1
|
Jo S, Ohara RA, Theisen DJ, Kim S, Liu T, Bullock CB, He M, Ou F, Chen J, Piersma SJ, Postoak JL, Yokoyama WM, Diamond MS, Murphy TL, Murphy KM. Shared pathway of WDFY4-dependent cross-presentation of immune complexes by cDC1 and cDC2. J Exp Med 2025; 222:e20240955. [PMID: 39918736 PMCID: PMC11804880 DOI: 10.1084/jem.20240955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/18/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Priming CD8+ T cells against tumors or viral pathogens results largely from cross-presentation of exogenous antigens by type 1 conventional dendritic cells (cDC1s). Although monocyte-derived DCs and cDC2s can cross-present in vitro, their physiological relevance remains unclear. Here, we used genetic models to evaluate the role of cDC subsets in presentation of cell-associated and immune complex antigens to CD4+ and CD8+ T cells in vivo. For cell-associated antigens, cDC1s were necessary and sufficient to prime both CD4+ and CD8+ T cells. In contrast, for immune complex antigens, either cDC1 or cDC2, but not monocyte-derived DCs, could carry out cross-presentation to CD8+ T cells. Mice lacking cDC1 and vaccinated with immune complexes could cross-prime CD8+ T cells that were sufficient to mediate tumor rejection. Notably, this cross-presentation mediated by cDC2 was also WDFY4 dependent, similar to cross-presentation of cell-associated antigens by cDC1. These results demonstrate a previously unrecognized activity of WDFY4 in cDC2s and suggest a cross-presentation pathway shared by cDC subsets.
Collapse
Affiliation(s)
- Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ray A. Ohara
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Derek J. Theisen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tiantian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Christopher B. Bullock
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Michelle He
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Luke Postoak
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Yuan Z, Shu L, Zheng Y, Wang Y, Zheng M, Sun J, Fu J, Zhou Z, Song S, Liu Z, Li F, Cai Z. IRF8 Drives Conventional Type 1 Dendritic Cell Differentiation and CD8 + T Cell Activation to Aggravate Abdominal Aortic Aneurysm Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416238. [PMID: 40184622 DOI: 10.1002/advs.202416238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/04/2025] [Indexed: 04/06/2025]
Abstract
Abdominal aortic aneurysm (AAA) is the most common true aneurysm worldwide, and recent studies suggest that dendritic cells (DCs) play a key role in its development, though the specific subtypes and underlying mechanisms remain unclear. In this study, the role of interferon regulatory factor 8 (IRF8) in AAA is investigated by focusing on its effect on the differentiation of DC precursors into conventional type 1 dendritic cells (cDC1s). It is found significant infiltration of HLA-DR+ IRF8+ cells in human AAA tissue samples. In mice, DC-specific overexpression of Irf8 exacerbates aneurysm expansion following periadventitial elastase application, while DC-specific Irf8 deletion attenuates AAA development. Batf3-/- mice, which lack cDC1s, exhibit AAA characteristics similar to the Irf8-deleted mice. Additionally, an increased population of activated CD8+ T cells is observed in the DC-Irf8 overexpressed mice, while the DC-Irf8 deletion mice show a decrease in these cells. Blocking antigen cross-presentation to CD8+ T cells also reduces AAA progression. Tissue microarray analysis of human aortic samples further confirms a correlation between IRF8 expression and AAA development. These findings suggest that IRF8 activation promotes cDC1 differentiation, leading to the recruitment of CD8+ T cells, which contribute to aortic wall destruction and AAA formation.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Transvascular Implantation Devices Research Institute, Hangzhou, 310053, China
| | - Li Shu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Transvascular Implantation Devices Research Institute, Hangzhou, 310053, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yidong Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Transvascular Implantation Devices Research Institute, Hangzhou, 310053, China
| | - Mengsha Zheng
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jie Sun
- Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Jiantao Fu
- Clinical Center for HIV/AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Zihao Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fei Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Structural Heart Disease, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Transvascular Implantation Devices Research Institute, Hangzhou, 310053, China
| |
Collapse
|
3
|
Hussain Z, Zhang Y, Qiu L, Gou S, Liu K. Exploring Clec9a in dendritic cell-based tumor immunotherapy for molecular insights and therapeutic potentials. NPJ Vaccines 2025; 10:27. [PMID: 39920156 PMCID: PMC11806010 DOI: 10.1038/s41541-025-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
The pivotal role of type 1 conventional dendritic cells (cDC1s) in the field of dendritic cell (DC)-based tumor immunotherapies has been gaining increasing recognition due to their superior antigen cross-presentation abilities and essential role in modulating immune responses. This review specifically highlights the C-type lectin receptor family 9 member A (Clec9a or DNGR-1), which is exclusively expressed on cDC1s and plays a pivotal role in augmenting antigen cross-presentation and cytotoxic T lymphocyte (CTL) responses while simultaneously mitigating off-target effects. These effects include the enhancement of the cDC1s cross-presentation, reducing autoimmune responses and systemic inflammation, as well as preventing the non-specific activation of other immune cells. Consequently, these actions may contribute to reduced toxicity and enhanced treatment efficacy in immunotherapy. The exceptional ability of Clec9a to cross-present dead cell-associated antigens and enhance both humoral and CTL responses makes it an optimal receptor for DC-based strategies aimed at strengthening antitumor immunity. This review provides a comprehensive overview of the molecular characterization, expression, and signaling mechanisms of Clec9a. Furthermore, it discusses the role of Clec9a in the induction and functional activation of Clec9a+ cDC1s, with a particular focus on addressing the challenges related to off-target effects and immune tolerance in the development of tumor vaccines. Additionally, this review explores the potential of Clec9a-targeted approaches to enhance the immunogenicity of tumor vaccines and addresses the utilization of Clec9a as a delivery target for specific agonists (such as STING agonists and αGC) to enhance their therapeutic effects. This novel approach leverages Clec9a's capacity to improve the precision and efficacy of these immunomodulatory molecules in tumor treatment. In summary, this review presents compelling evidence positioning Clec9a as a promising target for DC-based tumor immunotherapy, capable of enhancing the efficacy of vaccines and immune responses while minimizing adverse effects.
Collapse
Affiliation(s)
- Zubair Hussain
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yueteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Qiu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Gou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
- China‒US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Dowell W, Dearborn J, Languon S, Miller Z, Kirch T, Paige S, Garvin O, Kjendal L, Harby E, Zuchowski AB, Clark E, Lescieur-Garcia C, Vix J, Schumer A, Mistri SK, Snoke DB, Doiron AL, Freeman K, Toth MJ, Poynter ME, Boyson JE, Majumdar D. Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response. ACS NANO 2024; 18:33058-33072. [PMID: 39563529 DOI: 10.1021/acsnano.4c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Developments in mRNA/lipid nanoparticle (LNP) technology have advanced the fields of vaccinology and gene therapy, raising questions about immunogenicity. While some mRNA/LNPs generate an adjuvant-like environment in muscle tissue, other mRNA/LNPs are distinct in their capacity for multiple rounds of therapeutic delivery. We evaluate the adjuvancy of components of mRNA/LNPs by phenotyping cellular infiltrate at injection sites, tracking uptake by immune cells, and assessing the inflammatory state. Delivery of 9 common, but chemically distinct, LNPs to muscle revealed two classes of inflammatory gene expression programs: inflammatory (Class A) and noninflammatory (Class B). We find that intramuscular injection with Class A, but not Class B, empty LNPs (eLNPs) induce robust neutrophil infiltration into muscle within 2 h and a diverse myeloid population within 24 h. Single-cell RNA sequencing revealed SM-102-mediated expression of inflammatory chemokines by myeloid infiltrates within muscle 1 day after injection. Surprisingly, we found direct transfection of muscle infiltrating myeloid cells and splenocytes 24 h after intramuscular mRNA/LNP administration. Transfected myeloid cells within the muscle exhibit an activated phenotype 24 h after injection. Similarly, directly transfected splenic lymphocytes and dendritic cells (DCs) are differentially activated by Class A or Class B containing mRNA/LNP. Within the splenic DC compartment, type II conventional DCs (cDC2s) are directly transfected and activated by Class A mRNA/LNP. Together, we show that mRNA and LNPs work synergistically to provide the necessary innate immune stimuli required for effective vaccination. Importantly, this work provides a design framework for vaccines and therapeutics alike.
Collapse
Affiliation(s)
- William Dowell
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Jacob Dearborn
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Sylvester Languon
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Zachary Miller
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Tylar Kirch
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Stephen Paige
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Olivia Garvin
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Lily Kjendal
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Ethan Harby
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Adam B Zuchowski
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Emily Clark
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Carlos Lescieur-Garcia
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Vix
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amy Schumer
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Somen K Mistri
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Deena B Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Kalev Freeman
- Department of Emergency Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Michael J Toth
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathan E Boyson
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Devdoot Majumdar
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
5
|
Hematianlarki M, Nimmerjahn F. Immunomodulatory and anti-inflammatory properties of immunoglobulin G antibodies. Immunol Rev 2024; 328:372-386. [PMID: 39340138 PMCID: PMC11659946 DOI: 10.1111/imr.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Antibodies provide an essential layer of protection from infection and reinfection with microbial pathogens. An impaired ability to produce antibodies results in immunodeficiency and necessitates the constant substitution with pooled serum antibodies from healthy donors. Among the five antibody isotypes in humans and mice, immunoglobulin G (IgG) antibodies are the most potent anti-microbial antibody isotype due to their long half-life, their ability to penetrate almost all tissues and due to their ability to trigger a wide variety of effector functions. Of note, individuals suffering from IgG deficiency frequently produce self-reactive antibodies, suggesting that a normal serum IgG level also may contribute to maintaining self-tolerance. Indeed, the substitution of immunodeficient patients with pooled serum IgG fractions from healthy donors, also referred to as intravenous immunoglobulin G (IVIg) therapy, not only protects the patient from infection but also diminishes autoantibody induced pathology, providing more direct evidence that IgG antibodies play an active role in maintaining tolerance during the steady state and during resolution of inflammation. The aim of this review is to discuss different conceptual models that may explain how serum IgG or IVIg can contribute to maintaining a balanced immune response. We will focus on pathways depending on the IgG fragment crystallizable (Fc) as pre-clinical data in various mouse model systems as well as human clinical data have demonstrated that the IgG Fc-domain recapitulates the ability of intact IVIg with respect to its ability to trigger resolution of inflammation. We will further discuss how the findings already have or are in the process of being translated to novel therapeutic approaches to substitute IVIg in treating autoimmune inflammation.
Collapse
Affiliation(s)
- Marjan Hematianlarki
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| | - Falk Nimmerjahn
- Division of Genetics, Department of BiologyFriedrich Alexander University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
6
|
Koumantou D, Adiko AC, Bourdely P, Nugue M, Boedec E, El‐Benna J, Monteiro R, Saveanu C, Laffargue M, Wymann MP, Dalod M, Guermonprez P, Saveanu L. Specific Requirement of the p84/p110γ Complex of PI3Kγ for Antibody-Activated, Inducible Cross-Presentation in Murine Type 2 DCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401179. [PMID: 39382167 PMCID: PMC11600261 DOI: 10.1002/advs.202401179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Cross-presentation by MHCI is optimally efficient in type 1 dendritic cells (DC) due to their high capacity for antigen processing. However, through specific pathways, other DCs, such as type 2 DCs and inflammatory DCs (iDCs) can also cross-present antigens. FcγR-mediated uptake by type 2 DC and iDC subsets mediates antibody-dependent cross-presentation and activation of CD8+ T cell responses. Here, an important role for the p84 regulatory subunit of PI3Kγ in mediating efficient cross-presentation of exogenous antigens in otherwise inefficient cross-presenting cells, such as type 2 DCs and GM-CSF-derived iDCs is identified. FcγR-mediated cross-presentation is shown in type 2 and iDCs depend on the enzymatic activity of the p84/p110γ complex of PI3Kγ, which controls the activity of the NADPH oxidase NOX2 and ROS production in murine spleen type 2 DCs and GM-CSF-derived iDCs. In contrast, p84/p110γ is largely dispensable for cross-presentation by type 1 DCs. These findings suggest that PI3Kγ-targeted therapies, currently considered for oncological practice, may interfere with the ability of type 2 DCs and iDCs to cross-present antigens contained in immune complexes.
Collapse
Affiliation(s)
- Despoina Koumantou
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Aimé Cézaire Adiko
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Pierre Bourdely
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- CNRSINSERMInstitut CochinParis75014France
| | - Mathilde Nugue
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Erwan Boedec
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Jamel El‐Benna
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Renato Monteiro
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| | - Cosmin Saveanu
- Institut PasteurRNA Biology of Fungal PathogensUniversité Paris CitéParis75015France
| | | | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 28BaselCH‐4058Switzerland
| | - Marc Dalod
- CNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsAix‐Marseille UniversityMarseille13007France
| | - Pierre Guermonprez
- “Dendritic cells and adaptive immunity”Immunology departmentPasteur InstituteParis75015France
- CNRS UMR3738, Département Biologie du Développement et Cellules SouchesInstitut Pasteur, Université Paris Cité25‐28 rue du Docteur RouxParis75015France
| | - Loredana Saveanu
- Centre de Recherche sur l'InflammationINSERM UMR1149CNRS EMR8252Faculté de Médecine site BichatUniversité Paris CitéParis75018France
- Laboratoire d'Excellence InflamexUniversité Paris CitéParis75018France
| |
Collapse
|
7
|
Amon L, Seichter A, Vurnek D, Tchitashvili G, Heß I, Heger L, Lehmann CHK, Dudziak D. Protocol for mapping the heterogeneous dendritic cell network across the murine tissue landscape via high-dimensional flow cytometry. STAR Protoc 2024; 5:103151. [PMID: 38990726 PMCID: PMC11295986 DOI: 10.1016/j.xpro.2024.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Dendritic cells (DCs) populate nearly all tissues and represent the central orchestrators of immunity. Here, we present a protocol for the mild but efficient preparation of single-cell suspensions from multiple murine tissues and the downstream analysis of the DC network via high-parameter flow cytometry. Additionally, we provide evaluation strategies that facilitate the stringent separation of the DC family from other myeloid cells, particularly macrophages and monocytes, and include an in-depth assessment of DC-intrinsic heterogeneity. For complete details on the use and execution of this protocol, please refer to Amon et al.1.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Damir Vurnek
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Isabel Heß
- University Hospital Erlangen, 91054 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; FAU Profile Center Immunomedicine (FAU I-MED), 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCCER-EMN), 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany; FAU Profile Center Immunomedicine (FAU I-MED), 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCCER-EMN), 91054 Erlangen, Germany; Comprehensive Cancer Center Central Germany Jena/Leipzig (CCCG), 07743 Jena, Germany.
| |
Collapse
|
8
|
Cohn IS, Wallbank BA, Haskins BE, O’Dea KM, Pardy RD, Shaw S, Merolle MI, Gullicksrud JA, Christian DA, Striepen B, Hunter CA. Intestinal cDC1s provide cues required for CD4+ T cell-mediated resistance to Cryptosporidium. J Exp Med 2024; 221:e20232067. [PMID: 38829369 PMCID: PMC11148471 DOI: 10.1084/jem.20232067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Cryptosporidium is an enteric pathogen and a prominent cause of diarrheal disease worldwide. Control of Cryptosporidium requires CD4+ T cells, but how protective CD4+ T cell responses are generated is poorly understood. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to understand the basis for CD4+ T cell priming and effector function. These studies revealed that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node but differentiate into Th1 cells in the gut to provide local parasite control. Although type 1 conventional dendritic cells (cDC1s) were dispensable for CD4+ T cell priming, they were required for CD4+ T cell gut homing and were a source of IL-12 at the site of infection that promoted local production of IFN-γ. Thus, cDC1s have distinct roles in shaping CD4+ T cell responses to an enteric infection: first, to promote gut homing from the mesLN, and second, to drive effector responses in the intestine.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria I. Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi A. Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Chen MY, Zhang F, Goedegebuure SP, Gillanders WE. Dendritic cell subsets and implications for cancer immunotherapy. Front Immunol 2024; 15:1393451. [PMID: 38903502 PMCID: PMC11188312 DOI: 10.3389/fimmu.2024.1393451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Dendritic cells (DCs) play a central role in the orchestration of effective T cell responses against tumors. However, their functional behavior is context-dependent. DC type, transcriptional program, location, intratumoral factors, and inflammatory milieu all impact DCs with regard to promoting or inhibiting tumor immunity. The following review introduces important facets of DC function, and how subset and phenotype can affect the interplay of DCs with other factors in the tumor microenvironment. It will also discuss how current cancer treatment relies on DC function, and survey the myriad ways with which immune therapy can more directly harness DCs to enact antitumor cytotoxicity.
Collapse
Affiliation(s)
- Michael Y. Chen
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Simon Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Beckmann K, Reitinger C, Yan X, Carle A, Blümle E, Jurkschat N, Paulmann C, Prassl S, Kazandjian LV, Loré K, Nimmerjahn F, Fischer S. Fcγ-Receptor-Independent Controlled Activation of CD40 Canonical Signaling by Novel Therapeutic Antibodies for Cancer Therapy. Antibodies (Basel) 2024; 13:31. [PMID: 38651411 PMCID: PMC11036229 DOI: 10.3390/antib13020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
The activation of CD40-mediated signaling in antigen-presenting cells is a promising therapeutic strategy to promote immune responses against tumors. Most agonistic anti-CD40 antibodies currently in development require the Fcγ-receptor (FcγR)-mediated crosslinking of CD40 molecules for a meaningful activation of CD40 signaling but have limitations due to dose-limiting toxicities. Here we describe the identification of CD40 antibodies which strongly stimulate antigen-presenting cells in an entirely FcγR-independent manner. These Fc-silenced anti-CD40 antibodies induce an efficient upregulation of costimulatory receptors and cytokine release by dendritic cells. Finally, the most active identified anti-CD40 antibody shows activity in humanized mice. More importantly, there are no signs of obvious toxicities. These studies thus demonstrate the potent activation of antigen-presenting cells with anti-CD40 antibodies lacking FcγR-binding activity and open the possibility for an efficacious and safe combination therapy for cancer patients.
Collapse
Affiliation(s)
| | - Carmen Reitinger
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Xianglei Yan
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Anna Carle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | - Eva Blümle
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | | | - Sandra Prassl
- Biontech SE, Forstenrieder Str. 8-14, 82061 Neuried, Germany
| | | | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Visionsgatan 4, BioClinicum J7:30, 171 64, Stockholm, Sweden
- Center of Molecular Medicine, 171 76, Stockholm, Sweden
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany
- FAU Profile Centre Immunomedicine, 91054 Erlangen, Germany
| | | |
Collapse
|
11
|
Amon L, Seichter A, Vurnek D, Heger L, Lächele L, Tochoedo NR, Kaszubowski T, Hatscher L, Baranska A, Tchitashvili G, Nimmerjahn F, Lehmann CHK, Dudziak D. Clec12A, CD301b, and FcγRIIB/III define the heterogeneity of murine DC2s and DC3s. Cell Rep 2024; 43:113949. [PMID: 38492222 DOI: 10.1016/j.celrep.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Lächele
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| | - Christian Herbert Kurt Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany.
| |
Collapse
|
12
|
Liu Y, Huang Y, Cui HW, Wang Y, Ma Z, Xiang Y, Xin HY, Liang JQ, Xin HW. Perspective view of allogeneic IgG tumor immunotherapy. Cancer Cell Int 2024; 24:100. [PMID: 38461238 PMCID: PMC10924995 DOI: 10.1186/s12935-024-03290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.
Collapse
Affiliation(s)
- Ying Liu
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yuanyi Huang
- Department of Radiology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434000, Hubei, China
| | - Hong-Wei Cui
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China
| | - YingYing Wang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - ZhaoWu Ma
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Jun-Qing Liang
- Center for Breast Cancer, Peking University Cancer Hospital at Inner Mongolia Campus and Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010021, Inner Mongolia, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Key Laboratory of Human Genetic Diseases Research of Inner Mongolia, Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, 024000, Inner Mongolian Autonomous Region, China.
| |
Collapse
|
13
|
Hsieh MS, Hsu CW, Liao HC, Lin CL, Chiang CY, Chen MY, Liu SJ, Liao CL, Chen HW. SARS-CoV-2 spike-FLIPr fusion protein plus lipidated FLIPr protects against various SARS-CoV-2 variants in hamsters. J Virol 2024; 98:e0154623. [PMID: 38299865 PMCID: PMC10878263 DOI: 10.1128/jvi.01546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Lteif M, Pallardy M, Turbica I. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody immunogenicity. Eur J Immunol 2024; 54:e2250340. [PMID: 37985174 DOI: 10.1002/eji.202250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.
Collapse
Affiliation(s)
- Maria Lteif
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
16
|
Amon L, Dudziak D, Backer RA, Clausen BE, Gmeiner C, Heger L, Jacobi L, Lehmann CHK, Probst HC, Seichter A, Tchitashvili G, Tochoedo NR, Trapaidze L, Vurnek D. Guidelines for DC preparation and flow cytometry analysis of mouse lymphohematopoietic tissues. Eur J Immunol 2023; 53:e2249893. [PMID: 36563125 DOI: 10.1002/eji.202249893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human DC from lymphoid organs, and various non-lymphoid tissues. Within this chapter, detailed protocols are presented that allow for the generation of single-cell suspensions from mouse lymphohematopoietic tissues including spleen, peripheral lymph nodes, and thymus, with a focus on the subsequent analysis of DC by flow cytometry. However, prepared single-cell suspensions can be subjected to other applications including sorting and cellular enrichment procedures, RNA sequencing, Western blotting, and many more. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
- Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christina Gmeiner
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
| | - Hans-Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Lizi Trapaidze
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Clausen BE, Amon L, Backer RA, Berod L, Bopp T, Brand A, Burgdorf S, Chen L, Da M, Distler U, Dress RJ, Dudziak D, Dutertre CA, Eich C, Gabele A, Geiger M, Ginhoux F, Giusiano L, Godoy GJ, Hamouda AEI, Hatscher L, Heger L, Heidkamp GF, Hernandez LC, Jacobi L, Kaszubowski T, Kong WT, Lehmann CHK, López-López T, Mahnke K, Nitsche D, Renkawitz J, Reza RA, Sáez PJ, Schlautmann L, Schmitt MT, Seichter A, Sielaff M, Sparwasser T, Stoitzner P, Tchitashvili G, Tenzer S, Tochoedo NR, Vurnek D, Zink F, Hieronymus T. Guidelines for mouse and human DC functional assays. Eur J Immunol 2023; 53:e2249925. [PMID: 36563126 DOI: 10.1002/eji.202249925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Recent studies have provided evidence for an increasing number of phenotypically distinct conventional DC (cDC) subsets that on one hand exhibit a certain functional plasticity, but on the other hand are characterized by their tissue- and context-dependent functional specialization. Here, we describe a selection of assays for the functional characterization of mouse and human cDC. The first two protocols illustrate analysis of cDC endocytosis and metabolism, followed by guidelines for transcriptomic and proteomic characterization of cDC populations. Then, a larger group of assays describes the characterization of cDC migration in vitro, ex vivo, and in vivo. The final guidelines measure cDC inflammasome and antigen (cross)-presentation activity. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven Burgdorf
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Luxia Chen
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Meihong Da
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Distler
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Regine J Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Charles-Antoine Dutertre
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christina Eich
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Gabele
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Melanie Geiger
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Lucila Giusiano
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Gloria J Godoy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ahmed E I Hamouda
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Gordon F Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Lola C Hernandez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Wan Ting Kong
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
| | - Tamara López-López
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Nitsche
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jörg Renkawitz
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Rifat A Reza
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Pablo J Sáez
- Cell Communication and Migration Laboratory, Institute of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Schlautmann
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Madeleine T Schmitt
- Biomedical Center (BMC), Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, LMU Munich, Munich, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Malte Sielaff
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tim Sparwasser
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venerology & Allergology, Medical University Innsbruck, Innsbruck, Austria
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Stefan Tenzer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Institute of Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Nounagnon R Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Germany
| | - Fabian Zink
- Laboratory of Cellular Immunology, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Germany
| |
Collapse
|
18
|
Cohn IS, Wallbank BA, Haskins BE, O’Dea KM, Pardy RD, Shaw S, Merolle MI, Gullicksrud JA, Christian DA, Striepen B, Hunter CA. Intestinal cDC1s provide IL-12 dependent and independent functions required for CD4 + T cell-mediated resistance to Cryptosporidium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566669. [PMID: 38014026 PMCID: PMC10680586 DOI: 10.1101/2023.11.11.566669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cryptosporidium is an enteric pathogen that is a prominent cause of diarrheal disease. Control of this infection requires CD4+ T cells, though the processes that lead to T cell-mediated resistance have been difficult to assess. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to dissect the early events that influence CD4+ T cell priming and effector function. These studies highlight that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node (mesLN) and differentiate into Th1 cells in the gut, where they mediate IFN-γ-dependent control of the infection. Although type 1 conventional dendritic cells (cDC1s) were not required for initial priming of CD4+ T cells, cDC1s were required for CD4+ T cell expansion and gut homing. cDC1s were also a major source of IL-12 that was not required for priming but promoted full differentiation of CD4+ T cells and local production of IFN-γ. Together, these studies reveal distinct roles for cDC1s in shaping CD4+ T cell responses to enteric infection: first to drive early expansion in the mesLN and second to drive effector responses in the gut.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria I. Merolle
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jodi A. Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Probst HC, Stoitzner P, Amon L, Backer RA, Brand A, Chen J, Clausen BE, Dieckmann S, Dudziak D, Heger L, Hodapp K, Hornsteiner F, Hovav AH, Jacobi L, Ji X, Kamenjarin N, Lahl K, Lahmar I, Lakus J, Lehmann CHK, Ortner D, Picard M, Roberti MP, Rossnagel L, Saba Y, Schalla C, Schlitzer A, Schraml BU, Schütze K, Seichter A, Seré K, Seretis A, Sopper S, Strandt H, Sykora MM, Theobald H, Tripp CH, Zitvogel L. Guidelines for DC preparation and flow cytometry analysis of mouse nonlymphoid tissues. Eur J Immunol 2023; 53:e2249819. [PMID: 36512638 DOI: 10.1002/eji.202249819] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.
Collapse
Affiliation(s)
- Hans Christian Probst
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Ronald A Backer
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anna Brand
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jianzhou Chen
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| | - Björn E Clausen
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sophie Dieckmann
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Germany
- Friedrich-Alexander University (FAU), Erlangen-Nürnberg, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Katrin Hodapp
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Hornsteiner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Lukas Jacobi
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Xingqi Ji
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 82152, Planegg-Martinsried, Germany
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Nadine Kamenjarin
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Katharina Lahl
- Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, 2800, Denmark
- Immunology Section, Lund University, Lund, 221 84, Sweden
| | - Imran Lahmar
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| | - Jelena Lakus
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
- Medical Immunology Campus Erlangen (MICE), D-91054, Erlangen, Germany
| | - Daniela Ortner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marion Picard
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lukas Rossnagel
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Yasmin Saba
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Carmen Schalla
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Barbara U Schraml
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 82152, Planegg-Martinsried, Germany
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Kristian Schütze
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Hartmannstraße 14, D-91052, Erlangen, Germany
| | - Kristin Seré
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Athanasios Seretis
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Sieghart Sopper
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Helen Strandt
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina M Sykora
- Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Center, Innsbruck, Austria
| | - Hannah Theobald
- Quantitative Systems Biology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Christoph H Tripp
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), U1015 INSERM, University Paris Saclay, Villejuif, France
| |
Collapse
|
20
|
Smith AJ, Thurman RE, Zeng W, Grogan B, Lucas S, Gutierrez G, Heiser RA, Wo SW, Blackmarr A, Peterson S, Gardai SJ. Nonfucosylation of an anti-TIGIT antibody enhances FcγR engagement, driving innate immune activation and antitumor activity. Front Immunol 2023; 14:1280986. [PMID: 38022590 PMCID: PMC10654636 DOI: 10.3389/fimmu.2023.1280986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
TIGIT is an immune checkpoint receptor expressed on activated and memory T cells, immunosuppressive T regulatory cells, and natural killer (NK) cells. TIGIT has emerged as an attractive target for antitumor therapies, due to its proposed immunosuppressive effects on lymphocyte function and T cell activation. We generated an anti-TIGIT monoclonal antibody (mAb) that binds with high affinity to human, non-human primate, and murine TIGIT and through multiple experimental methodologies demonstrated that checkpoint blockade alone is insufficient for antitumor activity. Generating anti-TIGIT mAbs with various Fc backbones we show that muting the Fc-Fcγ receptor (FcγR) interaction failed to drive antitumor activity, while mAbs with Fc functional backbones demonstrate substantial antitumor activity, mediated through activation of antigen-presenting cells (APCs), T cell priming, and NK-mediated depletion of suppressive Tregs and exhausted T cells. Further, nonfucosylation of the Fc backbone resulted in enhanced immune responses and antitumor activity relative to the intact IgG1 backbone. The improved activity correlated with the biased FcγR interaction profile of the nonfucosylated anti-TIGIT mAb, which supports that FcγRIIIa binding with decreased FcγRIIb binding favorably activates APCs and enhances tumor-specific CD8+ T cell responses. The anti-TIGIT mAbs with intact FcγR interacting backbones also demonstrated synergistic enhancement of other standard antitumor treatments, including anti-PD-1 treatment and a model monomethyl auristatin E antibody-drug conjugate. These findings highlight the importance of the anti-TIGIT mAb's Fc backbone to its antitumor activity and the extent to which this activity can be enhanced through nonfucosylation of the backbone.
Collapse
|
21
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Abstract
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France.
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
23
|
Plattner K, Bachmann MF, Vogel M. On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. FRONTIERS IN ALLERGY 2023; 4:1117611. [PMID: 37056355 PMCID: PMC10089267 DOI: 10.3389/falgy.2023.1117611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
It is well established that immunoglobulin E (IgE) plays a crucial role in atopy by binding to two types of Fcε receptors (FcεRI and FcεRII, also known as CD23). The cross-linking of FcεRI-bound IgE on effector cells, such as basophils and mast cells, initiates the allergic response. Conversely, the binding of IgE to CD23 modulates IgE serum levels and antigen presentation. In addition to binding to FcεRs, IgE can also interact with other receptors, such as certain galectins and, in mice, some FcγRs. The binding strength of IgE to its receptors is affected by its valency and glycosylation. While FcεRI shows reduced binding to IgE immune complexes (IgE-ICs), the binding to CD23 is enhanced. There is no evidence that galectins bind IgE-ICs. On the other hand, IgE glycosylation plays a crucial role in the binding to FcεRI and galectins, whereas the binding to CD23 seems to be independent of glycosylation. In this review, we will focus on receptors that bind to IgE and examine how the glycosylation and complexation of IgE impact their binding.
Collapse
Affiliation(s)
- Kevin Plattner
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Monique Vogel
- Department of Immunology, University Clinic for Rheumatology and Immunology, University of Bern, Bern, Switzerland
- Department of Biomedical Research Bern (DBMR), University of Bern, Bern, Switzerland
- Correspondence: Monique Vogel
| |
Collapse
|
24
|
Boero E, Gorham RD, Francis EA, Brand J, Teng LH, Doorduijn DJ, Ruyken M, Muts RM, Lehmann C, Verschoor A, van Kessel KPM, Heinrich V, Rooijakkers SHM. Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1. Sci Rep 2023; 13:274. [PMID: 36609665 PMCID: PMC9822988 DOI: 10.1038/s41598-022-27279-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.
Collapse
Affiliation(s)
- Elena Boero
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.425088.3GSK, 53100 Siena, Italy
| | - Ronald D. Gorham
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.417555.70000 0000 8814 392XSanofi, Waltham, MA 02451 USA
| | - Emmet A. Francis
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Jonathan Brand
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Lay Heng Teng
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Dennis J. Doorduijn
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Remy M. Muts
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Lehmann
- grid.5330.50000 0001 2107 3311Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Admar Verschoor
- grid.15474.330000 0004 0477 2438Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Kok P. M. van Kessel
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Volkmar Heinrich
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Suzan H. M. Rooijakkers
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
25
|
Stoitzner P, Romani N, Rademacher C, Probst HC, Mahnke K. Antigen targeting to dendritic cells: Still a place in future immunotherapy? Eur J Immunol 2022; 52:1909-1924. [PMID: 35598160 PMCID: PMC10084009 DOI: 10.1002/eji.202149515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/16/2022]
Abstract
The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Romani
- Department of Dermatology, Venereology, and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Rademacher
- Department of Microbiology, Immunology and Genetics, University of Vienna, Vienna, Austria.,Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.,Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Qiu A, Miller A, Zotti FD, Santhanakrishnan M, Hendrickson JE, Tredicine M, Stowell SR, Luckey CJ, Zimring JC, Hudson KE. Fc γRIV is required for IgG2c mediated enhancement of RBC alloimmunization. Front Immunol 2022; 13:972723. [PMID: 36189253 PMCID: PMC9519184 DOI: 10.3389/fimmu.2022.972723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Passive immunization with anti-D can prevent maternal alloimmunization to RhD thereby preventing hemolytic disease of the fetus and newborn. Unexpectedly, anti-D fails in some cases and some monoclonal anti-D preparations paradoxically enhances alloimmunization. The underlying mechanisms modulating humoral alloimmunization by anti-D are unknown. We previously reported that IgG antibody subclasses differentially regulate alloimmunity in response to red blood cell (RBC) transfusions in a mouse model; in particular, IgG2c significantly enhanced RBC alloantibody responses. Initial mechanistic studies revealed that IgG2c:RBC immune complexes were preferentially consumed by the splenic dendritic cell (DC) subsets that play a role in RBC alloimmunization. The deletion of activating Fc-gamma receptors (FcγRs) (i.e., FcγRI, FcγRIII, and FcγRIV) on DCs abrogated IgG2c-mediated enhanced alloimmunization. Because DCs express high levels of FcγRIV, which has high affinity for the IgG2c subclass, we hypothesized that FcγRIV was required for enhanced alloimmunization. To test this hypothesis, knockout mice and blocking antibodies were used to manipulate FcγR expression. The data presented herein demonstrate that FcγRIV, but not FcγRI or FcγRIII, is required for IgG2c-mediated enhancement of RBC alloantibody production. Additionally, FcγRI is alone sufficient for IgG2c-mediated RBC clearance but not for increased alloimmunization, demonstrating that RBC clearance can occur without inducing alloimmunization. Together, these data, combined with prior observations, support the hypothesis that passive immunization with an RBC-specific IgG2c antibody increases RBC alloantibody production through FcγRIV ligation on splenic conventional DCs (cDCs). This raises the question of whether standardizing antibody subclasses in immunoprophylaxis preparations is desirable and suggests which subclasses may be optimal for generating monoclonal anti-D therapeutics.
Collapse
Affiliation(s)
- Annie Qiu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Anabel Miller
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Flavia Dei Zotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Manjula Santhanakrishnan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jeanne E. Hendrickson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Maria Tredicine
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sean R. Stowell
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - James C. Zimring
- Carter Immunology Center, University of Virginia, Charlottesville, VA, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Krystalyn E. Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
27
|
Lança T, Ungerbäck J, Da Silva C, Joeris T, Ahmadi F, Vandamme J, Svensson-Frej M, Mowat AM, Kotarsky K, Sigvardsson M, Agace WW. IRF8 deficiency induces the transcriptional, functional, and epigenetic reprogramming of cDC1 into the cDC2 lineage. Immunity 2022; 55:1431-1447.e11. [PMID: 35830859 DOI: 10.1016/j.immuni.2022.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDCs) consist of two major functionally and phenotypically distinct subsets, cDC1 and cDC2, whose development is dependent on distinct sets of transcription factors. Interferon regulatory factor 8 (IRF8) is required at multiple stages of cDC1 development, but its role in committed cDC1 remains unclear. Here, we used Xcre-cre to delete Irf8 in committed cDC1 and demonstrate that Irf8 is required for maintaining the identity of cDC1. In the absence of Irf8, committed cDC1 acquired the transcriptional, functional, and chromatin accessibility properties of cDC2. This conversion was independent of Irf4 and was associated with the decreased accessibility of putative IRF8, Batf3, and composite AP-1-IRF (AICE)-binding elements, together with increased accessibility of cDC2-associated transcription-factor-binding elements. Thus, IRF8 expression by committed cDC1 is required for preventing their conversion into cDC2-like cells.
Collapse
Affiliation(s)
- Telma Lança
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| | - Clément Da Silva
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Thorsten Joeris
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Fatemeh Ahmadi
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Julien Vandamme
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Marcus Svensson-Frej
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Knut Kotarsky
- Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden; Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - William W Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark; Immunology Section, Department of Experimental Medicine, Lund University, BMC D14, 221-84 Lund, Sweden.
| |
Collapse
|
28
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
29
|
Wu R, Murphy KM. DCs at the center of help: Origins and evolution of the three-cell-type hypothesis. J Exp Med 2022; 219:e20211519. [PMID: 35543702 PMCID: PMC9098650 DOI: 10.1084/jem.20211519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
Last year was the 10th anniversary of Ralph Steinman's Nobel Prize awarded for his discovery of dendritic cells (DCs), while next year brings the 50th anniversary of that discovery. Current models of anti-viral and anti-tumor immunity rest solidly on Steinman's discovery of DCs, but also rely on two seemingly unrelated phenomena, also reported in the mid-1970s: the discoveries of "help" for cytolytic T cell responses by Cantor and Boyse in 1974 and "cross-priming" by Bevan in 1976. Decades of subsequent work, controversy, and conceptual changes have gradually merged these three discoveries into current models of cell-mediated immunity against viruses and tumors.
Collapse
Affiliation(s)
- Renee Wu
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
30
|
Dendritic cell-based cancer immunotherapy in the era of immune checkpoint inhibitors: From bench to bedside. Life Sci 2022; 297:120466. [PMID: 35271882 DOI: 10.1016/j.lfs.2022.120466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) can present tumoral antigens to T-cells and stimulate T-cell-mediated anti-tumoral immune responses. In addition to uptaking, processing, and presenting tumoral antigens to T-cells, co-stimulatory signals have to be established between DCs with T-cells to develop anti-tumoral immune responses. However, most of the tumor-infiltrated immune cells are immunosuppressive in the tumor microenvironment (TME), paving the way for immune evasion of tumor cells. This immunosuppressive TME has also been implicated in suppressing the DC-mediated anti-tumoral immune responses, as well. Various factors, i.e., immunoregulatory cells, metabolic factors, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules, have been implicated in developing the immunosuppressive TME. Herein, we aimed to review the biology of DCs in developing T-cell-mediated anti-tumoral immune responses, the significance of immunoregulatory cells in the TME, metabolic barriers contributing to DCs dysfunction in the TME, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules in DC-based cell therapy outcomes. With reviewing the ongoing clinical trials, we also proposed a novel therapeutic strategy to increase the efficacy of DC-based cell therapy. Indeed, the combination of DC-based cell therapy with monoclonal antibodies against novel immune checkpoint molecules can be a promising strategy to increase the response rate of patients with cancers.
Collapse
|
31
|
Murphy TL, Murphy KM. Dendritic cells in cancer immunology. Cell Mol Immunol 2022; 19:3-13. [PMID: 34480145 PMCID: PMC8752832 DOI: 10.1038/s41423-021-00741-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical success of immune checkpoint therapy (ICT) has produced explosive growth in tumor immunology research because ICT was discovered through basic studies of immune regulation. Much of the current translational efforts are aimed at enhancing ICT by identifying therapeutic targets that synergize with CTLA4 or PD1/PD-L1 blockade and are solidly developed on the basis of currently accepted principles. Expanding these principles through continuous basic research may help broaden translational efforts. With this mindset, we focused this review on three threads of basic research directly relating to mechanisms underlying ICT. Specifically, this review covers three aspects of dendritic cell (DC) biology connected with antitumor immune responses but are not specifically oriented toward therapeutic use. First, we review recent advances in the development of the cDC1 subset of DCs, identifying important features distinguishing these cells from other types of DCs. Second, we review the antigen-processing pathway called cross-presentation, which was discovered in the mid-1970s and remains an enigma. This pathway serves an essential in vivo function unique to cDC1s and may be both a physiologic bottleneck and therapeutic target. Finally, we review the longstanding field of helper cells and the related area of DC licensing, in which CD4 T cells influence the strength or quality of CD8 T cell responses. Each topic is connected with ICT in some manner but is also a fundamental aspect of cell-mediated immunity directed toward intracellular pathogens.
Collapse
Affiliation(s)
- Theresa L. Murphy
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110 USA
| | - Kenneth M. Murphy
- grid.4367.60000 0001 2355 7002Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
32
|
Fu J, Lehmann CHK, Wang X, Wahlbuhl M, Allabauer I, Wilde B, Amon L, Dolff S, Cesnjevar R, Kribben A, Woelfle J, Rascher W, Hoyer PF, Dudziak D, Witzke O, Hoerning A. CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation. Sci Rep 2021; 11:23815. [PMID: 34893663 PMCID: PMC8664946 DOI: 10.1038/s41598-021-03115-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.
Collapse
Affiliation(s)
- Jian Fu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.,The Emergency and Trauma Center, The First Affiliated Hospital of Hai Nan Medical University, Haikou, China
| | - Christian H K Lehmann
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany. .,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Xinning Wang
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mandy Wahlbuhl
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Ida Allabauer
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Amon
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Department of Cardiac Surgery, Universitäts-Kinderspital Zürich, Zurich, Switzerland
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim Woelfle
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Wolfgang Rascher
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany.,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - André Hoerning
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany. .,Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
33
|
Macri C, Morgan H, Villadangos JA, Mintern JD. Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Mol Immunol 2021; 139:193-201. [PMID: 34560415 DOI: 10.1016/j.molimm.2021.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - Huw Morgan
- ACRF Translational Research Laboratory, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, 3050, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
34
|
Cystatin C Plays a Sex-Dependent Detrimental Role in Experimental Autoimmune Encephalomyelitis. Cell Rep 2021; 33:108236. [PMID: 33027652 PMCID: PMC8603395 DOI: 10.1016/j.celrep.2020.108236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/31/2022] Open
Abstract
The cysteine protease inhibitor Cystatin C (CST3) is highly expressed in the brains of multiple sclerosis (MS) patients and C57BL/6J mice with experimental autoimmune encephalomyelitis (EAE; a model of MS), but its roles in the diseases are unknown. Here, we show that CST3 plays a detrimental function in myelin oligodendrocyte glycoprotein 35–55 (MOG35–55)-induced EAE but only in female animals. Female Cst3 null mice display significantly lower clinical signs of disease compared to wild-type (WT) littermates. This difference is associated with reduced interleukin-6 production and lower expression of key proteins (CD80, CD86, major histocompatibility complex [MHC] II, LC3A/B) involved in antigen processing, presentation, and co-stimulation in antigen-presenting cells (APCs). In contrast, male WT and Cst3−/− mice and cells show no differences in EAE signs or APC function. Further, the sex-dependent effect of CST3 in EAE is sensitive to gonadal hormones. Altogether, we have shown that CST3 has a sex-dependent role in MOG35–55-induced EAE. Cystatin C (CST3) is increased in the brains of multiple sclerosis patients, but its role is unknown. In a mouse model of the disease, Hoghooghi et al. find that CST3 has a detrimental function but only in female animals. The effect is related to activation of antigen-presenting cells of the immune system.
Collapse
|
35
|
Vanderkerken M, Baptista AP, De Giovanni M, Fukuyama S, Browaeys R, Scott CL, Norris PS, Eberl G, Di Santo JP, Vivier E, Saeys Y, Hammad H, Cyster JG, Ware CF, Tumanov AV, De Trez C, Lambrecht BN. ILC3s control splenic cDC homeostasis via lymphotoxin signaling. J Exp Med 2021; 218:e20190835. [PMID: 33724364 PMCID: PMC7970251 DOI: 10.1084/jem.20190835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα1β2-expressing Rorgt+ ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα+CD4+Esam+ cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα+CD4+Esam+ cDC2s required continuous lymphotoxin input. This latter property made Sirpα+CD4+Esam+ cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα1β2-expressing Rorgt+ ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Immunity, Innate
- Lymphoid Tissue/cytology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/metabolism
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Lymphotoxin beta Receptor/metabolism
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/immunology
- Lymphotoxin-alpha/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Mice
Collapse
Affiliation(s)
- Matthias Vanderkerken
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Antonio P. Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Satoshi Fukuyama
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Robin Browaeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Paula S. Norris
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Gerard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1224, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Innate Immunity Unit, Department of Immunology, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d’Immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique - Hôpitaux de Marseille, Hôpital de la Timone, Service d’Immunologie, Marseille-Immunopôle, Marseille, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Carl F. Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Alexei V. Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrij Universiteit Brussel, Brussels, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
36
|
Hatscher L, Lehmann CHK, Purbojo A, Onderka C, Liang C, Hartmann A, Cesnjevar R, Bruns H, Gross O, Nimmerjahn F, Ivanović-Burmazović I, Kunz M, Heger L, Dudziak D. Select hyperactivating NLRP3 ligands enhance the T H1- and T H17-inducing potential of human type 2 conventional dendritic cells. Sci Signal 2021; 14:14/680/eabe1757. [PMID: 33906973 DOI: 10.1126/scisignal.abe1757] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detection of microorganisms and danger signals by pattern recognition receptors on dendritic cells (DCs) and the consequent formation of inflammasomes are pivotal for initiating protective immune responses. Although the activation of inflammasomes leading to secretion of the cytokine IL-1β is typically accompanied by pyroptosis (an inflammatory form of lytic programmed cell death), some cells can survive and exist in a state of hyperactivation. Here, we found that the conventional type 2 DC (cDC2) subset is the major human DC subset that is transcriptionally and functionally poised for inflammasome formation and response without pyroptosis. When cDC2 were stimulated with ligands that relatively weakly activated the inflammasome, the cells did not enter pyroptosis but instead secreted IL-12 family cytokines and IL-1β. These cytokines induced prominent T helper type 1 (TH1) and TH17 responses that were superior to those seen in response to Toll-like receptor (TLR) stimulation alone or to stronger, classical inflammasome ligands. These findings not only define the human cDC2 subpopulation as a prime target for the treatment of inflammasome-dependent inflammatory diseases but may also inform new approaches for adjuvant and vaccine development.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Constantin Onderka
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Olaf Gross
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany.,Department Chemistry, Ludwigs Maximilians University, 81377 Munich, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany. .,Institute of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany.,Deutsches Zentrum Immuntherapie, 91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Dendritic Cell Tumor Vaccination via Fc Gamma Receptor Targeting: Lessons Learned from Pre-Clinical and Translational Studies. Vaccines (Basel) 2021; 9:vaccines9040409. [PMID: 33924183 PMCID: PMC8074394 DOI: 10.3390/vaccines9040409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant recent improvements in the field of immunotherapy, cancer remains a heavy burden on patients and healthcare systems. In recent years, immunotherapies have led to remarkable strides in treating certain cancers. However, despite the success of checkpoint inhibitors and the advent of cellular therapies, novel strategies need to be explored to (1) improve treatment in patients where these approaches fail and (2) make such treatments widely and financially accessible. Vaccines based on tumor antigens (Ag) have emerged as an innovative strategy with the potential to address these areas. Here, we review the fundamental aspects relevant for the development of cancer vaccines and the critical role of dendritic cells (DCs) in this process. We first offer a general overview of DC biology and routes of Ag presentation eliciting effective T cell-mediated immune responses. We then present new therapeutic avenues specifically targeting Fc gamma receptors (FcγR) as a means to deliver antigen selectively to DCs and its effects on T-cell activation. We present an overview of the mechanistic aspects of FcγR-mediated DC targeting, as well as potential tumor vaccination strategies based on preclinical and translational studies. In particular, we highlight recent developments in the field of recombinant immune complex-like large molecules and their potential for DC-mediated tumor vaccination in the clinic. These findings go beyond cancer research and may be of relevance for other disease areas that could benefit from FcγR-targeted antigen delivery, such as autoimmunity and infectious diseases.
Collapse
|
38
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
39
|
Krishnan S, O’Boyle C, Smith CJ, Hulme S, Allan SM, Grainger JR, Lawrence CB. A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clin Exp Immunol 2021; 203:458-471. [PMID: 33205448 PMCID: PMC7874838 DOI: 10.1111/cei.13551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects. Global understanding of very early changes to systemic immunity is critical to identify immune targets to improve clinical outcome. To this end, we performed a small, prospective, observational study in stroke patients with immunophenotyping at a hyperacute time point (< 3 h) to explore early changes to circulating immune cells. We report, for the first time, decreased frequencies of type 1 conventional dendritic cells (cDC1), haematopoietic stem and progenitor cells (HSPCs), unswitched memory B cells and terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA). We also observed concomitant alterations to human leucocyte antigen D-related (HLA-DR), CD64 and CD14 expression in distinct myeloid subsets and a rapid activation of CD4+ T cells based on CD69 expression. The CD69+ CD4+ T cell phenotype inversely correlated with stroke severity and was associated with naive and central memory T (TCM) cells. Our findings highlight early changes in both the innate and adaptive immune compartments for further investigation as they could have implications the development of post-stroke infection and poorer patient outcomes.
Collapse
Affiliation(s)
- S. Krishnan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. O’Boyle
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. J. Smith
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. Hulme
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. M. Allan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - J. R. Grainger
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. B. Lawrence
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
40
|
Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nat Commun 2021; 12:464. [PMID: 33469015 PMCID: PMC7815729 DOI: 10.1038/s41467-020-20659-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/13/2020] [Indexed: 01/29/2023] Open
Abstract
Conventional dendritic cells (cDC) are key activators of naive T cells, and can be targeted in adults to induce adaptive immunity, but in early life are considered under-developed or functionally immature. Here we show that, in early life, when the immune system develops, cDC2 exhibit a dual hematopoietic origin and, like other myeloid and lymphoid cells, develop in waves. Developmentally distinct cDC2 in early life, despite being distinguishable by fate mapping, are transcriptionally and functionally similar. cDC2 in early and adult life, however, are exposed to distinct cytokine environments that shape their transcriptional profile and alter their ability to sense pathogens, secrete cytokines and polarize T cells. We further show that cDC2 in early life, despite being distinct from cDC2 in adult life, are functionally competent and can induce T cell responses. Our results thus highlight the potential of harnessing cDC2 for boosting immunity in early life.
Collapse
|
41
|
Han J, Sun J, Zhang G, Chen H. DCs-based therapies: potential strategies in severe SARS-CoV-2 infection. Int J Med Sci 2021; 18:406-418. [PMID: 33390810 PMCID: PMC7757148 DOI: 10.7150/ijms.47706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is spreading globally. There have been strenuous efforts to reveal the mechanisms that the host defends itself against invasion by this virus. The immune system could play a crucial role in virus infection. Dendritic cell as sentinel of the immune system plays an irreplaceable role. Dendritic cells-based therapeutic approach may be a potential strategy for SARS-CoV-2 infection. In this review, the characteristics of coronavirus are described briefly. We focus on the essential functions of dendritic cell in severe SARS-CoV-2 infection. Basis of treatment based dendritic cells to combat coronavirus infections is summarized. Finally, we propose that the combination of DCs based vaccine and other therapy is worth further study.
Collapse
Affiliation(s)
- Jian Han
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
- Department of Pharmaceutical Sciences USF Health, Taneja College of Pharmacy University of South Florida, Tampa, FL, USA
| | - Jiazhi Sun
- Department of Pharmaceutical Sciences USF Health, Taneja College of Pharmacy University of South Florida, Tampa, FL, USA
| | - Guixin Zhang
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
| | - Hailong Chen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine of Dalian Medical University, Dalian 116044, China
| |
Collapse
|
42
|
Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP, Bern MD, Davidson JT, Bagadia P, Liu T, Briseño CG, Li L, Gillanders WE, Wu GF, Yokoyama WM, Murphy TL, Schreiber RD, Murphy KM. cDC1 prime and are licensed by CD4 + T cells to induce anti-tumour immunity. Nature 2020; 584:624-629. [PMID: 32788723 PMCID: PMC7469755 DOI: 10.1038/s41586-020-2611-3] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.
Collapse
Affiliation(s)
- Stephen T Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Vivek Durai
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Derek J Theisen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey P Ward
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Michael D Bern
- Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Jesse T Davidson
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tiantian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Carlos G Briseño
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Wayne M Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
43
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
44
|
Junker F, Gordon J, Qureshi O. Fc Gamma Receptors and Their Role in Antigen Uptake, Presentation, and T Cell Activation. Front Immunol 2020; 11:1393. [PMID: 32719679 PMCID: PMC7350606 DOI: 10.3389/fimmu.2020.01393] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The cellular uptake, intracellular processing, and presentation of foreign antigen are crucial processes for eliciting an effective adaptive host response to the majority of pathogens. The effective recognition of antigen by T cells requires that it is first processed and then presented on MHC molecules that are expressed on other cells. A critical step leading to the presentation of antigen is delivering the foreign cargo to an intracellular compartment where the antigen can be processed and loaded onto MHC molecules. Fc-gamma receptors (FcγRs) recognize IgG-coated targets, such as opsonized pathogens or immune complexes (ICs). Cross-linking leads to internalization of the cargo with associated activation of down-stream signaling cascades. FcγRs vary in their affinity for IgG and intracellular trafficking, and therefore have an opportunity to regulate antigen presentation by controlling the shuttling and processing of their cargos. In this way, they critically influence physiological and pathophysiological adaptive immune cell functions. In this review, we will cover the contribution of FcγRs to antigen-presentation with a focus on the intracellular trafficking of IgG-ICs and the pathways that support this function. We will also discuss genetic evidence linking FcγR biology to immune cell activation and autoimmune processes as exemplified by systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Fabian Junker
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - John Gordon
- Celentyx Ltd, Birmingham Research Park, Birmingham, United Kingdom
| | - Omar Qureshi
- Celentyx Ltd, Birmingham Research Park, Birmingham, United Kingdom
| |
Collapse
|
45
|
Li Z, He C, Zhang J, Zhang H, Wei H, Wu S, Jiang W. P2Y6 Deficiency Enhances Dendritic Cell–Mediated Th1/Th17 Differentiation and Aggravates Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 205:387-397. [DOI: 10.4049/jimmunol.1900916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 05/14/2020] [Indexed: 01/16/2023]
|
46
|
Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med 2020; 26:919-931. [DOI: 10.1038/s41591-020-0882-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
|
47
|
Hilligan KL, Ronchese F. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol Immunol 2020; 17:587-599. [PMID: 32433540 DOI: 10.1038/s41423-020-0465-0] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells are powerful antigen-presenting cells that are essential for the priming of T cell responses. In addition to providing T-cell-receptor ligands and co-stimulatory molecules for naive T cell activation and expansion, dendritic cells are thought to also provide signals for the differentiation of CD4+ T cells into effector T cell populations. The mechanisms by which dendritic cells are able to adapt and respond to the great variety of infectious stimuli they are confronted with, and prime an appropriate CD4+ T cell response, are only partly understood. It is known that in the steady-state dendritic cells are highly heterogenous both in phenotype and transcriptional profile, and that this variability is dependent on developmental lineage, maturation stage, and the tissue environment in which dendritic cells are located. Exposure to infectious agents interfaces with this pre-existing heterogeneity by providing ligands for pattern-recognition and toll-like receptors that are variably expressed on different dendritic cell subsets, and elicit production of cytokines and chemokines to support innate cell activation and drive T cell differentiation. Here we review current information on dendritic cell biology, their heterogeneity, and the properties of different dendritic cell subsets. We then consider the signals required for the development of different types of Th immune responses, and the cellular and molecular evidence implicating different subsets of dendritic cells in providing such signals. We outline how dendritic cell subsets tailor their response according to the infectious agent, and how such transcriptional plasticity enables them to drive different types of immune responses.
Collapse
Affiliation(s)
- Kerry L Hilligan
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.,Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, 6012, New Zealand.
| |
Collapse
|
48
|
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity 2020; 52:1039-1056.e9. [PMID: 32392463 PMCID: PMC7207120 DOI: 10.1016/j.immuni.2020.04.005] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs. Type I interferon drives differentiation of inf-cDC2s that closely resemble MCs Inf-cDC2s prime CD4+ and CD8+ T cells, whereas MCs lack APC function Inf-cDC2s internalize antibody-complexed antigen via Fc receptors IRF8 controls maturation gene module in inf-cDC2s
Collapse
|
49
|
Yan LM, Lau SPN, Poh CM, Chan VSF, Chan MCW, Peiris M, Poon LLM. Heterosubtypic Protection Induced by a Live Attenuated Influenza Virus Vaccine Expressing Galactose-α-1,3-Galactose Epitopes in Infected Cells. mBio 2020; 11:e00027-20. [PMID: 32127444 PMCID: PMC7064743 DOI: 10.1128/mbio.00027-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Anti-galactose-α-1,3-galactose (anti-α-Gal) antibody is naturally expressed at a high level in humans. It constitutes about 1% of immunoglobulins found in human blood. Here, we designed a live attenuated influenza virus vaccine that can generate α-Gal epitopes in infected cells in order to facilitate opsonization of infected cells, thereby enhancing vaccine-induced immune responses. In the presence of normal human sera, cells infected with this mutant can enhance phagocytosis of human macrophages and cytotoxicity of NK cells in vitro Using a knockout mouse strain that allows expression of anti-α-Gal antibody in vivo, we showed that this strategy can increase vaccine immunogenicity and the breadth of protection. This vaccine can induce 100% protection against a lethal heterosubtypic group 1 (H5) or group 2 (mouse-adapted H3) influenza virus challenge in the mouse model. In contrast, its heterosubtypic protective effect in wild-type or knockout mice that do not have anti-α-Gal antibody expression is only partial, demonstrating that the enhanced vaccine-induced protection requires anti-α-Gal antibody upon vaccination. Anti-α-Gal-expressing knockout mice immunized with this vaccine produce robust humoral and cell-mediated responses upon a lethal virus challenge. This vaccine can stimulate CD11blo/- pulmonary dendritic cells, which are known to be crucial for clearance of influenza virus. Our approach provides a novel strategy for developing next-generation influenza virus vaccines.IMPORTANCE Influenza A viruses have multiple HA subtypes that are antigenically diverse. Classical influenza virus vaccines are subtype specific, and they cannot induce satisfactory heterosubtypic immunity against multiple influenza virus subtypes. Here, we developed a live attenuated H1N1 influenza virus vaccine that allows the expression of α-Gal epitopes by infected cells. Anti-α-Gal antibody is naturally produced by humans. In the presence of this antibody, human cells infected with this experimental vaccine virus can enhance several antibody-mediated immune responses in vitro Importantly, mice expressing anti-α-Gal antibody in vivo can be fully protected by this H1N1 vaccine against a lethal H5 or H3 virus challenge. Our work demonstrates a new strategy for using a single influenza virus strain to induce broadly cross-reactive immune responses against different influenza virus subtypes.
Collapse
Affiliation(s)
- Li-Meng Yan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Sylvia P N Lau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chek Meng Poh
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vera S F Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Michael C W Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
50
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|