1
|
Flores-Garcia Y, Salgado-Jimenez B, Park M, Mathis-Torres S, Locke E, MacGill RS, Moskovitz R, Wilson IA, Zavala F. Epitope specificity of antibody-mediated protection induced in mice by the malaria vaccine RTS,S/AS01. NPJ Vaccines 2025; 10:101. [PMID: 40394009 PMCID: PMC12092751 DOI: 10.1038/s41541-025-01162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025] Open
Abstract
Antibodies induced by the malaria vaccine RTS,S/AS01 neutralize infectivity of transgenic sporozoites expressing Plasmodium falciparum CSP (PfCSP). These antibodies recognize the junctional, minor repeats, central repeats, and C-term regions of this antigen. The epitope specificity of antibodies mediating protection in mice was characterized in vivo using transgenic sporozoites expressing restricted antigenic portions of PfCSP. In this model, we found protection is mediated mostly by antibodies specific for the central repeats.
Collapse
Affiliation(s)
- Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Berenice Salgado-Jimenez
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Minah Park
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, USA
| | | | - Re'em Moskovitz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Langowski MD, Francica JR, Roederer AL, Hurlburt NK, Rodarte JV, Da Silva Pereira L, Flynn BJ, Bonilla B, Dillon M, Kiyuka P, Ravichandran R, Weidle C, Carter L, Rao M, Matyas GR, Pepper M, Idris AH, Seder RA, Pancera M, King NP. Elicitation of liver-stage immunity by nanoparticle immunogens displaying P. falciparum CSP-derived antigens. NPJ Vaccines 2025; 10:87. [PMID: 40325041 PMCID: PMC12053698 DOI: 10.1038/s41541-025-01140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
A vaccine that provides robust, durable protection against malaria remains a global health priority. Although a breakthrough in the fight against malaria has recently been achieved by the licensure of two vaccines based on the circumsporozoite protein (CSP), the effectiveness and durability of protection can still be improved. Both vaccines contain a portion of CSP that does not include epitopes targeted by recently identified, potently protective monoclonal antibodies, suggesting that newer immunogens can expand the breadth of immunity and potentially increase protection. Here we explored >100 alternative CSP-based immunogens and evaluated the immunogenicity and protection of a large number of candidates, comparing several to the licensed R21 vaccine. The data highlight several general features that improve the stability and immunogenicity of CSP-based vaccines, such as inclusion of the C-terminal domain and high-density display on protein nanoparticle scaffolds. We also identify antigen design strategies that do not warrant further exploration, such as synthetic repeat regions that include non-native repeat cadences. The benchmark R21 vaccine outperformed our best immunogen for immunogenicity and protection. Overall, our data provide valuable insights on the inclusion of junctional region epitopes that will guide the development of potent and durable vaccines against malaria.
Collapse
Affiliation(s)
- Mark D Langowski
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex L Roederer
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Justas V Rodarte
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lais Da Silva Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patience Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mangala Rao
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gary R Matyas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Geens R, De Vocht L, Aguirre-Botero MC, Vincke C, Romão E, Magez S, Muyldermans S, Amino R, Sterckx YGJ. Evidence for a model of conformational change by the Plasmodium falciparum circumsporozoite protein during sporozoite development in the mosquito host through the use of camelid single-domain antibodies. Infect Immun 2025:e0008125. [PMID: 40293231 DOI: 10.1128/iai.00081-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmodium sporozoites (SPZs) are formed in the Anopheles mosquito midgut from where they travel to the salivary glands and subsequently to the mammalian liver after deposition into the skin. The SPZ's main surface antigen, the circumsporozoite protein (CSP), plays a pivotal role in SPZ biology and constitutes the immunodominant target for host antibodies. In this study, we raised single-domain antibodies (sdAbs) against CSP from P. falciparum (PfCSP) by immunizing two alpacas with recombinant versions of the antigen. We found that all identified sdAbs specifically target PfCSP's globular [Formula: see text]TSR domain without cross-reacting with P. berghei CSP. Further characterization revealed that most sdAbs recognize native PfCSP on the SPZ surface, although they do not have any inhibitory effect on hepatocyte binding and invasion. Structural studies showed that all binders target the previously identified [Formula: see text]-epitope, confirming the non-protective nature of this epitope. Comparison of sdAb binding to midgut and salivary gland SPZs revealed a shift in the exposure and accessibility of the [Formula: see text]-epitope. Hence, our findings provide further evidence that CSP undergoes structural changes during SPZ development in the mosquito host.
Collapse
Affiliation(s)
- Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuela C Aguirre-Botero
- Institut Pasteur, Université Paris Cité, Malaria Infection & Immunity, Paris, Île-de-France, France
| | - Cécile Vincke
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ema Romão
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Muyldermans
- Lab of Cellular and Molecular Immunology (CMIM), Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection & Immunity, Paris, Île-de-France, France
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Yoo R, Jore MM, Julien J. Targeting Bottlenecks in Malaria Transmission: Antibody-Epitope Descriptions Guide the Design of Next-Generation Biomedical Interventions. Immunol Rev 2025; 330:e70001. [PMID: 39907429 PMCID: PMC11796336 DOI: 10.1111/imr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Malaria continues to pose a significant burden to global health. Thus, a strong need exists for the development of a diverse panel of intervention strategies and modalities to combat malaria and achieve elimination and eradication goals. Deploying interventions that target bottlenecks in the transmission life cycle of the causative agent of malaria, Plasmodium parasites, is an attractive strategy. The development of highly potent antibody-based biologics, including vaccines, can be greatly facilitated by an in-depth molecular understanding of antibody-epitope interactions. Here, we provide an overview of structurally characterized antibodies targeting lead vaccine candidates expressed during the bottlenecks of the Plasmodium life cycle which include the pre-erythrocytic and sexual stages. The repeat region of the circumsporozoite protein (CSP), domain 1 of Pfs230 and domains 1 and 3 of Pfs48/45 are critical Plasmodium regions targeted by the most potent antibodies at the two bottlenecks of transmission, with other promising targets emerging and requiring further characterization.
Collapse
Affiliation(s)
- Randy Yoo
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
| | - Matthijs M. Jore
- Department of Medical MicrobiologyRadboudumcNijmegenThe Netherlands
| | - Jean‐Philippe Julien
- Program in Molecular MedicineThe Hospital for Sick Children Research InstituteTorontoOntarioCanada
- Department of BiochemistryUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Opuni KFM, Ruß M, Geens R, Vocht LD, Wielendaele PV, Debuy C, Sterckx YGJ, Glocker MO. Mass spectrometry-complemented molecular modeling predicts the interaction interface for a camelid single-domain antibody targeting the Plasmodium falciparum circumsporozoite protein's C-terminal domain. Comput Struct Biotechnol J 2024; 23:3300-3314. [PMID: 39296809 PMCID: PMC11409006 DOI: 10.1016/j.csbj.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Bioanalytical methods that enable rapid and high-detail characterization of binding specificities and strengths of protein complexes with low sample consumption are highly desired. The interaction between a camelid single domain antibody (sdAbCSP1) and its target antigen (PfCSP-Cext) was selected as a model system to provide proof-of-principle for the here described methodology. Research design and methods The structure of the sdAbCSP1 - PfCSP-Cext complex was modeled using AlphaFold2. The recombinantly expressed proteins, sdAbCSP1, PfCSP-Cext, and the sdAbCSP1 - PfCSP-Cext complex, were subjected to limited proteolysis and mass spectrometric peptide analysis. ITEM MS (Intact Transition Epitope Mapping Mass Spectrometry) and ITC (Isothermal Titration Calorimetry) were applied to determine stoichiometry and binding strength. Results The paratope of sdAbCSP1 mainly consists of its CDR3 (aa100-118). PfCSP-Cext's epitope is assembled from its α-helix (aa40-52) and opposing loop (aa83-90). PfCSP-Cext's GluC cleavage sites E46 and E58 were shielded by complex formation, confirming the predicted epitope. Likewise, sdAbCSP1's tryptic cleavage sites R105 and R108 were shielded by complex formation, confirming the predicted paratope. ITEM MS determined the 1:1 stoichiometry and the high complex binding strength, exemplified by the gas phase dissociation reaction enthalpy of 50.2 kJ/mol. The in-solution complex dissociation constant is 5 × 10-10 M. Conclusions Combining AlphaFold2 modeling with mass spectrometry/limited proteolysis generated a trustworthy model for the sdAbCSP1 - PfCSP-Cext complex interaction interface.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana
| | - Manuela Ruß
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Rob Geens
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Line De Vocht
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Christophe Debuy
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
6
|
Wang LT, Idris AH, Kisalu NK, Crompton PD, Seder RA. Monoclonal antibodies to the circumsporozoite proteins as an emerging tool for malaria prevention. Nat Immunol 2024; 25:1530-1545. [PMID: 39198635 DOI: 10.1038/s41590-024-01938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Despite various public health strategies, malaria caused by Plasmodium falciparum parasites remains a major global health challenge that requires development of new interventions. Extended half-life human monoclonal antibodies targeting the P. falciparum circumsporozoite protein on sporozoites, the infective form of malaria parasites, prevent malaria in rodents and humans and have been advanced into clinical development. The protective epitopes on the circumsporozoite protein targeted by monoclonal antibodies have been defined. Cryogenic electron and multiphoton microscopy have enabled mechanistic structural and functional investigations of how antibodies bind to the circumsporozoite protein and neutralize sporozoites. Moreover, innovations in bioinformatics and antibody engineering have facilitated enhancement of antibody potency and durability. Here, we summarize the latest scientific advances in understanding how monoclonal antibodies to the circumsporozoite protein prevent malaria and highlight existing clinical data and future plans for how this emerging intervention can be used alone or alongside existing antimalarial interventions to control malaria across at-risk populations.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- PATH's Center for Vaccine Innovation and Access, Washington, DC, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Ciubotariu II, Broyles BK, Xie S, Thimmapuram J, Mwenda MC, Mambwe B, Mulube C, Matoba J, Schue JL, Moss WJ, Bridges DJ, He Q, Carpi G. Diversity and selection analyses identify transmission-blocking antigens as the optimal vaccine candidates in Plasmodium falciparum. EBioMedicine 2024; 106:105227. [PMID: 39018754 PMCID: PMC11663769 DOI: 10.1016/j.ebiom.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. METHODS We analysed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Database. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. FINDINGS Among the ten antigens analysed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. INTERPRETATION These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritising conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. FUNDING Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).
Collapse
Affiliation(s)
- Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Bradley K Broyles
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Mulenga C Mwenda
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Brenda Mambwe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Jessica L Schue
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William J Moss
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Arunachalam PS, Ha N, Dennison SM, Spreng RL, Seaton KE, Xiao P, Feng Y, Zarnitsyna VI, Kazmin D, Hu M, Santagata JM, Xie X, Rogers K, Shirreff LM, Chottin C, Spencer AJ, Dutta S, Prieto K, Julien JP, Tomai M, Fox CB, Villinger F, Hill AVS, Tomaras GD, Pulendran B. A comparative immunological assessment of multiple clinical-stage adjuvants for the R21 malaria vaccine in nonhuman primates. Sci Transl Med 2024; 16:eadn6605. [PMID: 39083589 DOI: 10.1126/scitranslmed.adn6605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques. R21 adjuvanted with 3M on a 0, 8, and 23-week schedule elicited anti-circumsporozoite antibody responses comparable in magnitude to the R21/MM vaccine administered using a 0-4-8-week regimen and persisted up to 72 weeks with a half-life of 337 days. A booster dose at 72 weeks induced a recall response similar to the R21/MM vaccination. In contrast, R21/GLA-LSQ immunization induced a lower, short-lived response at the dose used. Consistent with the durable serum antibody responses, MM and 3M induced long-lived plasma cells in the bone marrow and other tissues, including the spleen. Furthermore, whereas 3M stimulated potent and persistent antiviral transcriptional and cytokine signatures after primary and booster immunizations, MM induced enhanced expression of interferon- and TH2-related signatures more highly after the booster vaccination. Collectively, these findings provide a resource on the immune responses of three clinically relevant adjuvants with R21 and highlight the promise of 3M as another adjuvant for malarial vaccines.
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - NaYoung Ha
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Rachel L Spreng
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Kelly E Seaton
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Yupeng Feng
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | | - Dmitri Kazmin
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jordan M Santagata
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xia Xie
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Lisa M Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Claire Chottin
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | | | - Sheetij Dutta
- Structural Vaccinology Laboratory, Biologics Research and Development Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Katherine Prieto
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University, Durham, NC 27701, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27703, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Geens R, Stanisich J, Beyens O, D'Hondt S, Thiberge J, Ryckebosch A, De Groot A, Magez S, Vertommen D, Amino R, De Winter H, Volkov AN, Tompa P, Sterckx YG. Biophysical characterization of the Plasmodium falciparum circumsporozoite protein's N-terminal domain. Protein Sci 2024; 33:e4852. [PMID: 38059674 PMCID: PMC10749493 DOI: 10.1002/pro.4852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of the Plasmodium sporozoite (SPZ) and forms the basis of the currently only licensed anti-malarial vaccine (RTS,S/AS01). CSP uniformly coats the SPZ and plays a pivotal role in its immunobiology, in both the insect and the vertebrate hosts. Although CSP's N-terminal domain (CSPN ) has been reported to play an important role in multiple CSP functions, a thorough biophysical and structural characterization of CSPN is currently lacking. Here, we present an alternative method for the recombinant production and purification of CSPN from Plasmodium falciparum (PfCSPN ), which provides pure, high-quality protein preparations with high yields. Through an interdisciplinary approach combining in-solution experimental methods and in silico analyses, we provide strong evidence that PfCSPN is an intrinsically disordered region displaying some degree of compaction.
Collapse
Affiliation(s)
- Rob Geens
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Jessica Stanisich
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Olivier Beyens
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | - Stijn D'Hondt
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | | | - Amber Ryckebosch
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| | - Anke De Groot
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| | - Stefan Magez
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
- Ghent University Global CampusIncheonSouth Korea
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvainBrusselsBelgium
| | - Rogerio Amino
- Unit of Malaria Infection & ImmunityInstitut PasteurParisFrance
| | - Hans De Winter
- Laboratory of Medicinal Chemistry (UAMC)University of AntwerpAntwerpBelgium
| | - Alexander N. Volkov
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor Biotechnologie (VIB)BrusselsBelgium
- Jean Jeener NMR CentreVrije Universiteit BrusselBrusselsBelgium
| | - Peter Tompa
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- VIB‐VUB Center for Structural BiologyVlaams Instituut voor Biotechnologie (VIB)BrusselsBelgium
- Institute of Enzymology, Biological Research CenterHungarian Academy of SciencesBudapestHungary
| | - Yann G.‐J. Sterckx
- Laboratory of Medical Biochemistry (LMB)University of AntwerpAntwerpBelgium
| |
Collapse
|
10
|
Bolton JS, MacGill RS, Locke E, Regules JA, Bergmann-Leitner ES. Novel antibody competition binding assay identifies distinct serological profiles associated with protection. Front Immunol 2023; 14:1303446. [PMID: 38152401 PMCID: PMC10752609 DOI: 10.3389/fimmu.2023.1303446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction Pre-erythrocytic malaria vaccines hold the promise of inducing sterile protection thereby preventing the morbidity and mortality associated with Plasmodium infection. The main surface antigen of P. falciparum sporozoites, i.e., the circumsporozoite protein (CSP), has been extensively explored as a target of such vaccines with significant success in recent years. Systematic adjuvant selection, refinements of the immunization regimen, and physical properties of the antigen may all contribute to the potential of increasing the efficacy of CSP-based vaccines. Protection appears to be dependent in large part on CSP antibodies. However due to a knowledge gap related to the exact correlates of immunity, there is a critical need to improve our ability to down select candidates preclinically before entering clinical trials including with controlled human malaria infections (CHMI). Methods We developed a novel multiplex competition assay based on well-characterized monoclonal antibodies (mAbs) that target crucial epitopes across the CSP molecule. This new tool assesses both, quality and epitope-specific concentrations of vaccine-induced antibodies by measuring their equivalency with a panel of well-characterized, CSP-epitope-specific mAbs. Results Applying this method to RTS,S-immune sera from a CHMI trial demonstrated a quantitative epitope-specificity profile of antibody responses that can differentiate between protected vs. nonprotected individuals. Aligning vaccine efficacy with quantitation of the epitope fine specificity results of this equivalency assay reveals the importance of epitope specificity. Discussion The newly developed serological equivalence assay will inform future vaccine design and possibly even adjuvant selection. This methodology can be adapted to other antigens and disease models, when a panel of relevant mAbs exists, and could offer a unique tool for comparing and down-selecting vaccine formulations.
Collapse
Affiliation(s)
- Jessica S. Bolton
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Randall S. MacGill
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | - Emily Locke
- Center for Vaccine Innovation and Access, PATH, Washington, DC, United States
| | - Jason A. Regules
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
11
|
Thai E, Murugan R, Binter Š, Burn Aschner C, Prieto K, Kassardjian A, Obraztsova AS, Kang RW, Flores-Garcia Y, Mathis-Torres S, Li K, Horn GQ, Huntwork RHC, Bolscher JM, de Bruijni MHC, Sauerwein R, Dennison SM, Tomaras GD, Zavala F, Kellam P, Wardemann H, Julien JP. Molecular determinants of cross-reactivity and potency by VH3-33 antibodies against the Plasmodium falciparum circumsporozoite protein. Cell Rep 2023; 42:113330. [PMID: 38007690 PMCID: PMC10720262 DOI: 10.1016/j.celrep.2023.113330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/27/2023] Open
Abstract
IGHV3-33-encoded antibodies are prevalent in the human humoral response against the Plasmodium falciparum circumsporozoite protein (PfCSP). Among VH3-33 antibodies, cross-reactivity between PfCSP major repeat (NANP), minor (NVDP), and junctional (NPDP) motifs is associated with high affinity and potent parasite inhibition. However, the molecular basis of antibody cross-reactivity and the relationship with efficacy remain unresolved. Here, we perform an extensive structure-function characterization of 12 VH3-33 anti-PfCSP monoclonal antibodies (mAbs) with varying degrees of cross-reactivity induced by immunization of mice expressing a human immunoglobulin gene repertoire. We identify residues in the antibody paratope that mediate cross-reactive binding and delineate four distinct epitope conformations induced by antibody binding, with one consistently associated with high protective efficacy and another that confers comparably potent inhibition of parasite liver invasion. Our data show a link between molecular features of cross-reactive VH3-33 mAb binding to PfCSP and mAb potency, relevant for the development of antibody-based interventions against malaria.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Špela Binter
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK
| | - Clare Burn Aschner
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ryu Won Kang
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shamika Mathis-Torres
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kan Li
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Gillian Q Horn
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Richard H C Huntwork
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | | | | | | | - S Moses Dennison
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Departments of Surgery, Integrative Immunobiology, Molecular Genetics, and Microbiology, Center for Human Systems Immunology, Duke University, Durham, NC 27710, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Paul Kellam
- Kymab Ltd./Sanofi, The Bennet Building (B930), Babraham Research Campus, Cambridge CB22 3AT, UK; RQ Biotechnology Limited, 7th Floor Lynton House, 7-12 Tavistock Square, London WC1H 9LT, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London SW7 2BX, UK
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
12
|
Hayashi CTH, Cao Y, Zavala F, Simonyan H, Young CN, Kumar N. Antibodies elicited by Plasmodium falciparum circumsporozoite proteins lacking sequentially deleted C-terminal amino acids reveal mouse strain and epitopes specific differences. Vaccine 2023; 41:6824-6833. [PMID: 37827967 PMCID: PMC11004087 DOI: 10.1016/j.vaccine.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Malaria affects ∼ ¼ billion people globally and requires the development of additional tools to aid in elimination efforts. The recently approved RTS,S/AS01 vaccine represents a positive step, however, the moderate efficacy necessitates the development of more efficacious vaccines. PfCSP is a key target antigen for pre-erythrocytic vaccines aimed at preventing Plasmodium falciparum malaria infections. Epitopes within the central repeat region and at the junction of the repeat and N-terminal domain are well documented as major protective B cell epitopes. On the other hand, a majority of antibodies against the epitopes in the C-terminal domain, have been shown to be non-protective against sporozoite challenge. The C-terminal domain, however, contains CD4+ and CD8+ T cell epitopes previously shown to be important for regulating immune responses. The present study was designed to further explore the immunomodulatory potential of the C-terminal domain using DNA vaccines encoding PfCSP with sequential C-terminal truncations following known T cell epitopes. Five DNA vaccines encoding different truncations of PfCSP within the C-terminal domain were administered via intramuscular route and in vivo electroporation for effective immunogenicity. Protection in mice was evaluated by challenge with transgenic P. berghei expressing PfCSP. In Balb/c mice, antibody responses and protective efficacy were both affected progressively with sequential deletion of C-terminal amino acid residues. Similar studies in C57Bl/6 mice revealed that immunizations with plasmids encoding truncated PfCSP showed partial protection from sporozoite challenge with no significant differences in antibody titers observed compared to full-length PfCSP DNA immunized mice. Further analysis revealed murine strain-specific differences in the recognition of specific epitopes.
Collapse
MESH Headings
- Animals
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Mice
- Plasmodium falciparum/immunology
- Plasmodium falciparum/genetics
- Antibodies, Protozoan/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/immunology
- Mice, Inbred BALB C
- Female
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes/immunology
- Epitopes/genetics
- Sporozoites/immunology
Collapse
Affiliation(s)
- Clifford T H Hayashi
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA
| | - Yi Cao
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21215, USA
| | - Hayk Simonyan
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Colin N Young
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, Washington DC 20052, USA
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC 20052, USA.
| |
Collapse
|
13
|
Oludada OE, Costa G, Burn Aschner C, Obraztsova AS, Prieto K, Canetta C, Hoffman SL, Kremsner PG, Mordmüller B, Murugan R, Julien J, Levashina EA, Wardemann H. Molecular and functional properties of human Plasmodium falciparum CSP C-terminus antibodies. EMBO Mol Med 2023; 15:e17454. [PMID: 37082831 PMCID: PMC10245032 DOI: 10.15252/emmm.202317454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Human monoclonal antibodies (mAbs) against the central repeat and junction domain of Plasmodium falciparum circumsporozoite protein (PfCSP) have been studied extensively to guide malaria vaccine design compared to antibodies against the PfCSP C terminus. Here, we describe the molecular characteristics and protective potential of 73 germline and mutated human mAbs against the highly immunogenic PfCSP C-terminal domain. Two mAbs recognized linear epitopes in the C-terminal linker with sequence similarity to repeat and junction motifs, whereas all others targeted conformational epitopes in the α-thrombospondin repeat (α-TSR) domain. Specificity for the polymorphic Th2R/Th3R but not the conserved RII+/CS.T3 region in the α-TSR was associated with IGHV3-21/IGVL3-21 or IGLV3-1 gene usage. Although the C terminus specific mAbs showed signs of more efficient affinity maturation and class-switching compared to anti-repeat mAbs, live sporozoite binding and inhibitory activity was limited to a single C-linker reactive mAb with cross-reactivity to the central repeat and junction. The data provide novel insights in the human anti-C-linker and anti-α-TSR antibody response that support exclusion of the PfCSP C terminus from malaria vaccine designs.
Collapse
Affiliation(s)
- Opeyemi Ernest Oludada
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
- Biosciences FacultyUniversity of HeidelbergGermany
| | - Giulia Costa
- Vector Biology UnitMax Planck Institute for Infection BiologyBerlinGermany
| | | | - Anna S Obraztsova
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
- Biosciences FacultyUniversity of HeidelbergGermany
| | - Katherine Prieto
- The Hospital for Sick Children Research InstituteTorontoONCanada
| | - Caterina Canetta
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
| | | | - Peter G Kremsner
- Institute of Tropical MedicineTübingenGermany
- Centre de Recherches de Lambaréné (CERMEL)LambarénéGabon
| | - Benjamin Mordmüller
- Institute of Tropical MedicineTübingenGermany
- Radboud University Medical CenterNijmegenThe Netherlands
| | | | - Jean‐Philippe Julien
- The Hospital for Sick Children Research InstituteTorontoONCanada
- Departments of Biochemistry and ImmunologyUniversity of TorontoTorontoONCanada
| | - Elena A Levashina
- Vector Biology UnitMax Planck Institute for Infection BiologyBerlinGermany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
14
|
Ludwig J, Scally SW, Costa G, Hoffmann S, Murugan R, Lossin J, Prieto K, Obraztcova A, Lobeto N, Franke-Fayard B, Janse CJ, Lebas C, Collin N, Binter S, Kellam P, Levashina EA, Wardemann H, Julien JP. Glycosylated nanoparticle-based PfCSP vaccine confers long-lasting antibody responses and sterile protection in mouse malaria model. NPJ Vaccines 2023; 8:52. [PMID: 37029167 PMCID: PMC10080175 DOI: 10.1038/s41541-023-00653-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The development of an effective and durable vaccine remains a central goal in the fight against malaria. Circumsporozoite protein (CSP) is the major surface protein of sporozoites and the target of the only licensed Plasmodium falciparum (Pf) malaria vaccine, RTS,S/AS01. However, vaccine efficacy is low and short-lived, highlighting the need for a second-generation vaccine with superior efficacy and durability. Here, we report a Helicobacter pylori apoferritin-based nanoparticle immunogen that elicits strong B cell responses against PfCSP epitopes that are targeted by the most potent human monoclonal antibodies. Glycan engineering of the scaffold and fusion of an exogenous T cell epitope enhanced the anti-PfCSP B cell response eliciting strong, long-lived and protective humoral immunity in mice. Our study highlights the power of rational vaccine design to generate a highly efficacious second-generation anti-infective malaria vaccine candidate and provides the basis for its further development.
Collapse
Affiliation(s)
- Julia Ludwig
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sandro Hoffmann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Lossin
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anna Obraztcova
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Lobeto
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Blandine Franke-Fayard
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris J Janse
- Malaria Research Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia Lebas
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Plan-les-Ouates, Switzerland
| | - Spela Binter
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
| | - Paul Kellam
- Kymab a Sanofi Company, Babraham Research Campus, Cambridge, UK
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Vigdorovich V, Patel H, Watson A, Raappana A, Reynolds L, Selman W, Beeman S, Edlefsen PT, Kappe SHI, Sather DN. Coimmunization with Preerythrocytic Antigens alongside Circumsporozoite Protein Can Enhance Sterile Protection against Plasmodium Sporozoite Infection. Microbiol Spectr 2023; 11:e0379122. [PMID: 36847573 PMCID: PMC10100930 DOI: 10.1128/spectrum.03791-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Malaria-causing Plasmodium parasites have a complex life cycle and present numerous antigen targets that may contribute to protective immune responses. The currently recommended vaccine-RTS,S-functions by targeting the Plasmodium falciparum circumsporozoite protein (CSP), which is the most abundant surface protein of the sporozoite form responsible for initiating infection of the human host. Despite showing only moderate efficacy, RTS,S has established a strong foundation for the development of next-generation subunit vaccines. Our previous work characterizing the sporozoite surface proteome identified additional non-CSP antigens that may be useful as immunogens individually or in combination with CSP. In this study, we examined eight such antigens using the rodent malaria parasite Plasmodium yoelii as a model system. We demonstrate that despite conferring weak protection individually, coimmunizing each of several of these antigens alongside CSP could significantly enhance the sterile protection achieved by CSP immunization alone. Thus, our work provides compelling evidence that a multiantigen preerythrocytic vaccine approach may enhance protection compared to CSP-only vaccines. This lays the groundwork for further studies aimed at testing the identified antigen combinations in human vaccination trials that assess efficacy with controlled human malaria infection. IMPORTANCE The currently approved malaria vaccine targets a single parasite protein (CSP) and results in only partial protection. We tested several additional vaccine targets in combination with CSP to identify those that could enhance protection from infection upon challenge in the mouse malaria model. In identifying several such enhancing vaccine targets, our work indicates that a multiprotein immunization approach may be a promising avenue to achieving higher levels of protection from infection. Our work identified several candidate leads for follow-up in the models relevant for human malaria and provides an experimental framework for efficiently carrying out such screens for other combinations of vaccine targets.
Collapse
Affiliation(s)
- Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Hardik Patel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Alexander Watson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Laura Reynolds
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - William Selman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Suzannah Beeman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
17
|
Ngulube P. Humoral Immune Responses to P. falciparum Circumsporozoite Protein (Pfcsp) Induced by the RTS, S Vaccine - Current Update. Infect Drug Resist 2023; 16:2147-2157. [PMID: 37077252 PMCID: PMC10106824 DOI: 10.2147/idr.s401247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Malaria vaccines targeting the circumsporozoite protein (CSP) of the P. falciparum parasite have been overall relatively promising. RTS, S is a pre-erythrocytic recombinant protein-based malaria vaccine that targets CSP. RTS, S effectiveness shows some limited success regardless of its 58% efficacy for severe disease. P. falciparum circumsporozoite protein (Pfcsp) has stood to be the main candidate protein for most pre-erythrocytic stage vaccines. Studies on the structural and biophysical characteristics of antibodies specific to CSP (anti-CSP) are underway to achieve fine specificity with the CSP polymorphic regions. More recent studies have proposed the use of different kinds of monoclonal antibodies, the use of appropriate adjuvants, ideal vaccination dose and frequency, and improved targeting of particular epitopes for the robust production of functional antibodies and high complement-fixing activity as other potential methods for achieving long-lasting RTS, S. This review highlights recent findings regarding humoral immune responses to CSP elicited by RTS, S vaccine.
Collapse
Affiliation(s)
- Peter Ngulube
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
- Correspondence: Peter Ngulube, Email
| |
Collapse
|
18
|
Kucharska I, Binter Š, Murugan R, Scally SW, Ludwig J, Prieto K, Thai E, Costa G, Li K, Horn GQ, Flores-Garcia Y, Bosch A, Sicard T, Rubinstein JL, Zavala F, Dennison SM, Tomaras GD, Levashina EA, Kellam P, Wardemann H, Julien JP. High-density binding to Plasmodium falciparum circumsporozoite protein repeats by inhibitory antibody elicited in mouse with human immunoglobulin repertoire. PLoS Pathog 2022; 18:e1010999. [PMID: 36441829 PMCID: PMC9762590 DOI: 10.1371/journal.ppat.1010999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Špela Binter
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Stephen W. Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Julia Ludwig
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kan Li
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Gillian Q. Horn
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John L. Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - S. Moses Dennison
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Immunology, Molecular Genetics and Microbiology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
| | - Elena A. Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Paul Kellam
- Kymab Ltd., The Bennet Building (B930) Babraham Research Campus, Cambridge, United Kingdom
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute (DKFZ), Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
de Korne CM, van Schuijlenburg R, Sijtsma JC, de Bes HM, Baalbergen E, Azargoshasb S, van Oosterom MN, McCall MBB, van Leeuwen FWB, Roestenberg M. Sporozoite motility as a quantitative readout for anti-CSP antibody inhibition. Sci Rep 2022; 12:17194. [PMID: 36229488 PMCID: PMC9561690 DOI: 10.1038/s41598-022-22154-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Antibodies can prevent malaria by neutralizing the infectious Plasmodium falciparum sporozoites (SPZ) before they establish an infection in the liver. Circumsporozoite protein (CSP), the most abundant surface protein of SPZ is the leading candidate for passive (and subunit) immunization approaches against malaria. Comprehensive assessment of the parasite-inhibitory capacity of anti-CSP monoclonal antibodies (mAbs) is an important step in advancing CSP-based immunization strategies. In this study, we employed a quantitative imaging-based motility assay to quantify the effect of anti-CSP mAbs on SPZ motility, both in vitro and in human skin.Our assay provided a quantitative measure of mAb parasite-inhibitory capacity through measurement of the half-maximal motility inhibitory concentration (IC50M) value for anti-CSP mAbs (IC50M 2A10: 24 nM, IC50M 3SP2: 71 nM). We found a sevenfold discrepancy between the IC50M and the binding saturation concentration measured by ELISA, possibly related to the observed shedding of CSP-mAb complexes during SPZ movement. In a subset of SPZ (5%), in vitro motility was unaffected by the presence of 2A10 while 3SP2 was able to completely block movement. In our ex vivo skin explant model, SPZ proved less susceptible to anti-CSP mAbs compared to SPZ in an in vitro environment. By quantitatively assessing motility, we created a valuable tool that can be used for comprehensive assessment of anti-CSP mAb potency. Insight that will help deepen our understanding of anti-CSP mAb potency and guide selection of the most promising anti-CSP mAbs for downstream clinical development.
Collapse
Affiliation(s)
- C M de Korne
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R van Schuijlenburg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J C Sijtsma
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - H M de Bes
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - E Baalbergen
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - S Azargoshasb
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M B B McCall
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - F W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
20
|
Chakravarty S, Shears MJ, James ER, Rai U, Kc N, Conteh S, Lambert LE, Duffy PE, Murphy SC, Hoffman SL. Efficient infection of non-human primates with purified, cryopreserved Plasmodium knowlesi sporozoites. Malar J 2022; 21:247. [PMID: 36030292 PMCID: PMC9418655 DOI: 10.1186/s12936-022-04261-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines are the only candidate malaria vaccines that induce > 90% vaccine efficacy (VE) against controlled human malaria infection and the only malaria vaccines to have achieved reproducible VE against malaria in adults in Africa. The goal is to increase the impact and reduce the cost of PfSPZ vaccines by optimizing vaccine potency and manufacturing, which will benefit from identification of immunological responses contributing to protection in humans. Currently, there is no authentic animal challenge model for assessing P. falciparum malaria VE. Alternatively, Plasmodium knowlesi (Pk), which infects humans and non-human primates (NHPs) in nature, can be used to experimentally infect rhesus macaques (Macaca mulatta) to assess VE. Methods Sanaria has, therefore, produced purified, vialed, cryopreserved PkSPZ and conducted challenge studies in several naïve NHP cohorts. In the first cohort, groups of three rhesus macaques each received doses of 5 × 102, 2.5 × 103, 1.25 × 104 and 2.5 × 104 PkSPZ administered by direct venous inoculation. The infectivity of 1.5 × 103 PkSPZ cryopreserved with an altered method and of 1.5 × 103 PkSPZ cryopreserved for four years was tested in a second and third cohort of rhesus NHPs. The lastly, three pig-tailed macaques (Macaca nemestrina), a natural P. knowlesi host, were challenged with 2.5 × 103 PkSPZ cryopreserved six years earlier. Results In the first cohort, all 12 animals developed P. knowlesi parasitaemia by thick blood smear, and the time to positivity (prepatent period) followed a non-linear 4-parameter logistic sigmoidal model with a median of 11, 10, 8, and 7 days, respectively (r2 = 1). PkSPZ cryopreserved using a modified rapid-scalable method infected rhesus with a pre-patent period of 10 days, as did PkSPZ cryopreserved four years prior to infection, similar to the control group. Cryopreserved PkSPZ infected pig-tailed macaques with median time to positivity by thin smear, of 11 days. Conclusion This study establishes the capacity to consistently infect NHPs with purified, vialed, cryopreserved PkSPZ, providing a foundation for future studies to probe protective immunological mechanisms elicited by PfSPZ vaccines that cannot be established in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04261-z.
Collapse
Affiliation(s)
- Sumana Chakravarty
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Melanie J Shears
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Eric R James
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Urvashi Rai
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Natasha Kc
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Solomon Conteh
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Washington National Primate Research Center, University of Washington, Seattle, WA, USA.,Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Stephen L Hoffman
- Sanaria, Inc, 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
21
|
Visweswaran GRR, Vijayan K, Chandrasekaran R, Trakhimets O, Brown SL, Vigdorovich V, Yang A, Raappana A, Watson A, Selman W, Zuck M, Dambrauskas N, Kaushansky A, Sather DN. Germinal center activity and B cell maturation are associated with protective antibody responses against Plasmodium pre-erythrocytic infection. PLoS Pathog 2022; 18:e1010671. [PMID: 35793394 PMCID: PMC9292112 DOI: 10.1371/journal.ppat.1010671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP. Identifying specific features of vaccine-elicited antibody responses that are associated with protection from malaria infection is a key step toward the development of a safe and effective vaccine. Here we compared antibody and B cell responses in two mouse strains that exhibited a differential ability to generate antibodies that protect from infection challenge. We found that protection was due to the presence of vaccine-elicited antibodies and could be transferred between strains, and that the ability of antibodies to neutralize the parasite was directly linked to the strength (affinity) with which it binds CSP. Thus, we sought to understand if there were differences in the two strains in the process of B cell maturation that leads to generation of high affinity, protective antibody responses after vaccination. Overall, our comparative analysis indicates that germinal center (GC) activity, a key process in B cell maturation, was significantly diminished in the non-protected strain. Further, we observed evidence of higher levels of somatic mutation, which is a result of germinal center activity, in protected mice. Thus, our results indicate that the ability to generate protective antibody responses was linked to enhanced B cell maturation in the protected strain, providing a key clue to the type of responses that should be generated by future vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashton Yang
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alex Watson
- Seattle Children’s Research Institute, Seattle, Washington
| | - William Selman
- Seattle Children’s Research Institute, Seattle, Washington
| | - Meghan Zuck
- Seattle Children’s Research Institute, Seattle, Washington
| | | | - Alexis Kaushansky
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Brotman Baty Research Institute, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, Seattle, Washington
- * E-mail: (AK); (DNS)
| | - D. Noah Sather
- Seattle Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- * E-mail: (AK); (DNS)
| |
Collapse
|
22
|
Wahl I, Obraztsova AS, Puchan J, Hundsdorfer R, Chakravarty S, Sim BKL, Hoffman SL, Kremsner PG, Mordmüller B, Wardemann H. Clonal evolution and TCR specificity of the human T FH cell response to Plasmodium falciparum CSP. Sci Immunol 2022; 7:eabm9644. [PMID: 35687696 DOI: 10.1126/sciimmunol.abm9644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T follicular helper (TFH) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific TFH cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating TFH (cTFH) cells during successive malaria immunizations with radiation-attenuated Plasmodium falciparum (Pf) sporozoites. Repeated parasite exposures induced a dynamic, polyclonal cTFH response with high frequency of cells specific to a small number of epitopes in Pf circumsporozoite protein (PfCSP), the primary sporozoite surface protein and well-defined vaccine target. Human leukocyte antigen (HLA) restrictions and differences in TCR generation probability were associated with differences in the epitope targeting frequency and indicated the potential of amino acids 311 to 333 in the Th2R/T* region as a T cell supertope. But most of vaccine-induced anti-amino acid 311 to 333 TCRs, including convergent TCRs with high sequence similarity, failed to tolerate natural polymorphisms in their target peptide sequence, thus demonstrating that the TFH cell response was limited to the vaccine strain. These data suggest that the high parasite diversity in endemic areas will limit boosting of the vaccine-induced TFH cell response by natural infections. Our findings may guide the further design of PfCSP-based malaria vaccines able to induce potent T helper cell responses for broad, long-lasting antibody responses.
Collapse
Affiliation(s)
- Ilka Wahl
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Anna S Obraztsova
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Julia Puchan
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Rebecca Hundsdorfer
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
23
|
Wilder BK, Vigdorovich V, Carbonetti S, Minkah N, Hertoghs N, Raappana A, Cardamone H, Oliver BG, Trakhimets O, Kumar S, Dambrauskas N, Arredondo SA, Camargo N, Seilie AM, Murphy SC, Kappe SHI, Sather DN. Anti-TRAP/SSP2 monoclonal antibodies can inhibit sporozoite infection and may enhance protection of anti-CSP monoclonal antibodies. NPJ Vaccines 2022; 7:58. [PMID: 35618791 PMCID: PMC9135708 DOI: 10.1038/s41541-022-00480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
Vaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP). While CSP-based vaccines have recently had encouraging success in disease reduction, this was only achieved with extremely high antibody titers and appeared less effective for a complete block of infection (i.e., sterile protection). While such disease reduction is important, these and other results indicate that strategies focusing on CSP alone may not achieve the high levels of sterile protection needed for malaria eradication. Here, we show that monoclonal antibodies (mAbs) recognizing another sporozoite protein, TRAP/SSP2, exhibit a range of inhibitory activity and that these mAbs may augment CSP-based protection despite conferring no sterile protection on their own. Therefore, pursuing a multivalent subunit vaccine immunization is a promising strategy for improving infection-blocking malaria vaccines.
Collapse
Affiliation(s)
- Brandon K Wilder
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sara Carbonetti
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nana Minkah
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nina Hertoghs
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrew Raappana
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hayley Cardamone
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Brian G Oliver
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Silvia A Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Annette M Seilie
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Beutler N, Pholcharee T, Oyen D, Flores-Garcia Y, MacGill RS, Garcia E, Calla J, Parren M, Yang L, Volkmuth W, Locke E, Regules JA, Dutta S, Emerling D, Early AM, Neafsey DE, Winzeler EA, King CR, Zavala F, Burton DR, Wilson IA, Rogers TF. A novel CSP C-terminal epitope targeted by an antibody with protective activity against Plasmodium falciparum. PLoS Pathog 2022; 18:e1010409. [PMID: 35344575 PMCID: PMC8989322 DOI: 10.1371/journal.ppat.1010409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/07/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Potent and durable vaccine responses will be required for control of malaria caused by Plasmodium falciparum (Pf). RTS,S/AS01 is the first, and to date, the only vaccine that has demonstrated significant reduction of clinical and severe malaria in endemic cohorts in Phase 3 trials. Although the vaccine is protective, efficacy declines over time with kinetics paralleling the decline in antibody responses to the Pf circumsporozoite protein (PfCSP). Although most attention has focused on antibodies to repeat motifs on PfCSP, antibodies to other regions may play a role in protection. Here, we expressed and characterized seven monoclonal antibodies to the C-terminal domain of CSP (ctCSP) from volunteers immunized with RTS,S/AS01. Competition and crystal structure studies indicated that the antibodies target two different sites on opposite faces of ctCSP. One site contains a polymorphic region (denoted α-ctCSP) and has been previously characterized, whereas the second is a previously undescribed site on the conserved β-sheet face of the ctCSP (denoted β-ctCSP). Antibodies to the β-ctCSP site exhibited broad reactivity with a diverse panel of ctCSP peptides whose sequences were derived from field isolates of P. falciparum whereas antibodies to the α-ctCSP site showed very limited cross reactivity. Importantly, an antibody to the β-site demonstrated inhibition activity against malaria infection in a murine model. This study identifies a previously unidentified conserved epitope on CSP that could be targeted by prophylactic antibodies and exploited in structure-based vaccine design.
Collapse
Affiliation(s)
- Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Randall S. MacGill
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaeson Calla
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Linlin Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wayne Volkmuth
- Atreca Inc., South San Francisco, California, United States of America
| | - Emily Locke
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Jason A. Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Daniel Emerling
- Atreca Inc., South San Francisco, California, United States of America
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - C. Richter King
- PATH’s Malaria Vaccine Initiative, Washington, District of Columbia, United States of America
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas F. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
25
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Langowski MD, Khan FA, Savransky S, Brown DR, Balasubramaniyam A, Harrison WB, Zou X, Beck Z, Matyas GR, Regules JA, Miller R, Soisson LA, Batchelor AH, Dutta S. Restricted valency (NPNA) n repeats and junctional epitope-based circumsporozoite protein vaccines against Plasmodium falciparum. NPJ Vaccines 2022; 7:13. [PMID: 35087099 PMCID: PMC8795123 DOI: 10.1038/s41541-022-00430-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
The Circumsporozoite Protein (CSP) of Plasmodium falciparum contains an N-terminal region, a conserved Region I (RI), a junctional region, 25-42 copies of major (NPNA) and minor repeats followed by a C-terminal domain. The recently approved malaria vaccine, RTS,S/AS01 contains NPNAx19 and the C-terminal region of CSP. The efficacy of RTS,S against natural infection is low and short-lived, and mapping epitopes of inhibitory monoclonal antibodies may allow for rational improvement of CSP vaccines. Tobacco Mosaic Virus (TMV) was used here to display the junctional epitope (mAb CIS43), Region I (mAb 5D5), NPNAx5, and NPNAx20 epitope of CSP (mAbs 317 and 580). Protection studies in mice revealed that Region I did not elicit protective antibodies, and polyclonal antibodies against the junctional epitope showed equivalent protection to NPNAx5. Combining the junctional and NPNAx5 epitopes reduced immunogenicity and efficacy, and increasing the repeat valency to NPNAx20 did not improve upon NPNAx5. TMV was confirmed as a versatile vaccine platform for displaying small epitopes defined by neutralizing mAbs. We show that polyclonal antibodies against engineered VLPs can recapitulate the binding specificity of the mAbs and immune-focusing by reducing the structural complexity of an epitope may be superior to immune-broadening as a vaccine design approach. Most importantly the junctional and restricted valency NPNA epitopes can be the basis for developing highly effective second-generation malaria vaccine candidates.
Collapse
Affiliation(s)
- Mark D Langowski
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Farhat A Khan
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sofya Savransky
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dallas R Brown
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Arasu Balasubramaniyam
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William B Harrison
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Zoltan Beck
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Pfizer, 401N Middletown Rd, Pearl River, NY, 10965, USA
| | - Gary R Matyas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jason A Regules
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Robin Miller
- United States Agency for International Development, Washington, DC, USA
| | | | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
27
|
Kucharska I, Hossain L, Ivanochko D, Yang Q, Rubinstein JL, Pomès R, Julien JP. Structural basis of Plasmodium vivax inhibition by antibodies binding to the circumsporozoite protein repeats. eLife 2022; 11:e72908. [PMID: 35023832 PMCID: PMC8809896 DOI: 10.7554/elife.72908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is a global health burden, with Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) responsible for the majority of infections worldwide. Circumsporozoite protein (CSP) is the most abundant protein on the surface of Plasmodium sporozoites, and antibodies targeting the central repeat region of CSP can prevent parasite infection. Although much has been uncovered about the molecular basis of antibody recognition of the PfCSP repeats, data remains scarce for PvCSP. Here, we performed molecular dynamics simulations for peptides comprising the PvCSP repeats from strains VK210 and VK247 to reveal how the PvCSP central repeats are highly disordered, with minor propensities to adopt turn conformations. Next, we solved eight crystal structures to unveil the interactions of two inhibitory monoclonal antibodies (mAbs), 2F2 and 2E10.E9, with PvCSP repeats. Both antibodies can accommodate subtle sequence variances in the repeat motifs and recognize largely coiled peptide conformations that also contain isolated turns. Our structural studies uncover various degrees of Fab-Fab homotypic interactions upon recognition of the PvCSP central repeats by these two inhibitory mAbs, similar to potent mAbs against PfCSP. These findings augment our understanding of host-Plasmodium interactions and contribute molecular details of Pv inhibition by mAbs to unlock structure-based engineering of PvCSP-based vaccines.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Lamia Hossain
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Qiren Yang
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Régis Pomès
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| |
Collapse
|
28
|
Wang LT, Pereira LS, Kiyuka PK, Schön A, Kisalu NK, Vistein R, Dillon M, Bonilla BG, Molina-Cruz A, Barillas-Mury C, Tan J, Idris AH, Francica JR, Seder RA. Protective effects of combining monoclonal antibodies and vaccines against the Plasmodium falciparum circumsporozoite protein. PLoS Pathog 2021; 17:e1010133. [PMID: 34871332 PMCID: PMC8675929 DOI: 10.1371/journal.ppat.1010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites. These C-CSP-specific mAbs had limited binding to sporozoites in vitro that was increased by combination with neutralizing human "repeat" mAbs against the NPDP/NVDP/NANP tetrapeptides in the central repeat region of PfCSP. Nevertheless, passive transfer of repeat- and C-CSP-specific mAb combinations did not provide enhanced protection against in vivo sporozoite challenge compared to repeat mAbs alone. Furthermore, combining potent repeat-specific mAbs (CIS43, L9, and 317) that respectively target the three tetrapeptides (NPDP/NVDP/NANP) did not provide additional protection against in vivo sporozoite challenge. However, administration of either CIS43, L9, or 317 (but not C-CSP-specific mAbs) to mice that had been immunized with R21, a PfCSP-based virus-like particle vaccine that induces polyclonal antibodies against the repeat region and C-CSP, provided enhanced protection against sporozoite challenge when compared to vaccine or mAbs alone. Collectively, this study shows that while combining mAbs against the repeat and C-terminal regions of PfCSP provide no additional protection in vivo, repeat mAbs do provide increased protection when combined with vaccine-induced polyclonal antibodies. These data should inform the implementation of PfCSP human mAbs alone or following vaccination to prevent malaria infection.
Collapse
Affiliation(s)
- Lawrence T. Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lais S. Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patience K. Kiyuka
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neville K. Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian G. Bonilla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Azza H. Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Joseph R. Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
29
|
Paratope states in solution improve structure prediction and docking. Structure 2021; 30:430-440.e3. [PMID: 34838187 DOI: 10.1016/j.str.2021.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Structure-based antibody design and accurate predictions of antibody-antigen interactions remain major challenges in computational biology. By using molecular dynamics simulations, we show that a single static X-ray structure is not sufficient to identify determinants of antibody-antigen recognition. Here, we investigate antibodies that undergo substantial conformational changes upon antigen binding and have been classified as difficult cases in an extensive benchmark for antibody-antigen docking. We present thermodynamics and transition kinetics of these conformational rearrangements and show that paratope states can be used to improve antibody-antigen docking. By using the unbound antibody X-ray structure as starting structure for molecular dynamics simulations, we retain a binding competent conformation substantially different to the unbound antibody X-ray structure. We also observe that the kinetically dominant antibody paratope conformations are chosen by the bound antigen conformation with the highest probability. Thus, we show that paratope states in solution can improve antibody-antigen docking and structure prediction.
Collapse
|
30
|
Das J, Fallon JK, Yu TC, Michell A, Suscovich TJ, Linde C, Natarajan H, Weiner J, Coccia M, Gregory S, Ackerman ME, Bergmann-Leitner E, Fontana L, Dutta S, Lauffenburger DA, Jongert E, Wille-Reece U, Alter G. Delayed fractional dosing with RTS,S/AS01 improves humoral immunity to malaria via a balance of polyfunctional NANP6- and Pf16-specific antibodies. MED 2021; 2:1269-1286.e9. [DOI: 10.1016/j.medj.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/01/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
|
31
|
Bolton J, Chaudhury S, MacGill RS, Early AM, King CR, Locke E, Neafsey DE, Bergmann-Leitner ES. Multiplex serological assay for establishing serological profiles of polymorphic, closely related peptide antigens. MethodsX 2021; 8:101345. [PMID: 34430249 PMCID: PMC8374401 DOI: 10.1016/j.mex.2021.101345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023] Open
Abstract
Profiling of serological responses to establish the landscape of antibody specificities in individuals exposed to pathogens or vaccines is crucial for (a) revealing humoral immune correlates of protection; (b) uncovering markers of pathogen exposure; and (c) identifying antigens and epitopes associated with disease vs. protection. Establishing the antigenic profile of serological responses requires either expensive microarrays or labor- and time-intensive ELISA assays. Multiplex assay platforms are increasingly being evaluated for their usefulness for high-throughput testing of sera or plasma. The methodology described here utilizes a plate-based assay that allows the simultaneous detection of up to ten antigens per well in a 96 well format using an electrochemiluminescence immunoassay (ECLIA).•The newly developed protocol outlines high-throughput profiling of serological responses using a multiplex testing platform with subsequent computational analysis.•The protocol is a modification of the basic assay development manual from the manufacturer of the MESO QuickPlex SQ 120 instrument (MSD, Gaithersburg, MD) and can be used for synthetic peptides as well as full length proteins.•The protocol can be applied to map serological responses to pathogens or pathogen-derived antigens to establish serological profiles in search for biomarkers or immune correlates.
Collapse
Affiliation(s)
- Jessica Bolton
- Immunology Core, Malaria Biologics Branch, WRAIR, Silver Spring, MD 20910, United States
| | - Sidhartha Chaudhury
- Center for Enabling Capabilities, WRAIR, Silver Spring, MD 20910, United States
| | | | - Angela M. Early
- Broad Institute of MIT and Harvard T.H. Chan School of Public Health, Cambridge, MA 02142, United States
| | - C. Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Daniel E. Neafsey
- Broad Institute of MIT and Harvard T.H. Chan School of Public Health, Cambridge, MA 02142, United States
| | | |
Collapse
|
32
|
Chatterjee D, Lewis FJ, Sutton HJ, Kaczmarski JA, Gao X, Cai Y, McNamara HA, Jackson CJ, Cockburn IA. Avid binding by B cells to the Plasmodium circumsporozoite protein repeat suppresses responses to protective subdominant epitopes. Cell Rep 2021; 35:108996. [PMID: 33852850 PMCID: PMC8052187 DOI: 10.1016/j.celrep.2021.108996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/07/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
Antibodies targeting the NANP/NVDP repeat domain of the Plasmodium falciparum circumsporozoite protein (CSPRepeat) can protect against malaria. However, it has also been suggested that the CSPRepeat is a decoy that prevents the immune system from mounting responses against other domains of CSP. Here, we show that, following parasite immunization, B cell responses to the CSPRepeat are immunodominant over responses to other CSP domains despite the presence of similar numbers of naive B cells able to bind these regions. We find that this immunodominance is driven by avid binding of the CSPRepeat to cognate B cells that are able to expand at the expense of B cells with other specificities. We further show that mice immunized with repeat-truncated CSP molecules develop responses to subdominant epitopes and are protected against malaria. These data demonstrate that the CSPRepeat functions as a decoy, but truncated CSP molecules may be an approach for malaria vaccination.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Fiona J Lewis
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Henry J Sutton
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Gao
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yeping Cai
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Hayley A McNamara
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
33
|
Thai E, Costa G, Weyrich A, Murugan R, Oyen D, Flores-Garcia Y, Prieto K, Bosch A, Valleriani A, Wu NC, Pholcharee T, Scally SW, Wilson IA, Wardemann H, Julien JP, Levashina EA. A high-affinity antibody against the CSP N-terminal domain lacks Plasmodium falciparum inhibitory activity. J Exp Med 2021; 217:152019. [PMID: 32790871 PMCID: PMC7596816 DOI: 10.1084/jem.20200061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 11/04/2022] Open
Abstract
Malaria is a global health concern, and research efforts are ongoing to develop a superior vaccine to RTS,S/AS01. To guide immunogen design, we seek a comprehensive understanding of the protective humoral response against Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). In contrast to the well-studied responses to the repeat region and the C-terminus, the antibody response against the N-terminal domain of PfCSP (N-CSP) remains obscure. Here, we characterized the molecular recognition and functional efficacy of the N-CSP-specific monoclonal antibody 5D5. The crystal structure at 1.85-Å resolution revealed that 5D5 binds an α-helical epitope in N-CSP with high affinity through extensive shape and charge complementarity and the unusual utilization of an antibody N-linked glycan. Nevertheless, functional studies indicated low 5D5 binding to live Pf sporozoites and lack of sporozoite inhibition in vitro and in vivo. Overall, our data do not support the inclusion of the 5D5 N-CSP epitope into the next generation of CSP-based vaccines.
Collapse
Affiliation(s)
- Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Weyrich
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rajagopal Murugan
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Katherine Prieto
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alexandre Bosch
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Angelo Valleriani
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Stephen W Scally
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Institute, Heidelberg, Germany
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
34
|
Livingstone MC, Bitzer AA, Giri A, Luo K, Sankhala RS, Choe M, Zou X, Dennison SM, Li Y, Washington W, Ngauy V, Tomaras GD, Joyce MG, Batchelor AH, Dutta S. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci Rep 2021; 11:5318. [PMID: 33674699 PMCID: PMC7970865 DOI: 10.1038/s41598-021-84622-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/11/2021] [Indexed: 01/23/2023] Open
Abstract
Plasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alexis A Bitzer
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alish Giri
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kun Luo
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S Sankhala
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Yuanzhang Li
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William Washington
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Viseth Ngauy
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
- Departments of Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Gordon Joyce
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
35
|
Chatterjee D, Cockburn IA. The challenges of a circumsporozoite protein-based malaria vaccine. Expert Rev Vaccines 2021; 20:113-125. [PMID: 33554669 DOI: 10.1080/14760584.2021.1874924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION A safe and effective vaccine will likely be necessary for the control or eradication of malaria which kills 400,000 annually. Our most advanced vaccine candidate to date is RTS,S which is based on the Plasmodium falciparum circumsporozoite protein (PfCSP) of the malaria parasite. However, protection by RTS,S is incomplete and short-lived. AREAS COVERED Here we summarize results from recent clinical trials of RTS,S and critically evaluate recent studies that aim to understand the correlates of protective immunity and why vaccine-induced protection is short-lived. In particular, recent systems serology studies have highlighted a key role for the necessity of inducing functional antibodies. In-depth analyses of immune responses to CSP in both mouse models and vaccinated humans have also highlighted difficulties in generating the maintaining high-quality antibody responses. Finally, in recent years biophysical and structural studies of antibody binding to PfCSP have led to a better understanding of how highly potent antibodies can block infection, which can inform vaccine design. EXPERT OPINION We highlight how both structure-guided vaccine design and a better understanding of the immune response to PfCSP can inform a second generation of PfCSP-based vaccines stimulating a broader range of protective targets within PfCSP.
Collapse
Affiliation(s)
- Deepyan Chatterjee
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| | - Ian Andrew Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, the Australian National University, Canberra, Australia
| |
Collapse
|
36
|
Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine. Vaccine 2021; 39:968-975. [PMID: 33431225 DOI: 10.1016/j.vaccine.2020.12.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023]
Abstract
The circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites, a prime vaccine target, and is known to have polymorphisms in the C-terminal region. Vaccines using a single allele may have lower efficacy against genotypic variants. Recent studies have found evidence suggesting the efficacy of the CSP-based RTS,S malaria vaccine may be limited against P. falciparum CSP alleles that diverge from the 3D7 vaccine allele, particularly in this polymorphic C-terminal region. In order to assess the breadth of the RTS,S-induced antibody responses against CSP C-terminal antigenic variants, we used a novel multiplex assay to measure reactivity of serum samples from a recent RTS,S study against C-terminal peptides from 3D7 and seven additional CSP alleles that broadly represent the genetic diversity found in circulating P. falciparum field isolates. We found that responses to the variants showed, on average, a ~ 30-fold reduction in reactivity relative to the vaccine-matched 3D7 allele. The extent of this reduction, ranging from 21 to 69-fold, correlated with the number of polymorphisms between the variants and 3D7. We calculated antibody breadth of each sample as the median relative reactivity to the seven CSP variants compared to 3D7. Surprisingly, protection from 3D7 challenge in the RTS,S study was associated with higher C-terminal antibody breadth. These findings suggest CSP C-terminal-specific avidity or fine-specificity may play a role in RTS,S-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
37
|
Bell GJ, Agnandji ST, Asante KP, Ghansah A, Kamthunzi P, Emch M, Bailey JA. Impacts of Ecology, Parasite Antigenic Variation, and Human Genetics on RTS,S/AS01e Malaria Vaccine Efficacy. CURR EPIDEMIOL REP 2021; 8:79-88. [PMID: 34367877 PMCID: PMC8324449 DOI: 10.1007/s40471-021-00271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Global malaria elimination has little chance of success without an effective vaccine. The first malaria vaccine, RTS,S/AS01e, demonstrated moderate efficacy against clinical malaria in phase III trials and is undergoing large-scale effectiveness trials in Africa. Importantly, the vaccine did not perform equally well between phase III study sites. Though reasons for the moderate efficacy and this variation are unclear, various mechanisms have been suggested. This review summarizes the recent literature on such mechanisms, with a focus on those involving landscape ecology, parasite antigenic variation, and human host genetic differences. RECENT FINDINGS Transmission intensity may have a role pre- and post-vaccination in modulating immune responses to the vaccine. Furthermore, malaria incidence may "rebound" in vaccinated populations living in high transmission intensity settings. There is growing evidence that both genetic variation in the parasite circumsporozoite protein and variation of human host genetic factors affect RTS,S vaccine efficacy. These genetic factors may be interacting in complex ways to produce variation in the natural and vaccine-induced immune responses that protect against malaria. SUMMARY Due to the modest efficacy of RTS,S/AS01e, the combinations of factors (ecological, parasite, human host) impacting its effectiveness must be clearly understood, as this information will be critical for implementation policy and future vaccine designs.
Collapse
Affiliation(s)
- Griffin J. Bell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon ,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Michael Emch
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA ,Department of Geography, University of North Carolina, Chapel Hill 220 E Cameron Ave, Chapel Hill, NC 27599 USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick St, Rm 314B, Providence, RI 02912 USA
| |
Collapse
|
38
|
Sicard T, Kassardjian A, Julien JP. B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Rev Vaccines 2020; 19:1023-1039. [PMID: 33252273 DOI: 10.1080/14760584.2020.1857736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Adjuvants are critical components of vaccines to improve the quality and durability of immune responses. Molecular adjuvants are a specific subclass of adjuvants where ligands of known immune-modulatory receptors are directly fused to an antigen. Co-stimulation of the B cell receptor (BCR) and immune-modulatory receptors through this strategy can augment downstream signaling to improve antibody titers and/or potency, and survival in challenge models. AREAS COVERED C3d has been the most extensively studied molecular adjuvant and shown to improve immune responses to a number of antigens. Similarly, tumor necrosis superfamily ligands, such as BAFF and APRIL, as well as CD40, CD180, and immune complex ligands can also improve humoral immunity as molecular adjuvants. EXPERT OPINION However, no single strategy has emerged that improves immune outcomes in all contexts. Thus, systematic exploration of molecular adjuvants that target B cell receptors will be required to realize their full potential as next-generation vaccine technologies.
Collapse
Affiliation(s)
- Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada
| | - Audrey Kassardjian
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute , Toronto, ON, Canada.,Department of Biochemistry, University of Toronto , ON, Canada.,Department of Immunology, University of Toronto , ON, Canada
| |
Collapse
|
39
|
Kucharska I, Thai E, Srivastava A, Rubinstein JL, Pomès R, Julien JP. Structural ordering of the Plasmodium berghei circumsporozoite protein repeats by inhibitory antibody 3D11. eLife 2020; 9:e59018. [PMID: 33253113 PMCID: PMC7704109 DOI: 10.7554/elife.59018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmodium sporozoites express circumsporozoite protein (CSP) on their surface, an essential protein that contains central repeating motifs. Antibodies targeting this region can neutralize infection, and the partial efficacy of RTS,S/AS01 - the leading malaria vaccine against P. falciparum (Pf) - has been associated with the humoral response against the repeats. Although structural details of antibody recognition of PfCSP have recently emerged, the molecular basis of antibody-mediated inhibition of other Plasmodium species via CSP binding remains unclear. Here, we analyze the structure and molecular interactions of potent monoclonal antibody (mAb) 3D11 binding to P. berghei CSP (PbCSP) using molecular dynamics simulations, X-ray crystallography, and cryoEM. We reveal that mAb 3D11 can accommodate all subtle variances of the PbCSP repeating motifs, and, upon binding, induces structural ordering of PbCSP through homotypic interactions. Together, our findings uncover common mechanisms of antibody evolution in mammals against the CSP repeats of Plasmodium sporozoites.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Ananya Srivastava
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Régis Pomès
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| |
Collapse
|
40
|
Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020; 85:85/1/e00078-20. [PMID: 33239435 DOI: 10.1128/mmbr.00078-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccines work primarily by eliciting antibodies, even when recovery from natural infection depends on cellular immunity. Large efforts have therefore been made to identify microbial antigens that elicit protective antibodies, but these endeavors have encountered major difficulties, as witnessed by the lack of vaccines against many pathogens. This review summarizes accumulating evidence that subdominant protein regions, i.e., surface-exposed regions that elicit relatively weak antibody responses, are of particular interest for vaccine development. This concept may seem counterintuitive, but subdominance may represent an immune evasion mechanism, implying that the corresponding region potentially is a key target for protective immunity. Following a presentation of the concepts of immunodominance and subdominance, the review will present work on subdominant regions in several major human pathogens: the protozoan Plasmodium falciparum, two species of pathogenic streptococci, and the dengue and influenza viruses. Later sections are devoted to the molecular basis of subdominance, its potential role in immune evasion, and general implications for vaccine development. Special emphasis will be placed on the fact that a whole surface-exposed protein domain can be subdominant, as demonstrated for all of the pathogens described here. Overall, the available data indicate that subdominant protein regions are of much interest for vaccine development, not least in bacterial and protozoal systems, for which antibody subdominance remains largely unexplored.
Collapse
|
41
|
Chaudhury S, Macgill RS, Early AM, Bolton JS, King CR, Locke E, Pierson T, Wirth DF, Neafsey DE, Bergmann-leitner ES. Breadth of humoral immune responses to the C-terminus of the circumsporozoite protein is associated with protective efficacy induced by the RTS,S malaria vaccine.. [DOI: 10.1101/2020.11.15.20232033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractThe circumsporozoite protein (CSP) is the main surface antigen of malaria sporozoites and a prime vaccine target. Responses induced by the CSP-based RTS,S vaccine towards the polymorphic C-terminal region of P.falciparum-CSP raise concerns that vaccines using single alleles may have lower efficacy against genotypic variants. We characterized the extent of C-terminal cross-reactivity of antibodies induced by RTS,S (based on the 3D7 allele) with variants representing seven circulating field isolates through a novel HTS-multiplex assay for screening closely related peptides. Reactivity to variants showed approximately 30-fold reduction in recognition relative to 3D7. The degree of reduced cross-reactivity,ranging from 21 to 69-fold, directly correlated with the number of polymorphisms between variants and 3D7. Surprisingly, protection assessed by challenge with 3D7 parasites was strongly associated with higher C-terminal antibody breadth suggesting that C-terminal specific avidity or fine-specificity may play a role in RTS,S/AS01B-mediated protection and that breadth of C-terminal CSP-specific antibody responses may be a marker of protection.
Collapse
|
42
|
Wang LT, Pereira LS, Flores-Garcia Y, O'Connor J, Flynn BJ, Schön A, Hurlburt NK, Dillon M, Yang ASP, Fabra-García A, Idris AH, Mayer BT, Gerber MW, Gottardo R, Mason RD, Cavett N, Ballard RB, Kisalu NK, Molina-Cruz A, Nelson J, Vistein R, Barillas-Mury C, Amino R, Baker D, King NP, Sauerwein RW, Pancera M, Cockburn IA, Zavala F, Francica JR, Seder RA. A Potent Anti-Malarial Human Monoclonal Antibody Targets Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver. Immunity 2020; 53:733-744.e8. [PMID: 32946741 PMCID: PMC7572793 DOI: 10.1016/j.immuni.2020.08.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023]
Abstract
Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice. Isothermal titration calorimetry and multiphoton microscopy showed that L9 and the other most protective mAbs bound PfCSP with two binding events and mediated protection by killing SPZ in the liver and by preventing their egress from sinusoids and traversal of hepatocytes. This study defines the subdominant PfCSP minor repeats as neutralizing epitopes, identifies an in vitro biophysical correlate of SPZ neutralization, and demonstrates that the liver is an important site for antibodies to prevent malaria.
Collapse
Affiliation(s)
- Lawrence T Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lais S Pereira
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - James O'Connor
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia; The Australian National University Medical School, Canberra, ACT 2601, Australia
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas K Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marlon Dillon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie S P Yang
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amanda Fabra-García
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Azza H Idris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Monica W Gerber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Cavett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reid B Ballard
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neville K Kisalu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jorgen Nelson
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rachel Vistein
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Neil P King
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Robert W Sauerwein
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ian A Cockburn
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Antibody Feedback Limits the Expansion of B Cell Responses to Malaria Vaccination but Drives Diversification of the Humoral Response. Cell Host Microbe 2020; 28:572-585.e7. [PMID: 32697938 DOI: 10.1016/j.chom.2020.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Generating sufficient antibody to block infection is a key challenge for vaccines against malaria. Here, we show that antibody titers to a key target, the repeat region of the Plasmodium falciparum circumsporozoite protein (PfCSP), plateaued after two immunizations in a clinical trial of the radiation-attenuated sporozoite vaccine. To understand the mechanisms limiting vaccine responsiveness, we developed immunoglobulin (Ig)-knockin mice with elevated numbers of PfCSP-binding B cells. We determined that recall responses were inhibited by antibody feedback, potentially via epitope masking of the immunodominant PfCSP repeat region. Importantly, the amount of antibody that prevents boosting is below the amount of antibody required for protection. Finally, while antibody feedback limited responses to the PfCSP repeat region in vaccinated volunteers, potentially protective subdominant responses to PfCSP C-terminal regions expanded with subsequent boosts. These data suggest that antibody feedback drives the diversification of immune responses and that vaccination for malaria will require targeting multiple antigens.
Collapse
|
44
|
Duffy PE, Patrick Gorres J. Malaria vaccines since 2000: progress, priorities, products. NPJ Vaccines 2020; 5:48. [PMID: 32566259 PMCID: PMC7283239 DOI: 10.1038/s41541-020-0196-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Malaria vaccine development entered a new era in 2015 when the pre-erythrocytic Plasmodium falciparum candidate RTS,S was favorably reviewed by the European Medicines Agency and subsequently introduced into national pilot implementation programs, marking the first human anti-parasite vaccine to pass regulatory scrutiny. Since the first trials published in 1997, RTS,S has been evaluated in a series of clinical trials culminating in Phase 3 testing, while testing of other pre-erythrocytic candidates (that target sporozoite- or liver-stage parasites), particularly whole sporozoite vaccines, has also increased. Interest in blood-stage candidates (that limit blood-stage parasite growth) subsided after disappointing human efficacy results, although new blood-stage targets and concepts may revive activity in this area. Over the past decade, testing of transmission-blocking vaccines (that kill mosquito/sexual-stage parasites) advanced to field trials and the first generation of placental malaria vaccines (that clear placenta-sequestering parasites) entered the clinic. Novel antigen discovery, human monoclonal antibodies, structural vaccinology, and improved platforms promise to expand on RTS,S and improve existing vaccine candidates.
Collapse
Affiliation(s)
- Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - J. Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
45
|
Evolution of protective human antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs. Nat Med 2020; 26:1135-1145. [DOI: 10.1038/s41591-020-0881-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
46
|
Abstract
Much of the gain in malaria control, in terms of regional achievements in restricting geographical spread and reducing malaria cases and deaths, can be attributed to large-scale deployment of antimalarial drugs, insecticide-treated bed nets, and early diagnostics. However, despite impressive progress, control efforts have stalled because of logistics, unsustainable delivery, or short-term effectiveness of existing interventions or a combination of these reasons. A highly efficacious malaria vaccine as an additional tool would go a long way, but success in the development of this important intervention remains elusive. Moreover, most of the vaccine candidate antigens that were investigated in early-stage clinical trials, selected partly because of their immunogenicity and abundance during natural malaria infection, were polymorphic or structurally complex or both. Likewise, we have a limited understanding of immune mechanisms that confer protection. We reflect on some considerable technological and scientific progress that has been achieved and the lessons learned.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
47
|
Bolton JS, Chaudhury S, Dutta S, Gregory S, Locke E, Pierson T, Bergmann-Leitner ES. Comparison of ELISA with electro-chemiluminescence technology for the qualitative and quantitative assessment of serological responses to vaccination. Malar J 2020; 19:159. [PMID: 32303235 PMCID: PMC7165447 DOI: 10.1186/s12936-020-03225-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/06/2020] [Indexed: 01/05/2023] Open
Abstract
Background Profiling immune responses induced by either infection or vaccination can provide insight into identification of correlates of protection. Furthermore, profiling of serological responses can be used to identify biomarkers indicative of exposure to pathogens. Conducting such immune surveillance requires readout methods that are high-throughput, robust, and require small sample volumes. While the enzyme-linked immunosorbent assay (ELISA) is the classical readout method for assessing serological responses, the advent of multiplex assays has significantly increased the throughput and capacity for immunoprofiling. This report describes the development and assay performance (sensitivity, linearity of detection, requirement for multiple dilutions for each sample, intra- and inter-assay variability) of an electro-chemiluminescence (ECLIA)-based multiplex assay. Methods The current study describes the development of a multiplex ECLIA-based assay and characterizes the sensitivity, linear range, and inter- and intra-assay variability of the ECLIA platform and its agreement with the traditional ELISA. Special emphasis was placed on potential antigenic competition when testing closely related antigens in the multiplex format. Results Multiplexing of antigens in ECLIA provides significant practical benefits in terms of reducing sample volume requirements and experimental time. Beyond the practical advantages of multiplexing, the ECLIA provides superior assay performance when compared to the ELISA. Not only does ECLIA show good agreement with the ELISA assay, but the linear range of ECLIA is also sufficiently wide to permit single-dilution measurements of concentration without the need to do serial dilutions. The lack of antigenic competition allows the simultaneous testing of closely related antigens, such as plate antigens representing different alleles of the same protein, which can inform about cross-reactivities—or lack thereof—of serological responses. Conclusion The advantages of the newly developed tool for assessing the antigen profiles of serological responses may ultimately lead to the identification of biomarkers associated with various disease stages and or protection against disease.
Collapse
Affiliation(s)
- Jessica S Bolton
- Immunology Core, Malaria Biologics Branch, WRAIR, 503 Robert Grant Ave, 3W58, Silver Spring, MD, 20910, USA
| | - Sidhartha Chaudhury
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Silver Spring, MD, 21702, USA
| | - Sheetij Dutta
- Dept. Structural Vaccinology, Malaria Biologics Branch, WRAIR, Silver Spring, MD, 20910, USA
| | - Scott Gregory
- PATH/Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - Emily Locke
- PATH/Malaria Vaccine Initiative, Washington, DC, 20001, USA
| | - Tony Pierson
- Immunology Core, Malaria Biologics Branch, WRAIR, 503 Robert Grant Ave, 3W58, Silver Spring, MD, 20910, USA
| | - Elke S Bergmann-Leitner
- Immunology Core, Malaria Biologics Branch, WRAIR, 503 Robert Grant Ave, 3W58, Silver Spring, MD, 20910, USA.
| |
Collapse
|
48
|
Raghunandan R, Mayer BT, Flores-Garcia Y, Gerber MW, Gottardo R, Jhun H, Herrera SM, Perez-Ramos DW, Locke E, King CR, Zavala F. Characterization of two in vivo challenge models to measure functional activity of monoclonal antibodies to Plasmodium falciparum circumsporozoite protein. Malar J 2020; 19:113. [PMID: 32183833 PMCID: PMC7079517 DOI: 10.1186/s12936-020-03181-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND New strategies are needed to reduce the incidence of malaria, and promising approaches include the development of vaccines and monoclonal antibodies (mAbs) that target the circumsporozoite protein (CSP). To select the best candidates and speed development, it is essential to standardize preclinical assays to measure the potency of such interventions in animal models. METHODS Two assay configurations were studied using transgenic Plasmodium berghei expressing Plasmodium falciparum full-length circumsporozoite protein. The assays measured (1) reduction in parasite infection of the liver (liver burden) following an intravenous (i.v) administration of sporozoites and (2) protection from parasitaemia following mosquito bite challenge. Two human CSP mAbs, AB311 and AB317, were compared for their ability to inhibit infection. Multiple independent experiments were conducted to define assay variability and resultant impact on the ability to discriminate differences in mAb functional activity. RESULTS Overall, the assays produced highly consistent results in that all individual experiments showed greater functional activity for AB317 compared to AB311 as calculated by the dose required for 50% inhibition (ID50) as well as the serum concentration required for 50% inhibition (IC50). The data were then used to model experimental designs with adequate statistical power to rigorously screen, compare, and rank order novel anti-CSP mAbs. CONCLUSION The results indicate that in vivo assays described here can provide reliable information for comparing the functional activity of mAbs. The results also provide guidance regarding selection of the appropriate experimental design, dose selection, and group sizes.
Collapse
Affiliation(s)
- Rama Raghunandan
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue, NW, Suite 1000, Washington, DC, 20001, USA.
| | - Bryan T Mayer
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Monica W Gerber
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA, 98109, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Hugo Jhun
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Vaccine Research and Development, Pfizer, Pearl River, NY, 10965, USA
| | - Sonia M Herrera
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel W Perez-Ramos
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily Locke
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue, NW, Suite 1000, Washington, DC, 20001, USA
| | - C Richter King
- PATH's Malaria Vaccine Initiative, 455 Massachusetts Avenue, NW, Suite 1000, Washington, DC, 20001, USA.
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
49
|
Xu ER, Lafita A, Bateman A, Hyvönen M. The thrombospondin module 1 domain of the matricellular protein CCN3 shows an atypical disulfide pattern and incomplete CWR layers. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:124-134. [PMID: 32038043 DOI: 10.1107/s2059798319016747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/14/2019] [Indexed: 05/04/2023]
Abstract
The members of the CCN (Cyr61/CTGF/Nov) family are a group of matricellular regulatory proteins that are essential to a wide range of functional pathways in cell signalling. Through interacting with extracellular matrix components and growth factors via one of their four domains, the CCN proteins are involved in critical biological processes such as angiogenesis, cell proliferation, bone development, fibrogenesis and tumorigenesis. Here, the crystal structure of the thrombospondin module 1 (TSP1) domain of CCN3 (previously known as Nov) is presented, which shares a similar three-stranded fold with the thrombospondin type 1 repeats of thrombospondin-1 and spondin-1, but with variations in the disulfide connectivity. Moreover, the CCN3 TSP1 domain lacks the typical π-stacked ladder of charged and aromatic residues on one side of the domain that is seen in other TSP1 domains. Using conservation analysis among orthologous domains, it is shown that a charged cluster in the centre of the domain is the most conserved site and this cluster is predicted to be a potential functional epitope for heparan sulfate binding. This variant TSP1 domain has also been used to revise the sequence determinants of TSP1 domains and to derive improved Pfam sequence profiles for the identification of novel TSP1 domains in more than 10 000 proteins across diverse phyla.
Collapse
Affiliation(s)
- Emma Ruoqi Xu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, England
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, England
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, England
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, England
| |
Collapse
|
50
|
Optimization of a Plasmodium falciparum circumsporozoite protein repeat vaccine using the tobacco mosaic virus platform. Proc Natl Acad Sci U S A 2020; 117:3114-3122. [PMID: 31988134 PMCID: PMC7022184 DOI: 10.1073/pnas.1911792117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RTS,S/AS01 is a circumsporozoite protein (CSP)-based malaria vaccine that confers partial protection against malaria in endemic areas. Recent reports have elucidated structures of monoclonal antibodies that bind to the central (NPNA) repeat region of CSP and that inhibit parasite invasion. Antigen configuration and copy number of CSP repeats displayed on a tobacco mosaic virus (TMV) particle platform were studied. A TMV vaccine containing CSP repeats displayed as a loop induced 10× better antibody titer than a nearly full-length CSP in mice. In rhesus model, this translated to a 5× improvement in titer. Rhesus antibodies potently inhibited parasite invasion up to 11 mo after vaccination. An optimized epitope-focused, repeat-only CSP vaccine may be sufficient or better than the existing CSP vaccines. Plasmodium falciparum vaccine RTS,S/AS01 is based on the major NPNA repeat and the C-terminal region of the circumsporozoite protein (CSP). RTS,S-induced NPNA-specific antibody titer and avidity have been associated with high-level protection in naïve subjects, but efficacy and longevity in target populations is relatively low. In an effort to improve upon RTS,S, a minimal repeat-only, epitope-focused, protective, malaria vaccine was designed. Repeat antigen copy number and flexibility was optimized using the tobacco mosaic virus (TMV) display platform. Comparing antigenicity of TMV displaying 3 to 20 copies of NPNA revealed that low copy number can reduce the abundance of low-affinity monoclonal antibody (mAb) epitopes while retaining high-affinity mAb epitopes. TMV presentation improved titer and avidity of repeat-specific Abs compared to a nearly full-length protein vaccine (FL-CSP). NPNAx5 antigen displayed as a loop on the TMV particle was found to be most optimal and its efficacy could be further augmented by combination with a human-use adjuvant ALFQ that contains immune-stimulators. These data were confirmed in rhesus macaques where a low dose of TMV-NPNAx5 elicited Abs that persisted at functional levels for up to 11 mo. We show here a complex association between NPNA copy number, flexibility, antigenicity, immunogenicity, and efficacy of CSP-based vaccines. We hypothesize that designing minimal epitope CSP vaccines could confer better and more durable protection against malaria. Preclinical data presented here supports the evaluation of TMV-NPNAx5/ALFQ in human trials.
Collapse
|