, UK; (A.B.); (T.M.)
- Correspondence: (S.P.); (B.J.C.)
| |
Collapse
|
31
|
Developing Biliary Atresia-like Model by Treating Human Liver Organoids with Polyinosinic:Polycytidylic Acid (Poly (I:C)). Curr Issues Mol Biol 2022; 44:644-653. [PMID: 35723330 PMCID: PMC8928947 DOI: 10.3390/cimb44020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: We explored the feasibility of creating BA-like organoids by treating human liver organoids with Polyinosinic:Polycytidylic acid (Poly I:C). Methods: Organoids were developed from the liver parenchyma collected during Kasai portoenterostomy (BA) and surgery for other liver disorders (non-BA). The non-BA organoids were co-cultured with poly I:C (40 µg/mL). The organoid morphology from both samples was compared on day 17. RNA-sequencing was performed to examine the transcriptomic differences. Results: Non-BA liver organoids developed into well-expanded spherical organoids with a single-cell layer of epithelial cells and a single vacuole inside. After poly I:C treatment, the majority of these organoids developed into an aberrant morphology with a high index of similarity to BA organoids which are multi-vacuoled and/or unexpanded. RNA-sequencing analysis revealed that 19 inflammatory genes were commonly expressed in both groups. Conditional cluster analysis revealed several genes (SOCS6, SOCS6.1, ARAF, CAMK2G, GNA1C, ITGA2, PRKACA, PTEN) that are involved in immune-mediated signaling pathway had a distinct pattern of expression in the poly I:C treated organoids. This resembled the expression pattern in BA organoids (p < 0.05). Conclusions: Poly I:C treated human liver organoids exhibit morphology and genetic signature highly compatible to organoids developed from BA liver samples. They are potential research materials to study immune-mediated inflammation in BA.
Collapse
|
32
|
Shen Y, Boulton APR, Yellon RL, Cook MC. Skin manifestations of inborn errors of NF-κB. Front Pediatr 2022; 10:1098426. [PMID: 36733767 PMCID: PMC9888762 DOI: 10.3389/fped.2022.1098426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.
Collapse
Affiliation(s)
- Yitong Shen
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Anne P R Boulton
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Robert L Yellon
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Matthew C Cook
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.,Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, and Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs), also called inborn errors of immunity (IEI), are genetic disorders classically characterized by an increased susceptibility to infection and/or disruption in the regulation of an immunologic pathway. This review summarizes and highlights the new IEI disorders in the IUIS 2019 report and 2020 interim report and discusses the directions for the future management of PIDs. RECENT FINDINGS Since 2017, the International Union of Immunologic Societies (IUIS) IEI committee has updated the IUIS classification of IEIs with 88 new gene defects and 75 new immune disorders. The increased utilization of genetic testing and advances in the strategic evaluation of genetic variants have identified, not only novel IEI disorders, but additional genetic causes for known IEI disorders. Investigation of potential immune susceptibilities during the ongoing COVID-19 pandemic suggests that defects in Type I interferon signalling may underlie more severe disease. SUMMARY The rapid discovery of new IEIs reflects the growing trend of applying genetic testing modalities as part of medical diagnosis and management.In turn, elucidating the pathophysiology of these novel IEIs have enhanced our understanding of how genetic mutations can modulate the immune system and their consequential effect on human health and disease.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ramsay Fuleihan
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| | - Jordan S Orange
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
- Division of Immunogenetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics
| |
Collapse
|
34
|
Systemic Autoinflammatory Diseases: A Growing Family of Disorders of Overlapping Immune Dysfunction. Rheum Dis Clin North Am 2021; 48:371-395. [PMID: 34798958 DOI: 10.1016/j.rdc.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic autoinflammatory diseases (SAIDs) are characterized by unprovoked exaggerated inflammation on a continuum from benign recurrent oral ulceration to life-threatening strokes or amyloidosis, with renal failure as a potential sequela. The ability to discriminate these diagnoses rests on the genetic and mechanistic defect of each disorder, considering potential overlapping autoinflammation, autoimmunity, and immune deficiency. A comprehensive and strategic genetic investigation influences management as well as the consequential expected prognoses in these subsets of rare diseases. The ever-expanding therapeutic armamentarium reflects international collaborations, which will hasten genetic discovery and consensus-driven treatment.
Collapse
|
35
|
Amirifar P, Yazdani R, Azizi G, Ranjouri MR, Durandy A, Plebani A, Lougaris V, Hammarstrom L, Aghamohammadi A, Abolhassani H. Known and potential molecules associated with altered B cell development leading to predominantly antibody deficiencies. Pediatr Allergy Immunol 2021; 32:1601-1615. [PMID: 34181780 DOI: 10.1111/pai.13589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Predominantly antibody deficiencies (PADs) encompass a heterogeneous group of disorders characterized by low immunoglobulin serum levels in the presence or absence of peripheral B cells. Clinical presentation of affected patients may include recurrent respiratory and gastrointestinal infections, invasive infections, autoimmune manifestations, allergic reactions, lymphoproliferation, and increased susceptibility to malignant transformation. In the last decades, several genetic alterations affecting B-cell development/maturation have been identified as causative of several forms of PADs, adding important information on the genetic background of PADs, which in turn should lead to a better understanding of these disorders and precise clinical management of affected patients. This review aimed to present a comprehensive overview of the known and potentially involved molecules in the etiology of PADs to elucidate the pathogenesis of these disorders and eventually offer a better prognosis for affected patients.
Collapse
Affiliation(s)
- Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anne Durandy
- Human Lymphohematopoiesis Laboratory, Institut Imagine, Inserm U1163, Paris Descartes Sorbonne, Paris Cite University, Paris, France
| | - Alessandro Plebani
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic and "A. Nocivelli" Institute for Molecular Medicine, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Lennart Hammarstrom
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
36
|
Rood JE, Behrens EM. Inherited Autoinflammatory Syndromes. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:227-249. [PMID: 34699263 DOI: 10.1146/annurev-pathmechdis-030121-041528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoinflammation describes a collection of diverse diseases caused by indiscriminate activation of the immune system in an antigen-independent manner. The rapid advancement of genetic diagnostics has allowed for the identification of a wide array of monogenic causes of autoinflammation. While the clinical picture of these syndromes is diverse, it is possible to thematically group many of these diseases under broad categories that provide insight into the mechanisms of disease and therapeutic possibilities. This review covers archetypical examples of inherited autoinflammatory diseases in five major categories: inflammasomopathy, interferonopathy, unfolded protein/cellular stress response, relopathy, and uncategorized. This framework can suggest where future work is needed to identify other genetic causes of autoinflammation, what types of diagnostics need to be developed to care for this patient population, and which options might be considered for novel therapeutic targeting. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Julia E Rood
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
37
|
Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu R, Peters Z, Wilkie H, Das M, Janssen E, Beano A, Farhat KB, Kam C, Bercich L, Incardona P, Villanacci V, Bondioni MP, Meini A, Baronio M, Abarzua P, Parolini S, Tabellini G, Maio S, Schmidt B, Goldsmith JD, Murphy G, Hollander G, Plebani A, Chou J, Geha RS. Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor 𝛋B kinase alpha (IKKα). Sci Immunol 2021; 6:eabf6723. [PMID: 34533979 DOI: 10.1126/sciimmunol.abf6723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios Lougaris
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yousef Badran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Zachary Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Beano
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Khaoula Ben Farhat
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luisa Bercich
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Incardona
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Department of Pediatric Radiology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonella Meini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Phammela Abarzua
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silvia Parolini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Giovanna Tabellini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Maio
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg Hollander
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Paediatric Immunology, Department of Biomedicine, University of Basel, University Children's Hospital Basel, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandro Plebani
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 2021; 12:716469. [PMID: 34434197 PMCID: PMC8381650 DOI: 10.3389/fimmu.2021.716469] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.
Collapse
Affiliation(s)
- Laura Barnabei
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Emmanuel Laplantine
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - William Mbongo
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| |
Collapse
|
39
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
40
|
Gao L, Yu Q, Zhang H, Wang Z, Zhang T, Xiang J, Yu S, Zhang S, Wu H, Xu Y, Wang Z, Shen L, Shu G, Chen YG, Liu H, Shen L, Li B. A resident stromal cell population actively restrains innate immune response in the propagation phase of colitis pathogenesis in mice. Sci Transl Med 2021; 13:13/603/eabb5071. [PMID: 34290057 DOI: 10.1126/scitranslmed.abb5071] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/09/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) affects 0.3% of the global population, yet the etiology remains poorly understood. Anti-inflammation therapy has shown great success, but only 60% of patients with IBD benefit from it, indicating that new targets are needed. Here, we report the discovery of an intrinsic counter regulatory mechanism in colitis pathogenesis that may be targeted for IBD treatment. In response to microbial invasion, resident Vimentin+ stromal cells, connective tissue cells genetically marked by Twist2, are activated during the propagation phase of the disease, but not during initiation and resolution phases, and become a primary source of prostaglandin E2 (PGE2). PGE2 induction requires a nuclear factor κB-independent, TLR4-p38MAPK-Cox2 pathway activation. Ablation of each of the pathway genes, but not Rela or Tgfb1, in Twist2 cells enhanced M1 macrophage polarization and granulocyte/T helper 1 (TH1)/TH17 infiltration and aggravated colitis development. PGE2 administration ameliorated colitis in mouse models with defective PGE2 production but not in animals with normal PGE2 induction. Analysis of clinical samples and public domain data revealed increased expression of Cox2, the rate-limiting enzyme of PGE2 biosynthesis, in inflamed tissues, and especially in colon Vimentin+Twist2+ stromal cells, in about 60% of patients with active Crohn's disease or ulcerative colitis. Moreover, Cox2 protein expression was negatively correlated with disease severity, suggesting an involvement of stromal cells in IBD pathogenesis. Thus, the study uncovers an active immune pathway in colitic inflammation that may be targeted to treat patients with IBD with defects in PGE2 production.
Collapse
Affiliation(s)
- Liang Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huasheng Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinnan Xiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxiang Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoyang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongguang Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yizhou Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutritional Control, South China Agricultural University, Guangzhou 510642, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China. .,Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
41
|
Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol 2021; 146:925-937. [PMID: 33160483 DOI: 10.1016/j.jaci.2020.08.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Autoinflammatory diseases are conditions in which pathogenic inflammation arises primarily through antigen-independent hyperactivation of immune pathways. First recognized just over 2 decades ago, the autoinflammatory disease spectrum has expanded rapidly to include more than 40 distinct monogenic conditions. Related mechanisms contribute to common conditions such as gout and cardiovascular disease. Here, we review the basic concepts underlying the "autoinflammatory revolution" in the understanding of immune-mediated disease and introduce major categories of monogenic autoinflammatory disorders recognized to date, including inflammasomopathies and other IL-1-related conditions, interferonopathies, and disorders of nuclear factor kappa B and/or aberrant TNF activity. We highlight phenotypic presentation as a reflection of pathogenesis and outline a practical approach to the evaluation of patients with suspected autoinflammation.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass.
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Mass
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital and University of California at San Diego, San Diego, Calif
| |
Collapse
|
42
|
Adeeb F, Dorris ER, Morgan NE, Lawless D, Maqsood A, Ng WL, Killeen O, Cummins EP, Taylor CT, Savic S, Wilson AG, Fraser A. A Novel RELA Truncating Mutation in a Familial Behçet's Disease-like Mucocutaneous Ulcerative Condition. Arthritis Rheumatol 2021; 73:490-497. [PMID: 32969189 DOI: 10.1002/art.41531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Monogenic Behçet's disease (BD)-like conditions are increasingly recognized and to date have been found to predominantly involve loss-of-function variants in TNFAIP3. This study was undertaken to identify genetic and pathobiologic mechanisms associated with a BD-like mucocutaneous ulcerative syndrome and neuromyelitis optica (NMO) occurring in 3 generations of an Irish family (n = 5 cases and 5 familial controls). METHODS Whole-exome sequencing was used to identify potential pathogenic variants in affected family members and determine segregation between affected and unaffected individuals. Relative v-rel reticuloendotheliosis viral oncogene homolog A (RELA) expression in peripheral blood mononuclear cells was compared by Western blotting. Human epithelial and RelA-/- mouse fibroblast experimental systems were used to determine the molecular impact of the RELA truncation in response to tumor necrosis factor (TNF). NF-κB signaling, transcriptional activation, apoptosis, and cytokine production were compared between wild-type and truncated RELA in experimental systems and patient samples. RESULTS A heterozygous cytosine deletion at position c.1459 in RELA was detected in affected family members. This mutation resulted in a frameshift p.His487ThrfsTer7, producing a truncated protein disrupting 2 transactivation domains. The truncated RELA protein lacks a full transactivation domain. The RELA protein variants were expressed at equal levels in peripheral mononuclear cells. RelA-/- mouse embryonic fibroblasts (MEFs) expressing recombinant human RELAp.His487ThrfsTer7 were compared to those expressing wild-type RELA; however, there was no difference in RELA nuclear translocation. In RelA-/- MEFs, expression of RELAp.His487ThrfsTer7 resulted in a 1.98-fold higher ratio of cleaved caspase 3 to caspase 3 induced by TNF compared to wild-type RELA (P = 0.036). CONCLUSION Our data indicate that RELA loss-of-function mutations cause BD-like autoinflammation and NMO via impaired NF-κB signaling and increased apoptosis.
Collapse
Affiliation(s)
- Fahd Adeeb
- University Hospital Limerick, Limerick, Ireland
| | | | - Niamh E Morgan
- University College Dublin, National Children's Research Centre, and Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Dylan Lawless
- NIHR Leeds Institute of Rheumatic and Musculoskeletal Medicine and St James's University Hospital, Leeds, UK
| | | | - Wan Lin Ng
- University Hospital Limerick, Limerick, Ireland
| | - Orla Killeen
- National Children's Research Centre and Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | | | | | - Sinisa Savic
- NIHR Leeds Institute of Rheumatic and Musculoskeletal Medicine and St James's University Hospital, Leeds, UK
| | | | - Alexander Fraser
- University Hospital Limerick and University of Limerick School of Medicine, Limerick, Ireland
| |
Collapse
|
43
|
Shiraki M, Kadowaki S, Kadowaki T, Kawamoto N, Ohnishi H. Primary Immunodeficiency Disease Mimicking Pediatric Bechet's Disease. CHILDREN-BASEL 2021; 8:children8020075. [PMID: 33499153 PMCID: PMC7911745 DOI: 10.3390/children8020075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Behcet’s disease (BD) is a chronic inflammatory disease with multisystemic involvement. Its etiology is considered to involve complex environmental and genetic factors. Several susceptibility genes for BD, such as human leukocyte antigen (HLA)-A26, IL23R-IL12RB2, IL10 and ERAP1, in addition to the well-studied HLA-B51, were mainly identified by genome-wide association studies. A heterozygous mutation in TNFAIP3, which leads to A20 haploinsufficiency, was found to cause an early-onset autoinflammatory disease resembling BD in 2016. Several monogenic diseases associated with primary immunodeficiency disease and trisomy 8 have recently been reported to display BD-like phenotypes. Among the genes causing these diseases, TNFAIP3, NEMO, RELA, NFKB1 and TNFRSF1A are involved in the NF-κB (nuclear factor κ light-chain enhancer of activated B cells) signaling pathway, indicating that this pathway plays an important role in the pathogenesis of BD. Because appropriate treatment may vary depending on the disease, analyzing the genetic background of patients with such diseases is expected to help elucidate the etiology of pediatric BD and assist with its treatment. Here, we summarize recently emerging knowledge about genetic predisposition to BD.
Collapse
Affiliation(s)
- Mayuka Shiraki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (M.S.); (S.K.); (T.K.); (N.K.)
| | - Saori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (M.S.); (S.K.); (T.K.); (N.K.)
| | - Tomonori Kadowaki
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (M.S.); (S.K.); (T.K.); (N.K.)
- Department of Pediatrics, National Hospital Organization, Nagara Medical Center, Gifu 502-8558, Japan
| | - Norio Kawamoto
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (M.S.); (S.K.); (T.K.); (N.K.)
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (M.S.); (S.K.); (T.K.); (N.K.)
- Clinical Genetics Center, Gifu University Hospital, Gifu 501-1104, Japan
- Correspondence: ; Tel.: +81-58-230-6386; Fax: +81-58-230-6387
| |
Collapse
|
44
|
Blanchett S, Boal-Carvalho I, Layzell S, Seddon B. NF-κB and Extrinsic Cell Death Pathways - Entwined Do-or-Die Decisions for T cells. Trends Immunol 2020; 42:76-88. [PMID: 33246882 DOI: 10.1016/j.it.2020.10.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/23/2022]
Abstract
NF-κB signaling is required at multiple stages of T cell development and function. The NF-κB pathway integrates signals from many receptors and involves diverse adapters and kinases. Recent advances demonstrate that kinases controlling NF-κB activation, such as the IKK complex, serve dual independent functions because they also control cell death checkpoints. Survival functions previously attributed to NF-κB are in fact mediated by these upstream kinases by novel mechanisms. This new understanding has led to a refined view of how NF-κB and cell death signaling are interlinked and how they regulate cell fate. We discuss how NF-κB activation and control of cell death signaling by common upstream triggers cooperate to regulate different aspects of T cell development and function.
Collapse
Affiliation(s)
- Sam Blanchett
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Ines Boal-Carvalho
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Scott Layzell
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PF, UK.
| |
Collapse
|
45
|
Perazzio SF, Andrade LEC, de Souza AWS. Understanding Behçet's Disease in the Context of Innate Immunity Activation. Front Immunol 2020; 11:586558. [PMID: 33193413 PMCID: PMC7606308 DOI: 10.3389/fimmu.2020.586558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Behçet´s disease (BD) is a heterogeneous condition consisting of idiopathic systemic vasculitis affecting large and small blood vessels of different types (i.e., arteries, veins, or capillaries). The disease frequently occurs in young adults without gender predilection, differently from several other autoimmune conditions. This challenging illness has recently been proposed by some authors as an example of complex autoinflammatory syndrome. Although much remains unanswered about BD pathogenesis, recent understanding of some aspects of innate immunity have clarified a few issues (and raised others). HLA-B*51 represents the strongest genetic risk factor for BD to date, albeit several other HLA-independent loci have also been associated with the disease. The consistent hyper-reactivity against Streptococcus sanguinis antigens and alterations in oral and gut microbioma suggests that infectious agents may play an important role. Moreover, functional abnormalities of pattern recognition receptors, especially Toll-like receptors in monocytes, have been demonstrated in patients with BD and can be associated with the development of the disease. Neutrophil hyperactivity is one of the most consistent findings in BD pathogenesis, as demonstrated by exacerbated constitutive oxidative burst, chemotaxis and NET formation. However, some studies suggest that the phagocyte-activated status in BD is not primary to the disease itself, but rather restricted to a fraction of patients with severe disease activity, and probably secondary to activating soluble factors carried by serum/plasma from BD patients. Herein we review the state of the art on BD etiopathogenesis with special emphasis on the participation of the innate immune system
Collapse
Affiliation(s)
- Sandro F Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luis E C Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
46
|
Latour-Álvarez I, Torrelo A. Cutaneous clues to diagnose autoinflammatory diseases. GIORN ITAL DERMAT V 2020; 155:551-566. [PMID: 33070568 DOI: 10.23736/s0392-0488.20.06652-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic autoinflammatory diseases (AIDs) are a group of disorders characterized by recurrent episodes of systemic inflammation. Suspecting the diagnosis can be difficult and many of the clinical manifestations are common to different diseases. Although most of the cutaneous manifestations are non-specific, it is important to know them because sometimes they can lead to the diagnosis. The purpose of this review was to synthesize the main cutaneous lesions of autoinflammatory diseases to aid in their diagnosis.
Collapse
Affiliation(s)
| | - Antonio Torrelo
- Department of Dermatology, Niño Jesús University Hospital, Madrid, Spain -
| |
Collapse
|
47
|
Perazzio SF, Allenspach EJ, Eklund KK, Varjosalo M, Shinohara MM, Torgerson TR, Seppänen MRJ. Behçet disease (BD) and BD-like clinical phenotypes: NF-κB pathway in mucosal ulcerating diseases. Scand J Immunol 2020; 92:e12973. [PMID: 32889730 DOI: 10.1111/sji.12973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
Behçet's disease (BD) is a heterogeneous multi-organ disorder in search of a unified pathophysiological theory and classification. The disease frequently has overlapping features resembling other disease clusters, such as vasculitides, spondyloarthritides and thrombophilias with similar genetic risk variants, namely HLA-B*51, ERAP1, IL-10, IL-23R. Many of the BD manifestations, such as unprovoked recurrent episodes of inflammation and increased expression of IL-1, IL-6 and TNFα, overlap with those of the hereditary monogenic autoinflammatory syndromes, positioning BD at the crossroads between autoimmune and autoinflammatory syndromes. BD-like disease associates with various inborn errors of immunity, including familial Mediterranean fever, conditions related to dysregulated NF-κB activation (eg TNFAIP3, NFKB1, OTULIN, RELA, IKBKG) and either constitutional trisomy 8 or acquired trisomy 8 in myelodysplastic syndromes. We review here the recent advances in the immunopathology of BD, BD-like diseases and the NF-κB pathway suggesting new elements in the elusive BD etiopathogenesis.
Collapse
Affiliation(s)
- Sandro F Perazzio
- Seattle Children's Research Institute, University of Washington and Center for Immunity and Immunotherapies, Seattle, WA, USA.,Division of Rheumatology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Eric J Allenspach
- Seattle Children's Research Institute, University of Washington and Center for Immunity and Immunotherapies, Seattle, WA, USA
| | - Kari K Eklund
- Division of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| | - Markku Varjosalo
- Division of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland.,Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Michi M Shinohara
- Divisions of Dermatology and Dermatopathology, University of Washington, Seattle, WA, USA
| | | | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
48
|
Pastor-Fernández G, Mariblanca IR, Navarro MN. Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 2020; 9:cells9092044. [PMID: 32906785 PMCID: PMC7563346 DOI: 10.3390/cells9092044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
The interleukin 23 (IL-23) is a key pro-inflammatory cytokine in the development of chronic inflammatory diseases, such as psoriasis, inflammatory bowel diseases, multiple sclerosis, or rheumatoid arthritis. The pathological consequences of excessive IL-23 signaling have been linked to its ability to promote the production of inflammatory mediators, such as IL-17, IL-22, granulocyte-macrophage colony-stimulating (GM-CSF), or the tumor necrosis factor (TNFα) by target populations, mainly Th17 and IL-17-secreting TCRγδ cells (Tγδ17). Due to their pivotal role in inflammatory diseases, IL-23 and its downstream effector molecules have emerged as attractive therapeutic targets, leading to the development of neutralizing antibodies against IL-23 and IL-17 that have shown efficacy in different inflammatory diseases. Despite the success of monoclonal antibodies, there are patients that show no response or partial response to these treatments. Thus, effective therapies for inflammatory diseases may require the combination of multiple immune-modulatory drugs to prevent disease progression and to improve quality of life. Alternative strategies aimed at inhibiting intracellular signaling cascades using small molecule inhibitors or interfering peptides have not been fully exploited in the context of IL-23-mediated diseases. In this review, we discuss the current knowledge about proximal signaling events triggered by IL-23 upon binding to its membrane receptor to bring to the spotlight new opportunities for therapeutic intervention in IL-23-mediated pathologies.
Collapse
|
49
|
Comprehensive Targeted Sequencing Identifies Monogenic Disorders in Patients With Early-onset Refractory Diarrhea. J Pediatr Gastroenterol Nutr 2020; 71:333-339. [PMID: 32487952 DOI: 10.1097/mpg.0000000000002796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Causes of early-onset refractory diarrhea include exudative diarrhea associated with very early-onset inflammatory bowel diseases, osmotic or secretory diarrhea, and protein-losing enteropathy. Monogenic disorders are included in these diseases, yet a comprehensive genetic analysis has not been fully established. METHODS We established targeted gene panels covering all responsible genes for early-onset diarrhea. In total, 108 patients from 15 institutions were enrolled in this study. We collected clinical data from all patients. Seventy-three patients with exudative diarrhea, 4 with osmotic or secretory diarrhea and 8 with protein-losing enteropathy were subjected to genetic analysis. RESULTS A total of 15 out of the 108 enrolled patients (13.9%) were identified as monogenic. We identified 1 patient with RELA, 2 with TNFAIP3, 1 with CTLA4, 1 with SLCO2A1, 4 with XIAP, 3 with IL10RA, 1 with HPS1, 1 with FOXP3, and 1 with CYBB gene mutations. We also identified 1 patient with NFKB2 and 1 with TERT mutations from the gene panel for primary immunodeficiency syndromes. The patient with refractory diarrhea caused by heterozygous truncated RelA protein expression is the first case identified worldwide, and functional analysis revealed that the mutation affected nuclear factor kappa B signaling. Genotypes were significantly associated with the clinical and pathological findings in each patient. CONCLUSIONS We identified variable monogenic diseases in the patients and found that genes responsible for primary immunodeficiency diseases were frequently involved in molecular pathogenesis. Comprehensive genetic analysis was useful for accurate molecular diagnosis, understanding of underlying pathogenesis, and selecting the optimal treatment for patients with early-onset refractory diarrhea.An infographic for this article is available at: http://links.lww.com/MPG/B853.
Collapse
|
50
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|