1
|
Xia N, Liu A, Han H, Jiang S, Cao Q, Luo J, Zhang J, Hao W, Sun Z, Chen N, Zhang H, Zheng W, Zhu J. Porcine cGAS-STING signalling induced apoptosis negatively regulates STING downstream IFN response and autophagy via different mechanisms. Virulence 2025; 16:2496436. [PMID: 40310883 PMCID: PMC12051576 DOI: 10.1080/21505594.2025.2496436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/08/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The innate immune cGAS-STING signalling pathway recognizes double-stranded DNA and induces the interferon (IFN) response, autophagy and apoptosis, exerting a broad antiviral effect. However, the mechanisms and interrelationship between STING induced downstream IFN, autophagy, and apoptosis in livestock have not been fully elucidated. Our previous study defined porcine STING (pSTING) induced IFN, autophagy and apoptosis, and showed that IFN does not affect autophagy and apoptosis, whereas autophagy inhibits both IFN and apoptosis, likely by promoting pSTING degradation. In this study, we further explored the underlying mechanism of pSTING induced apoptosis and the regulation of IFN and autophagy by apoptosis. First, pSTING induces endoplasmic reticulum (ER) stress and mitochondrial damage to activate caspases 9, 3, and 7, which drive intrinsic apoptosis. Second, pSTING triggered apoptosis inhibits the IFN response by activating caspase 7, which cleaves pIRF3 at the species specific D197/D198 site. Third, pSTING activated apoptotic caspases 9, 3, and 7 reduce the expression of ATG proteins, and cleave the ATG5-ATG12L1 complex, effectively inhibiting autophagy. Fourth, knockout of pSTING activated apoptosis heightens the IFN response and autophagy, while suppressing the replication of Herpes Simplex Virus type 1 (HSV-1), Vesicular Stomatitis Virus (VSV) and Pseudorabies Virus (PRV). This study sheds light on the molecular mechanisms of innate immunity in pigs.
Collapse
Affiliation(s)
- Nengwen Xia
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Anjing Liu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjian Han
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Sen Jiang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qi Cao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia Luo
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiajia Zhang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weilin Hao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ziyan Sun
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | | | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Gao Z, Yang J. GNB4 Silencing Promotes Pyroptosis to Inhibit the Development of Glioma by Activating cGAS-STING Pathway. Mol Biotechnol 2025; 67:2262-2276. [PMID: 38814382 DOI: 10.1007/s12033-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
The induction of immunogenic cell death is a promising therapeutic option for gliomas. Pyroptosis is a type of programmed immunogenic cell death and its role in gliomas remains unclear. Differentially expressed genes (DEGs) were obtained from GSE4290 and GSE31262 datasets. Hub genes were screened from protein-protein interaction networks and assessed using principal component analysis and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the mRNA expression of hub genes. Pyroptosis and pathway-related proteins were assessed using western blotting. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay. The effect of guanine nucleotide-binding protein-4 (GNB4) on proliferation, migration, and invasion was evaluated using a cell viability test kit and wound-healing and transwell assays. In total, 202 DEGs were identified. Among them, F2R, GNG4, GNG3, PRKCB, and GNB4 were identified as hub genes in gliomas after comprehensive bioinformatics analysis. GNB4 was significantly upregulated in glioma cells compared to normal brain glial cells. Silencing GNB4 significantly inhibited proliferation, invasion, and migration of glioma cells. The expression of pyroptosis-related proteins increased after GNB4 silencing, with elevated levels of inflammatory factors. Pyroptosis inhibitors reversed the inhibitory effects of GNB4 silencing on cell proliferation, migration, and invasion. Additionally, GNB4 silencing activated the cGAS-STING pathway. Treatment with a cGAS-STING pathway inhibitor reversed the inhibition of proliferation, migration, and invasion while downregulating the expression of pyroptosis-related proteins. Silencing GNB4 promotes pyroptosis and thus inhibits the proliferation, migration, and invasion of glioma cells by activating the cGAS-STING pathway, which is a promising biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China
| | - Jing Yang
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
3
|
Li L, He Y, Chen Y, Zhou X. cGAS-STING Pathway's Impact on Intestinal Barrier. J Gastroenterol Hepatol 2025. [PMID: 40377214 DOI: 10.1111/jgh.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/09/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Intestinal inflammation and increased permeability have been linked to metabolic dysregulation in patients with compromised intestinal barrier function. Among the pathways, garnering attention is the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. Upon binding to double-stranded DNA (dsDNA), cGAS catalyzes the conversion of ATP and GTP into cyclic GMP-AMP (cGAMP). Subsequently, cGAMP binds to STING, triggering the activation of tank-binding kinase 1 (TBK1), which activates interferon regulatory factor 3 (IRF3), thus inducing the production of type I interferon. Activated TBK1 can also induce the activation of nuclear factor κB (NF-κB), thus mediating the production of proinflammatory cytokines. The effects of this process vary among innate and adaptive immune cells, as well as intestinal epithelial cells (IECs). This review aims to elucidate the impact and role of the cGAS-STING pathway on intestinal barrier function.
Collapse
Affiliation(s)
- Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yingge He
- Department of Thyroid and Breast Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaoshu Zhou
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wang XT, Zhu X, Lian ZH, Liu Q, Yan HH, Qiu Y, Ge XY. AUP1 and UBE2G2 complex targets STING signaling and regulates virus-induced innate immunity. mBio 2025; 16:e0060225. [PMID: 40237449 PMCID: PMC12077101 DOI: 10.1128/mbio.00602-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the host immune response triggered by DNA pathogens. Precise regulation of STING is crucial for maintaining a balanced immune response and preventing harmful autoinflammation. Activation of STING requires its translocation from the ER to the Golgi apparatus. However, the mechanisms that maintain STING in its resting state remain largely unclear. Here, we find that deficiency of the ancient ubiquitous protein 1 (AUP1) causes spontaneous activation of STING and enhances the expression of type I interferons (IFNs) under resting conditions. Furthermore, deficiency of UBE2G2, a cofactor of AUP1, also promotes the abnormal activation of STING. AUP1 deficiency significantly enhances STING signaling induced by DNA virus, and AUP1 deficiency exhibits increased resistance to DNA virus infection in vitro and in vivo. Mechanistically, AUP1 may form a complex with UBE2G2 to interact with STING, preventing its exit from the ER membrane. Notably, infection with the RNA virus vesicular stomatitis virus (VSV) promotes the accumulation of lipid droplets (LDs) and AUP1 proteins. Additionally, AUP1 deficiency markedly inhibits the replication of VSV because AUP1 deficiency reduces lipid accumulation and alters the expression of lipid metabolism genes, such as carnitine palmitoyltransferase 1A (CPT1A), monoglyceride lipase (MGLL), and sterol regulatory element-binding transcription factor 1 (SREBF1). This study uncovers the essential roles of AUP1 in the STING signaling pathway and lipid metabolism pathway, highlighting its dual role in regulating virus replication.IMPORTANCEThe stimulator of interferon genes (STING) signaling cascade plays an essential role in coordinating innate immunity against DNA pathogens and autoimmunity. Precise regulation of the innate immune response is essential for maintaining homeostasis. In this study, we demonstrate that ancient ubiquitous protein 1 (AUP1) and UBE2G2 act as negative regulators of the innate immune response by targeting STING. Notably, AUP1 interacts with STING to retain STING in the endoplasmic reticulum (ER), preventing STING translocation and thereby limiting STING signaling in the resting state. In addition, deficiency of AUP1 markedly inhibits the replication of DNA virus and RNA virus. Our findings provide new insights into the regulation of STING signaling and confirm AUP1 has a dual role in regulating virus replication.
Collapse
Affiliation(s)
- Xin-Tao Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhong-Hao Lian
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Hui-Hui Yan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
5
|
Zheng Y, Peng X, Zhang Y, Liu R, Long J. ELF4 improves sepsis-induced myocardial injury by regulating STING signaling-mediated T cells differentiation. Cell Biol Toxicol 2025; 41:82. [PMID: 40335763 PMCID: PMC12058945 DOI: 10.1007/s10565-025-10029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
Septic cardiomyopathy (SCM) is a common complication caused by sepsis. T cells differentiation is involved in SCM progression. However, the role and underlying mechanisms of T cells-mediated immunity in SCM remain unclear. This study aimed to investigate the role of STING-mediated T cells differentiation in SCM. Cecal ligation and puncture (CLP) surgery was conducted in mice to establish SCM model. The mice were injected intraperitoneally with STING agonist ADU-S100 and C-176 after modeling. Wild type (WT) mice and CD4-STING-/- mice were employed. Besides, overexpressing vectors of ELF4 (oe-ELF4), short hairpin RNA targeting ELF4 (sh-ELF4) were transfected into 293T cells. STING signaling was found to be activated in sepsis-induced myocardial immune injury in mice. The administration of ADU-S100 exacerbated myocardial injury and inflammation, while C-176 alleviated these effects. Additionally, STING activation influenced T cells differentiation, with an increase in Th1 and Th17 cells and a decrease in Treg cells. Conditional knockout of STING in CD4+ T cells reduced Th1 and Th17 populations and improved myocardial function and histology. Furthermore, ELF4 was found to inhibit STING activation, reducing T cells differentiation into pro-inflammatory subsets. Overexpression of ELF4 in CD4+ T cells ameliorated myocardial damage and improved cardiac function in CLP mice, suggesting that the ELF4-STING signaling axis plays a protective role in sepsis-induced myocardial injury by regulating T cells differentiation.
Collapse
Affiliation(s)
- Yawen Zheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Xiongjun Peng
- Department of Social Affairs, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yusha Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China
| | - Ruilin Liu
- Department of Cardiac Surgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Junke Long
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China.
| |
Collapse
|
6
|
Thanos JM, Campbell OC, Cowan MN, Bruch KR, Moore KA, Ennerfelt HE, Natale NR, Mangalmurti A, Kerur N, Lukens JR. STING deletion protects against amyloid β-induced Alzheimer's disease pathogenesis. Alzheimers Dement 2025; 21:e70305. [PMID: 40410932 PMCID: PMC12101966 DOI: 10.1002/alz.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/10/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
INTRODUCTION While immune dysfunction has been increasingly linked to Alzheimer's disease (AD) progression, many major innate immune signaling molecules have yet to be explored in AD pathogenesis using genetic targeting approaches. METHODS To investigate a role for the key innate immune adaptor molecule, stimulator of interferon genes (STING), in AD, we deleted Sting1 in the 5xFAD mouse model of AD-related amyloidosis and evaluated the effects on pathology, neuroinflammation, gene expression, and cognition. RESULTS Genetic ablation of STING in 5xFAD mice led to improved control of amyloid beta (Aβ) plaques, alterations in microglial activation status, decreased levels of neuritic dystrophy, and protection against cognitive decline. Moreover, rescue of neurological disease in STING-deficient 5xFAD mice was characterized by reduced expression of type I interferon signaling genes in both microglia and excitatory neurons. DISCUSSION These findings reveal critical roles for STING in Aβ-driven neurological disease and suggest that STING-targeting therapeutics may offer promising strategies to treat AD. HIGHLIGHTS Stimulator of interferon genes (STING) deficiency in the 5xFAD mouse model of Alzheimer's disease-related amyloidosis results in decreased amyloid beta (Aβ) deposition and altered microglial activation status. Protection against amyloidosis in STING-deficient 5xFAD mice is associated with decreased expression of genes involved in type I IFN signaling, improved neuronal health, and reduced levels of oxidative stress. Loss of STING in 5xFAD mice leads to improved spatial learning and memory.
Collapse
Affiliation(s)
- Jessica M. Thanos
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
- Brain Immunology and Glia Graduate Training ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Olivia C. Campbell
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
| | - Maureen N. Cowan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
| | - Katherine R. Bruch
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Katelyn A. Moore
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
| | - Hannah E. Ennerfelt
- Department of Neurology and Neurological SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Nick R. Natale
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Aman Mangalmurti
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciencesthe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Ohio State Havener Eye Institutethe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Microbial Infection and Immunitythe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
- Brain Immunology and Glia Graduate Training ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
7
|
Liao P, Zhou Y, Qiu Y, Hu R, Li H, Sun H, Li Y. Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy. Cancer Metastasis Rev 2025; 44:49. [PMID: 40301229 DOI: 10.1007/s10555-025-10266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
In recent years, increasing evidence has shown that metals play important roles in both innate and adaptive immunity. An emerging concept of metalloimmunotherapy has been proposed, which may accelerate the development of immunotherapy for cancers. Here, we discuss how metals affect T cell function through different signaling pathways. Metals impact the fate of T cells, including their activation, proliferation, cytotoxicity, and differentiation. Most importantly, metals also participate in mitochondrial operation by regulating energy production and reactive oxygen species homeostasis in T cells. We also identified the metal-based mutual effects between tumor cells and T cells in the tumor microenvironment. Overall, the antitumor effect of T cells can be improved by targeting metal metabolism and metalloimmunotherapy, which will be a step forward in the treatment of cancers.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Zhujiang Hospital, No. 253, Gongye Road, Guangzhou, China.
| |
Collapse
|
8
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025; 13:2235-2260. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
9
|
Song K, Heng L, Yan N. STING: a multifaced player in cellular homeostasis. Hum Mol Genet 2025:ddae175. [PMID: 40292755 DOI: 10.1093/hmg/ddae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
The stimulator of interferon gene (STING) is an important innate immune mediator of the cytoplasmic DNA sensing pathway. As a mediator known for its role in the immune response to infections, STING is also surprisingly at the center of a variety of non-infectious human diseases, including cancer, autoimmune diseases and neurodegenerative diseases. Recent studies have shown that STING has many signaling activities, including type I interferon (IFN-I) and other IFN-independent activities, many of which are poorly understood. STING also has the unique property of being continuous transported from the ER to the Golgi then to the lysosome. Mutations of STING or trafficking cofactors are associated with human diseases affecting multiple immune and non-immune organs. Here, we review recent advances in STING trafficking and signaling mechanisms based in part on studies of STING-associated monogenic inborn error diseases.
Collapse
Affiliation(s)
- Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Lyu Heng
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| |
Collapse
|
10
|
Timilsina S, Huang JY, Abdelfattah N, Medina D, Singh D, Abdulsahib S, Subbarayalu P, Do TP, Venkata PP, Nirzhor S, Prochnau J, Bhandari M, Zheng S, Chen Y, Huang G, Mukherjee N, Hromas R, Sung P, Kaklamani V, Vadlamudi R, Zhang N, Rao MK. Epigenetic silencing of DNA sensing pathway by FOXM1 blocks stress ligand-dependent antitumor immunity and immune memory. Nat Commun 2025; 16:3967. [PMID: 40295473 PMCID: PMC12037779 DOI: 10.1038/s41467-025-59186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
The interplay between tumor cells and the microenvironment significantly influences cancer progression. Here, we report a significant role of the transcription factor FOXM1 in shaping the tumor immune landscape. Single-cell sequencing reveals that tumor-intrinsic FOXM1 creates an immune-suppressive tumor microenvironment by inhibiting expression of stress ligands (including ULBP1) on cancer cells, thereby blocking NKG2D-NKG2DL interactions critical for priming natural killer- and T cell-mediated cytotoxicity of cancer cells. FOXM1 suppresses ULBP1 expression by epigenetically silencing the DNA-sensing protein STING using a DNMT1-UHRF1 complex, which in turn inhibits the unfolded protein response protein CHOP from activating ULBP1. Importantly, cancer patients with higher levels of FOXM1 and DNMT1, and lower levels of STING and ULBP1, have worse survival and are less responsive to immunotherapy. Collectively, our findings provide key insight into how a tumor-intrinsic transcription factor epigenetically shapes the tumor immune microenvironment, with strong implications for refining existing and designing new cancer immunotherapies.
Collapse
Affiliation(s)
| | - Jian Yu Huang
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Daisy Medina
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Deepika Singh
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Shahad Abdulsahib
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Panneerdoss Subbarayalu
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Trong Phat Do
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saif Nirzhor
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Jack Prochnau
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Mukund Bhandari
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Gang Huang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | | | - Robert Hromas
- Department of Medicine, UT Health, San Antonio, TX, USA
| | - Patrick Sung
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA
- Department of Biochemistry & Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Ratna Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Nu Zhang
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, San Antonio, TX, USA.
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
11
|
Herbst M, Köksal H, Brunn S, Zanetti D, Domocos I, De Stefani V, Gatti M, Vivalda F, Pereira P, Nater M, Cecconi V, Sartori AA, van den Broek M. Cancer-cell-derived cGAMP limits the activity of tumor-associated CD8 + T cells. Cell Rep 2025; 44:115510. [PMID: 40178978 DOI: 10.1016/j.celrep.2025.115510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
Using a mouse tumor model with inducible cancer-cell-intrinsic cyclic GMP-AMP (cGAMP) synthase (cGAS) expression, we show that cancer-cell-derived cGAMP is essential and sufficient to trigger a sustained type I interferon response within the tumor microenvironment. This leads to improved CD8+ T cell-dependent tumor restriction. However, cGAMP limits the proliferation, survival, and function of stimulator of IFN genes (STING)-expressing, but not of STING-deficient, CD8+ T cells. In vivo, STING deficiency in CD8+ T cells enhances tumor restriction. Consequently, cancer-cell-derived cGAMP both drives and limits the anti-tumor potential of CD8+ T cells. Mechanistically, T cell-intrinsic STING is associated with pro-apoptotic and antiproliferative gene signatures. Our findings suggest that STING signaling acts as a checkpoint in CD8+ T cells that balances tumor immunity.
Collapse
Affiliation(s)
- Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Silvan Brunn
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dominik Zanetti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Ioana Domocos
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Viola De Stefani
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marco Gatti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Francesca Vivalda
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Jiang T, Fei L. cGAS-STING signaling in melanoma: regulation and therapeutic targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04141-8. [PMID: 40223035 DOI: 10.1007/s00210-025-04141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Melanocytes are the source of the skin cancer known as melanoma. It usually affects the viscera, mucous membranes, and skin. Even so, melanoma only makes for 7% of all skin cancer occurrences. By triggering the generation of type I interferons (IFN-I) and inflammatory cytokines upon identifying microbial DNA, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway promotes anti-microbial innate immunity. A growing body of research indicates that antitumor immunity depends on the cGAS-STING axis being activated. The cGAS-STING-regulated downstream cytokines, particularly IFN-I, act as linkages between adaptive and innate immunity. As a result, an increasing amount of research has concentrated on the synthesis and screening of agonists of the STING pathway. As a result, an increasing amount of research has concentrated on the synthesis and screening of agonists of the STING pathway. The many implications of the cGAS-STING pathway in the pathophysiology and therapy of melanoma are thoroughly examined in this study. Our research highlights the significance of the cGAS-STING pathway in melanoma and identifies it as a key target for boosting immunity against tumors.
Collapse
Affiliation(s)
- Ting Jiang
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Lixue Fei
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
13
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Shen M, Jiang X, Peng Q, Oyang L, Ren Z, Wang J, Peng M, Zhou Y, Deng X, Liao Q. The cGAS‒STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications. J Hematol Oncol 2025; 18:40. [PMID: 40188340 PMCID: PMC11972543 DOI: 10.1186/s13045-025-01691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Innate immunity represents the body's first line of defense, effectively countering the invasion of external pathogens. Recent studies have highlighted the crucial role of innate immunity in antitumor defense, beyond its established function in protecting against external pathogen invasion. Enhancing innate immune signaling has emerged as a pivotal strategy in cancer therapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key innate immune signal that activates the immune response and exerts antitumor effects; this is primarily attributed to the DNA receptor function of cGAS, which recognizes exogenous DNA to activate downstream STING signaling. This, in turn, promotes the activation of downstream targets such as IRF-3(Interferon Regulatory Factor 3) and NF-κB, leading to the secretion of type I interferons and proinflammatory cytokines, thereby increasing cellular immune activity. The activation of the cGAS-STING pathway may thus play a crucial role in enhancing anticancer immunity. In this paper, we reviewed the role of cGAS-STING signaling in anticancer immunity and its molecular mechanisms. Additionally, we briefly discuss the current applications of the cGAS-STING pathway in cancer immunity, summarize recent developments in STING agonists, and address the challenges facing the use of the cGAS-STING pathway in cancer therapy. Finally, we provide insights into the role of the cGAS‒STING pathway in cancer and propose new directions for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengzhou Shen
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Jiewen Wang
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, 410013, China
| | - Xiyun Deng
- School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan, 410013, China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, 410013, China.
| |
Collapse
|
15
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
16
|
Moon CY, Belabed M, Park MD, Mattiuz R, Puleston D, Merad M. Dendritic cell maturation in cancer. Nat Rev Cancer 2025; 25:225-248. [PMID: 39920276 PMCID: PMC11954679 DOI: 10.1038/s41568-024-00787-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 02/09/2025]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are present at low abundance in the circulation and tissues; they serve as crucial immune sentinels by continually sampling their environment, migrating to secondary lymphoid organs and shaping adaptive immune responses through antigen presentation. Owing to their ability to orchestrate tolerogenic or immunogenic responses to a specific antigen, DCs have a pivotal role in antitumour immunity and the response to immune checkpoint blockade and other immunotherapeutic approaches. The multifaceted functions of DCs are acquired through a complex, multistage process called maturation. Although the role of inflammatory triggers in driving DC maturation was established decades ago, less is known about DC maturation in non-inflammatory contexts, such as during homeostasis and in cancer. The advent of single-cell technologies has enabled an unbiased, high-dimensional characterization of various DC states, including mature DCs. This approach has clarified the molecular programmes associated with DC maturation and also revealed how cancers exploit these pathways to subvert immune surveillance. In this Review, we discuss the mechanisms by which cancer disrupts DC maturation and highlight emerging therapeutic opportunities to modulate DC states. These insights could inform the development of DC-centric immunotherapies, expanding the arsenal of strategies to enhance antitumour immunity.
Collapse
Affiliation(s)
- Chang Yoon Moon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Puleston
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Poddar S, Chauvin SD, Archer CH, Qian W, Castillo-Badillo JA, Yin X, Disbennett WM, Miner CA, Holley JA, Naismith TV, Stinson WA, Wei X, Ning Y, Fu J, Ochoa TA, Surve N, Zaver SA, Wodzanowski KA, Balka KR, Venkatraman R, Liu C, Rome K, Bailis W, Shiba Y, Cherry S, Shin S, Semenkovich CF, De Nardo D, Yoh S, Roberson EDO, Chanda SK, Kast DJ, Miner JJ. ArfGAP2 promotes STING proton channel activity, cytokine transit, and autoinflammation. Cell 2025; 188:1605-1622.e26. [PMID: 39947179 PMCID: PMC11928284 DOI: 10.1016/j.cell.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 11/03/2024] [Accepted: 01/17/2025] [Indexed: 02/23/2025]
Abstract
Stimulator of interferon genes (STING) transmits signals downstream of the cytosolic DNA sensor cyclic guanosine monophosphate-AMP synthase (cGAS), leading to transcriptional upregulation of cytokines. However, components of the STING signaling pathway, such as IRF3 and IFNAR1, are not essential for autoinflammatory disease in STING gain-of-function (STING-associated vasculopathy with onset in infancy [SAVI]) mice. Recent discoveries revealed that STING also functions as a proton channel that deacidifies the Golgi apparatus. Because pH impacts Golgi enzyme activity, protein maturation, and trafficking, we hypothesized that STING proton channel activity influences multiple Golgi functions. Here, we show that STING-mediated proton efflux non-transcriptionally regulates Golgi trafficking of protein cargos. This process requires the Golgi-associated protein ArfGAP2, a cell-type-specific dual regulator of STING-mediated proton efflux and signaling. Deletion of ArfGAP2 in hematopoietic and endothelial cells markedly reduces STING-mediated cytokine and chemokine secretion, immune cell activation, and autoinflammatory pathology in SAVI mice. Thus, ArfGAP2 facilitates STING-mediated signaling and cytokine release in hematopoietic cells, significantly contributing to autoinflammatory disease pathogenesis.
Collapse
Affiliation(s)
- Subhajit Poddar
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Samuel D Chauvin
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher H Archer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wei Qian
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jean A Castillo-Badillo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - W Miguel Disbennett
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Cathrine A Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joe A Holley
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - W Alexander Stinson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xiaochao Wei
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yue Ning
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jiayuan Fu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Trini A Ochoa
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nehalee Surve
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shivam A Zaver
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly A Wodzanowski
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine R Balka
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rajan Venkatraman
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Canyu Liu
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kelly Rome
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Will Bailis
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yoko Shiba
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Sara Cherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sunnie Yoh
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elisha D O Roberson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | - Jonathan J Miner
- Division of Rheumatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Knox K, Jeltema D, Dobbs N, Yang K, Xing C, Song K, Tang Z, Torres-Ramirez G, Wang J, Gao S, Wu T, Yao C, Wang J, Yan N. Dynamic STING repression orchestrates immune cell development and function. Sci Immunol 2025; 10:eado9933. [PMID: 40053603 DOI: 10.1126/sciimmunol.ado9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 11/15/2024] [Accepted: 01/17/2025] [Indexed: 03/09/2025]
Abstract
STING is an essential component of the innate immune system, yet homeostatic STING expression patterns and regulation are unknown. Using Sting1IRES-EGFP reporter and conditional Sting1 transgenic mice, we found that regulation of STING expression is critical for immune cell development and functionality. STING expression was repressed in neutrophils, and forced STING expression or signaling drove systemic inflammatory disease. During T lymphocyte development, STING expression was restricted at the double-positive stage via epigenetic silencing by DNA methyltransferase 1. Forced STING expression or signaling impaired T lymphocyte development independent of type I interferon and promoted lineage commitment to innate-like γδ T cells over adaptive αβ T cells. In the tumor microenvironment, CD8+ T lymphocytes repressed STING expression, correlating with features of T cell exhaustion in syngeneic mouse tumors and human colorectal cancer. Our data demonstrate the necessity of controlled, rather than ubiquitous, STING expression, uncovering a previously unappreciated dimension of STING pathobiology.
Collapse
Affiliation(s)
- Kennady Knox
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gustavo Torres-Ramirez
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiefu Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Shan Gao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen Yao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
20
|
Xu Q, Hua X, Li B, Jiang B, Jin J, Wu R, Gu Y, Xu H, Cheng Q, Zhu S, Zhang F, Lv T, Song Y. Intrinsic STING of CD8 + T cells regulates self-metabolic reprogramming and memory to exert anti-tumor effects. Cell Commun Signal 2025; 23:99. [PMID: 39972350 PMCID: PMC11837649 DOI: 10.1186/s12964-025-02069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Our team has previously found that the stimulator of interferon genes (STING) plays a more significant anti-tumor role in host immune cells than in tumor cells. Although STING is necessary for CD8 + T cells to exert immunological activity, its effect on CD8 + T cells remains debatable. In this study, we used both in vitro and in vivo models to explore the metabolic effects of STING on CD8 + T cells. METHODS Peripheral blood lymphocytes were procured from non-small cell lung cancer (NSCLC) patients receiving anti-PD-1 therapy to investigate the correlation between STING expression levels, CD8 + T-cell subsets, and immunotherapy efficacy. STING knockout (STING-KO) mice were used for in vivo studies. RNA-seq, seahorse, flow cytometry, electron microscopy, qPCR, immunofluorescence, western blotting, and immunoprecipitation were performed to explore the underlying mechanisms of STING in regulating CD8 + T cell function. RESULTS We discovered that the expression level of STING in immune cells exhibited a significant correlation with immunotherapy efficacy, as well as with the proportion of central memory CD8 + T cells. Moreover, we found that the loss of the STING gene results in a reduction in the number of mitochondria and a change in the metabolic pathway selection, thereby inducing excessive glycolysis in CD8 + T cells. This excessive glycolysis generates high levels of lactate, which further inhibits IFN-γ secretion and impacts memory T cell differentiation. Correcting the glycolysis disorder partially restored function and IFN-γ secretion, rescued the central memory CD8 + T subset, and improved immunotherapy in STING-KO mice. This provides a new treatment strategy for patients with low STING expression and a poor response to immunotherapy. CONCLUSION Intrinsic STING of CD8 + T cells affects their function through the HK2/Lactate/IFN-γ axis and affects memory differentiation by regulating glycolysis.
Collapse
Affiliation(s)
- Qiuli Xu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Xin Hua
- Department of Geriatric Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Bingbing Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Bei Jiang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Ranpu Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Yanli Gu
- Department of Respiratory and Critical Care Medicine People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hao Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
- Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Qinpei Cheng
- Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, School of Medicine, Nanjing University of Traditional Chinese Medicine Southeast University, #305 East Zhongshan Road, Nanjing, Jiangsu, 210002, China.
| | - Yong Song
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210002, China.
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
21
|
Deng C, Chen D, Yang L, Zhang Y, Jin C, Li Y, Lin Q, Luo M, Zheng R, Huang B, Liu S. The role of cGAS-STING pathway ubiquitination in innate immunity and multiple diseases. Front Immunol 2025; 16:1522200. [PMID: 40028324 PMCID: PMC11868049 DOI: 10.3389/fimmu.2025.1522200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
The cGAS-STING pathway is essential in innate immunity, especially in antiviral responses and cellular stress management. cGAS acts as a cytoplasmic DNA sensor by initiating the synthesis of the second messenger cyclic GMP-AMP synthase (cGAMP), which subsequently activates the STING pathway, leading to the production of type I interferons and other cytokines, as well as the activation of inflammatory mediators. Recent studies have demonstrated that ubiquitination changes closely regulate the function of the cGAS-STING pathway. Ubiquitination modifications influence the stability and activity of cGAS and STING, while also influencing the accuracy of the immune response by adjusting their degradation and signal intensity. E3 ubiquitin ligase specifically facilitates the degradation or modulates the signaling of cGAS-STING-associated proteins via ubiquitination alterations. Furthermore, the ubiquitination of the cGAS-STING pathway serves distinct functions in various cell types and engages with NF-κB, IRF3/7, autophagy, and endoplasmic reticulum stress. This ubiquitin-mediated regulation is crucial for sustaining the balance of innate immunity, while excessive or inadequate ubiquitination can result in autoimmune disorders, cancers, and viral infections. An extensive examination of the ubiquitination process within the cGAS-STING pathway elucidates its specific regulatory mechanisms in innate immunity and identifies novel targets for the intervention of associated diseases.
Collapse
Affiliation(s)
- Chunyan Deng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Dongyan Chen
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Liang Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Yue Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qihong Lin
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Mingjing Luo
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Ruihao Zheng
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| | - Baozhen Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children ‘s Hospital, Shenzhen, China
| |
Collapse
|
22
|
Han R, Luo Y, Gao J, Zhou H, Wang Y, Chen J, Zheng G, Ling C. HDAC3: A Multifaceted Modulator in Immunotherapy Sensitization. Vaccines (Basel) 2025; 13:182. [PMID: 40006729 PMCID: PMC11860249 DOI: 10.3390/vaccines13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Histone deacetylase 3 (HDAC3) has emerged as a critical epigenetic regulator in tumor progression and immune modulation, positioning it as a promising target for enhancing cancer immunotherapy. This work comprehensively explores HDAC3's multifaceted roles, focusing on its regulation of key immune-modulatory pathways such as cGAS-STING, ferroptosis, and the Nrf2/HO-1 axis. These pathways are central to tumor immune evasion, antigen presentation, and immune cell activation. Additionally, the distinct effects of HDAC3 on various immune cell types-including its role in enhancing T cell activation, restoring NK cell cytotoxicity, promoting dendritic cell maturation, and modulating macrophage polarization-are thoroughly examined. These findings underscore HDAC3's capacity to reshape the tumor immune microenvironment, converting immunologically "cold tumors" into "hot tumors" and thereby increasing their responsiveness to immunotherapy. The therapeutic potential of HDAC3 inhibitors is highlighted, both as standalone agents and in combination with immune checkpoint inhibitors, to overcome resistance and improve treatment efficacy. Innovative strategies, such as the development of selective HDAC3 inhibitors, advanced nano-delivery systems, and integration with photodynamic or photothermal therapies, are proposed to enhance treatment precision and minimize toxicity. By addressing challenges such as toxicity, patient heterogeneity, and resistance mechanisms, this study provides a forward-looking perspective on the clinical application of HDAC3 inhibitors. It highlights its significant potential in personalized cancer immunotherapy, paving the way for more effective treatments and improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Rui Han
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yujun Luo
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jingdong Gao
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Oncology Department, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine Suzhou, Suzhou 215009, China
| | - Huiling Zhou
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Yuqian Wang
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Jiaojiao Chen
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyin Zheng
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Changquan Ling
- Oncology Department of Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (R.H.)
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
23
|
Soe YM, Sim SL, Kumari S. Innate Immune Sensors and Cell Death-Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin. Viruses 2025; 17:241. [PMID: 40006996 PMCID: PMC11861910 DOI: 10.3390/v17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans.
Collapse
Affiliation(s)
| | | | - Snehlata Kumari
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Woolloongabba, Brisbane, QLD 4102, Australia; (Y.M.S.); (S.L.S.)
| |
Collapse
|
24
|
Andrade-Silva M, Dhillon P, Sanchez-Navarro A, Mukhi D, Hu H, Kolligundla LP, Bergeson A, Abedini A, Levinsohn J, Dumoulin B, Câmara NOS, Miner JJ, Susztak K. The critical role of endoplasmic reticulum stress and the stimulator of interferon genes (STING) pathway in kidney fibrosis. Kidney Int 2025; 107:302-316. [PMID: 39566842 PMCID: PMC11757071 DOI: 10.1016/j.kint.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Endoplasmic reticulum (ER) stress is a condition in which the ER is overwhelmed and unable to manage its protein load properly. The precise activation mechanisms and role of ER stress in kidney disease remain unclear. To study this, we performed unbiased transcriptomics analysis to demonstrate ER stress in kidneys of patients with chronic kidney disease and in mouse models of acute and chronic kidney injury (cisplatin and unilateral ureteral obstruction and reanalyzed previously published data on folic acid and mitochondrial transcription factor A(TFAM) knockout mice). Inhibiting the protein kinase RNA-like ER kinase (PERK) arm of ER stress but not activating transcription factor 6 or inositol-requiring enzyme 1, protected mice from kidney fibrosis. The stimulator of interferon genes (STING) was identified as an important upstream activator of ER stress in kidney tubule cells. STING and PERK were found to physically interact, and STING agonists induced PERK activation in kidney tubule cells. Mice with a STING activating mutation presented with ER stress and kidney fibroinflammation. We also generated mice with a tubule specific STING deletion that were resistant to ER stress and kidney fibrosis. Human kidney spatial transcriptomics highlighted a spatial correlation between STING, ER stress and fibrotic gene expression. Thus, our results indicate that STING is an important upstream regulator of PERK and ER stress in tubule cells during kidney fibrosis development.
Collapse
Affiliation(s)
- Magaiver Andrade-Silva
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Poonam Dhillon
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Sanchez-Navarro
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hailong Hu
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lakshmi P Kolligundla
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrea Bergeson
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Amin Abedini
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan Levinsohn
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bernhard Dumoulin
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Niels O S Câmara
- Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Jonathan J Miner
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Penn-Children's Hospital of Philadelphia (CHOP) Kidney Innovation Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
26
|
Li Y, Feng Y, Li W, Zhang Y, Sun Y, Wang S, Curtiss R, Shi H. A Purely Biomanufactured System for Delivering Nanoparticles and STING Agonists. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408539. [PMID: 39588587 PMCID: PMC11744655 DOI: 10.1002/advs.202408539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Indexed: 11/27/2024]
Abstract
Nanovaccines have significantly contributed in the prevention and treatment of diseases. However, most of these technologies rely on chemical or hybrid semibiological synthesis methods, which limit the manufacturing performance advantages and improved inoculation outcomes compared with traditional vaccines. Herein, a universal and purely biological nanovaccine system is reported. This system integrates three modules: (1) self-assembling nanoparticles, (2) self-catalyzed synthesis of small-molecule stimulator of interferon gene (STING) agonists, and (3) delivery vectors that target the cytosolic surveillance system. Various nanoparticles are efficiently self-assembled using this system. After confirming the excellent immunostimulatory and lymph node targeting of this system, its broad-spectrum antiviral efficacy is further demonstrated. By leveraging the comprehensive biosynthetic capabilities of bacterial cells, this system can efficiently combine various adjuvant-active modular components and antigenic cargo, thereby providing a highly diversified and potent vaccine platform.
Collapse
Affiliation(s)
- Yu‐an Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Yi Feng
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Wenjing Li
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Yuqin Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Yanni Sun
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Shifeng Wang
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Roy Curtiss
- Department of Infectious Diseases and ImmunologyCollege of Veterinary MedicineUniversity of FloridaGainesvilleFL32611‐0880USA
| | - Huoying Shi
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009China
- Jiangsu Co‐innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
- Joint International Research Laboratory of Agriculture and Agri‐Product SafetyYangzhou University (JIRLAAPS)YangzhouChina
| |
Collapse
|
27
|
Yanushkevich S, Zieminska A, Gonzalez J, Añazco F, Song R, Arias-Cavieres A, Granados ST, Zou J, Rao Y, Concepcion AR. Recent advances in the structure, function and regulation of the volume-regulated anion channels and their role in immunity. J Physiol 2024. [PMID: 39709525 DOI: 10.1113/jp285200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e. LRRC8B-E) to form functional heteromeric channels. VRACs were discovered in T lymphocytes over 35 years ago and are found in virtually all vertebrate cells. Initially, these anion channels were characterized for their role in Cl- efflux during the regulatory volume decrease process triggered when cells are subjected to hypotonic challenges. However, substantial evidence suggests that VRACs also transport small molecules under isotonic conditions. These findings have expanded the research on VRACs to explore their functions beyond volume regulation. In innate immune cells, VRACs promote inflammation by modulating the transport of immunomodulatory cyclic dinucleotides, itaconate and ATP. In adaptive immune cells, VRACs suppress their function by taking up cyclic dinucleotides to activate the STING signalling pathway. In this review, we summarize the current understanding of LRRC8 proteins in immunity and discuss recent progress in their structure, function, regulation and mechanisms for channel activation and gating. Finally, we also examine potential immunotherapeutic applications of VRAC modulation.
Collapse
Affiliation(s)
- Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aleksandra Zieminska
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joshua Gonzalez
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisca Añazco
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Richard Song
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Yan Rao
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
28
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
29
|
Wang HF, He YQ, Ke Z, Liang ZW, Zhou JH, Ni K, Zhang Y, Li RF, Xue JF, Zhou CC, Xu JS. STING signaling contributes to methotrexate-induced liver injury by regulating ferroptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117306. [PMID: 39547058 DOI: 10.1016/j.ecoenv.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Methotrexate (MTX), an anti-metabolite agent, is a widely used chemotherapeutic anticancer drug, but its hepatotoxicity severely limits its clinical application. Nevertheless, the precise mechanisms of MTX-caused liver damage are extremely intricate and still need to be fully clarified. In the current study, we investigated the role of the STING-ERS-ferroptosis axis in MTX-triggered hepatic toxicity in vivo and in vitro models. Male C57BL/6 J mice exposed to a single dose of MTX (0, 2, 5, and 20 mg/kg) for 3 days exhibited severe liver damage and overactivated STING signaling. Moreover, we found that ferroptosis was also involved in MTX-mediated liver damage. Interestingly, STING deficiency alleviated liver damage, inhibited liver inflammation, as well as suppressed hepatic lipid peroxidation and ferroptosis in MTX-treated mice. Consistently, STING inhibitor (C-176) pretreatment also alleviated MTX-induced STING signaling activation, ROS overproduction and ferroptosis in AML12 cells. Finally, we verified that ER stress was responsible for the MTX-induced liver injury and ferroptosis caused by STING activation. Taken together, our study uncovered a novel link between STING signaling and ferroptosis in MTX-triggered hepatic damages, and suggested that targeting the STING-ER stress-ferroptosis axis might be a promising and effective therapeutic approach against MTX-induced liver damage.
Collapse
Affiliation(s)
- Hong-Fei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu-Qiong He
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zong Ke
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Wei Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia-Hao Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ren-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Feng Xue
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200040, China.
| | - Jia-Shuang Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
30
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Jiang H, Guo Y, Wang Q, Wang Y, Peng D, Fang Y, Yan L, Ruan Z, Zhang S, Zhao Y, Zhang W, Shang W, Feng Z. The dysfunction of complement and coagulation in diseases: the implications for the therapeutic interventions. MedComm (Beijing) 2024; 5:e785. [PMID: 39445002 PMCID: PMC11496570 DOI: 10.1002/mco2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
The complement system, comprising over 30 proteins, is integral to the immune system, and the coagulation system is critical for vascular homeostasis. The activation of the complement and coagulation systems involves an organized proteolytic cascade, and the overactivation of these systems is a central pathogenic mechanism in several diseases. This review describes the role of complement and coagulation system activation in critical illness, particularly sepsis. The complexities of sepsis reveal significant knowledge gaps that can be compared to a profound abyss, highlighting the urgent need for further investigation and exploration. It is well recognized that the inflammatory network, coagulation, and complement systems are integral mechanisms through which multiple factors contribute to increased susceptibility to infection and may result in a disordered immune response during septic events in patients. Given the overlapping pathogenic mechanisms in sepsis, immunomodulatory therapies currently under development may be particularly beneficial for patients with sepsis who have concurrent infections. Herein, we present recent findings regarding the molecular relationships between the coagulation and complement pathways in the advancement of sepsis, and propose potential intervention targets related to the crosstalk between coagulation and complement, aiming to provide more valuable treatment of sepsis.
Collapse
Affiliation(s)
- Honghong Jiang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Yiming Guo
- Department of Biological Science, The Dietrich School of Arts and SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Qihang Wang
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yiran Wang
- Department of Obstetrics and GynecologyThe sixth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Dingchuan Peng
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yigong Fang
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical SciencesBeijingChina
| | - Lei Yan
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Zhuolin Ruan
- Department of Obstetrics and Gynecology,Chinese PLA General HospitalBeijingChina
| | - Sheng Zhang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Yong Zhao
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Wendan Zhang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| | - Wei Shang
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
- Department of Obstetrics and GynecologyThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhichun Feng
- Faculty of Pediatrics, the Seventh Medical Center of Chinese PLA General HospitalNational Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ FailureBeijingChina
| |
Collapse
|
33
|
Chen Q, Ren Z, Dang L, Liu Z, Wang S, Chen X, Qiu G, Sun C. Hoxa5 alleviates adipose tissue metabolic distortions in high-fat diet mice associated with a reduction in MERC. BMC Biol 2024; 22:247. [PMID: 39468535 PMCID: PMC11520472 DOI: 10.1186/s12915-024-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mitochondria-endoplasmic reticulum membrane contact (MERC) is an important mode of intercellular organelle communication and plays a crucial role in adipose tissue metabolism. Functionality of Hoxa5 is an important transcription factor involved in adipose tissue fate determination and metabolic regulation, but the relationship between Hoxa5 and MERC is not well understood. RESULTS In our study, we established an obesity model mouse by high-fat diet (HFD), induced the alteration of Hoxa5 expression by adenoviral transfection, and explored the effect of Hoxa5 on MERC dysfunction and metabolic distortions of adipose tissue with the help of transmission electron microscopy, calcium ion probe staining, and other detection means. The results showed Hoxa5 was able to reduce MERC production, alleviate endoplasmic reticulum stress (ERS) and calcium over-transport, and affect cGAS-STING-mediated innate immune response affecting adipose tissue energy metabolism, as well as affect the AKT-IP3R pathway to alleviate insulin resistance and ameliorate metabolic distortions in adipose tissue of mice. CONCLUSIONS Our results suggest that Hoxa5 can ameliorate high-fat diet-induced MERC overproduction and related functional abnormalities, in which finding is expected to provide new ideas for the improvement of obesity-related metabolic distortions.
Collapse
Affiliation(s)
- Qi Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Zeyu Ren
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Liping Dang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Xinhao Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Guiping Qiu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Wan X, Zhang H, Tian J, Liu L, An Z, Zhao X, Zhang L, Yang X, Ge C, Song X. The cGAS-STING/PERK-eIF2α: Individual or Potentially Collaborative Signaling Transduction in Cardiovascular Diseases. Int J Biol Sci 2024; 20:5868-5887. [PMID: 39664570 PMCID: PMC11628330 DOI: 10.7150/ijbs.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/19/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past several decades, a canonical pathway called the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) mediating type I interferon (IFN) release via TANK-binding kinase 1(TBK1) / IFN regulatory factor 3 (IRF3) pathway has been widely investigated and characterized. Unexpectedly, recent studies show that the cGAS-STING noncanonically activates the protein kinase RNA-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α), an essential branch of unfolded protein response (UPR), even before the activation of the TBK1/IRF3 signaling. Additionally, we found that the PERK could regulate the STING signaling besides being modulated by upstream cGAS-STING. However, earlier evidence solely focused on the unidirectional regulation of STING and PERK, lacking their functional crosstalk. Hence, we postulate that there is a complex relationship between the cGAS-STING and PERK-eIF2α pathways and that, through convergent downstream signaling, they may collaboratively contribute to the pathophysiology of cardiovascular diseases (CVDs) via the cGAS-STING/PERK-eIF2α signaling axis. This study provides a novel pathway for the development of CVDs and paves the foundation for potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| |
Collapse
|
35
|
Luo Y, Chang L, Ji Y, Liang T. ER: a critical hub for STING signaling regulation. Trends Cell Biol 2024; 34:865-881. [PMID: 38423853 DOI: 10.1016/j.tcb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Chang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yewei Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
36
|
Lu X, Li X, Li L, Han C, Li S. Advances in the prerequisite and consequence of STING downstream signalosomes. MEDICAL REVIEW (2021) 2024; 4:435-451. [PMID: 39444795 PMCID: PMC11495525 DOI: 10.1515/mr-2024-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 10/25/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an evolving DNA-sensing mechanism involved in innate immunity and pathogen defense that has been optimized while remaining conserved. Aside from recognizing pathogens through conserved motifs, these receptors also detect aberrant or misplaced self-molecules as possible signs of perturbed homeostasis. Upon binding external or self-derived DNA, a mobile secondary messenger 2'3'-cyclic GMP-AMP (cGAMP) is produced by cGAS and in turn activates its adapter STING in the endoplasmic reticulum (ER). Resting-state or activated STING protein is finely restricted by multiple degradation machineries. The post-translational changes of the STING protein, along with the regulatory machinery of the secret routes, limit the onset, strength and sustention of STING signal. STING experiences a conformational shift and relocates with TBK1 from the ER to perinuclear vesicles containing transcription factors, provoking the transcription activity of IRF3/IFN-I and NF-κB pathways, as well as to initiate a number of cellular processes that have been shown to alter the immune landscape in cancer, such as autophagy, NLRP3 inflammasome, ER stress, and cell death. STING signal thus serves as a potent activator for immune mobilization yet also triggers immune-mediated pathology in tissues. Recent advances have established the vital role of STING in immune surveillance as well as tumorigenic process. This review provides an overview of the disparate outcomes of cancer attributed to the actions of pleiotropic and coordinated STING downstream signalosomes, along with the underlying mechanisms of STING function in pathologies, providing therapeutic implications for new approaches in hunt for the next generation of cancer immunotherapy base on STING.
Collapse
Affiliation(s)
- Xinliang Lu
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobing Li
- InvivoGen Ltd., Hong Kong Science and Technology Parks, Hong Kong, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
37
|
Cui L, Xu X, Fan H, Wan X, Chen Q, Zhang J, Tao C, Du Z, Wang Y, Zhang J, Zeng J, Zhang Y, Zhang C, Li L, Bu Y, Lei Y. Reuterin promotes pyroptosis in hepatocellular cancer cells through mtDNA-mediated STING activation and caspase 8 expression. Cancer Lett 2024; 601:217183. [PMID: 39153728 DOI: 10.1016/j.canlet.2024.217183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer with poor prognosis. The available drugs for advanced HCC are limited and substantial therapeutic advances including new drugs and new combination therapies are still in urgent need. In this study, we found that the major metabolite of Lactobacillus reuteri (L. reuteri), reuterin showed great anti-HCC potential and could help in sorafenib treatment. Reuterin treatment impaired mitophagy and caused the aberrant clustering of mitochondrial nucleoids to block mitochondrial DNA (mtDNA) replication and mitochondrial fission, which could promote mtDNA leakage and subsequent STING activation in HCC cells. STING could activate pyroptosis and necroptosis, while reuterin treatment also induced caspase 8 expression to inhibit necroptosis through cleaving RIPK3 in HCC cells. Thus, pyroptosis was the main death form in reuterin-treated HCC cells and STING suppression remarkably rescued the growth inhibitory effect of reuterin and concurrently knockdown caspase 8 synergized to restrain the induction of pyroptosis. In conclusion, our study explains the detailed molecular mechanisms of the antitumor effect of reuterin and reveals its potential to perform as a combinational drug for HCC treatment.
Collapse
Affiliation(s)
- Lin Cui
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaohui Xu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Fan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Wan
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, 400030, China; Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chuntao Tao
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Du
- Department of Urology, The Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Zeng
- College of Life Sciences and Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Longhao Li
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
38
|
Triantafilou K, Szomolay B, Shepherd MW, Ramanjulu J, Triantafilou M. STING Orchestrates EV-D68 Replication and Immunometabolism within Viral-Induced Replication Organelles. Viruses 2024; 16:1541. [PMID: 39459875 PMCID: PMC11512225 DOI: 10.3390/v16101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Some respiratory viruses, such as Human Rhinovirus, SARS-CoV-2, and Enterovirus D-68 (EV-D68), share the feature of hijacking host lipids in order to generate specialised replication organelles (ROs) with unique lipid compositions to enable viral replication. We have recently uncovered a novel non-canonical function of the stimulator of interferon genes (STING) pathway, as a critical factor in the formation of ROs in response to HRV infection. The STING pathway is the main DNA virus sensing system of the innate immune system controlling the type I IFN machinery. Although it is well-characterised as part of the DNA sensor machinery, the STING function in RNA viral infections is largely unexplored. In the current study, we investigated whether other RO-forming RNA viruses, such as EV-D68 and SARS-CoV-2, can also utilise STING for their replication. Using genetic and pharmacological inhibition, we demonstrate that STING is hijacked by these viruses and is utilised as part of the viral replication machinery. STING also co-localises with glycolytic enzymes needed to fuel the energy for replication. The inhibition of STING leads to the modulation of glucose metabolism in EV-D68-infected cells, suggesting that it might also manipulate immunometabolism. Therefore, for RO-generating RNA viruses, STING seems to have non-canonical functions in membrane lipid re-modelling, and the formation of replication vesicles, as well as immunometabolism.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Barbara Szomolay
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Mark William Shepherd
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| | - Joshi Ramanjulu
- Immunology Research Unit, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | - Martha Triantafilou
- Division of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (K.T.); (B.S.); (M.W.S.)
| |
Collapse
|
39
|
Wu J, Cheng S, Lee G, Agborbesong E, Li X, Zhou X, Li X. STING Promotes the Progression of ADPKD by Regulating Mitochondrial Function, Inflammation, Fibrosis, and Apoptosis. Biomolecules 2024; 14:1215. [PMID: 39456148 PMCID: PMC11505933 DOI: 10.3390/biom14101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a predominant genetic disease, which is caused by mutations in PKD genes and is associated with DNA damage in cystic cells. The intrinsic stimulator of interferon genes (STING) pathway is crucial for recognizing damaged DNA in the cytosol, triggering the expression of inflammatory cytokines to activate defense mechanisms. However, the precise roles and mechanisms of STING in ADPKD remain elusive. In this study, we show that Pkd1 mutant mouse kidneys show upregulation of STING, which is stimulated by the DNAs of nuclear and mitochondrial origin. The activation of STING promotes cyst growth through increasing (1) the activation of NF-κB in Pkd1 mutant cells and (2) the recruitment of macrophages in the interstitial and peri-cystic regions in Pkd1 mutant mouse kidneys via NF-κB mediating the upregulation of TNF-α and MCP-1. Targeting STING with its specific inhibitor C-176 delays cyst growth in an early-stage aggressive Pkd1 conditional knockout mouse model and a milder long-lasting Pkd1 mutant mouse model. Targeting STING normalizes mitochondrial structure and function, decreases the formation of micronuclei, induces Pkd1 mutant renal epithelial cell death via p53 signaling, and decreases renal fibrosis in Pkd1 mutant mouse kidneys. These results support that STING is a novel therapeutic target for ADPKD treatment.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Geoffray Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (J.W.); (S.C.); (G.L.); (E.A.); (X.L.); (X.Z.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Aybar-Torres AA, Saldarriaga LA, Pham AT, Emtiazjoo AM, Sharma AK, Bryant AJ, Jin L. The common Sting1 HAQ, AQ alleles rescue CD4 T cellpenia, restore T-regs, and prevent SAVI (N153S) inflammatory disease in mice. eLife 2024; 13:RP96790. [PMID: 39291958 PMCID: PMC11410371 DOI: 10.7554/elife.96790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
The significance of STING1 gene in tissue inflammation and cancer immunotherapy has been increasingly recognized. Intriguingly, common human STING1 alleles R71H-G230A-R293Q (HAQ) and G230A-R293Q (AQ) are carried by ~60% of East Asians and ~40% of Africans, respectively. Here, we examine the modulatory effects of HAQ, AQ alleles on STING-associated vasculopathy with onset in infancy (SAVI), an autosomal dominant, fatal inflammatory disease caused by gain-of-function human STING1 mutations. CD4 T cellpenia is evident in SAVI patients and mouse models. Using Sting1 knock-in mice expressing common human STING1 alleles HAQ, AQ, and Q293, we found that HAQ, AQ, and Q293 splenocytes resist STING1-mediated cell death ex vivo, establishing a critical role of STING1 residue 293 in cell death. The HAQ/SAVI(N153S) and AQ/SAVI(N153S) mice did not have CD4 T cellpenia. The HAQ/SAVI(N153S), AQ/SAVI(N153S) mice have more (~10-fold, ~20-fold, respectively) T-regs than WT/SAVI(N153S) mice. Remarkably, while they have comparable TBK1, IRF3, and NFκB activation as the WT/SAVI, the AQ/SAVI mice have no tissue inflammation, regular body weight, and normal lifespan. We propose that STING1 activation promotes tissue inflammation by depleting T-regs cells in vivo. Billions of modern humans have the dominant HAQ, AQ alleles. STING1 research and STING1-targeting immunotherapy should consider STING1 heterogeneity in humans.
Collapse
Affiliation(s)
- Alexandra a Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lennon A Saldarriaga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ann T Pham
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Ashish K Sharma
- Division of Vascular Surgery & Endovascular Therapy, Department of Surgery, University of FloridaGainesvilleUnited States
| | - Andrew j Bryant
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of FloridaGainesvilleUnited States
| |
Collapse
|
41
|
Valeri E, Breggion S, Barzaghi F, Abou Alezz M, Crivicich G, Pagani I, Forneris F, Sartirana C, Costantini M, Costi S, Marino A, Chiarotto E, Colavito D, Cimaz R, Merelli I, Vicenzi E, Aiuti A, Kajaste-Rudnitski A. A novel STING variant triggers endothelial toxicity and SAVI disease. J Exp Med 2024; 221:e20232167. [PMID: 38953896 PMCID: PMC11217899 DOI: 10.1084/jem.20232167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.
Collapse
Affiliation(s)
- Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Breggion
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Crivicich
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Sartirana
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Costantini
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Costi
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | - Achille Marino
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | | | | | - Rolando Cimaz
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Yang K, Dong B, Asthana A, Silverman RH, Yan N. RNA helicase SKIV2L limits antiviral defense and autoinflammation elicited by the OAS-RNase L pathway. EMBO J 2024; 43:3876-3894. [PMID: 39112803 PMCID: PMC11405415 DOI: 10.1038/s44318-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024] Open
Abstract
The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Beihua Dong
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
43
|
Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X. Metal ions overloading and cell death. Cell Biol Toxicol 2024; 40:72. [PMID: 39162885 PMCID: PMC11335907 DOI: 10.1007/s10565-024-09910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Cell death maintains cell morphology and homeostasis during development by removing damaged or obsolete cells. The concentration of metal ions whithin cells is regulated by various intracellular transporters and repositories to maintain dynamic balance. External or internal stimuli might increase the concentration of metal ions, which results in ions overloading. Abnormal accumulation of large amounts of metal ions can lead to disruption of various signaling in the cell, which in turn can produce toxic effects and lead to the occurrence of different types of cell deaths. In order to further study the occurrence and development of metal ions overloading induced cell death, this paper reviewed the regulation of Ca2+, Fe3+, Cu2+ and Zn2+ metal ions, and the internal mechanism of cell death induced by overloading. Furthermore, we found that different metal ions possess a synergistic and competitive relationship in the regulation of cell death. And the enhanced level of oxidative stress was present in all the processes of cell death due to metal ions overloading, which possibly due to the combination of factors. Therefore, this review offers a theoretical foundation for the investigation of the toxic effects of metal ions, and presents innovative insights for targeted regulation and therapeutic intervention. HIGHLIGHTS: • Metal ions overloading disrupts homeostasis, which in turn affects the regulation of cell death. • Metal ions overloading can cause cell death via reactive oxygen species (ROS). • Different metal ions have synergistic and competitive relationships for regulating cell death.
Collapse
Affiliation(s)
- Yun Lai
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Fen Fen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Ruo Ting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
44
|
Schlenker C, Richard K, Skobelkina S, Mathena RP, Perkins DJ. ER-transiting bacterial toxins amplify STING innate immune responses and elicit ER stress. Infect Immun 2024; 92:e0030024. [PMID: 39057915 PMCID: PMC11321001 DOI: 10.1128/iai.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The cGAS/STING sensor system drives innate immune responses to intracellular microbial double-stranded DNA (dsDNA) and bacterial cyclic nucleotide second messengers (e.g., c-di-AMP). STING-dependent cell-intrinsic responses can increase resistance to microbial infection and speed pathogen clearance. Correspondingly, STING activation and signaling are known to be targeted for suppression by effectors from several bacterial pathogens. Whether STING responses are also positively regulated through sensing of specific bacterial effectors is less clear. We find that STING activation through dsDNA, by its canonical ligand 2'-3' cGAMP, or the small molecule DMXAA is potentiated following intracellular delivery of the AB5 toxin family member pertussis toxin from Bordetella pertussis or the B subunit of cholera toxin from Vibrio cholerae. Entry of pertussis toxin or cholera toxin B into mouse macrophages triggers markers of endoplasmic reticulum (ER) stress and enhances ligand-dependent STING responses at the level of STING receptor activation in a manner that is independent of toxin enzymatic activity. Our results provide an example in which STING responses integrate information about the presence of relevant ER-transiting bacterial toxins into the innate inflammatory response and may help to explain the in vivo adjuvant effects of catalytically inactive toxins.
Collapse
Affiliation(s)
- Catherine Schlenker
- Program in Oncology University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - Katharina Richard
- Department of Microbiology and Immunology, School of Medicine, Baltimore, Maryland, USA
| | - Sofia Skobelkina
- Program in Oncology University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - R. Paige Mathena
- Department of Microbiology and Immunology, School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Program in Oncology University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
46
|
Zhao R, Zhang J, Ma J, Qu Y, Yang Z, Yin Z, Li F, Dong Z, Sun Q, Zhu S, Chen ZJ, Gao D. cGAS-activated endothelial cell-T cell cross-talk initiates tertiary lymphoid structure formation. Sci Immunol 2024; 9:eadk2612. [PMID: 39093956 DOI: 10.1126/sciimmunol.adk2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Aberrant activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) pathway causes autoimmunity in humans and mice; however, the exact mechanism by which the cGAS-STING pathway initiates adaptive immunity and tissue pathology is still not fully understood. Here, we used a cGAS knockin (KI) mouse model that develops systemic autoimmunity. In the lungs of cGAS-KI mice, blood vessels were enclosed by organized lymphoid tissues that resemble tertiary lymphoid structures (TLSs). Cell-intrinsic cGAS induction promoted up-regulation of CCR5 in CD8+ T cells and led to CCL5 production in vascular endothelial cells. Peripheral CD8+ T cells were recruited to the lungs and produced CXCL13 and interferon-γ. The latter triggered endothelial cell death, potentiated CCL5 production, and was essential for TLS establishment. Blocking CCL5 or CCR5, or depleting CD8+ T cells, impaired TLS formation. cGAS-mediated TLS formation also enhanced humoral and antitumor responses. These data demonstrate that cGAS signaling drives a specialized lymphoid structure that underlies autoimmune tissue pathology.
Collapse
Affiliation(s)
- Ruibo Zhao
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Jinghe Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Jialu Ma
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Yali Qu
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhenrong Yang
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China
- Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong 510632, China
| | - Fengyin Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhongjun Dong
- First Affiliated Hospital of Anhui Medical University and Institute for Clinical Immunology, Anhui Medical University, Anhui 230032, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daxing Gao
- Department of General Surgery, First Affiliated Hospital of USTC, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230007, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| |
Collapse
|
47
|
Zhou Q, Yi G, Chang M, Li N, Bai Y, Li H, Yao S. Activation of Sirtuin3 by honokiol ameliorates alveolar epithelial cell senescence in experimental silicosis via the cGAS-STING pathway. Redox Biol 2024; 74:103224. [PMID: 38865904 PMCID: PMC11215422 DOI: 10.1016/j.redox.2024.103224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Silicosis, characterized by interstitial lung inflammation and fibrosis, poses a significant health threat. ATII cells play a crucial role in alveolar epithelial repair and structural integrity maintenance. Inhibiting ATII cell senescence has shown promise in silicosis treatment. However, the mechanism behind silica-induced senescence remains elusive. METHODS The study employed male C57BL/6 N mice and A549 human alveolar epithelial cells to investigate silicosis and its potential treatment. Silicosis was induced in mice via intratracheal instillation of crystalline silica particles, with honokiol administered intraperitoneally for 14 days. Silica-induced senescence in A549 cells was confirmed, and SIRT3 knockout and overexpression cell lines were generated. Various analyses were conducted, including immunoblotting, qRT-PCR, histology, and transmission electron microscopy. Statistical significance was determined using one-way ANOVA with Tukey's post-hoc test. RESULTS This study elucidates how silica induces ATII cell senescence, emphasizing mtDNA damage. Notably, honokiol (HKL) emerges as a promising anti-senescence and anti-fibrosis agent, acting through sirt3. honokiol effectively attenuated senescence in ATII cells, dependent on sirt3 expression, while mitigating mtDNA damage. Sirt3, a class III histone deacetylase, regulates senescence and mitochondrial stress. HKL activates sirt3, protecting against pulmonary fibrosis and mitochondrial damage. Additionally, HKL downregulated cGAS expression in senescent ATII cells induced by silica, suggesting sirt3's role as an upstream regulator of the cGAS/STING signaling pathway. Moreover, honokiol treatment inhibited the activation of the NF-κB signaling pathway, associated with reduced oxidative stress and mtDNA damage. Notably, HKL enhanced the activity of SOD2, crucial for mitochondrial function, through sirt3-mediated deacetylation. Additionally, HKL promoted the deacetylation activity of sirt3, further safeguarding mtDNA integrity. CONCLUSIONS This study uncovers a natural compound, HKL, with significant anti-fibrotic properties through activating sirt3, shedding light on silicosis pathogenesis and treatment avenues.
Collapse
Affiliation(s)
- Qiang Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Guan Yi
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Meiyu Chang
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
48
|
Xiao D, Liu T, Pan Y. Diet restriction enhances the effect of immune checkpoint block by inhibiting the intratumoral mTORC1/B7-H3 axis. J Biochem Mol Toxicol 2024; 38:e23803. [PMID: 39132973 DOI: 10.1002/jbt.23803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Immune checkpoint blockade therapy has demonstrated significant therapeutic efficacy in certain cancer types; however, the impact of dietary restriction remains scarcely reported in this context. This study aimed to investigate the influence of dietary restriction on anti-PDL-1 therapy and the interplay of immune cells within this context. Using an anti-PDL-1 regimen combined with dietary restrictions, tumor progression was assessed in LLC-bearing mice. Flow cytometry was employed to analyze immune cell infiltration and differentiation levels within the tumor microenvironment. The expression of mTORC1/B7-H3 in tumors subjected to dietary restriction was also examined. LLC tumors with elevated B7-H3 expression were validated in mice to determine its inhibitory effect on immune cell proliferation and differentiation. A CD3/B7-H3 chimeric antibody was developed for therapeutic intervention in B7-H3 overexpressing tumors, with subsequent T cell responses assessed through flow cytometry. Dietary restriction potentiated the effect of anti-PDL1 therapy by suppressing the intratumorally mTORC1/B7-H3 axis. In vivo experiments demonstrated that elevated B7-H3 expression in tumors reduced infiltration and activation of CD8 + T cells within the tumor, while it did not affect tumor-infiltrating Tregs. In vitro studies revealed that high B7-H3 expression influenced the proliferation and activation of CD8 + T cells within a Coculture system. The constructed CD3/B7-H3 chimeric antibody prominently activated TCR within B7-H3 overexpressing tumors and impeded tumor progression. The findings suggest that dietary restriction enhances the efficacy of immune checkpoint blockade by modulating the intratumoral mTORC1/B7-H3 axis.
Collapse
Affiliation(s)
- Duqing Xiao
- Department of Thoracic surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, China
| | - Tingting Liu
- Department of Internal Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Youguang Pan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Hu T, Liu Y, Fleck J, King C, Schalk E, Zhang Z, Mehle A, Smith JA. Multiple unfolded protein response pathways cooperate to link cytosolic dsDNA release to stimulator of interferon gene activation. Front Immunol 2024; 15:1358462. [PMID: 39100663 PMCID: PMC11294172 DOI: 10.3389/fimmu.2024.1358462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
The double-stranded DNA (dsDNA) sensor STING has been increasingly implicated in responses to "sterile" endogenous threats and pathogens without nominal DNA or cyclic di-nucleotide stimuli. Previous work showed an endoplasmic reticulum (ER) stress response, known as the unfolded protein response (UPR), activates STING. Herein, we sought to determine if ER stress generated a STING ligand, and to identify the UPR pathways involved. Induction of IFN-β expression following stimulation with the UPR inducer thapsigargin (TPG) or oxygen glucose deprivation required both STING and the dsDNA-sensing cyclic GMP-AMP synthase (cGAS). Furthermore, TPG increased cytosolic mitochondrial DNA, and immunofluorescence visualized dsDNA punctae in murine and human cells, providing a cGAS stimulus. N-acetylcysteine decreased IFN-β induction by TPG, implicating reactive oxygen species (ROS). However, mitoTEMPO, a mitochondrial oxidative stress inhibitor did not impact TPG-induced IFN. On the other hand, inhibiting the inositol requiring enzyme 1 (IRE1) ER stress sensor and its target transcription factor XBP1 decreased the generation of cytosolic dsDNA. iNOS upregulation was XBP1-dependent, and an iNOS inhibitor decreased cytosolic dsDNA and IFN-β, implicating ROS downstream of the IRE1-XBP1 pathway. Inhibition of the PKR-like ER kinase (PERK) pathway also attenuated cytoplasmic dsDNA release. The PERK-regulated apoptotic factor Bim was required for both dsDNA release and IFN-β mRNA induction. Finally, XBP1 and PERK pathways contributed to cytosolic dsDNA release and IFN-induction by the RNA virus, Vesicular Stomatitis Virus (VSV). Together, our findings suggest that ER stressors, including viral pathogens without nominal STING or cGAS ligands such as RNA viruses, trigger multiple canonical UPR pathways that cooperate to activate STING and downstream IFN-β via mitochondrial dsDNA release.
Collapse
Affiliation(s)
- Tiancheng Hu
- Department of Pharmacology and Toxicology, Rutgers University, New Brunswick, NJ, United States
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jeremy Fleck
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Cason King
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Elaine Schalk
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Zhenyu Zhang
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
50
|
Gao KM, Chiang K, Subramanian S, Yin X, Utz PJ, Nündel K, Fitzgerald KA, Marshak-Rothstein A. Activation of autoreactive lymphocytes in the lung by radioresistant cells expressing a STING gain-of-function mutation. JCI Insight 2024; 9:e174331. [PMID: 39024563 PMCID: PMC11343592 DOI: 10.1172/jci.insight.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Gain-of-function mutations in the dsDNA sensing adaptor STING lead to a severe autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). Patients with SAVI develop interstitial lung disease (ILD) and produce autoantibodies that are commonly associated with systemic autoimmune diseases. Mice expressing the most common SAVI mutation, STING V154M (VM), similarly develop ILD but exhibit severe T and B cell lymphopenia and low serum Ig titers, and they lack autoantibodies. Importantly, lethally irradiated VM hosts reconstituted with WT stem cells (WT→VM) still develop ILD. In this study, we find that WT→VM chimeras had restored B cell function, produced autoantibodies, and thereby recapitulated the loss of tolerance seen in patients with SAVI. Lymphocytes derived from both WT and BCR or TCR transgenic (Tg) donors accumulated in the extravascular lung tissue of WT+Tg→VM mixed chimeras, but lymphocyte activation and germinal center formation required WT cells with a diverse repertoire. Furthermore, when T cells isolated from the WT→VM chimeras were adoptively transferred to naive Rag1-deficient secondary hosts, they trafficked to the lung and recruited neutrophils. Overall, these findings indicated that VM expression by radioresistant cells promoted the activation of autoreactive B cells and T cells that then differentiated into potentially pathogenic effector subsets.
Collapse
Affiliation(s)
- Kevin MingJie Gao
- Division of Innate Immunity and
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Kristy Chiang
- Division of Innate Immunity and
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - Xihui Yin
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Kate A. Fitzgerald
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|