1
|
Guichard V, Leão FB, Zhao J, Zhang Y, Ito T, Shirley S, Postler TS, Tian R, Huang Y, Ghosh S. Pre-existing epigenetic state and differential NF-κB activation shape type 2 immune cell responses. Immunity 2025:S1074-7613(25)00179-7. [PMID: 40367949 DOI: 10.1016/j.immuni.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/20/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
CD4+ T helper 2 (Th2) cells and group 2 innate lymphoid cells (ILC2s) drive type 2 immune responses via similar effector molecules that are primarily induced by different signals-interleukin (IL)-33 in ILC2s and TCR engagement in Th2 cells. Here, we examined the transcriptional regulation of type 2 immunity, focusing on the NF-κB pathway, which is differentially activated by TCR engagement or cytokine signaling. Conditional deletion of the NF-κB subunits c-Rel and p65 limited the expression of key type 2 genes, including Il13 and Il5, in ILC2s but not in Th2 cells. Genome-wide analysis revealed that the regulatory regions of such genes exist in an open chromatin state in ILC2s, allowing NF-κB binding upon IL-33 stimulation. These regions are less accessible in unstimulated Th2 cells, where NFAT plays a dominant role. Accordingly, p65 deletion impaired ILC2 activation and function during airway inflammation and helminth infection. Thus, innate and adaptive lymphocytes leverage distinct epigenetic landscapes and transcriptional regulators to control shared effector genes.
Collapse
Affiliation(s)
- Vincent Guichard
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Felipe Batista Leão
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yingyu Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Takamasa Ito
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Simon Shirley
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Thomas S Postler
- Vaccine Design and Development Laboratory, IAVI, New York, NY 10004, USA
| | - Ruxiao Tian
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Paton H, Sarkar P, Gurung P. An overview of host immune responses against Leishmania spp. infections. Hum Mol Genet 2025:ddaf043. [PMID: 40287829 DOI: 10.1093/hmg/ddaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Leishmania spp. infections pose a significant global health challenge, affecting approximately 1 billion people across more than 88 endemic countries. This unicellular, obligate intracellular parasite causes a spectrum of diseases, ranging from localized cutaneous lesions to systemic visceral infections. Despite advancements in modern medicine and increased understanding of the parasite's etiology and associated diseases, treatment options remain limited to pentavalent antimonials, liposomal amphotericin B, and miltefosine. A deeper understanding of the interactions between immune and non-immune cells involved in the clearance of Leishmania spp. infections could uncover novel therapeutic strategies for this debilitating disease. This review highlights recent progress in elucidating how various cell types contribute to the regulation and resolution of Leishmania spp. infections.
Collapse
Affiliation(s)
- Hanna Paton
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
| | - Prabuddha Sarkar
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Center for Immunology and Immune Based Disease, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Iowa City Veterans Affairs (VA) Medical Center, 601 US-6, Iowa City, IA 52246, United States
| |
Collapse
|
3
|
Zhong X, Mitchell R, Billstrand C, Thompson EE, Sakabe NJ, Aneas I, Salamone IM, Gu J, Sperling AI, Schoettler N, Nóbrega MA, He X, Ober C. Integration of functional genomics and statistical fine-mapping systematically characterizes adult-onset and childhood-onset asthma genetic associations. Genome Med 2025; 17:35. [PMID: 40205616 PMCID: PMC11983851 DOI: 10.1186/s13073-025-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified hundreds of loci underlying adult-onset asthma (AOA) and childhood-onset asthma (COA). However, the causal variants, regulatory elements, and effector genes at these loci are largely unknown. METHODS We performed heritability enrichment analysis to determine relevant cell types for AOA and COA, respectively. Next, we fine-mapped putative causal variants at AOA and COA loci. To improve the resolution of fine-mapping, we integrated ATAC-seq data in blood and lung cell types to annotate variants in candidate cis-regulatory elements (CREs). We then computationally prioritized candidate CREs underlying asthma risk, experimentally assessed their enhancer activity by massively parallel reporter assay (MPRA) in bronchial epithelial cells (BECs) and further validated a subset by luciferase assays. Combining chromatin interaction data and expression quantitative trait loci, we nominated genes targeted by candidate CREs and prioritized effector genes for AOA and COA. RESULTS Heritability enrichment analysis suggested a shared role of immune cells in the development of both AOA and COA while highlighting the distinct contribution of lung structural cells in COA. Functional fine-mapping uncovered 21 and 67 credible sets for AOA and COA, respectively, with only 16% shared between the two. Notably, one-third of the loci contained multiple credible sets. Our CRE prioritization strategy nominated 62 and 169 candidate CREs for AOA and COA, respectively. Over 60% of these candidate CREs showed open chromatin in multiple cell lineages, suggesting their potential pleiotropic effects in different cell types. Furthermore, COA candidate CREs were enriched for enhancers experimentally validated by MPRA in BECs. The prioritized effector genes included many genes involved in immune and inflammatory responses. Notably, multiple genes, including TNFSF4, a drug target undergoing clinical trials, were supported by two independent GWAS signals, indicating widespread allelic heterogeneity. Four out of six selected candidate CREs demonstrated allele-specific regulatory properties in luciferase assays in BECs. CONCLUSIONS We present a comprehensive characterization of causal variants, regulatory elements, and effector genes underlying AOA and COA genetics. Our results supported a distinct genetic basis between AOA and COA and highlighted regulatory complexity at many GWAS loci marked by both extensive pleiotropy and allelic heterogeneity.
Collapse
Affiliation(s)
- Xiaoyuan Zhong
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Robert Mitchell
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Isabella M Salamone
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Jing Gu
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Anne I Sperling
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathan Schoettler
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Marcelo A Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Kingstad-Bakke B, Lee W, Yount BL, Cleven T, Park H, Sullivan JA, Baric RC, Suresh M. Effector CD8 T cell differentiation in primary and breakthrough SARS-CoV-2 infection in mice. Commun Biol 2025; 8:392. [PMID: 40057586 PMCID: PMC11890755 DOI: 10.1038/s42003-025-07820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The nature of the effector and memory T cell response in the lungs following acute SARS-CoV-2 infections remains largely unknown. To define the pulmonary T-cell response to COVID-19, we compared effector and memory T-cell responses to SARS-CoV-2 and influenza A virus (IAV) in mice. Both viruses elicited potent effector T cell responses in lungs, but memory T cells showed exaggerated contraction in SARS-CoV-2-infected mice. Specifically, unlike the T-bet/EOMES-driven effector transcription program in IAV lungs, SARS-CoV-2-specific CD8 T cells embarked on a STAT-3-centric transcriptional program, a defining characteristic of a pro-fibro-inflammatory program: limited cytotoxicity, diminished expression of tissue-protective inhibitory receptors (PD-1, LAG-3, and TIGIT), and augmented mucosal imprinting (CD103). Circulating CD45RO+HLA-DR+ CD8 T cells in hospitalized COVID-19 patients expressed elevated levels of STAT-3 and low levels of TIGIT. IL-6 blockade experiments implicated IL-6 in STAT-3 induction and downregulation of PD-1 expression on SARS-CoV-2-specific primary effector CD8 T cells. Memory CD8 T cells specific to a single epitope, induced by mucosal vaccination, differentiated into cytotoxic effectors and expressed high levels of CD103, effectively reducing viral burden in lungs following a breakthrough SARS-CoV-2 infection. Our findings have implications for developing targeted immunotherapies to mitigate immunopathology and promote protective T cell immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Woojong Lee
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Boyd L Yount
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Cleven
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongtae Park
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy A Sullivan
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph C Baric
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Cassali GD, Nakagaki KYR, Salvi M, dos Reys MP, Rocha MAN, de Campos CB, Ferreira E, Rodrigues ACB, dos Reis DC, Damasceno KA, Estrela-Lima A. Canine, Feline, and Murine Mammary Tumors as a Model for Translational Research in Breast Cancer. Vet Sci 2025; 12:189. [PMID: 40005948 PMCID: PMC11860833 DOI: 10.3390/vetsci12020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In veterinary medicine, mammary tumors are the most common neoplasms in female dogs and the third most frequent in cats, representing a significant challenge. Efforts have been directed toward adopting standardized diagnostic criteria to better understand tumor behavior and progression in these species. Meanwhile, the use of animal models has substantially advanced the understanding of comparative mammary carcinogenesis. These models provide critical insights into factors responsible for the disease in humans, with the expectation that such factors can be identified and controlled. In this context, this review presents a work based mainly on articles published by a research group specializing in mammary pathology (Laboratory of Comparative Pathology-Department of General Pathology-ICB/UFMG) and its collaborators, complementing their results with literature findings. The publications were categorized into animal research, experimental research, and human research. These studies addressed topics such as diagnosis, prognostic and predictive factors, tumor microenvironment, inflammation associated with tumors, treatment approaches, and factors influencing tumor growth. The conceptual network analysis underscores the importance of in vivo breast cancer models, both experimental and spontaneous, for understanding tumor progression mechanisms and therapeutic responses, offering valuable contributions to veterinary and human oncology.
Collapse
Affiliation(s)
- Geovanni Dantas Cassali
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Karen Yumi Ribeiro Nakagaki
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marisa Salvi
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marina Possa dos Reys
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcos André Nino Rocha
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| | | | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Diego Carlos dos Reis
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
| | | | - Alessandra Estrela-Lima
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia, Salvador 40170-110, Bahia, Brazil
| |
Collapse
|
6
|
Zhong X, Mitchell R, Billstrand C, Thompson E, Sakabe NJ, Aneas I, Salamone IM, Gu J, Sperling AI, Schoettler N, Nóbrega MA, He X, Ober C. Integration of functional genomics and statistical fine-mapping systematically characterizes adult-onset and childhood-onset asthma genetic associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.11.25322088. [PMID: 40034789 PMCID: PMC11875274 DOI: 10.1101/2025.02.11.25322088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Genome-wide association studies (GWAS) have identified hundreds of loci underlying adult-onset asthma (AOA) and childhood-onset asthma (COA). However, the causal variants, regulatory elements, and effector genes at these loci are largely unknown. Methods We performed heritability enrichment analysis to determine relevant cell types for AOA and COA, respectively. Next, we fine-mapped putative causal variants at AOA and COA loci. To improve the resolution of fine-mapping, we integrated ATAC-seq data in blood and lung cell types to annotate variants in candidate cis-regulatory elements (CREs). We then computationally prioritized candidate CREs underlying asthma risk, experimentally assessed their enhancer activity by massively parallel reporter assay (MPRA) in bronchial epithelial cells (BECs) and further validated a subset by luciferase assays. Combining chromatin interaction data and expression quantitative trait loci, we nominated genes targeted by candidate CREs and prioritized effector genes for AOA and COA. Results Heritability enrichment analysis suggested a shared role of immune cells in the development of both AOA and COA while highlighting the distinct contribution of lung structural cells in COA. Functional fine-mapping uncovered 21 and 67 credible sets for AOA and COA, respectively, with only 16% shared between the two. Notably, one-third of the loci contained multiple credible sets. Our CRE prioritization strategy nominated 62 and 169 candidate CREs for AOA and COA, respectively. Over 60% of these candidate CREs showed open chromatin in multiple cell lineages, suggesting their potential pleiotropic effects in different cell types. Furthermore, COA candidate CREs were enriched for enhancers experimentally validated by MPRA in BECs. The prioritized effector genes included many genes involved in immune and inflammatory responses. Notably, multiple genes, including TNFSF4, a drug target undergoing clinical trials, were supported by two independent GWAS signals, indicating widespread allelic heterogeneity. Four out of six selected candidate CREs demonstrated allele-specific regulatory properties in luciferase assays in BECs. Conclusions We present a comprehensive characterization of causal variants, regulatory elements, and effector genes underlying AOA and COA genetics. Our results supported a distinct genetic basis between AOA and COA and highlighted regulatory complexity at many GWAS loci marked by both extensive pleiotropy and allelic heterogeneity.
Collapse
Affiliation(s)
- Xiaoyuan Zhong
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Mitchell
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Emma Thompson
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Noboru J. Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Jing Gu
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Anne I. Sperling
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nathan Schoettler
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Marcelo A. Nóbrega
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Nussinov R, Yavuz BR, Jang H. Molecular principles underlying aggressive cancers. Signal Transduct Target Ther 2025; 10:42. [PMID: 39956859 PMCID: PMC11830828 DOI: 10.1038/s41392-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
8
|
Beausoleil S, Ariss M, Huang L, Ding X, Sheth S, Levy T, Fisher J, Loebelenz J, Arlotta K, Dixon K, Polakiewicz R, Kuchroo V. InTraSeq: A Multimodal Assay that Uncovers New Single-Cell Biology and Regulatory Mechanisms. RESEARCH SQUARE 2024:rs.3.rs-5284652. [PMID: 39711533 PMCID: PMC11661302 DOI: 10.21203/rs.3.rs-5284652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized cell biology by enabling the profiling of transcriptomes at a single-cell resolution, leading to important discoveries that have advanced our understanding of cellular and tissue heterogeneity, developmental trajectories, and disease progression. Despite these important advances, scRNA-seq is limited to measuring the transcriptome providing a partial view of cellular function. To address this limitation, multimodal scRNA-seq assays have emerged, allowing for the simultaneous measurement of RNA expression and protein. Intracellular Transcriptomic and Protein Sequencing (InTraSeq), a novel multimodal scRNA-seq technology described here, enables the concurrent measurement of mRNA, surface markers, cytoplasmic proteins, and nuclear proteins within individual cells through oligo-barcoded antibodies. This method offers a comprehensive approach to studying cellular function by combining RNA and protein pro ling from the same sample and utilizing a relatively simple protocol. The InTraSeq method enables researchers to expand their view of critical intracellular protein expression including post-translational modifications (PTMs) and transcription factors, allowing for the identification of novel cellular subtypes and states that may be obscured by RNA-based analyses alone. This is particularly valuable in understanding the heterogeneity of cell populations and identifying distinct functional states. In this report, we used InTraSeq to characterize the complex cellular states and regulatory mechanisms during Th17 cell differentiation. We simultaneously pro led RNA and protein expression in over 85,000 cells, capturing transcriptional changes, changes in protein expression and the dynamics of signaling pathways at a high resolution. Our results revealed novel insights into Th17 cell differentiation, including the identification of key regulatory factors and their target genes. By simultaneously measuring mRNA, extra and intra-cellular proteins, signaling proteins, and PTMs, InTraSeq offers a comprehensive understanding of cellular processes and enables the identification of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Sean Beausoleil
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Majd Ariss
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Linglin Huang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Xiaokai Ding
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shivani Sheth
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Tyler Levy
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Jeremy Fisher
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Jean Loebelenz
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Keith Arlotta
- Cell Signaling Technology, Inc., Danvers, Massachusetts, USA
| | - Karen Dixon
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Vijay Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Pease NA, Denecke KM, Chen L, Gerges PH, Kueh HY. A timed epigenetic switch balances T and ILC lineage proportions in the thymus. Development 2024; 151:dev203016. [PMID: 39655434 PMCID: PMC11664168 DOI: 10.1242/dev.203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
How multipotent progenitors give rise to multiple cell types in defined numbers is a central question in developmental biology. Epigenetic switches, acting at single gene loci, can generate extended delays in the activation of lineage-specifying genes and impact lineage decisions and cell type output. Here, we analyzed a timed epigenetic switch controlling expression of mouse Bcl11b, a transcription factor that drives T-cell commitment, but only after a multi-day delay. To investigate roles for this delay in controlling lineage decision making, we analyzed progenitors with a deletion in a distal Bcl11b enhancer, which extends this delay by ∼3 days. Strikingly, delaying Bcl11b activation reduces T-cell output but enhances innate lymphoid cell (ILC) generation in the thymus by redirecting uncommitted progenitors to the ILC lineages. Mechanistically, delaying Bcl11b activation promoted ILC redirection by enabling upregulation of the ILC-specifying transcription factor PLZF. Despite the upregulation of PLZF, committed ILC progenitors could subsequently express Bcl11b, which is also needed for type 2 ILC differentiation. These results show that epigenetic switches can control the activation timing and order of lineage-specifying genes to modulate cell type numbers and proportions.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Kathryn M. Denecke
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lihua Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Peter Habib Gerges
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
10
|
Jin M, Fang J, Peng J, Wang X, Xing P, Jia K, Hu J, Wang D, Ding Y, Wang X, Li W, Chen Z. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies. Mol Cancer 2024; 23:266. [PMID: 39614285 PMCID: PMC11605969 DOI: 10.1186/s12943-024-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Immunotherapy targeting programmed cell death-1 (PD-1) and PD-L1 immune checkpoints has reshaped treatment paradigms across several cancers, including breast cancer. Combining PD-1/PD-L1 immune checkpoint blockade (ICB) with chemotherapy has shown promising efficacy in both early and metastatic triple-negative breast cancer, although only a subset of patients experiences durable responses. Identifying responders and optimizing immune drug selection are therefore critical. The effectiveness of PD-1/PD-L1 immunotherapy depends on both tumor-intrinsic factors and the extrinsic cell-cell interactions within the tumor microenvironment (TME). This review systematically summarizes the key findings from clinical trials of ICBs in breast cancer and examines the mechanisms underlying PD-L1 expression regulation. We also highlight recent advances in identifying potential biomarkers for PD-1/PD-L1 therapy and emerging evidence of TME alterations following treatment. Among these, the quantity, immunophenotype, and spatial distribution of tumor-infiltrating lymphocytes stand out as promising biomarkers. Additionally, we explore strategies to enhance the effectiveness of ICBs in breast cancer, aiming to support the development of personalized treatment approaches tailored to the unique characteristics of each patient's tumor.
Collapse
Affiliation(s)
- Menglei Jin
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Junwen Peng
- Department of General Surgery, The First People's Hospital of Jiande, Hangzhou, China
| | - Xintian Wang
- Department of General Surgery, The Second People's Hospital of Tongxiang, Jiaxing, Zhejiang, China
| | - Ping Xing
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Yuxin Ding
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xinyu Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenlu Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
11
|
Kwong AC, Ordovas-Montanes J. Deconstructing inflammatory memory across tissue set points using cell circuit motifs. J Allergy Clin Immunol 2024; 154:1095-1105. [PMID: 39341577 DOI: 10.1016/j.jaci.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Tissue ecosystems are cellular communities that maintain set points through a network of intercellular interactions. We position health and chronic inflammatory disease as alternative stable set points that are (1) robust to perturbation and (2) capable of adaptation and memory. Inflammatory memory, which is the storage of prior experience to durably influence future responsiveness, is central to how tissue ecosystems may be pushed past tipping points that stabilize disease over health. Here, we develop a reductionist framework of circuit motifs that recur in tissue set points. In type 2 immunity, we distinctly find the emergence of 2-cell positive feedback motifs. In contrast, directional motif relays and 3-cell networks feature more prominently in type 1 and 17 responses. We propose that these differences guide the ecologic networks established after surpassing tipping points and associate closely with therapeutic responsiveness. We highlight opportunities to improve our current knowledge of how circuit motifs interact when building toward tissue-level networks across adaptation and memory. By developing new tools for circuit motif nomination and applying them to temporal profiling of tissue ecosystems, we hope to dissect the stability of the chronic inflammatory set point and open therapeutic avenues for rewriting memory to restore health.
Collapse
Affiliation(s)
- Andrew C Kwong
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Mass
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass; Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston; Program in Immunology, Harvard Medical School, Boston, Mass; Harvard Stem Cell Institute, Harvard University, Cambridge, Mass.
| |
Collapse
|
12
|
Duddu AS, Andreas E, Bv H, Grover K, Singh VR, Hari K, Jhunjhunwala S, Cummins B, Gedeon T, Jolly MK. Multistability and predominant hybrid phenotypes in a four node mutually repressive network of Th1/Th2/Th17/Treg differentiation. NPJ Syst Biol Appl 2024; 10:123. [PMID: 39448615 PMCID: PMC11502801 DOI: 10.1038/s41540-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/01/2024] [Indexed: 10/26/2024] Open
Abstract
Elucidating the emergent dynamics of cellular differentiation networks is crucial to understanding cell-fate decisions. Toggle switch - a network of mutually repressive lineage-specific transcription factors A and B - enables two phenotypes from a common progenitor: (high A, low B) and (low A, high B). However, the dynamics of networks enabling differentiation of more than two phenotypes from a progenitor cell has not been well-studied. Here, we investigate the dynamics of a four-node network A, B, C, and D inhibiting each other, forming a toggle tetrahedron. Our simulations show that this network is multistable and predominantly allows for the co-existence of six hybrid phenotypes where two of the nodes are expressed relatively high as compared to the remaining two, for instance (high A, high B, low C, low D). Finally, we apply our results to understand naïve CD4+ T cell differentiation into Th1, Th2, Th17 and Treg subsets, suggesting Th1/Th2/Th17/Treg decision-making to be a two-step process.
Collapse
Affiliation(s)
| | - Elizabeth Andreas
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Harshavardhan Bv
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- IISc Mathematics Initiative, Indian Institute of Science, 560012, Bangalore, India
| | - Kaushal Grover
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vivek Raj Singh
- Undergraduate Program, Indian Institute of Science, Bangalore, 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Department of Physics, Northeastern University, MA, 02115, Boston, USA
- Center for Theoretical Biological Physics, Northeastern University, MA, 02115, Boston, USA
| | | | - Breschine Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
14
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Dou T, Li J, Zhang Y, Pei W, Zhang B, Wang B, Wang Y, Jia H. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer. Front Immunol 2024; 15:1368687. [PMID: 38487526 PMCID: PMC10937353 DOI: 10.3389/fimmu.2024.1368687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
At present, the incidence rate of breast cancer ranks first among new-onset malignant tumors in women. The tumor microenvironment is a hot topic in tumor research. There are abundant cells in the tumor microenvironment that play a protumor or antitumor role in breast cancer. During the treatment of breast cancer, different cells have different influences on the therapeutic response. And after treatment, the cellular composition in the tumor microenvironment will change too. In this review, we summarize the interactions between different cell compositions (such as immune cells, fibroblasts, endothelial cells, and adipocytes) in the tumor microenvironment and the treatment mechanism of breast cancer. We believe that detecting the cellular composition of the tumor microenvironment is able to predict the therapeutic efficacy of treatments for breast cancer and benefit to combination administration of breast cancer.
Collapse
Affiliation(s)
- Tingyao Dou
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaochen Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Wanru Pei
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Binyue Zhang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Maruyama S. The Functional Assessment of T Cells. Methods Mol Biol 2024; 2766:207-232. [PMID: 38270882 DOI: 10.1007/978-1-0716-3682-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
It is important to know what kind of T-cell populations are involved in various disease states, and to know the state of T-cell functions involving in the disease. When a T cell's antigen receptors (TCR) recognize a specific antigen, the cell transmits a signal by a transduction mechanism within the T cell's cytoplasm. This signal initiates gene transcription essential for differentiation and activation of T cells. In this chapter, we will describe the methods of analyzing the transcribed mRNA and detecting the translated product in order to know the activation state of T cells.
Collapse
Affiliation(s)
- Saho Maruyama
- Department of Basic Medical Research and Education, Ehime University Graduate School of Medicine, Toon, Ehime, Japan.
| |
Collapse
|
17
|
Huang C, Ding J, Huang C, Yu L, Chitapanarux I, Mejia MBA, Fei Z, Chen C. Abnormal variation and prognostic significance of circulating immune cells in patients with nasopharyngeal carcinoma treated with chemoradiotherapy: a prospective cohort study. Transl Cancer Res 2023; 12:3718-3727. [PMID: 38192995 PMCID: PMC10774047 DOI: 10.21037/tcr-23-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Background Circulating immune cells are associated with tumor development and poor prognosis in multiple solid tumors. However, the circulating immune-cell profile of nasopharyngeal carcinoma (NPC) remains largely unknown. Therefore, we aimed to determine the changes in immune status and the prognostic significance of circulating immune cells before and after chemoradiotherapy (CRT) in patients, which can provide clinicians with valuable insights to optimize treatment strategies, monitor immune function, and personalize interventions, ultimately improving patient outcomes. Methods Circulating immune cells before and after CRT in 77 patients with NPC and in 30 healthy controls were measured with flow cytometry. A thorough follow-up was conducted to assess prognosis outcomes, including local failure-free rate (LFFR), distant failure-free rate (DFFR), disease-free survival (DFS), and overall survival (OS). The differences of the subpopulation distribution in the two groups were determined by t-tests or Mann-Whitney tests. The paired t-test or Wilcoxon matched-pairs signed rank test was used to compare differences in lymphocyte subsets before and after CRT. The prognostic significance of lymphocyte subsets was evaluated by Kaplan-Meier analysis and Cox proportional hazards model. Results Compared with the control group, the NPC group showed significant decreases in the proportions of CD3+ cells, CD4+ T cells, CD8+CD28+ T cells, and CD19+ B cells as well as the CD4+:CD8+ ratio (P<0.05) but a significant increase in the proportion of natural killer (NK) cells (P<0.05). After CRT, the proportions of CD4+ cells, CD8+CD28+ T cells, and CD19+ B cells as well as the CD4+:CD8+ ratio were markedly decreased (P<0.05), while the proportions of CD8+ T cells and NK cells were significantly increased (P<0.05). Multivariate analysis showed that a lower percentage of CD19+ B cells [hazard ratio (HR) 6.550, 95% CI: 1.661-25.831; P=0.007] and a positive test for Epstein-Barr virus (EBV) DNA (HR 0.261, 95% CI: 0.074-0.926; P=0.038) before treatment independently predicted worse 5-year OS (P<0.05). Conclusions The disproportion of circulating immune cells was observed in patients with NPC before treatment. CRT further aggravated immune dysfunction. Notably, a lower percentage of CD19+ B cells and EBV DNA-positive status before treatment were independent predictors of a worse prognosis. Thus, the measurement of circulating immune cells may help elucidate immune function status and predict the outcomes of patients with NPC.
Collapse
Affiliation(s)
- Chaoxiong Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jianming Ding
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chuanzhong Huang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ligen Yu
- Office of Data and Analytics, Nanyang Technological University, Singapore, Singapore
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
18
|
Zhang Y, Hu L, Ren G, Zeng Y, Zhao X, Zhong C. Distinct regulatory machineries underlying divergent chromatin landscapes distinguish innate lymphoid cells from T helper cells. Front Immunol 2023; 14:1271879. [PMID: 38106414 PMCID: PMC10722145 DOI: 10.3389/fimmu.2023.1271879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Innate lymphoid cells (ILCs), as the innate counterpart of CD4+ T helper (Th) cells, play crucial roles in maintaining tissue homeostasis. While the ILC subsets and their corresponding Th subsets demonstrate significant similarities in core programming related to effector function and regulatory mechanisms, their principal distinctions, given their innate and adaptive lymphocyte nature, remain largely unknown. In this study, we have employed an integrative analysis of 294 bulk RNA-sequencing results across all ILC and Th subsets, using scRNA-seq algorithms. Consequently, we identify two genesets that predominantly differentiate ILCs from Th cells, as well as three genesets that distinguish various immune responses. Furthermore, through chromatin accessibility analysis, we find that the ILC geneset tends to rely on specific transcriptional regulation at promoter regions compared with the Th geneset. Additionally, we observe that ILCs and Th cells are under differential transcriptional regulation. For example, ILCs are under stronger regulation by multiple transcription factors, including RORα, GATA3, and NF-κB. Otherwise, Th cells are under stronger regulation by AP-1. Thus, our findings suggest that, despite the acknowledged similarities in effector functions between ILC subsets and corresponding Th subsets, the underlying regulatory machineries still exhibit substantial distinctions. These insights provide a comprehensive understanding of the unique roles played by each cell type during immune responses.
Collapse
Affiliation(s)
- Yime Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yanyu Zeng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xingyu Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Chao Zhong
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key National Health Commission Laboratory of Medical Immunology, Peking University, Beijing, China
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| |
Collapse
|
19
|
Bonacini M, Ferrigno I, Rossi A, Facciolongo N, Massari M, Corsini R, Galli V, Zerbini A, Salvarani C, Croci S. Comparable cytokine release ex-vivo by whole blood from COVID-19 patients with and without non-invasive ventilation. Immunobiology 2023; 228:152755. [PMID: 38570901 DOI: 10.1016/j.imbio.2023.152755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 10/15/2023] [Indexed: 04/05/2024]
Abstract
T cells are key players in the resolution of the infection by SARS-CoV-2. A delay in their activation can lead to severe COVID-19. The present work aimed to identify differences in cytokine release by T cells ex-vivo between COVID-19 patients in the acute phase, showing diverse disease severity. Concentrations of IFNγ, Granzyme B, IL-6, IL-10, IL-17A, IL-18, IP-10, MCP-1, and TNFα were evaluated after stimulation ex-vivo of whole blood samples with peptides from SARS-CoV-2 spike protein and a mitogen as well as without stimulation. Samples derived from hospitalized COVID-19 patients and SARS-CoV-2 vaccinated controls (CTR). Patients were classified on disease severity considering the necessity of non-invasive ventilation (NIV). Samples from patients requiring NIV revealed a similar release of cytokines compared with patients without NIV. COVID-19 patients showed higher spontaneous production of IFNγ and IP-10, lower production of MCP-1 after SARS-CoV-2 peptide stimulation and lower production of IFNγ, IL-10, IL-17A, Granzyme B, IP-10 after mitogenic stimulus compared with CTR. In conclusion, differences in T cell responses evaluated ex-vivo by a whole blood-based cytokine release assay do not appear to explain the need for non-invasive ventilation in COVID-19 patients.
Collapse
Affiliation(s)
- Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Ilaria Ferrigno
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Rossi
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Nicola Facciolongo
- Pulmonology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marco Massari
- Infectious Disease Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Romina Corsini
- Infectious Disease Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Veronica Galli
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Alessandro Zerbini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy
| | - Carlo Salvarani
- Rheumatology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Italy.
| |
Collapse
|
20
|
Chauhan A, Agarwal S, Masih M, Gautam PK. The Multifunction Role of Tumor-Associated Mesenchymal Stem Cells and Their Interaction with Immune Cells in Breast Cancer. Immunol Invest 2023; 52:856-878. [PMID: 37615117 DOI: 10.1080/08820139.2023.2249025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Mesenchymal stem cells (MSCs) are a heterogeneous group of progenitor cells that play a multifunctional role including tissue regeneration, self-renewal properties, and differentiate into cells of mesodermal lineage such as adipocytes, osteoblasts, and chondrocytes. MSCs come into contact with tumor microenvironment (TME) and differentiate into tumor-associated MSCs (TA-MSCs). Various substances such as chemokines, cytokines, growth factors, and others are released by tumor cells to recruit MSCs. TA-MSCs induced epithelial-mesenchymal transition (EMT) program which mediates tumor growth progression, migration, and invasion. Role of MSCs in the tumor progression, stemness, malignancy, and treatment resistance in the breast cancer TME. Immunomodulation by MSCs is mediated by a combination of cell contact-dependent mechanisms and soluble substances. Monocytes/macrophages, dendritic cells, T cells, B cells, and NK cells all show signs of MSCs' immunomodulatory capability. In a complicated interplay initiated by MSCs, anti-inflammatory monocytes/macrophages and regulatory T cells (Tregs) play a key role, as they unveil their full immunomodulatory potential. MSC- secreted cytokines are commonly blamed for the interaction between MSCs, monocytes, and Tregs. Here, we review the current knowledge of cellular and molecular mechanisms involved in MSC-mediated immunomodulation and focus on the role MSCs play in breast cancer progression and its TME.Abbreviation MSC: Mesenchymal Stem Cells; TME: Tumor Microenvironment; TAMS; Tumour-associated Macrophages; ECM: Extracellular matrix; CAFs: Cancer-associated Fibroblasts; CFUs: Colony-forming unit Fibroblasts; Tregs: T regulatory cells; Bregs; Regulatory B cells; IFN-γ: Interferon-gamma; TNF-α: Tumour Necrosis Factor-alpha; IL: Interleukin; TGF-β: transforming growth factorβ; PGE2: Prostaglandin E2; CXCR: Chemokine Receptor; Blimp-1; B lymphocyte-induced maturation protein-1; CCL: Chemokine motif ligand; EMT: Epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Anita Chauhan
- Department of Biochemistry, AII India Institute of Medical Sciences, New Delhi, India
| | - Sonam Agarwal
- Department of Biochemistry, AII India Institute of Medical Sciences, New Delhi, India
| | - Marilyn Masih
- Department of Biochemistry, AII India Institute of Medical Sciences, New Delhi, India
| | - Pramod Kumar Gautam
- Department of Biochemistry, AII India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Prolonged T cell - DC macro-clustering within lymph node microenvironments initiates Th2 cell differentiation in a site-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547554. [PMID: 37461439 PMCID: PMC10350056 DOI: 10.1101/2023.07.07.547554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
| | - Elya A. Shamskhou
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
22
|
Gurram RK, Wei D, Yu Q, Butcher MJ, Chen X, Cui K, Hu G, Zheng M, Zhu X, Oh J, Sun B, Urban JF, Zhao K, Leonard WJ, Zhu J. Crosstalk between ILC2s and Th2 cells varies among mouse models. Cell Rep 2023; 42:112073. [PMID: 36735533 PMCID: PMC10394112 DOI: 10.1016/j.celrep.2023.112073] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.
Collapse
Affiliation(s)
- Rama K Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Yu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Fang D, Healy A, Zhu J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023; 13:1081153. [PMID: 36685550 PMCID: PMC9846361 DOI: 10.3389/fimmu.2022.1081153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
CD4 T helper (Th) cell subsets, including Th1, Th2 and Th17 cells, and their innate counterparts innate lymphoid cell (ILC) subsets consisting of ILC1s, ILC2s and ILC3s, display similar effector cytokine-producing capabilities during pro-inflammatory immune responses. These lymphoid cell subsets utilize the same set of lineage-determining transcription factors (LDTFs) for their differentiation, development and functions. The distinct ontogeny and developmental niches between Th cells and ILCs indicate that they may adopt different external signals for the induction of LDTF during lineage commitment. Increasing evidence demonstrates that many conserved cis-regulatory elements at the gene loci of LDTFs are often preferentially utilized for the induction of LDTF expression during Th cell differentiation and ILC development at different stages. In this review, we discuss the functions of lineage-related cis-regulatory elements in inducing T-bet, GATA3 or RORγt expression based on the genetic evidence provided in recent publications. We also review and compare the upstream signals involved in LDTF induction in Th cells and ILCs both in vitro and in vivo. Finally, we discuss the possible mechanisms and physiological importance of regulating LDTF dynamic expression during ILC development and activation.
Collapse
Affiliation(s)
- Difeng Fang
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| | | | - Jinfang Zhu
- *Correspondence: Difeng Fang, ; Jinfang Zhu,
| |
Collapse
|
24
|
Weinmann AS. Tipping the balance in CD4 + T cells. Nat Immunol 2023; 24:8-9. [PMID: 36596891 DOI: 10.1038/s41590-022-01389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
25
|
Zhang M, Zhang X. T cells in ocular autoimmune uveitis: Pathways and therapeutic approaches. Int Immunopharmacol 2023; 114:109565. [PMID: 36535124 DOI: 10.1016/j.intimp.2022.109565] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune uveitis is a non-infectious intraocular condition that affects the uveal tract of the eye and threatens vision if not treated properly. Increasing evidence suggests that activated CD4+ T cells are associated with progressive and permanent destruction of photoreceptors in ocular autoimmune diseases. As such, the purpose of this review is to offer an overview of the role of CD4+ T cells in autoimmune uveitis as well as a justification for the current development and assessment of innovative autoimmune uveitis medications targeting CD4+ T cells. With an emphasis on T helper (Th)17, Th1, and Th2 cells, follicular helper CD4+ T cells, and regulatory T cells, this review presents a summary of recent research related to the pathways and signaling that encourage CD4+ T cells to develop into specialized effector cells. We also describe immunotherapeutic approaches based on CD4+ T cell subsets and their potential as therapeutic agents for autoimmune disorders.
Collapse
Affiliation(s)
- Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
26
|
Harlapur P, Duddu AS, Hari K, Kulkarni P, Jolly MK. Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks. Biomolecules 2022; 12:1842. [PMID: 36551270 PMCID: PMC9775907 DOI: 10.3390/biom12121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the design principles of regulatory networks driving cellular decision-making has important implications for understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell fates can exhibit multistable dynamics enabling "single-positive" phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two motifs have been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these motifs in complex larger networks of varying sizes and connectivity to identify hallmarks under which these motifs maintain their canonical dynamical behavior. We show that an increased number of incoming edges onto a motif leads to a decay in their canonical stand-alone behaviors. We also show that this decay can be exacerbated by adding self-inhibition but not self-activation loops on the 'master regulators'. These observations offer insights into the design principles of biological networks containing these motifs and can help devise optimal strategies for the integration of these motifs into larger synthetic networks.
Collapse
Affiliation(s)
- Pradyumna Harlapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Atchuta Srinivas Duddu
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Gurram RK, Wei D, Yu Q, Kamenyeva O, Chung H, Zheng M, Butcher MJ, Kabat J, Liu C, Khillan JS, Zhu J. Gata3 ZsG and Gata3 ZsG-fl: Novel murine Gata3 reporter alleles for identifying and studying Th2 cells and ILC2s in vivo. Front Immunol 2022; 13:975958. [PMID: 36466899 PMCID: PMC9709206 DOI: 10.3389/fimmu.2022.975958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/31/2022] [Indexed: 10/10/2023] Open
Abstract
T helper-2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) play crucial roles during type 2 immune responses; the transcription factor GATA3 is essential for the differentiation and functions of these cell types. It has been demonstrated that GATA3 is critical for maintaining Th2 and ILC2 phenotype in vitro; GATA3 not only positively regulates type 2 lymphocyte-associated genes, it also negatively regulates many genes associated with other lineages. However, such functions cannot be easily verified in vivo because the expression of the markers for identifying Th2 and ILC2s depends on GATA3. Thus, whether Th2 cells and ILC2s disappear after Gata3 deletion or these Gata3-deleted "Th2 cells" or "ILC2s" acquire an alternative lineage fate is unknown. In this study, we generated novel GATA3 reporter mouse strains carrying the Gata3 ZsG or Gata3 ZsG-fl allele. This was achieved by inserting a ZsGreen-T2A cassette at the translation initiation site of either the wild type Gata3 allele or the modified Gata3 allele which carries two loxP sites flanking the exon 4. ZsGreen faithfully reflected the endogenous GATA3 protein expression in Th2 cells and ILC2s both in vitro and in vivo. These reporter mice also allowed us to visualize Th2 cells and ILC2s in vivo. An inducible Gata3 deletion system was created by crossing Gata3 ZsG-fl/fl mice with a tamoxifen-inducible Cre. Continuous expression of ZsGreen even after the Gata3 exon 4 deletion was noted, which allows us to isolate and monitor GATA3-deficient "Th2" cells and "ILC2s" during in vivo immune responses. Our results not only indicated that functional GATA3 is dispensable for regulating its own expression in mature type 2 lymphocytes, but also revealed that GATA3-deficient "ILC2s" might be much more stable in vivo than in vitro. Overall, the generation of these novel GATA3 reporters will provide valuable research tools to the scientific community in investigating type 2 immune responses in vivo.
Collapse
Affiliation(s)
- Rama K. Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Qiao Yu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hyunwoo Chung
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Matthew J. Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood institutes, National Institutes of Health, Bethesda, MD, United States
| | - Jaspal S. Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Martínez-Méndez D, Huerta L, Villarreal C. Modeling the effect of environmental cytokines, nutrient conditions and hypoxia on CD4+ T cell differentiation. Front Immunol 2022; 13:962175. [PMID: 36211418 PMCID: PMC9539201 DOI: 10.3389/fimmu.2022.962175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Upon antigen stimulation and co-stimulation, CD4+ T lymphocytes produce soluble factors that promote the activity of other immune cells against pathogens or modified tissues; this task must be performed in presence of a variety of environmental cytokines, nutrient, and oxygen conditions, which necessarily impact T cell function. The complexity of the early intracellular processes taking place upon lymphocyte stimulation is addressed by means of a mathematical model based on a network that integrates variable microenvironmental conditions with intracellular activating, regulatory, and metabolic signals. Besides the phenotype subsets considered in previous works (Th1, Th2, Th17, and Treg) the model includes the main early events in differentiation to the TFH phenotype. The model describes how cytokines, nutrients and oxygen availability regulate the differentiation of naïve CD4+ T cells into distinct subsets. Particularly, it shows that elevated amounts of an all-type mixture of effector cytokines under optimal nutrient and oxygen availability conduces the system towards a highly-polarized Th1 or Th2 state, while reduced cytokine levels allow the expression of the Th17, Treg or TFH subsets, or even hybrid phenotypes. On the other hand, optimal levels of an all-type cytokine mixture in combination with glutamine or tryptophan restriction implies a shift from Th1 to Th2 expression, while decreased levels of the Th2-inducing cytokine IL-4 leads to the rupture of the Th1-Th2 axis, allowing the manifestation of different (or hybrid) subsets. Modeling proposes that, even under reduced levels of pro-inflammatory cytokines, the sole action of hypoxia boost Th17 expression.
Collapse
Affiliation(s)
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Departamento de Inmunología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Carlos Villarreal, ; Leonor Huerta,
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Carlos Villarreal, ; Leonor Huerta,
| |
Collapse
|
29
|
Padilha CS, Von Ah Morano AE, Krüger K, Rosa-Neto JC, Lira FS. The growing field of immunometabolism and exercise: Key findings in the last 5 years. J Cell Physiol 2022; 237:4001-4020. [PMID: 36052887 DOI: 10.1002/jcp.30866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
This perspective review highlights the impact of physical exercise on immunometabolic responses in the past 5 years. Understanding immunometabolism as a part of immunological research is essential. Furthermore, the roles of both acute and chronic effects of physical exercise on health, aging, and chronic diseases in immunometabolic changes should be elaborated. In immune cells, β2 adrenergic signaling stimulates the preferential mobilization of inflammatory phenotypes, such as CD16+ monocytes and CD8+ T cells, into the bloodstream after a physical exercise session. The mobilization of immune cells is closely related to the availability of energetic substrates for the cell and mechanisms associated with the uptake and oxidation of fatty acids and glucose. These cells, especially senescent T cells, are mobilized to the peripheral tissues and undergo apoptotic signaling, stimulating the creation of a "vacant space" where new cells will be matured and replaced in the circulation. This results in the upregulation of the expression and secretion of anti-inflammatory cytokines (IL-10 and IL-1ra), leading to increased regulatory immune cells that provide immunoregulatory properties. Thus, we suggest that a significant nutrient available to the cell will favor oxidative metabolism, augment ATP production, and consequently maintain the immune cells in their quiescent state, as well as promote rapid activation function. Therefore, based on the studies discussed in this perspective review, we highlight the importance of performing moderate-intensity continuous and high-intensity intermittent aerobic exercises, due to a higher magnitude of energetic demand and release of anti-inflammatory cytokines (IL-6 and IL-10).
Collapse
Affiliation(s)
- Camila S Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Ana E Von Ah Morano
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Department of Physical Education, Post-Graduate Program in Movement Sciences, Laboratory of InVestigation in Exercise, Scientific Research Group Related to Physical Activity, Sao Paulo State University, Presidente Prudente, São Paulo, Brazil
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, Giessen, Germany
| | - José C Rosa-Neto
- Immunometabolism Research Group, E LIM-26, University of São Paulo, São Paulo-SP, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Burt P, Peine M, Peine C, Borek Z, Serve S, Floßdorf M, Hegazy AN, Höfer T, Löhning M, Thurley K. Dissecting the dynamic transcriptional landscape of early T helper cell differentiation into Th1, Th2, and Th1/2 hybrid cells. Front Immunol 2022; 13:928018. [PMID: 36052070 PMCID: PMC9424495 DOI: 10.3389/fimmu.2022.928018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Selective differentiation of CD4+ T helper (Th) cells into specialized subsets such as Th1 and Th2 cells is a key element of the adaptive immune system driving appropriate immune responses. Besides those canonical Th-cell lineages, hybrid phenotypes such as Th1/2 cells arise in vivo, and their generation could be reproduced in vitro. While master-regulator transcription factors like T-bet for Th1 and GATA-3 for Th2 cells drive and maintain differentiation into the canonical lineages, the transcriptional architecture of hybrid phenotypes is less well understood. In particular, it has remained unclear whether a hybrid phenotype implies a mixture of the effects of several canonical lineages for each gene, or rather a bimodal behavior across genes. Th-cell differentiation is a dynamic process in which the regulatory factors are modulated over time, but longitudinal studies of Th-cell differentiation are sparse. Here, we present a dynamic transcriptome analysis following Th-cell differentiation into Th1, Th2, and Th1/2 hybrid cells at 3-h time intervals in the first hours after stimulation. We identified an early bifurcation point in gene expression programs, and we found that only a minority of ~20% of Th cell-specific genes showed mixed effects from both Th1 and Th2 cells on Th1/2 hybrid cells. While most genes followed either Th1- or Th2-cell gene expression, another fraction of ~20% of genes followed a Th1 and Th2 cell-independent transcriptional program associated with the transcription factors STAT1 and STAT4. Overall, our results emphasize the key role of high-resolution longitudinal data for the characterization of cellular phenotypes.
Collapse
Affiliation(s)
- Philipp Burt
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Michael Peine
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Caroline Peine
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Zuzanna Borek
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin, Berlin, Germany
- Inflammatory Mechanisms, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Sebastian Serve
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael Floßdorf
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed N. Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin, Berlin, Germany
- Inflammatory Mechanisms, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
- *Correspondence: Max Löhning, ; Kevin Thurley,
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
- Institute for Experimental Oncology, Biomathematics Division, University Hospital Bonn, Bonn, Germany
- *Correspondence: Max Löhning, ; Kevin Thurley,
| |
Collapse
|
31
|
Jia W, Duddu AS, Jolly MK, Levine H. Lack of Correlation between Landscape Geometry and Transition Rates. J Phys Chem B 2022; 126:5613-5618. [PMID: 35876849 DOI: 10.1021/acs.jpcb.2c02837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biological cells can exist in a variety of distinct phenotypes, determined by the steady-state solutions of genetic networks governing their cell fate. A popular way of representing these states relies on the creation of landscape related to the relative occupation of these states. It is often assumed that this landscape offers direct information regarding the state-to-state transition rates, suggesting that these are related to barrier heights separating landscape minima. Here, we study a toggle triad network exhibiting multistability and directly demonstrate the lack of any direct correlation between properties of the landscape and corresponding transition rates.
Collapse
Affiliation(s)
- Wen Jia
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Grant NL, Maiello P, Klein E, Lin PL, Borish HJ, Tomko J, Frye LJ, White AG, Kirschner DE, Mattila JT, Flynn JL. T cell transcription factor expression evolves over time in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Rep 2022; 39:110826. [PMID: 35584684 PMCID: PMC9169877 DOI: 10.1016/j.celrep.2022.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a global health concern, yearly resulting in 10 million new cases of active TB. Immunologic investigation of lung granulomas is essential for understanding host control of bacterial replication. Here, we identify and compare the pathological, cellular, and functional differences in granulomas at 4, 12, and 20 weeks post-infection in Chinese cynomolgus macaques. Original granulomas differ in transcription-factor expression within adaptive lymphocytes, with those at 12 weeks showing higher frequencies of CD8+T-bet+ T cells, while CD4+T-bet+ T cells increase at 20 weeks post-infection. The appearance of T-bet+ adaptive T cells at 12 and 20 weeks is coincident with a reduction in bacterial burden, suggesting their critical role in Mtb control. This study highlights the evolution of T cell responses within lung granulomas, suggesting that vaccines promoting the development and migration of T-bet+ T cells would enhance mycobacterial control. Grant et al. investigate the pathological, cellular, and functional differences in TB lung granulomas from macaques. The data reveal that most T cells at early time points have low frequencies of transcription factor expression, while T cells at later time points have increased expression of T-bet and a reduction in bacterial burden.
Collapse
Affiliation(s)
- Nicole L Grant
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L James Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Hertweck A, Vila de Mucha M, Barber PR, Dagil R, Porter H, Ramos A, Lord GM, Jenner RG. The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res 2022; 50:4557-4573. [PMID: 35438764 PMCID: PMC9071441 DOI: 10.1093/nar/gkac258] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3's sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways.
Collapse
Affiliation(s)
- Arnulf Hertweck
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Maria Vila de Mucha
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Paul R Barber
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK.,Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Robert Dagil
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Hayley Porter
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| |
Collapse
|
35
|
Chen AF, Parks B, Kathiria AS, Ober-Reynolds B, Goronzy JJ, Greenleaf WJ. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat Methods 2022; 19:547-553. [PMID: 35501385 PMCID: PMC11192021 DOI: 10.1038/s41592-022-01461-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/20/2022] [Indexed: 02/08/2023]
Abstract
In this work, we describe NEAT-seq (sequencing of nuclear protein epitope abundance, chromatin accessibility and the transcriptome in single cells), enabling interrogation of regulatory mechanisms spanning the central dogma. We apply this technique to profile CD4 memory T cells using a panel of master transcription factors (TFs) that drive T cell subsets and identify examples of TFs with regulatory activity gated by transcription, translation and regulation of chromatin binding. We also link a noncoding genome-wide association study single-nucleotide polymorphism (SNP) within a GATA motif to a putative target gene, using NEAT-seq data to internally validate SNP impact on GATA3 regulation.
Collapse
Affiliation(s)
- Amy F Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin Parks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA
| | - Arwa S Kathiria
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jorg J Goronzy
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
36
|
Fang D, Cui K, Cao Y, Zheng M, Kawabe T, Hu G, Khillan JS, Li D, Zhong C, Jankovic D, Sher A, Zhao K, Zhu J. Differential regulation of transcription factor T-bet induction during NK cell development and T helper-1 cell differentiation. Immunity 2022; 55:639-655.e7. [PMID: 35381213 PMCID: PMC9059963 DOI: 10.1016/j.immuni.2022.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Adaptive CD4+ T helper cells and their innate counterparts, innate lymphoid cells, utilize an identical set of transcription factors (TFs) for their differentiation and functions. However, similarities and differences in the induction of these TFs in related lymphocytes are still elusive. Here, we show that T helper-1 (Th1) cells and natural killer (NK) cells displayed distinct epigenomes at the Tbx21 locus, which encodes T-bet, a critical TF for regulating type 1 immune responses. The initial induction of T-bet in NK precursors was dependent on the NK-specific DNase I hypersensitive site Tbx21-CNS-3, and the expression of the interleukin-18 (IL-18) receptor; IL-18 induced T-bet expression through the transcription factor RUNX3, which bound to Tbx21-CNS-3. By contrast, signal transducer and activator of transcription (STAT)-binding motifs within Tbx21-CNS-12 were critical for IL-12-induced T-bet expression during Th1 cell differentiation both in vitro and in vivo. Thus, type 1 innate and adaptive lymphocytes utilize distinct enhancer elements for their development and differentiation.
Collapse
Affiliation(s)
- Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kairong Cui
- Laboratory of Epigenome Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology and Immunology School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Takeshi Kawabe
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Gangqing Hu
- Laboratory of Epigenome Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Jaspal S Khillan
- Mouse Genetics and Gene Modification Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Li
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Clinical Laboratory, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chao Zhong
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dragana Jankovic
- Immunoparasitology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Corbera-Bellalta M, Alba-Rovira R, Muralidharan S, Espígol-Frigolé G, Ríos-Garcés R, Marco-Hernández J, Denuc A, Kamberovic F, Pérez-Galán P, Joseph A, D'Andrea A, Bondensgaard K, Cid MC, Paolini JF. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2022; 81:524-536. [PMID: 35045965 PMCID: PMC8921590 DOI: 10.1136/annrheumdis-2021-220873] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1β, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Georgina Espígol-Frigolé
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Marco-Hernández
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Farah Kamberovic
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| |
Collapse
|
38
|
Cagan E, Tezcan G, Simsek A, Kizmaz MA, Dombaz F, Asan A, Demir HI, Bal H, Yoyen Ermis D, Gorek Dilektasli A, Kazak E, Akalin EH, Oral HB, Budak F. The Age-Dependent Role of Th22, Tc22, and Tc17 Cells in the Severity of Pneumonia in COVID-19 Immunopathogenesis. Viral Immunol 2022; 35:318-327. [PMID: 35363081 DOI: 10.1089/vim.2021.0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has clinical manifestations ranging from mild symptoms to respiratory failure, septic shock, and multi-organ failure. Lymphocytes are divided into different subtypes based on their cytokine production pattern. In this study, we investigated the role of cytokine expressions of CD4+ T (T helper [Th]1, Th2, Th17, Th22) and CD8+ T cell subtypes (T cytotoxic [Tc]1, Tc2, Tc17, Tc22) in the pathogenesis of COVID-19. Peripheral blood mononuclear cells (PBMCs) were extracted with Ficoll by density gradient centrifugation from blood samples of 180 COVID-19 patients (children and adults) and 30 healthy controls. PBMCs were stimulated with PMA and Ionomycin and treated with Brefeldin A in the fourth hour, and a 10-colored monoclonal antibody panel was evaluated at the end of the sixth hour using flow cytometry. According to our findings, the numbers of Th22 (CD3+, CD4+, and interleukin [IL]-22+) and Tc22 (CD3+, CD8+, IL-22+) cells increased in adult patients regardless of the level of pneumonia (mild, severe, or symptom-free) as compared with healthy controls (p < 0.05). In addition, the number of Tc17 (CD3+, CD8+, and IL-17A+) cells increased in low pneumonia and severe pneumonia groups compared with the healthy controls (p < 0.05). Both IL-22 and IL-17A production decreased during a follow-up within 6 weeks of discharge. Our findings suggest that the increase in only IL-22 expressed Tc22 cells in the 0-12 age group with a general symptom-free course and higher levels of Th22 and Tc22 in uncomplicated adult cases may indicate the protective effect of IL-22. On the contrary, the association between the severity of pneumonia and the elevation of Tc17 cells in adults may reveal the damaging effect of IL-22 when it is co-expressed with IL-17.
Collapse
Affiliation(s)
- Eren Cagan
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Pediatric Infectious Diseases, Bursa Yüksek Ihtisas Training and Research Hospital, Health Sciences University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Abdurrahman Simsek
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Fatma Dombaz
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Ali Asan
- Department of Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, Health Sciences University, Bursa, Turkey
| | - H Ibrahim Demir
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.,Institution of Health Sciences, Department of Immunology, Bursa Uludag University, Bursa, Turkey
| | - Haldun Bal
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Digdem Yoyen Ermis
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Aslı Gorek Dilektasli
- Department of Pulmonary Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Esra Kazak
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - E Halis Akalin
- Department of Clinical Microbiology and Infection Diseases, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - H Barbaros Oral
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ferah Budak
- Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
39
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Abstract
TCF1 and its homologue LEF1 are historically known as effector transcription factors downstream of the WNT signalling pathway and are essential for early T cell development. Recent advances bring TCF1 into the spotlight for its versatile, context-dependent functions in regulating mature T cell responses. In the cytotoxic T cell lineages, TCF1 is required for the self-renewal of stem-like CD8+ T cells generated in response to viral or tumour antigens, and for preserving heightened responses to checkpoint blockade immunotherapy. In the helper T cell lineages, TCF1 is indispensable for the differentiation of T follicular helper and T follicular regulatory cells, and crucially regulates immunosuppressive functions of regulatory T cells. Mechanistic investigations have also identified TCF1 as the first transcription factor that directly modifies histone acetylation, with the capacity to bridge transcriptional and epigenetic regulation. TCF1 also has the potential to become an important clinical biomarker for assessing the prognosis of tumour immunotherapy and the success of viral control in treating HIV and hepatitis C virus infection. Here, we summarize the key findings on TCF1 across the fields of T cell immunity and reflect on the possibility of exploring TCF1 and its downstream transcriptional programmes as therapeutic targets for improving antiviral and antitumour immunity.
Collapse
|
41
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
42
|
ISASHIKI Y, OHASHI Y, IMATAKE S, BAAKHTARI M, RAMAH A, KIDA T, YANAGITA T, YASUDA M. Studies on the immune status of calves with chronic inflammation and thymus atrophy. J Vet Med Sci 2022; 84:734-742. [PMID: 35400674 PMCID: PMC9246677 DOI: 10.1292/jvms.22-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The thymus is a primary lymphoid organ where the primary T cell repertoire is generated.
Thymus atrophy is induced by various conditions, including infectious diseases,
glucocorticoid treatment, and poor breeding management. Cattle with thymus atrophy tend to
exhibit weak calf syndrome, a condition in which approximately half of neonates die
shortly after birth. Calves with thymus atrophy that survive the first month typically
contract chronic inflammatory diseases. In this study, we analyzed the populations of the
peripheral blood mononuclear cells and thymocytes in calves with thymus atrophy. In
addition, we evaluated polarization of master gene and cytokine mRNA expression in
peripheral blood CD4+ cells in the calves. The population of
CD4+CD8+ cells in thymus of the calves with thymus atrophy was
lower than that of control calves. IL10 mRNA expression in peripheral
blood CD4+ cells of calves with thymus atrophy was significantly lower than
that of control calves. TBX21 mRNA expression in peripheral
CD4+ cells of thymus atrophy calves was tended to be higher than that of the
control group. In addition, FOXP3 mRNA expression in peripheral
CD4+ cells of the thymus atrophy calves was tended to be lower than that of
the control calves. Thymus atrophy calves exhibited chronic inflammatory disease leading,
in severe situations, to conditions such as pneumonia with caseous necrosis. These severe
inflammatory responses likely are due to decreases in IL10 mRNA
expression, impairing control of macrophages, one of the main cell fractions of natural
immunity.
Collapse
Affiliation(s)
- Yumi ISASHIKI
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Yuki OHASHI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Shoichiro IMATAKE
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Mahmoud BAAKHTARI
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Amany RAMAH
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| | - Tetsuo KIDA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Tenya YANAGITA
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki
| | - Masahiro YASUDA
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki
| |
Collapse
|
43
|
Romao-Veiga M, Ribeiro VR, Matias ML, Nunes PR, Romagnoli GG, Peracoli JC, Peracoli MTS. DAMPs are able to skew CD4 + T cell subsets and increase the inflammatory profile in pregnant women with preeclampsia. J Reprod Immunol 2021; 149:103470. [PMID: 34972043 DOI: 10.1016/j.jri.2021.103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Preeclampsia (PE) is characterized by abnormal activation of the immune system. The intense systemic inflammatory reaction, could be related to the presence of molecules released after cell stress or death, that are capable of inducing inflammation and are known as damage-associated molecular patterns (DAMP). This study evaluated the profile of T cells through the analysis of transcription factors and the cytokines produced after culture with or without DAMPs: heat shock protein 70 (Hsp70), hyaluronan (HA) and monosodium urate (MSU). Twenty pregnant women with PE, 20 normotensive (NT) pregnant women and 20 non-pregnant (NP) women were studied. The results showed polarization toward Th1/Th17 and a decrease in Th2/Treg profiles in preeclamptic women associated with elevated levels of TNF, IFN-γ, and IL-17A and diminished levels of TGF-β1 and IL-10 when compared to the normotensive group. In addition, preeclamptic women had a higher percentage of cells co-expressing T-bet/GATA-3 and T-bet/RORγt and fewer T-bet/FoxP3 cells when compared to normotensive group. MSU induced an increase in IFN-γ and IL-22 in all studied groups. MSU, HA, and Hsp70 induced significant higher production of TNF in the PE and NP groups. The PE group showed elevated levels of TGF-β1 after incubation with MSU, HA, and Hsp70, whereas HA and Hsp70 decreased TGF-β1 production in NT group. The results suggest that these alarmins may play a role in the activation of innate and adaptive immune systems by skewing CD4 + T cells and increasing the release of inflammatory cytokines, thereby contributing to the pathogenesis of this important syndrome.
Collapse
Affiliation(s)
- Mariana Romao-Veiga
- Department of Chemistry and Biological Sciences, Institute of Biosciences, Sao Paulo State University - Unesp, Botucatu, Sao Paulo, Brazil.
| | - Vanessa Rocha Ribeiro
- Department de Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - Unesp, Botucatu, Sao Paulo, Brazil
| | - Mariana Leticia Matias
- Department de Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - Unesp, Botucatu, Sao Paulo, Brazil
| | - Priscila Rezeck Nunes
- Department de Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - Unesp, Botucatu, Sao Paulo, Brazil
| | | | - Jose Carlos Peracoli
- Department de Gynecology and Obstetrics, Botucatu Medical School, Sao Paulo State University - Unesp, Botucatu, Sao Paulo, Brazil
| | - Maria Terezinha Serrao Peracoli
- Department of Chemistry and Biological Sciences, Institute of Biosciences, Sao Paulo State University - Unesp, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
44
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
45
|
Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola C. Influence of gut microbiota on eye diseases: an overview. Ann Med 2021; 53:750-761. [PMID: 34042554 PMCID: PMC8168766 DOI: 10.1080/07853890.2021.1925150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
The microbiota is a dynamic ecosystem that plays a major role in the host health. Numerous studies have reported that alterations in the intestinal microbiota (dysbiosis) may contribute to the pathogenesis of various common diseases such as diabetes, neuropsychiatric diseases, and cancer. However, emerging findings also suggest the existence of a gut-eye axis, wherein gut dysbiosis may be a crucial factor influencing the onset and progression of multiple ocular diseases, including uveitis, dry eye, macular degeneration, and glaucoma. Currently, supplementation with pre- and probiotics appears is the most feasible and cost-effective approach to restore the gut microbiota to a eubiotic state and prevent eye pathologies. In this review, we discuss the current knowledge on how gut microbiota may be linked to the pathogenesis of common eye diseases, providing therapeutic perspectives for future translational investigations within this promising research field.
Collapse
Affiliation(s)
- Pasquale Napolitano
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Roberto dell’Omo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| |
Collapse
|
46
|
Zhang Y, Wang J, Hu L, Xuan J, Qu Y, Li Y, Ye X, Yang L, Yang J, Zhang X, Wang J, Wei B. Predictive Value of Immune Cell Subsets for Mortality Risk in Patients With Sepsis. Clin Appl Thromb Hemost 2021; 27:10760296211059498. [PMID: 34755551 PMCID: PMC8586162 DOI: 10.1177/10760296211059498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigates the prognostic value of immune cell subsets in assessing the risk of death in patients with sepsis. This retrospective study collected 169 patients from March 2020 to February 2021 at our hospital. Baseline data were collected from patients. The absolute values (Abs) and percentages (%) of immune cell subsets for lymphocytes, T cells, CD4+ cells, CD8+, B cells, NK cells, and NKT cells were measured using flow Cytometry. Among the included patients, 43 patients were in the nonsurvivor group and 126 patients were in the survivor group. The age of patients in the nonsurvivor survivor was higher than that of survivor group patients (P = .020). SOFA, APACHE II, C-reactive protein, and procalcitonin were higher in the nonsurvivor group than in the survivor group (all P values < .05). Multivariate regression analysis showed that lymphocytes (%) and SOFA were independent risk factors affecting patients' prognosis. Lymphocytes (%) have the highest area under the receiver operating characteristic (ROC) curve (0.812). The model area under the ROC curve for immune cell subsets was 0.800, with a sensitivity of 72.09%, and specificity of 79.27% (z = 7.796, P < .001). Analysis of patient prognosis by immune cell subsets diagnostic showed statistically significant differences in the grouping of cut-off values for all 5 indicators (all P < .05). The lymphocytes (%) and SOFA score are independent risk factors affecting the prognosis of patients. A moderate predictive power for mortality in sepsis patients by immune cell subsets model.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Le Hu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jingchao Xuan
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yifan Qu
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yixuan Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinghua Ye
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Long Yang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jun Yang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangqun Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Junyu Wang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bing Wei
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Nomura T, Kabashima K. Advances in Atopic Dermatitis in 2019-2020: Endotypes from skin barrier, ethnicity, properties of antigen, cytokine profiles, microbiome, and engagement of immune cells. J Allergy Clin Immunol 2021; 148:1451-1462. [PMID: 34756922 DOI: 10.1016/j.jaci.2021.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Key research advances in atopic dermatitis (AD) suggest the complexity of its endotypes. A comprehensive serum biomarker panel revealed at least four types of AD. Some represent classic TH2-dominant AD with filaggrin mutations commonly reported in Europeans, a simultaneously activated multipolar axes of cytokines often reported in Asians, and an intrinsic type characterized by TH2-inferiority. Innate lymphoid cells, including NK cells, NKT cells, and fibroblasts, play a role in AD development and heterogeneity. Here, we discuss the endotypes of AD from the perspective of antigen types (hapten vs. protein antigens), barrier function, and a novel set of immune cells. Endotypic stratification of AD may lead to the development of customized therapeutic strategies in the future.
Collapse
Affiliation(s)
- Takashi Nomura
- Department of Dermatology, Faculty of Medicine, Kyoto University 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kenji Kabashima
- Department of Dermatology, Faculty of Medicine, Kyoto University 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
48
|
Grimaldi A, Pietropaolo G, Stabile H, Kosta A, Capuano C, Gismondi A, Santoni A, Sciumè G, Fionda C. The Regulatory Activity of Noncoding RNAs in ILCs. Cells 2021; 10:cells10102742. [PMID: 34685721 PMCID: PMC8534545 DOI: 10.3390/cells10102742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes playing essential functions in protection against microbial infections and participate in both homeostatic and pathological contexts, including tissue remodeling, cancer, and inflammatory disorders. A number of lineage-defining transcription factors concurs to establish transcriptional networks which determine the identity and the activity of the distinct ILC subsets. However, the contribution of other regulatory molecules in controlling ILC development and function is also recently emerging. In this regard, noncoding RNAs (ncRNAs) represent key elements of the complex regulatory network of ILC biology and host protection. ncRNAs mostly lack protein-coding potential, but they are endowed with a relevant regulatory activity in immune and nonimmune cells because of their ability to control chromatin structure, RNA stability, and/or protein synthesis. Herein, we summarize recent studies describing how distinct types of ncRNAs, mainly microRNAs, long ncRNAs, and circular RNAs, act in the context of ILC biology. In particular, we comment on how ncRNAs can exert key effects in ILCs by controlling gene expression in a cell- or state-specific manner and how this tunes distinct functional outputs in ILCs.
Collapse
Affiliation(s)
- Alessio Grimaldi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Giuseppe Pietropaolo
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Helena Stabile
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Andrea Kosta
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Angela Gismondi
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
| | - Cinzia Fionda
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.P.); (H.S.); (A.K.); (A.G.); (A.S.); (G.S.)
- Correspondence: ; Tel.: +39-0649255118; Fax: +39-0644340632
| |
Collapse
|
49
|
Qian Y, Arellano G, Ifergan I, Lin J, Snowden C, Kim T, Thomas JJ, Law C, Guan T, Balabanov RD, Kaech SM, Miller SD, Choi J. ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Rep 2021; 36:109602. [PMID: 34433042 PMCID: PMC8431781 DOI: 10.1016/j.celrep.2021.109602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022] Open
Abstract
Inappropriate CD4+ T helper (Th) differentiation can compromise host immunity or promote autoimmune disease. To identify disease-relevant regulators of T cell fate, we examined mutations that modify risk for multiple sclerosis (MS), a canonical organ-specific autoimmune disease. This analysis identified a role for Zinc finger E-box-binding homeobox (ZEB1). Deletion of ZEB1 protects against experimental autoimmune encephalitis (EAE), a mouse model of multiple sclerosis (MS). Mechanistically, ZEB1 in CD4+ T cells is required for pathogenic Th1 and Th17 differentiation. Genomic analyses of paired human and mouse expression data elucidated an unexpected role for ZEB1 in JAK-STAT signaling. ZEB1 inhibits miR-101-3p that represses JAK2 expression, STAT3/STAT4 phosphorylation, and subsequent expression of interleukin-17 (IL-17) and interferon gamma (IFN-γ). Underscoring its clinical relevance, ZEB1 and JAK2 downregulation decreases pathogenic cytokines expression in T cells from MS patients. Moreover, a Food and Drug Administration (FDA)-approved JAK2 inhibitor is effective in EAE. Collectively, these findings identify a conserved, potentially targetable mechanism regulating disease-relevant inflammation. Qian et al. show that ZEB1 is required for the development of the autoimmune disease multiple sclerosis (MS). ZEB1, a transcription factor, promotes JAK-STAT signaling during Th1/Th17 differentiation by repressing expression of a JAK2-targeting miRNA. ZEB1 and JAK2 are potentially clinically relevant therapeutic targets for MS.
Collapse
Affiliation(s)
- Yuan Qian
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jean Lin
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Caroline Snowden
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Taehyeung Kim
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Jane Joy Thomas
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Calvin Law
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roumen D Balabanov
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA; Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
50
|
Napolitano P, Filippelli M, D'andrea L, Carosielli M, dell'Omo R, Costagliola C. Probiotic Supplementation Improved Acute Anterior Uveitis of 3-Year Duration: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e931321. [PMID: 34272354 PMCID: PMC8295928 DOI: 10.12659/ajcr.931321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Uveitis is a clinical condition characterized by acute blurry vision related to an inflammation of the uvea. Gut microbiome dysbiosis can influence the prognosis of uveitis by inducing a loss of intestinal immune homeostasis leading to a lower activation threshold of the immune cells. This promotes a pro-inflammatory response resulting in reactivation of the disease. This is the case report of a 21-year-old woman with a 3-year history of acute anterior uveitis (AAU) of the right eye, who responded favorably to probiotic dietary supplementation. CASE REPORT A 21-year-old woman, previously unknown to our Ophthalmology Unit, presented with ocular pain and redness. Three years ago, she had been diagnosed with monolateral AAU in the right eye. Her medical and family histories were unremarkable. After a complete clinical evaluation, we decided to start a combination treatment protocol with continuous use of probiotics and the use of ocular steroids only during an exacerbation of the condition. To monitor the trend of the disease, she underwent a monthly clinical examination for the following year. During this period, we observed a decrease in ocular inflammation with a gain in the primary outcome (best-corrected visual acuity), and the steroids and atropine were discontinued for the following months. CONCLUSIONS This case report describes a patient with a 3-year history of AAU, who responded well to a combination treatment of dietary probiotic supplementation and steroids, demonstrating that probiotics can reduce recurrences of AAU.
Collapse
Affiliation(s)
- Pasquale Napolitano
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariaelena Filippelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luca D'andrea
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Marianna Carosielli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto dell'Omo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|