1
|
Saidoune F, Lee D, Di Domizio J, Le Floc’h C, Jenelten R, Le Pen J, Bondet V, Joncic A, Morren MA, Béziat V, Zhang SY, Jouanguy E, Duffy D, Rice CM, Conrad C, Fellay J, Casanova JL, Gilliet M, Yatim A. Enhanced TLR7-dependent production of type I interferon by pDCs underlies pandemic chilblains. J Exp Med 2025; 222:e20231467. [PMID: 40227192 PMCID: PMC11995862 DOI: 10.1084/jem.20231467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
Outbreaks of chilblains were reported during the COVID-19 pandemic. Given the essential role of type I interferon (I-IFN) in protective immunity against SARS-CoV-2 and the association of chilblains with inherited type I interferonopathies, we hypothesized that excessive I-IFN responses to SARS-CoV-2 might underlie the occurrence of chilblains in this context. We identified a transient I-IFN signature in chilblain lesions, accompanied by an acral infiltration of activated plasmacytoid dendritic cells (pDCs). Patients with chilblains were otherwise asymptomatic or had mild disease without seroconversion. Their leukocytes produced abnormally high levels of I-IFN upon TLR7 stimulation with agonists or ssRNA viruses-particularly SARS-CoV-2-but not with DNA agonists of TLR9 or the dsDNA virus HSV-1. Moreover, the patients' pDCs displayed cell-intrinsic hyperresponsiveness to TLR7 stimulation regardless of TLR7 levels. Inherited TLR7 or I-IFN deficiency confers a predisposition to life-threatening COVID-19. Conversely, our findings suggest that enhanced TLR7 activity in predisposed individuals could confer innate, pDC-mediated, sterilizing immunity to SARS-CoV-2 infection, with I-IFN-driven chilblains as a trade-off.
Collapse
Affiliation(s)
- Fanny Saidoune
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Jeremy Di Domizio
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corentin Le Floc’h
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Raphael Jenelten
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ana Joncic
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Anne Morren
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Curdin Conrad
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Michel Gilliet
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ahmad Yatim
- Department of Dermatology, CHUV University Hospital and University of Lausanne, Lausanne, Switzerland
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| |
Collapse
|
2
|
Schloer S, Hennesen J, Rueschpler L, Zamzamy M, Flomm F, Ip WH, Pirosu A, Dobner T, Altfeld M. The host cell factor DDX3 mediates sex dimorphism in the IFNα response of plasmacytoid dendritic cells upon TLR activation. Pharmacol Res 2025; 216:107764. [PMID: 40354846 DOI: 10.1016/j.phrs.2025.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
During the course of viral infections, IFN-I producing pDCs are fundamental in establishing antiviral defense. However, little is known about the molecular mechanisms by which biological sex contributes to differences in IFN-I production by pDCs. Here, we aimed to identify X-chromosome-encoded proteins as a source of sex differences in IFN-I responses by pDCs. We identified the host-cell factor DDX3 as a key mediator for the sex dimorphism in the IFNα response. DDX3 was significantly higher expressed in female pDCs and was translocated together with IRF7 to the nucleus to orchestrate IFN-I transcription. DDX3 as driver of sex differences in the initial and chronic IFN-I response might serve as a novel target to limit IFN-I-mediated hyperactivation of immune cells.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany.
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Lena Rueschpler
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Mohamed Zamzamy
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Felix Flomm
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Wing Hang Ip
- Research Department Viral Transformation, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Andrea Pirosu
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute of Virology, Hamburg 20251, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg 20251, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg 20251, Germany.
| |
Collapse
|
3
|
Du Y, Faz-Lopez B, Ah Kioon MD, Cenac C, Pierides M, Lakin KS, Spiera RF, Chaumeil J, Truchetet ME, Gordon JK, Guéry JC, Barrat FJ. Altered X-chromosome inactivation of the TLR7/8 locus and heterogeneity of pDCs in systemic sclerosis. J Exp Med 2025; 222:e20231809. [PMID: 39670995 PMCID: PMC11639950 DOI: 10.1084/jem.20231809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that has a strong female predominance. Both the X-linked TLR7 and TLR8 can induce type I IFN (IFN-I) by plasmacytoid DCs (pDCs), which can promote fibrosis. We identified five subclusters of pDCs, including ISGhigh clusters that were over-represented in SSc patients. We observed that both TLR7 and TLR8 genes escape from X chromosome inactivation (XCI) at higher frequency in pDCs of SSc patients, which was associated with changes in TLR7 protein profile. Combined DNA/RNA FISH analysis revealed that the TLR7/8 locus is preferentially located outside of the inactive X (Xi) territory when TLR7 is expressed, suggesting that higher-order loop formation is linked to TLR7/8 expression from the Xi. Furthermore, the expression levels of XIST and the transcriptional repressor SPEN were reduced in SSc pDCs. Hence, our data revealed the heterogeneity of pDCs in SSc and suggested that altered XCI at the TLR7/8 locus may contribute to the chronic IFN-I activity of pDCs in female SSc patients.
Collapse
Affiliation(s)
- Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Bérénice Faz-Lopez
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Michael Pierides
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Kimberly S. Lakin
- Division of Rheumatology and Scleroderma and Vasculitis Center, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Robert F. Spiera
- Division of Rheumatology and Scleroderma and Vasculitis Center, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Julie Chaumeil
- Institut Cochin, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Marie-Elise Truchetet
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Rheumatology Department, CHU de Bordeaux, Bordeaux, France
| | - Jessica K. Gordon
- Division of Rheumatology and Scleroderma and Vasculitis Center, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
4
|
Chaudhary V, Mishra B, Ah Kioon MD, Du Y, Ivashkiv LB, Crow MK, Barrat FJ. Mechanosensing regulates pDC activation in the skin through NRF2 activation. J Exp Med 2025; 222:e20240852. [PMID: 39670996 PMCID: PMC11639951 DOI: 10.1084/jem.20240852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Plasmacytoid DCs (pDCs) infiltrate the skin, chronically produce type I interferon (IFN-I), and promote skin lesions and fibrosis in autoimmune patients. However, what controls their activation in the skin is unknown. Here, we report that increased stiffness inhibits the production of IFN-I by pDCs. Mechanistically, mechanosensing activates stress pathways including NRF2, which induces the pentose phosphate pathway and reduces pyruvate levels, a product necessary for pDC responses. Modulating NRF2 activity in vivo controlled the pDC response, leading to resolution or chronic induction of IFN-I in the skin. In systemic sclerosis (SSc) patients, although NRF2 was induced in skin-infiltrating pDCs, as compared with blood pDCs, the IFN response was maintained. We observed that CXCL4, a profibrotic chemokine elevated in fibrotic skin, was able to overcome stiffness-mediated IFN-I inhibition, allowing chronic IFN-I responses by pDCs in the skin. Hence, these data identify a novel regulatory mechanism exerted by the skin microenvironment and identify points of dysregulation of this mechanism in patients with skin inflammation and fibrosis.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Bikash Mishra
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Yong Du
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mary K. Crow
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY, USA
| | - Franck J. Barrat
- HSS Research Institute, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
5
|
Ceglarek L, Gerhards R, Boldrini V, Wichmann C, Peters A, Meinl E. BTK-Inhibition Enhances TLR-7-Mediated Interferon-Alpha Production in pDCs by Blocking the Inhibitory BDCA-2 Pathway. Eur J Immunol 2025; 55:e202450985. [PMID: 39989290 PMCID: PMC11848701 DOI: 10.1002/eji.202450985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/25/2025]
Abstract
In pDCs, BTK-inhibition (BTKi) blocks the IFN-α production via TLR-9, but not via TLR-7. Upon TLR-7 stimulation, BTKi enhances the production of IFN-α by blocking the inhibitory BDCA-2 pathway. This might explain partially the failure of BTKi in SLE and is of interest for BTKi trials in multiple sclerosis.
Collapse
Affiliation(s)
- Laura Ceglarek
- Institute of Clinical NeuroimmunologyBiomedical Center and University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
- Center for Human ImmunologyUniversity of ZurichZurichSwitzerland
| | - Ramona Gerhards
- Institute of Clinical NeuroimmunologyBiomedical Center and University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Vinicius Boldrini
- Institute of Clinical NeuroimmunologyBiomedical Center and University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Christian Wichmann
- Department of Transfusion MedicineCell Therapeutics and HemostaseologyUniversity Hospital, LMU MunichMunichGermany
| | - Anneli Peters
- Institute of Clinical NeuroimmunologyBiomedical Center and University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Edgar Meinl
- Institute of Clinical NeuroimmunologyBiomedical Center and University HospitalLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
6
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
7
|
Niu S, Dong R, Jiang G, Zhang Y. Identification of diagnostic signature and immune microenvironment subtypes of venous thromboembolism. Cytokine 2024; 181:156685. [PMID: 38945040 DOI: 10.1016/j.cyto.2024.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
The close link between immune and pathogenesis of venous thromboembolism (VTE) has been recognized, but not fully elucidated. The current study was designed to identify immune microenvironment related signature and subtypes using explainable machine learning in VTE. We first observed an alteration of immune microenvironment in VTE patients and identified eight key immune cells involved in VTE. Then PTPN6, ITGB2, CR2, FPR2, MMP9 and ISG15 were determined as key immune microenvironment-related genes, which could divide VTE patients into two subtypes with different immune and metabolic characteristics. Also, we found that prunetin and torin-2 may be most promising to treat VTE patients in Cluster 1 and 2, respectively. By comparing six machine learning models in both training and external validation sets, XGboost was identified as the best one to predict the risk of VTE, followed by the interpretation of each immune microenvironment-related gene contributing to the model. Moreover, CR2 and FPR2 had high accuracy in distinguishing VTE and control, which may act as diagnostic biomarkers of VTE, and their expressions were validated by qPCR. Collectively, immune microenvironment related PTPN6, ITGB2, CR2, FPR2, MMP9 and ISG15 are key genes involved in the pathogenesis of VTE. The VTE risk prediction model and immune microenvironment subtypes based on those genes might benefit prevention, diagnosis, and the individualized treatment strategy in clinical practice of VTE.
Collapse
Affiliation(s)
- Shuai Niu
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ruoyu Dong
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangwei Jiang
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yanrong Zhang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
8
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
9
|
Tsokos GC. The immunology of systemic lupus erythematosus. Nat Immunol 2024; 25:1332-1343. [PMID: 39009839 DOI: 10.1038/s41590-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024]
Abstract
Understanding the pathogenesis and clinical manifestations of systemic lupus erythematosus (SLE) has been a great challenge. Reductionist approaches to understand the nature of the disease have identified many pathogenetic contributors that parallel clinical heterogeneity. This Review outlines the immunological control of SLE and looks to experimental tools and approaches that are improving our understanding of the complex contribution of interacting genetics, environment, sex and immunoregulatory factors and their interface with processes inherent to tissue parenchymal cells. Efforts to advance precision medicine in the care of patients with SLE along with treatment strategies to correct the immune system hold hope and are also examined.
Collapse
Affiliation(s)
- George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Ahodantin J, Wu J, Funaki M, Flores J, Wang X, Zheng P, Liu Y, Su L. Siglec-H -/- Plasmacytoid Dendritic Cells Protect Against Acute Liver Injury by Suppressing IFN-γ/Th1 Response and Promoting IL-21 + CD4 T Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101367. [PMID: 38849082 PMCID: PMC11296256 DOI: 10.1016/j.jcmgh.2024.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND & AIMS Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.
Collapse
Affiliation(s)
- James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Jiapeng Wu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masaya Funaki
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jair Flores
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xu Wang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Yang Liu
- OncoC4, Inc, Rockville, Maryland
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Adams NM, Das A, Yun TJ, Reizis B. Ontogeny and Function of Plasmacytoid Dendritic Cells. Annu Rev Immunol 2024; 42:347-373. [PMID: 38941603 DOI: 10.1146/annurev-immunol-090122-041105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.
Collapse
Affiliation(s)
- Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA;
| |
Collapse
|
12
|
Ah Kioon MD, Laurent P, Chaudhary V, Du Y, Crow MK, Barrat FJ. Modulation of plasmacytoid dendritic cells response in inflammation and autoimmunity. Immunol Rev 2024; 323:241-256. [PMID: 38553621 DOI: 10.1111/imr.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.
Collapse
Affiliation(s)
| | - Paôline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Vidyanath Chaudhary
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yong Du
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Mary K Crow
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Franck J Barrat
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
13
|
Lee AM, Laurent P, Nathan CF, Barrat FJ. Neutrophil-plasmacytoid dendritic cell interaction leads to production of type I IFN in response to Mycobacterium tuberculosis. Eur J Immunol 2024; 54:e2350666. [PMID: 38161237 DOI: 10.1002/eji.202350666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Mycobacterium tuberculosis (Mtb) can cause a latent infection that sometimes progresses to clinically active tuberculosis (TB). Type I interferons (IFN-I) have been implicated in initiating the progression from latency to active TB, in part because IFN-I stimulated genes are the earliest genes to be upregulated in patients as they advance to active TB. Plasmacytoid dendritic cells (pDCs) are major producers of IFN-I during viral infections and in response to autoimmune-induced neutrophil extracellular traps. pDCs have also been suggested to be the major producers of IFN-I during Mtb infection of mice and nonhuman primates, but direct evidence has been lacking. Here, we found that Mtb did not stimulate isolated human pDCs to produce IFN-I, but human neutrophils infected with Mtb-activated co-cultured pDCs to do so. Mtb-infected neutrophils produced neutrophil extracellular traps, whose exposed DNA is a well-known mechanism to activate pDCs to secrete IFN-I. We conclude that pDCs contribute to the IFN-I response during Mtb infection by interacting with infected neutrophils which may then promote Mtb pathogenesis.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Paôline Laurent
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Hospital for Special Surgery, HSS Research Institute, New York, New York, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Franck J Barrat
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Hospital for Special Surgery, HSS Research Institute, New York, New York, USA
| |
Collapse
|
14
|
Ni H, Wang Y, Yao K, Wang L, Huang J, Xiao Y, Chen H, Liu B, Yang CY, Zhao J. Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice. Nat Commun 2024; 15:1. [PMID: 38169466 PMCID: PMC10762000 DOI: 10.1038/s41467-023-43650-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes self-DNA and plays intricate roles in systemic lupus erythematosus (SLE). However, the molecular mechanism regulating the endosomal TLR9 response is incompletely understood. Here, we report that palmitoyl-protein thioesterase 1 (PPT1) regulates systemic autoimmunity by removing S-palmitoylation from TLR9 in lysosomes. PPT1 promotes the secretion of IFNα by plasmacytoid dendritic cells (pDCs) and TNF by macrophages. Genetic deficiency in or chemical inhibition of PPT1 reduces anti-nuclear antibody levels and attenuates nephritis in B6.Sle1yaa mice. In healthy volunteers and patients with SLE, the PPT1 inhibitor, HDSF, reduces IFNα production ex vivo. Mechanistically, biochemical and mass spectrometry analyses demonstrated that TLR9 is S-palmitoylated at C258 and C265. Moreover, the protein acyltransferase, DHHC3, palmitoylates TLR9 in the Golgi, and regulates TLR9 trafficking to endosomes. Subsequent depalmitoylation by PPT1 facilitates the release of TLR9 from UNC93B1. Our results reveal a posttranslational modification cycle that controls TLR9 response and autoimmunity.
Collapse
Affiliation(s)
- Hai Ni
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinuo Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongfang Xiao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyao Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| | - Cliff Y Yang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Kang C, He H, Liu P, Liu Y, Li X, Zhang J, Ran H, Zeng X, Zhao H, Liu J, Qiu S. Role of dendritic cell‑derived exosomes in allergic rhinitis (Review). Int J Mol Med 2023; 52:117. [PMID: 37888754 PMCID: PMC10635688 DOI: 10.3892/ijmm.2023.5320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cell‑derived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DC‑derived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry anti‑allergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.
Collapse
Affiliation(s)
- Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Haipeng He
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jin Zhang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
- Department of Otorhinolaryngology, The Second People's Hospital of Yibin, Yibin, Sichuan 644000, P.R. China
| | - Hong Ran
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Hailiang Zhao
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Jiangqi Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, Guangdong 519041, P.R. China
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen Key Laboratory of ENT, Institute of ENT Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
16
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
17
|
Chen HH, Yu YR, Hsiao YL, Chen SH, Lee CK. Plasmacytoid Dendritic Cells Enhance T-Independent B Cell Response through a p38 MAPK-STAT1 Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:576-590. [PMID: 37427982 DOI: 10.4049/jimmunol.2200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
TLR signaling in B cells triggers their activation and differentiation independent of help from T cells. Plasmacytoid dendritic cells (pDCs) cooperate with B cells to boost TLR-stimulated T-independent humoral immunity; however, the molecular mechanisms remain elusive. In this study, we demonstrate that in the mouse system, the adjuvant effects of pDCs also occurred following challenge with pathogens and that follicular (FO) B cells were more sensitive to pDC-induced enhancement than were marginal zone (MZ) B cells. Moreover, pDCs migrated to the FO zones and interacted with FO B cells upon stimulation in vivo. CXCL10, a ligand for CXCR3 expressed on pDCs, was superinduced in the coculture system and facilitated the cooperative activation of B cells. Moreover, pDCs also promoted TLR-stimulated autoantibody production in FO B and MZ B cells. Ingenuity Pathway Analysis and gene set enrichment analysis revealed that type I IFN (IFN-I)-mediated JAK-STAT and Ras-MAPK pathways were highly enriched in R848-stimulated B cells cocultured with pDCs compared with B cells alone. Whereas IFN-I receptor 1 deficiency reduced pDC-enhanced B cell responses, STAT1 deficiency displayed a more pronounced defect. One of the STAT1-dependent but IFN-I-independent mechanisms was TLR-induced STAT1-S727 phosphorylation by p38 MAPK. Serine 727 to alanine mutation attenuated the synergism between pDCs and B cells. In conclusion, we uncover a molecular mechanism for pDC-enhanced B cell response and define a crucial role of the IFN-I/TLR-mediated signaling pathway through a p38 MAPK-STAT1 axis in controlling T-independent humoral immunity and providing a novel therapeutic target for treating autoimmune diseases.
Collapse
Affiliation(s)
- Hsin-Hsiang Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ru Yu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Hsiao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
Zhao J, Jeong H, Yang D, Tian W, Kim JW, Woong Lim C, Kim B. Toll-like receptor-7 signaling in Kupffer cells exacerbates concanavalin A-induced liver injury in mice. Int Immunopharmacol 2023; 119:110238. [PMID: 37126986 DOI: 10.1016/j.intimp.2023.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Concanavalin A (ConA) is a plant lectin that can induce immune-mediated liver damage. ConA induced liver damage animal model is a widely accepted model that can mimic clinical acute hepatitis and immune-mediated liver injury in humans. Toll-like receptor-7 (TLR7), a member of the TLR family, plays a key role in pathogen recognition and innate immune activation. The aim of this study was to examine the role of TLR7 in the pathogenesis of ConA-induced liver injury. Acute liver injury was induced by intravenous injection with ConA in WT (wild-type) and TLR7 knockout (KO) mice. Results showed that attenuated liver injury in TLR7-deficient mice, as indicated by increased survival rate, decreased aminotransferase levels, and reduced pathological lesions, was associated with decreased release of pro-inflammatory cytokines in livers. Consistently, significantly decreased proliferation of CD4+ T cell was detected in ConA-stimulated TLR7-deficient splenocytes, but not in CD3/CD28 stimulated TLR7-deficient CD4+ T cells. Moreover, TLR7 deficiency in KCs specifically suppressed the expression of TNF-α (tumor necrosis factor-α). Depletion of KCs abolished the detrimental role of TLR7 in ConA-induced liver injury. Taken together, these results demonstrate that TLR7 can regulate the expression of TNF-α in KCs, which is necessary for the full progression of ConA-induced liver injury.
Collapse
Affiliation(s)
- Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Weishun Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China.
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Chae Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| |
Collapse
|
19
|
Wallis RS, O'Garra A, Sher A, Wack A. Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nat Rev Immunol 2023; 23:121-133. [PMID: 35672482 PMCID: PMC9171745 DOI: 10.1038/s41577-022-00734-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The advent of COVID-19 and the persistent threat of infectious diseases such as tuberculosis, malaria, influenza and HIV/AIDS remind us of the marked impact that infections continue to have on public health. Some of the most effective protective measures are vaccines but these have been difficult to develop for some of these infectious diseases even after decades of research. The development of drugs and immunotherapies acting directly against the pathogen can be equally challenging, and such pathogen-directed therapeutics have the potential disadvantage of selecting for resistance. An alternative approach is provided by host-directed therapies, which interfere with host cellular processes required for pathogen survival or replication, or target the host immune response to infection (immunotherapies) to either augment immunity or ameliorate immunopathology. Here, we provide a historical perspective of host-directed immunotherapeutic interventions for viral and bacterial infections and then focus on SARS-CoV-2 and Mycobacterium tuberculosis, two major human pathogens of the current era, to indicate the key lessons learned and discuss candidate immunotherapeutic approaches, with a focus on drugs currently in clinical trials.
Collapse
Affiliation(s)
- Robert S Wallis
- The Aurum Institute, Johannesburg, South Africa.
- Vanderbilt University, Nashville, TN, USA.
- Rutgers University, Newark, NJ, USA.
- Case Western Reserve University, Cleveland, OH, USA.
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
20
|
Chaudhary V, Ah Kioon MD, Hwang SM, Mishra B, Lakin K, Kirou KA, Zhang-Sun J, Wiseman RL, Spiera RF, Crow MK, Gordon JK, Cubillos-Ruiz JR, Barrat FJ. Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J Exp Med 2022; 219:e20221085. [PMID: 36053251 PMCID: PMC9441715 DOI: 10.1084/jem.20221085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) chronically produce type I interferon (IFN-I) in autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). We report that the IRE1α-XBP1 branch of the unfolded protein response (UPR) inhibits IFN-α production by TLR7- or TLR9-activated pDCs. In SSc patients, UPR gene expression was reduced in pDCs, which inversely correlated with IFN-I-stimulated gene expression. CXCL4, a chemokine highly secreted in SSc patients, downregulated IRE1α-XBP1-controlled genes and promoted IFN-α production by pDCs. Mechanistically, IRE1α-XBP1 activation rewired glycolysis to serine biosynthesis by inducing phosphoglycerate dehydrogenase (PHGDH) expression. This process reduced pyruvate access to the tricarboxylic acid (TCA) cycle and blunted mitochondrial ATP generation, which are essential for pDC IFN-I responses. Notably, PHGDH expression was reduced in pDCs from patients with SSc and SLE, and pharmacological blockade of TCA cycle reactions inhibited IFN-I responses in pDCs from these patients. Hence, modulating the IRE1α-XBP1-PHGDH axis may represent a hitherto unexplored strategy for alleviating chronic pDC activation in autoimmune disorders.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| | - Sung-Min Hwang
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Bikash Mishra
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Kimberly Lakin
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Kyriakos A. Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
| | - Jeffrey Zhang-Sun
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Robert F. Spiera
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Mary K. Crow
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jessica K. Gordon
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Juan R. Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| |
Collapse
|
21
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
22
|
Laurent P, Yang C, Rendeiro AF, Nilsson-Payant BE, Carrau L, Chandar V, Bram Y, tenOever BR, Elemento O, Ivashkiv LB, Schwartz RE, Barrat FJ. Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Sci Immunol 2022; 7:eadd4906. [PMID: 36083891 PMCID: PMC9853436 DOI: 10.1126/sciimmunol.add4906] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lung-infiltrating macrophages create a marked inflammatory milieu in a subset of patients with COVID-19 by producing a cytokine storm, which correlates with increased lethality. However, these macrophages are largely not infected by SARS-CoV-2, so the mechanism underlying their activation in the lung is unclear. Type I interferons (IFN-I) contribute to protecting the host against SARS-CoV-2 but may also have some deleterious effect, and the source of IFN-I in the lungs of infected patients is not well defined. Plasmacytoid dendritic cells (pDCs), a key cell type involved in antiviral responses, can produce IFN-I in response to SARS-CoV-2. We observed the infiltration of pDCs in the lungs of SARS-CoV-2-infected patients, which correlated with strong IFN-I signaling in lung macrophages. In patients with severe COVID-19, lung macrophages expressed a robust inflammatory signature, which correlated with persistent IFN-I signaling at the single-cell level. Hence, we observed the uncoupling in the kinetics of the infiltration of pDCs in the lungs and the associated IFN-I signature, with the cytokine storm in macrophages. We observed that pDCs were the dominant IFN-α-producing cells in response to the virus in the blood, whereas macrophages produced IFN-α only when in physical contact with infected epithelial cells. We also showed that IFN-α produced by pDCs, after the sensing of SARS-CoV-2 by TLR7, mediated changes in macrophages at both transcriptional and epigenetic levels, which favored their hyperactivation by environmental stimuli. Together, these data indicate that the priming of macrophages can result from the response by pDCs to SARS-CoV-2, leading to macrophage activation in patients with severe COVID-19.
Collapse
Affiliation(s)
- Paôline Laurent
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - André F. Rendeiro
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benjamin E. Nilsson-Payant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029, USA
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Lucia Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029, USA
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin R. tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., New York, NY 10029, USA
- Department of Microbiology, New York University, 430 E 29th Street, New York, NY 10016, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction and Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10029, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Robert E. Schwartz
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
23
|
Mori M, Clausson CM, Sanden C, Jönsson J, Andersson CK, Siddhuraj P, Shikhagaie M, Åkesson K, Bergqvist A, Löfdahl CG, Erjefält JS. Expansion of Phenotypically Altered Dendritic Cell Populations in the Small Airways and Alveolar Parenchyma in Patients with Chronic Obstructive Pulmonary Disease. J Innate Immun 2022; 15:188-203. [PMID: 35998572 PMCID: PMC10643891 DOI: 10.1159/000526080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Contrasting the antigen-presenting dendritic cells (DCs) in the conducting airways, the alveolar DC populations in human lungs have remained poorly investigated. Consequently, little is known about how alveolar DCs are altered in diseases such as chronic obstructive pulmonary disease (COPD). This study maps multiple tissue DC categories in the distal lung across COPD severities. Specifically, single-multiplex immunohistochemistry was applied to quantify langerin/CD207+, CD1a+, BDCA2+, and CD11c+ subsets in distal lung compartments from patients with COPD (GOLD stage I-IV) and never-smoking and smoking controls. In the alveolar parenchyma, increased numbers of CD1a+langerin- (p < 0.05) and BDCA-2+ DCs (p < 0.001) were observed in advanced COPD compared with controls. Alveolar CD11c+ DCs also increased in advanced COPD (p < 0.01). In small airways, langerin+ and BDCA-2+ DCs were also significantly increased. Contrasting the small airway DCs, most alveolar DC subsets frequently extended luminal protrusions. Importantly, alveolar and small airway langerin+ DCs in COPD lungs displayed site-specific marker profiles. Further, multiplex immunohistochemistry with single-cell quantification was used to specifically profile langerin DCs and reveal site-specific expression patterns of the maturation and activation markers S100, fascin, MHC2, and B7. Taken together, our results show that clinically advanced COPD is associated with increased levels of multiple alveolar DC populations exhibiting features of both adaptive and innate immunity phenotypes. This expansion is likely to contribute to the distal lung immunopathology in COPD patients.
Collapse
Affiliation(s)
- Michiko Mori
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | | | | | | | | | - Medya Shikhagaie
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Karolina Åkesson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Anders Bergqvist
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Claes-Göran Löfdahl
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jonas S. Erjefält
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
24
|
Du Y, Ah Kioon MD, Laurent P, Chaudhary V, Pierides M, Yang C, Oliver D, Ivashkiv LB, Barrat FJ. Chemokines form nanoparticles with DNA and can superinduce TLR-driven immune inflammation. J Exp Med 2022; 219:e20212142. [PMID: 35640018 PMCID: PMC9161158 DOI: 10.1084/jem.20212142] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/24/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Chemokines control the migratory patterns and positioning of immune cells to organize immune responses to pathogens. However, many chemokines have been associated with systemic autoimmune diseases that have chronic IFN signatures. We report that a series of chemokines, including CXCL4, CXCL10, CXCL12, and CCL5, can superinduce type I IFN (IFN-I) by TLR9-activated plasmacytoid DCs (pDCs), independently of their respective known chemokine receptors. Mechanistically, we show that chemokines such as CXCL4 mediate transcriptional and epigenetic changes in pDCs, mostly targeted to the IFN-I pathways. We describe that chemokines physically interact with DNA to form nanoparticles that promote clathrin-mediated cellular uptake and delivery of DNA in the early endosomes of pDCs. Using two separate mouse models of skin inflammation, we observed the presence of CXCL4 associated with DNA in vivo. These data reveal a noncanonical role for chemokines to serve as nucleic acid delivery vectors to modulate TLR signaling, with implications for the chronic presence of IFN-I by pDCs in autoimmune diseases.
Collapse
Affiliation(s)
- Yong Du
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | | | - Paoline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Vidyanath Chaudhary
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Michael Pierides
- HSS Research Institute, Hospital for Special Surgery, New York, NY
| | - Chao Yang
- HSS Research Institute, Hospital for Special Surgery, New York, NY
| | - David Oliver
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| | - Lionel B. Ivashkiv
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY
| | - Franck J. Barrat
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| |
Collapse
|
25
|
Rosa TLSA, Mendes MA, Linhares NRC, Rodrigues TF, Dias AA, Leal-Calvo T, Gandini M, Ferreira H, Costa FDMR, Sales AM, Amadeu TP, Schmitz V, Pinheiro RO, Rodrigues LS, Moraes MO, Pessolani MCV. The Type I Interferon Pathway Is Upregulated in the Cutaneous Lesions and Blood of Multibacillary Leprosy Patients With Erythema Nodosum Leprosum. Front Med (Lausanne) 2022; 9:899998. [PMID: 35733868 PMCID: PMC9208291 DOI: 10.3389/fmed.2022.899998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natasha Ribeiro Cardoso Linhares
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Thais Fernanda Rodrigues
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana Gandini
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Anna Maria Sales
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Thaís Porto Amadeu
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Medical Science Faculty, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Laboratory of Leprosy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria Cristina Vidal Pessolani
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Maria Cristina Vidal Pessolani,
| |
Collapse
|
26
|
Mu R, Campos de Souza S, Liao Z, Dong L, Wang C. Reprograming the immune niche for skin tissue regeneration - From cellular mechanisms to biomaterials applications. Adv Drug Deliv Rev 2022; 185:114298. [PMID: 35439569 DOI: 10.1016/j.addr.2022.114298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Despite the rapid development of therapeutic approaches for skin repair, chronic wounds such as diabetic foot ulcers remain an unaddressed problem that affects millions of people worldwide. Increasing evidence has revealed the crucial and diverse roles of the immune cells in the development and repair of the skin tissue, prompting new research to focus on further understanding and modulating the local immune niche for comprehensive, 'perfect' regeneration. In this review, we first introduce how different immunocytes and certain stromal cells involved in innate and adaptive immunity coordinate to maintain the immune niche and tissue homeostasis, with emphasis on their specific roles in normal and pathological wound healing. We then discuss novel engineering approaches - particularly biomaterials systems and cellular therapies - to target different players of the immune niche, with three major aims to i) overcome 'under-healing', ii) avoid 'over-healing', and iii) promote functional restoration, including appendage development. Finally, we highlight how these strategies strive to manage chronic wounds and achieve full structural and functional skin recovery by creating desirable 'soil' through modulating the immune microenvironment.
Collapse
|
27
|
Iwata S, Tanaka Y. Association of Viral Infection With the Development and Pathogenesis of Systemic Lupus Erythematosus. Front Med (Lausanne) 2022; 9:849120. [PMID: 35280878 PMCID: PMC8914279 DOI: 10.3389/fmed.2022.849120] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage in women of childbearing age and has a relapsing-remitting course. SLE is caused by the interaction between genetic and environmental factors, however, its underlying triggers remain unknown. Among the environmental factors, the involvement of infections as a trigger for SLE, especially those of viral etiology, has been widely reported. Human endogenous retroviruses (HERVs) may put patients at a genetic predisposition to SLE, while the Epstein-Barr virus (EBV) may play a role as an environmental factor that triggers the development of SLE. It has been suggested that EBV-infected B-cells may become resistant to apoptosis, resulting in the activation, proliferation, and antibody production of autoreactive B-cells, which cause tissue damage in SLE. However, the interaction between the virus and immune cells, as well as the impact of the virus on the differentiation and dysfunction of immune cells, remain unclear. In this review, we focus on the relationship between the development and pathogenesis of SLE and viral infections, as well as the mechanism of SLE exacerbation via activation of immune cells, such as B-cells, based on the latest findings.
Collapse
|
28
|
Atitey K, Anchang B. Mathematical Modeling of Proliferative Immune Response Initiated by Interactions Between Classical Antigen-Presenting Cells Under Joint Antagonistic IL-2 and IL-4 Signaling. Front Mol Biosci 2022; 9:777390. [PMID: 35155574 PMCID: PMC8831889 DOI: 10.3389/fmolb.2022.777390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
During an adaptive immune response from pathogen invasion, multiple cytokines are produced by various immune cells interacting jointly at the cellular level to mediate several processes. For example, studies have shown that regulation of interleukin-4 (IL-4) correlates with interleukin-2 (IL-2) induced lymphocyte proliferation. This motivates the need to better understand and model the mechanisms driving the dynamic interplay of proliferation of lymphocytes with the complex interaction effects of cytokines during an immune response. To address this challenge, we adopt a hybrid computational approach comprising of continuous, discrete and stochastic non-linear model formulations to predict a system-level immune response as a function of multiple dependent signals and interacting agents including cytokines and targeted immune cells. We propose a hybrid ordinary differential equation-based (ODE) multicellular model system with a stochastic component of antigen microscopic states denoted as Multiscale Multicellular Quantitative Evaluator (MMQE) implemented using MATLAB. MMQE combines well-defined immune response network-based rules and ODE models to capture the complex dynamic interactions between the proliferation levels of different types of communicating lymphocyte agents mediated by joint regulation of IL-2 and IL-4 to predict the emergent global behavior of the system during an immune response. We model the activation of the immune system in terms of different activation protocols of helper T cells by the interplay of independent biological agents of classic antigen-presenting cells (APCs) and their joint activation which is confounded by the exposure time to external pathogens. MMQE quantifies the dynamics of lymphocyte proliferation during pathogen invasion as bivariate distributions of IL-2 and IL-4 concentration levels. Specifically, by varying activation agents such as dendritic cells (DC), B cells and their joint mechanism of activation, we quantify how lymphocyte activation and differentiation protocols boost the immune response against pathogen invasion mediated by a joint downregulation of IL-4 and upregulation of IL-2. We further compare our in-silico results to in-vivo and in-vitro experimental studies for validation. In general, MMQE combines intracellular and extracellular effects from multiple interacting systems into simpler dynamic behaviors for better interpretability. It can be used to aid engineering of anti-infection drugs or optimizing drug combination therapies against several diseases.
Collapse
|
29
|
Qu L, Chen C, Yin T, Fang Q, Hong Z, Zhou R, Tang H, Dong H. ACE2 and Innate Immunity in the Regulation of SARS-CoV-2-Induced Acute Lung Injury: A Review. Int J Mol Sci 2021; 22:11483. [PMID: 34768911 PMCID: PMC8583933 DOI: 10.3390/ijms222111483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Despite the protracted battle against coronavirus acute respiratory infection (COVID-19) and the rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), no specific and effective drugs have to date been reported. Angiotensin-converting enzyme 2 (ACE2) is a zinc metalloproteinase and a critical modulator of the renin-angiotensin system (RAS). In addition, ACE2 has anti-inflammatory and antifibrosis functions. ACE has become widely known in the past decade as it has been identified as the primary receptor for SARS-CoV and SARS-CoV-2, being closely associated with their infection. SARS-CoV-2 primarily targets the lung, which induces a cytokine storm by infecting alveolar cells, resulting in tissue damage and eventually severe acute respiratory syndrome. In the lung, innate immunity acts as a critical line of defense against pathogens, including SARS-CoV-2. This review aims to summarize the regulation of ACE2, and lung host cells resist SARS-CoV-2 invasion by activating innate immunity response. Finally, we discuss ACE2 as a therapeutic target, providing reference and enlightenment for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Lihua Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210013, China;
| | - Tong Yin
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Qian Fang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Zizhan Hong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Rui Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| | - Hongbin Tang
- Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Huifen Dong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; (L.Q.); (T.Y.); (Q.F.); (Z.H.); (R.Z.)
| |
Collapse
|
30
|
Greene TT, Zuniga EI. Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses 2021; 13:1839. [PMID: 34578420 PMCID: PMC8472174 DOI: 10.3390/v13091839] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.
Collapse
Affiliation(s)
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
31
|
Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, et alAsano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus AL, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin AC, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, Bustamante J, Puel A, Boisson-Dupuis S, Zhang SY, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, Su HC, Jouanguy E, Amara A, Soumelis V, Cobat A, Zhang Q, Casanova JL. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol 2021; 6:eabl4348. [PMID: 34413140 PMCID: PMC8532080 DOI: 10.1126/sciimmunol.abl4348] [Show More Authors] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023]
Abstract
Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Fanny Onodi
- Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR7212, University of Paris, Research Institute of Saint-Louis, Saint-Louis Hospital, Paris, France
| | - Daniela Matuozzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Meertens
- Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR7212, University of Paris, Research Institute of Saint-Louis, Saint-Louis Hospital, Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | | | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Kaya Bilguvar
- Yale Center for Genome Analysis and Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Diagnostic Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Genetics Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
| | - Andrea Martin-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Jacques G Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Yacine Tandjaoui-Lambiotte
- AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France
- INSERM U1272 Hypoxia & Lung, Bobigny, France
| | - Khalil Chaïbi
- Anesthesiology and Critical Care Medicine Department, APHP, Avicenne Hospital, Bobigny, France
- Common and Rare Kidney Diseases, Sorbonne University, INSERM UMR-S 1155, Paris, France
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Alipour Olyaei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Davood Mansouri
- Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti, Iran
| | - Nevin Hatipoğlu
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Figen Palabiyik
- Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, University of Bilkent, Bilkent-Ankara, Turkey
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, and Neuromed Institute, IRCCS, Pozzilli (IS), Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Giorgio Casari
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Bondesan
- Clinical Genomics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Julian Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
| | | | | | - Andres Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellín, Colombia
| | - Guillaume Morelle
- Department of General Pediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Kyheng Christèle
- Department of General Pediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, Le Kremlin-Bicêtre, France
| | - Jesús Troya
- Department of Internal Medicine, Infanta Leonor University Hospital, Madrid, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Luis M Allende
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
- Complutense University, Madrid, Spain
| | - Carlos Rodriguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Department of Clinical Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Health Institute of Carlos III, Madrid, Spain
- Research Unit, University Hospital of N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- Institute of Biomedical technologies (ITB), University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Daniel E Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Rebeca Pérez de Diego
- Institute of Biomedical Research of IdiPAZ, University Hospital "La Paz", Madrid, Spain
| | - Sevgi Keles
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Gokhan Aytekin
- Konya City Hospital, Division of Allergy and Immunology, Konya, Turkey
| | - Ozge Metin Akcan
- Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Daniel Smole
- Central Hospital-Anesthesia and Intensive Care Unit, Karlstad, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institute, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Anna-Carin Norlin
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Tessa M Campbell
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Laura E Covill
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | | | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Manar Ata
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Taushif Khan
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Paolo Bonfanti
- Department of Infectious Diseases, San Gerardo Hospital-University of Milano-Bicocca, Monza, Italy
| | - Andrea Biondi
- Pediatric Department and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM- Ospedale San Gerardo, Monza, Italy
| | - Sarah Tubiana
- Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France
- Hôpital Bichat Claude Bernard, APHP, Paris, France
| | - Charles Burdet
- Centre d'Investigation Clinique, INSERM CIC 1425, Paris, France
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Richard P Lifton
- Yale Center for Genome Analysis and Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Ali Amara
- Laboratory of Genomes & Cell Biology of Disease, INSERM U944, CNRS UMR7212, University of Paris, Research Institute of Saint-Louis, Saint-Louis Hospital, Paris, France
| | - Vassili Soumelis
- University of Paris, INSERM U976, F-75006 Paris, France
- APHP, Hôpital Saint-Louis, Department of Immunology-Histocompatibility, 75010 Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
32
|
Hoffman RA, Huang S, Chalasani G, Vallejo AN. Disparate Recruitment and Retention of Plasmacytoid Dendritic Cells to The Small Intestinal Mucosa between Young and Aged Mice. Aging Dis 2021; 12:1183-1196. [PMID: 34341701 PMCID: PMC8279532 DOI: 10.14336/ad.2021.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/19/2021] [Indexed: 11/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC), a highly specialized class of innate immune cells that serve as rapid sensors of danger signals in circulation or in lymphoid tissue are well studied. However, there remains knowledge gaps about age-dependent changes of pDC function in the intestinal mucosa. Here, we report that under homeostatic conditions, the proportion of pDC expressing C-C chemokine receptor 9 (CCR9) in the intestinal intraepithelial cell (iIEC) population is comparable between young (2-4 months) and aged (18-24 months) mice, but the absolute numbers of iIEC and pDC are significantly lower in aged mice. Employing the classic model of acute endotoxemia induced by lipopolysaccharide (LPS), we found a decrease in the proportion and absolute number of intraepithelial pDC in both young and aged mice despite the LPS-induced increased expression of the chemokine C-C ligand 25 (CCL25), the ligand of CCR9, in the intestinal mucosa of young mice. In adoptive transfer experiments, a significantly lower number of pDC was retained into the intestinal layer of aged host mice after LPS administration. This was associated with recoverable pDC numbers in the intestinal lumen. Furthermore, co-adoptive transfer of young and aged pDC into young hosts also showed significantly lower retention of aged pDC in the epithelial layer compared to the co-transferred young pDC. Collectively, these data show age-associated changes in mucosal CCL25 gene expression and in pDC number. These may underlie the reported inadequate responses to gastrointestinal pathogens during chronologic aging.
Collapse
Affiliation(s)
| | - Sulan Huang
- Department of Health Promotion and Development,
| | | | - Abbe N Vallejo
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh,
- Division of Rheumatology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
33
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Ma Y, Huang Y, Zhao S, Yao Y, Zhang Y, Qu J, Wu N, Su J. Integrative genomics analysis reveals a 21q22.11 locus contributing risk to COVID-19. Hum Mol Genet 2021; 30:1247-1258. [PMID: 33949668 PMCID: PMC8136003 DOI: 10.1093/hmg/ddab125] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
The systematic identification of host genetic risk factors is essential for the understanding and treatment of coronavirus disease 2019 (COVID-19). By performing a meta-analysis of two independent genome-wide association summary datasets (N = 680 128), a novel locus at 21q22.11 was identified to be associated with COVID-19 infection (rs9976829 in IFNAR2-IL10RB, odds ratio = 1.16, 95% confidence interval = 1.09-1.23, P = 2.57 × 10-6). The rs9976829 represents a strong splicing quantitative trait locus for both IFNAR2 and IL10RB genes, especially in lung tissue (P = 1.8 × 10-24). Integrative genomics analysis of combining genome-wide association study with expression quantitative trait locus data showed the expression variations of IFNAR2 and IL10RB have prominent effects on COVID-19 in various types of tissues, especially in lung tissue. The majority of IFNAR2-expressing cells were dendritic cells (40%) and plasmacytoid dendritic cells (38.5%), and IL10RB-expressing cells were mainly nonclassical monocytes (29.6%). IFNAR2 and IL10RB are targeted by several interferons-related drugs. Together, our results uncover 21q22.11 as a novel susceptibility locus for COVID-19, in which individuals with G alleles of rs9976829 have a higher probability of COVID-19 susceptibility than those with non-G alleles.
Collapse
Affiliation(s)
- Yunlong Ma
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yukuan Huang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Sen Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yinghao Yao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Yaru Zhang
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key laboratory of big data for spinal deformities, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianzhong Su
- Institute of Biomedical Big Data, School of Ophthalmology & Optometry and Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
35
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
36
|
Zhou Q, Vadakekolathu J, Watad A, Sharif K, Russell T, Rowe H, Khan A, Millner PA, Loughenbury P, Rao A, Dunsmuir R, Timothy J, Damiani G, Pigatto PDM, Malagoli P, Banfi G, El-Sherbiny YM, Bridgewood C, McGonagle D. SARS-CoV-2 Infection Induces Psoriatic Arthritis Flares and Enthesis Resident Plasmacytoid Dendritic Cell Type-1 Interferon Inhibition by JAK Antagonism Offer Novel Spondyloarthritis Pathogenesis Insights. Front Immunol 2021; 12:635018. [PMID: 33936047 PMCID: PMC8082065 DOI: 10.3389/fimmu.2021.635018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Bacterial and viral infectious triggers are linked to spondyloarthritis (SpA) including psoriatic arthritis (PsA) development, likely via dendritic cell activation. We investigated spinal entheseal plasmacytoid dendritic cells (pDCs) toll-like receptor (TLR)-7 and 9 activation and therapeutic modulation, including JAK inhibition. We also investigated if COVID-19 infection, a potent TLR-7 stimulator triggered PsA flares. Methods Normal entheseal pDCs were characterized and stimulated with imiquimod and CpG oligodeoxynucleotides (ODN) to evaluate TNF and IFNα production. NanoString gene expression assay of total pDCs RNA was performed pre- and post- ODN stimulation. Pharmacological inhibition of induced IFNα protein was performed with Tofacitinib and PDE4 inhibition. The impact of SARS-CoV2 viral infection on PsA flares was evaluated. Results CD45+HLA-DR+CD123+CD303+CD11c- entheseal pDCs were more numerous than blood pDCs (1.9 ± 0.8% vs 0.2 ± 0.07% of CD45+ cells, p=0.008) and showed inducible IFNα and TNF protein following ODN/imiquimod stimulation and were the sole entheseal IFNα producers. NanoString data identified 11 significantly upregulated differentially expressed genes (DEGs) including TNF in stimulated pDCs. Canonical pathway analysis revealed activation of dendritic cell maturation, NF-κB signaling, toll-like receptor signaling and JAK/STAT signaling pathways following ODN stimulation. Both tofacitinib and PDE4i strongly attenuated ODN induced IFNα. DAPSA scores elevations occurred in 18 PsA cases with SARS-CoV2 infection (9.7 ± 4 pre-infection and 35.3 ± 7.5 during infection). Conclusion Entheseal pDCs link microbes to TNF/IFNα production. SARS-CoV-2 infection is associated with PsA Flares and JAK inhibition suppressed activated entheseal plasmacytoid dendritic Type-1 interferon responses as pointers towards a novel mechanism of PsA and SpA-related arthropathy.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.,Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Jayakumar Vadakekolathu
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Abdulla Watad
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Kassem Sharif
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Tobias Russell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Hannah Rowe
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Almas Khan
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | | | - Abhay Rao
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | | | - Jake Timothy
- Department of Neurosurgery, Leeds Centre for Neurosciences, Leeds General Infirmary, Leeds, United Kingdom
| | - Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo D M Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | | | - Giuseppe Banfi
- School of Medicine, Universitá Vita-Salute San Raffaele, Milan, Italy
| | - Yasser M El-Sherbiny
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, United Kingdom.,National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
37
|
Abstract
Plasmacytoid dendritic cells (pDCs) are a distinct lineage of bone-marrow-derived cells that reside mainly in blood and lymphoid organs in the steady state but are also present in sites of infection, inflammation, and cancer. The protocols in this article describes (1) detection and quantification of human pDCs in peripheral blood; (2) isolation of human pDCs by magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS); (3) evaluation of human pDC function by stimulation with TLR7 or TLR9 agonists; (4) detection of human pDCs in lymphoid tissues of humanized mice (hu-mice) by flow cytometry; (5) functional study of human pDC in hu-mice in vivo; and (6) specific depletion of human pDCs in vivo in hu-mice using monoclonal antibody targeting human pDCs. These assays thus provide comprehensive methods for phenotypic and functional studies in vitro and for the investigation of human plasmacytoid dendritic cells in hu-mice in vivo. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Analysis of pDCs in human peripheral blood mononuclear cells Basic Protocol 2: pDC separation using MACS beads Alternate Protocol 1: pDC sorting using flow cytometer Basic Protocol 3: Evaluation of human pDC function by stimulation with TLR agonists in vitro Alternate Protocol 2: Intracellular staining of cytokines in pDCs Basic Protocol 4: Phenotypic analysis of human pDCs from lymphoid organs in humanized mice Basic Protocol 5: Functional study of human pDCs in humanized mice during HIV infection Basic Protocol 6: pDC depletion and assessment of pDC depletion in acute HIV-infected in humanized mice.
Collapse
Affiliation(s)
- Guangming Li
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Baltimore, Maryland
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liang Cheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lishan Su
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, Baltimore, Maryland
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
38
|
Cappel MA, Cappel JA, Wetter DA. Pernio (Chilblains), SARS-CoV-2, and COVID Toes Unified Through Cutaneous and Systemic Mechanisms. Mayo Clin Proc 2021; 96:989-1005. [PMID: 33714595 PMCID: PMC7826004 DOI: 10.1016/j.mayocp.2021.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Pernio or chilblains is characterized by erythema and swelling at acral sites (eg, toes and fingers), typically triggered by cold exposure. Clinical and histopathologic features of pernio are well described, but the pathogenesis is not entirely understood; vasospasm and a type I interferon (IFN-I) immune response are likely involved. During the coronavirus disease 2019 (COVID-19) pandemic, dermatologists have observed an increase in pernio-like acral eruptions. Direct causality of pernio due to COVID-19 has not been established in many cases because of inconsistent testing methods (often negative results) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, a form of COVID-19‒associated pernio (also called COVID toes) is probable because of increased occurrence, frequently in young patients with no cold exposure or a history of pernio, and reports of skin biopsies with positive SARS-CoV-2 immunohistochemistry. PubMed was searched between January 1, 2020, and December 31, 2020 for publications using the following keywords: pernio, chilblain, and acral COVID-19. On the basis of our review of the published literature, we speculate that several unifying cutaneous and systemic mechanisms may explain COVID-19‒associated pernio: (1) SARS-CoV-2 cell infection occurs through the cellular receptor angiotensin-converting enzyme 2 mediated by transmembrane protease serine 2, subsequently affecting the renin-angiotensin-aldosterone system with an increase in the vasoconstricting, pro-inflammatory, and prothrombotic angiotensin II pathway. (2) Severe acute respiratory syndrome coronavirus 2 cell infection triggers an immune response with robust IFN-I release in patients predisposed to COVID-19‒associated pernio. (3) Age and sex discrepancies correlated with COVID-19 severity and manifestations, including pernio as a sign of mild disease, are likely explained by age-related immune and vascular differences influenced by sex hormones and genetics, which affect susceptibility to viral cellular infection, the renin-angiotensin-aldosterone system balance, and the IFN-I response.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- adam17, a disintegrin and metalloproteinase 17
- ang, angiotensin
- ang1-7, angiotensin-(1-7)
- angii, angiotensin ii
- at1r, angiotensin type 1 receptor
- at2r, angiotensin type 2 receptor
- covid-19, coronavirus disease 2019
- hif-1α, hypoxia-inducible factor 1α
- ifn, interferon
- ifn-i, type i interferon
- ifn-α, interferon α
- il, interleukin
- mxa, myxovirus resistance protein a
- no, nitric oxide
- nsp, nonstructural protein
- pcr, polymerase chain reaction
- pdc, plasmacytoid dendritic cell
- raas, renin-angiotensin-aldosterone system
- s1, spike protein 1
- s2, spike protein 2
- sars-cov, severe acute respiratory syndrome coronavirus
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
- th17, helper t cell 17
- tlr7, toll-like receptor 7
- tmprss2, transmembrane protease serine 2
Collapse
Affiliation(s)
- Mark A Cappel
- Gulf Coast Dermatopathology Laboratory, Dermatology Associates of Tampa Bay, Tampa, FL
| | | | | |
Collapse
|
39
|
Ah Kioon MD, Pierides M, Pannellini T, Lin G, Nathan CF, Barrat FJ. Noncytotoxic Inhibition of the Immunoproteasome Regulates Human Immune Cells In Vitro and Suppresses Cutaneous Inflammation in the Mouse. THE JOURNAL OF IMMUNOLOGY 2021; 206:1631-1641. [PMID: 33674446 DOI: 10.4049/jimmunol.2000951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Inhibitors of the immunoproteasome (i-20S) have shown promise in mouse models of autoimmune diseases and allograft rejection. In this study, we used a novel inhibitor of the immunoproteasome, PKS3053, that is reversible, noncovalent, tight-binding, and highly selective for the β5i subunit of the i-20S to evaluate the role that i-20S plays in regulating immune responses in vitro and in vivo. In contrast to irreversible, less-selective inhibitors, PKS3053 did not kill any of the primary human cell types tested, including plasmacytoid dendritic cells, conventional dendritic cells, macrophages, and T cells, all of which expressed genes encoding both the constitutive proteasome (c-20S) and i-20S. PKS3053 reduced TLR-dependent activation of plasmacytoid dendritic cells, decreasing their maturation and IFN-α response and reducing their ability to activate allogenic T cells. In addition, PKS3053 reduced T cell proliferation directly and inhibited TLR-mediated activation of conventional dendritic cells and macrophages. In a mouse model of skin injury that shares some features of cutaneous lupus erythematosus, blocking i-20S decreased inflammation, cellular infiltration, and tissue damage. We conclude that the immunoproteasome is involved in the activation of innate and adaptive immune cells, that their activation can be suppressed with an i-20S inhibitor without killing them, and that selective inhibition of β5i holds promise as a potential therapy for inflammatory skin diseases such as psoriasis, cutaneous lupus erythematosus, and systemic sclerosis.
Collapse
Affiliation(s)
- Marie Dominique Ah Kioon
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and
| | - Michael Pierides
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and
| | - Tania Pannellini
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021
| | - Franck J Barrat
- Autoimmunity and Inflammation Program, Research Institute, Hospital for Special Surgery, New York, NY 10021; and .,Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021
| |
Collapse
|
40
|
Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses 2021; 13:v13020277. [PMID: 33670195 PMCID: PMC7916951 DOI: 10.3390/v13020277] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
A causal link between viral infections and autoimmunity has been studied for a long time and the role of some viruses in the induction or exacerbation of systemic lupus erythematosus (SLE) in genetically predisposed patients has been proved. The strength of the association between different viral agents and SLE is variable. Epstein-Barr virus (EBV), parvovirus B19 (B19V), and human endogenous retroviruses (HERVs) are involved in SLE pathogenesis, whereas other viruses such as Cytomegalovirus (CMV) probably play a less prominent role. However, the mechanisms of viral-host interactions and the impact of viruses on disease course have yet to be elucidated. In addition to classical mechanisms of viral-triggered autoimmunity, such as molecular mimicry and epitope spreading, there has been a growing appreciation of the role of direct activation of innate response by viral nucleic acids and epigenetic modulation of interferon-related immune response. The latter is especially important for HERVs, which may represent the molecular link between environmental triggers and critical immune genes. Virus-specific proteins modulating interaction with the host immune system have been characterized especially for Epstein-Barr virus and explain immune evasion, persistent infection and self-reactive B-cell "immortalization". Knowledge has also been expanding on key viral proteins of B19-V and CMV and their possible association with specific phenotypes such as antiphospholipid syndrome. This progress may pave the way to new therapeutic perspectives, including the use of known or new antiviral drugs, postviral immune response modulation and innate immunity inhibition. We herein describe the state-of-the-art knowledge on the role of viral infections in SLE, with a focus on their mechanisms of action and potential therapeutic targets.
Collapse
|
41
|
Maser IP, Hoves S, Bayer C, Heidkamp G, Nimmerjahn F, Eckmann J, Ries CH. The Tumor Milieu Promotes Functional Human Tumor-Resident Plasmacytoid Dendritic Cells in Humanized Mouse Models. Front Immunol 2020; 11:2082. [PMID: 33013879 PMCID: PMC7507800 DOI: 10.3389/fimmu.2020.02082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Particular interest to harness the innate immune system for cancer immunotherapy is fueled by limitations of immune checkpoint blockade. Plasmacytoid dendritic cells (pDC) are detected in a variety of solid tumors and correlate with poor clinical outcome. Release of type I interferons in response to toll-like-receptor (TLR)7 and TLR9 activation is the pDC hallmark. Mouse and human pDC differ substantially in their biology concerning surface marker expression and cytokine production. Here, we employed humanized mouse models (HIS) to study pDC function. We performed a comprehensive characterization of transgenic, myeloid-enhanced mouse strains (NOG-EXL and NSG-SGM3) expressing human interleukin-3 (hIL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) using identical humanization protocols. Only in HIS-NOG-EXL mice sufficient pDC infiltration was detectable. Therefore, we selected this strain for subsequent tumor studies. We analyzed pDC frequency in peripheral blood and tumors by comparing HIS-NOG-EXL with HIS-NOG mice bearing three different ovarian and breast tumors. Despite the substantially increased pDC numbers in peripheral blood of HIS-NOG-EXL mice, we detected TLR7/8 agonist responsive and thus functional pDCs only in certain tumor models independent of the mouse strain employed. However, HIS-NOG-EXL mice showed in general a superior humanization phenotype characterized by reconstitution of different myeloid subsets, NK cells and B cells producing physiologic IgG levels. Hence, we provide first evidence that the tumor milieu but not genetically introduced cytokines defines intratumoral (i.t.) frequencies of the rare pDC subset. This study provides model systems to investigate in vivo pro- and anti-tumoral human pDC functions.
Collapse
Affiliation(s)
- Ilona-Petra Maser
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Christa Bayer
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Gordon Heidkamp
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Falk Nimmerjahn
- FAU Erlangen, Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Eckmann
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany
| | - Carola H Ries
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Munich, Penzberg, Germany.,Dr. Carola Ries Consulting, Penzberg, Germany
| |
Collapse
|
42
|
Greene TT, Jo YR, Zuniga EI. Infection and cancer suppress pDC derived IFN-I. Curr Opin Immunol 2020; 66:114-122. [PMID: 32947131 PMCID: PMC8526282 DOI: 10.1016/j.coi.2020.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized producers of Type I interferon (IFN-I) that promote anti-viral and anti-tumor immunity. However, chronic infections and cancer inhibit pDC-derived IFN-I. While the mechanisms of this inhibition are multifarious they can be classified broadly into two categories: i) reduction or ablation of pDC IFN-I-production capacity (functional exhaustion) and/or ii) decrease in pDC numbers (altered population dynamics). Recent work has identified many processes that contribute to suppression of pDC-derived IFN-I during chronic infections and cancer, including sustained stimulation through Toll Like Receptors (TLRs), inhibitory microenvironments, inhibitory receptor ligation, and reduced development from bone marrow progenitors and apoptosis. Emerging success leveraging pDCs in treatment of disease through TLR activation illustrates the therapeutic potential of targeting pDCs. Deeper understanding of the systems that limit pDC-derived IFN-I has the potential to improve these emerging therapies as well as help devising new approaches that harness the outstanding IFN-I-production capacity of pDCs.
Collapse
Affiliation(s)
- Trever T Greene
- University of California San Diego, Department of Biological Sciences, San Diego, United States
| | - Yea-Ra Jo
- University of California San Diego, Department of Biological Sciences, San Diego, United States
| | - Elina I Zuniga
- University of California San Diego, Department of Biological Sciences, San Diego, United States.
| |
Collapse
|
43
|
Gies V, Bekaddour N, Dieudonné Y, Guffroy A, Frenger Q, Gros F, Rodero MP, Herbeuval JP, Korganow AS. Beyond Anti-viral Effects of Chloroquine/Hydroxychloroquine. Front Immunol 2020; 11:1409. [PMID: 32714335 PMCID: PMC7343769 DOI: 10.3389/fimmu.2020.01409] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
As the world is severely affected by COVID-19 pandemic, the use of chloroquine and hydroxychloroquine in prevention or for the treatment of patients is allowed in multiple countries but remained at the center of much controversy in recent days. This review describes the properties of chloroquine and hydroxychloroquine, and highlights not only their anti-viral effects but also their important immune-modulatory properties and their well-known use in autoimmune diseases, including systemic lupus and arthritis. Chloroquine appears to inhibit in vitro SARS virus' replication and to interfere with SARS-CoV2 receptor (ACE2). Chloroquine and hydroxychloroquine impede lysosomal activity and autophagy, leading to a decrease of antigen processing and presentation. They are also known to interfere with endosomal Toll-like receptors signaling and cytosolic sensors of nucleic acids, which result in a decreased cellular activation and thereby a lower type I interferons and inflammatory cytokine secretion. Given the antiviral and anti-inflammatory properties of chloroquine and hydroxychloroquine, there is a rational to use them against SARS-CoV2 infection. However, the anti-interferon properties of these molecules might be detrimental, and impaired host immune responses against the virus. This duality could explain the discrepancy with the recently published studies on CQ/HCQ treatment efficacy in COVID-19 patients. Moreover, although these treatments could be an interesting potential strategy to limit progression toward uncontrolled inflammation, they do not appear per se sufficiently potent to control the whole inflammatory process in COVID-19, and more targeted and/or potent therapies should be required at least in add-on.
Collapse
Affiliation(s)
- Vincent Gies
- Université de Strasbourg, INSERM UMR - S1109, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, Strasbourg, France
- Université de Strasbourg, Faculty of Pharmacy, Illkirch, France
| | - Nassima Bekaddour
- Université de Paris, CNRS UMR-8601, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
| | - Yannick Dieudonné
- Université de Strasbourg, INSERM UMR - S1109, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR - S1109, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| | - Quentin Frenger
- Université de Strasbourg, INSERM UMR - S1109, Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Frédéric Gros
- Université de Strasbourg, INSERM UMR - S1109, Strasbourg, France
- Université de Strasbourg, Faculty of Life Sciences, Strasbourg, France
| | - Mathieu Paul Rodero
- Université de Paris, CNRS UMR-8601, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
| | - Jean-Philippe Herbeuval
- Université de Paris, CNRS UMR-8601, Paris, France
- Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR - S1109, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiencies, Strasbourg, France
- Université de Strasbourg, Faculty of Medicine, Strasbourg, France
| |
Collapse
|
44
|
Azar P, Mejía JE, Cenac C, Shaiykova A, Youness A, Laffont S, Essat A, Izopet J, Passaes C, Müller-Trutwin M, Delobel P, Meyer L, Guéry JC. TLR7 dosage polymorphism shapes interferogenesis and HIV-1 acute viremia in women. JCI Insight 2020; 5:136047. [PMID: 32554924 DOI: 10.1172/jci.insight.136047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/06/2020] [Indexed: 12/25/2022] Open
Abstract
Type I IFN (IFN-I) production by plasmacytoid DCs (pDCs) occurs during acute HIV-1 infection in response to TLR7 stimulation, but the role of pDC-derived IFN-I in controlling or promoting HIV-1 infection is ambiguous. We report here a sex-biased interferogenic phenotype for a frequent single-nucleotide polymorphism of human TLR7, rs179008, displaying an impact on key parameters of acute HIV-1 infection. We show allele rs179008 T to determine lower TLR7 protein abundance in cells from women, specifically - likely by diminishing TLR7 mRNA translation efficiency through codon usage. The hypomorphic TLR7 phenotype is mirrored by decreased TLR7-driven IFN-I production by female pDCs. Among women from the French ANRS PRIMO cohort of acute HIV-1 patients, carriage of allele rs179008 T associated with lower viremia, cell-associated HIV-1 DNA, and CXCL10 (IP-10) plasma concentrations. RNA viral load was decreased by 0.85 log10 (95% CI, -1.51 to -0.18) among T/T homozygotes, who also exhibited a lower frequency of acute symptoms. TLR7 emerges as an important control locus for acute HIV-1 viremia, and the clinical phenotype for allele rs179008 T, carried by 30%-50% of European women, supports a beneficial effect of toning down TLR7-driven IFN-I production by pDCs during acute HIV-1 infection.
Collapse
Affiliation(s)
- Pascal Azar
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France
| | - José Enrique Mejía
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France
| | - Claire Cenac
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France
| | - Arnoo Shaiykova
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Université Paris-Sud, Université Paris-Saclay, INSERM, Le Kremlin-Bicêtre, France
| | - Ali Youness
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France
| | - Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France
| | - Asma Essat
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Université Paris-Sud, Université Paris-Saclay, INSERM, Le Kremlin-Bicêtre, France
| | - Jacques Izopet
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France.,Laboratoire de Virologie, CHU Purpan, Toulouse, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV Inflammation et Persistance, Paris, France
| | | | - Pierre Delobel
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France.,Service des Maladies Infectieuses et Tropicales, CHU Purpan, Toulouse, France
| | - Laurence Meyer
- Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Université Paris-Sud, Université Paris-Saclay, INSERM, Le Kremlin-Bicêtre, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, UMR 1043 INSERM, CNRS, Toulouse, France
| |
Collapse
|
45
|
Soni C, Perez OA, Voss WN, Pucella JN, Serpas L, Mehl J, Ching KL, Goike J, Georgiou G, Ippolito GC, Sisirak V, Reizis B. Plasmacytoid Dendritic Cells and Type I Interferon Promote Extrafollicular B Cell Responses to Extracellular Self-DNA. Immunity 2020; 52:1022-1038.e7. [PMID: 32454024 PMCID: PMC7306002 DOI: 10.1016/j.immuni.2020.04.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
Abstract
Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - William N Voss
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lee Serpas
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Justin Mehl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Krystal L Ching
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jule Goike
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpt, Université de Bordeaux, 33076 Bordeaux, France.
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Cheng L, Yu H, Wrobel JA, Li G, Liu P, Hu Z, Xu XN, Su L. Identification of pathogenic TRAIL-expressing innate immune cells during HIV-1 infection in humanized mice by scRNA-Seq. JCI Insight 2020; 5:135344. [PMID: 32406872 DOI: 10.1172/jci.insight.135344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Depletion of CD4+ T cells during HIV-1 infection is mostly mediated by inflammatory cells via indirect but not clearly defined mechanisms. In this report, we used single-cell RNA-Seq (scRNA-Seq) technology to study HIV-induced transcriptomic change in innate immune cells in lymphoid organs. We performed scRNA-Seq on hCD45+hCD3-hCD19- human leukocytes isolated from spleens of humanized NOD/Rag2-/-γc-/- (NRG) mice transplanted with human CD34+ hematopoietic stem progenitor cells (NRG-hu HSC mice). We identified major populations of innate immune cells, including plasmacytoid dendritic cells (pDCs), myeloid dendritic cells (mDCs), macrophages, NK cells, and innate lymphoid cells (ILCs). HIV-1 infection significantly upregulated genes involved in type I IFN inflammatory pathways in each of the innate immune subsets. Interestingly, we found that TRAIL was upregulated in the innate immune populations, including pDCs, mDCs, macrophages, NK cells, and ILCs. We further demonstrated that blockade of the TRAIL signaling pathway in NRG-hu HSC mice prevented HIV-1-induced CD4+ T cell depletion in vivo. In summary, we characterized HIV-induced transcriptomic changes of innate immune cells in the spleen at single-cell levels, identified the TRAIL+ innate immune cells, and defined an important role of the TRAIL signaling pathway in HIV-1-induced CD4+ T cell depletion in vivo.
Collapse
Affiliation(s)
- Liang Cheng
- Lineberger Comprehensive Cancer Center and.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haisheng Yu
- Lineberger Comprehensive Cancer Center and.,Key Laboratory of Human Disease Comparative Medicine of Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Re-emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | | | - Peng Liu
- Lineberger Comprehensive Cancer Center and
| | - Zhiyuan Hu
- Lineberger Comprehensive Cancer Center and
| | - Xiao-Ning Xu
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Lishan Su
- Lineberger Comprehensive Cancer Center and.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Ji Z, Tan Z, Li M, Tao J, Guan E, Du J, Hu Y. Multi-functional nanocomplex codelivery of Trp2 and R837 to activate melanoma-specific immunity. Int J Pharm 2020; 582:119310. [DOI: 10.1016/j.ijpharm.2020.119310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
|
48
|
Leylek R, Idoyaga J. The versatile plasmacytoid dendritic cell: Function, heterogeneity, and plasticity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:177-211. [PMID: 31759431 DOI: 10.1016/bs.ircmb.2019.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their identification as the natural interferon-producing cell two decades ago, plasmacytoid dendritic cells (pDCs) have been attributed diverse functions in the immune response. Their most well characterized function is innate, i.e., their rapid and robust production of type-I interferon (IFN-I) in response to viruses. However, pDCs have also been implicated in antigen presentation, activation of adaptive immune responses and immunoregulation. The mechanisms by which pDCs enact these diverse functions are poorly understood. One central debate is whether these functions are carried out by different pDC subpopulations or by plasticity in the pDC compartment. This chapter summarizes the latest reports regarding pDC function, heterogeneity, cell conversion and environmentally influenced plasticity, as well as the role of pDCs in infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Rebecca Leylek
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, and Immunology Program, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|