1
|
Shin HE, Giannakopoulos S, Park JD, Jang HJ, Park CG, Murphy SV, Park J, Verma S, Park W. Lipid nanoparticles target neutrophils to reduce SARS-CoV-2-induced lung injury and inflammation. J Control Release 2025; 382:113736. [PMID: 40254136 DOI: 10.1016/j.jconrel.2025.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
The need to understand key players driving pulmonary inflammation and fibrosis in COVID-19 patients leading to effective preventive strategies is imminent. Excessive neutrophil activation, including extracellular trap (NET) formation, is associated with severe COVID-19 and long-term sequelae. However, the clinical applications of neutrophil-targeting therapies are challenging due to short bioavailability and lack of cell-type specificity. This study presents a lipid nanoparticle (LNP) platform designed to deliver two established NET inhibitors, DNase I and Sivelestat (Siv) referred to as DPNLNPs, specifically to lung neutrophils. In vitro and in vivo experiments demonstrate that DPNLNPs preferentially accumulate in the lung neutrophils and degrade NETs as efficiently as the free DNase I and Siv. Additionally, administration of DPNLNPs in K18-hACE2 mice significantly inhibited SARS-CoV-2-induced NETs at a much lower dose than the free drugs and correlated with reduced lung and systemic inflammation, lung epithelium injury, and collagen deposition. Importantly, DPNLNP treatment only during the symptomatic phase of infection improved SARS-CoV-2 outcome revealing the complex role of NETs in COVID-19 pathogenesis. Together, this study serves as a proof-of-concept for adapting the LNP platform to deliver more than one immunomodulatory drug in a cell-specific manner to manage NET-associated complications in COVID-19 and other respiratory diseases.
Collapse
Affiliation(s)
- Ha Eun Shin
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Stefanos Giannakopoulos
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Joo Dong Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
| | - Hye Jung Jang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering and Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies (ICS), SKKU, Suwon, Gyeonggi 16419, Republic of Korea
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA.
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, HI 96813, USA.
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, Republic of Korea; Department of MetaBioHealth, ICS, SKKU, Suwon, Gyeonggi 16419, Republic of Korea.
| |
Collapse
|
2
|
Katayama H. Neutrophil Extracellular Traps Capturing SARS-CoV-2 in the Lung Tissue (Alveoli and Parenchyma) Cause Microthrombi - A Strategy to Eliminate SARS-CoV-2 From the Circulation as Degraded Fibrin Clots. Circ Rep 2025; 7:379-382. [PMID: 40352121 PMCID: PMC12061506 DOI: 10.1253/circrep.cr-24-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 05/14/2025] Open
Abstract
Background It has been thought that neutrophil extracellular traps (NETs) and thrombosis exacerbate COVID-19, but, on the other hand, NETs are an important player in innate immunity. The precise roles of NETs and thrombosis in the course of COVID-19 have not been fully elucidated. Methods and Results The roles were investigated in the literature and a new theory was formulated. When neutrophils encounter SARS-CoV-2 in the lung tissue, they undergo NETosis and capture the virus. This capture is triggered by electrostatic interaction between histones in NETs and SARS-CoV-2; histones are highly positively charged, and viruses, including SARS-CoV-2, have a net negative charge under physiological pH. NETs that capture SARS-CoV-2 fall into alveolar capillaries through the collapsed endothelium to spare the lung tissue from the toxicity of NETs. NETs in the microvessels cause microthrombosis; positively charged histones induce the aggregation of negatively charged platelets, which leads to microthrombi. Microthrombi engulfing SARS-CoV-2 are consolidated into fibrin clots, which are eventually degraded by increased fibrinolysis and eliminated from the circulation. Conclusions This novel theory suggests that NETosis and microthrombosis are phenomena inevitably elicited in COVID-19, and in combination they are a system newly termed "NETombosis". Undegraded fibrin clots remaining in the microcirculation may be the cause of the sequelae, because they cause long-lasting circulatory failure in various organs.
Collapse
|
3
|
Adriana Gutiérrez-Pérez I, Pérez-Rubio G, Rafael Villafan-Bernal J, Buendía-Roldán I, Zaragoza-García O, Chávez-Galán L, Rosendo-Chalma P, Fricke-Galindo I, Falfán-Valencia R, Paola Guzmán-Guzmán I. Circulating levels of PADs and citrullinated histone H3 in SARS-CoV-2 infection: Influence of genetic polymorphisms. Clin Chim Acta 2025; 569:120180. [PMID: 39904454 DOI: 10.1016/j.cca.2025.120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Peptidyl arginine deiminases (PADs) and citrullinated H3 histone (H3Cit) play a crucial role in the inflammatory response. These components determine various clinical situations in COVID-2019 associated pneumonia. Single nucleotide polymorphisms (SNPs) in the genes PADI2 and PADI4 may influence the outcome of poorer patient outcomes. We analyze the association of circulating levels NETs biomarkers (PAD2, PAD4, and H3Cit) and the SNPs on PADI2 (rs1005753 and rs2235926) and PADI4 (rs11203366, rs11203367, and rs874881) in hospitalized patients with severe acute respiratory distress syndrome (ARDs) by SARS-CoV-2 pneumonia. METHODS A cross-sectional study in 160 hospitalized patients with ARDs by SARS-CoV-2 pneumonia. The plasma levels of PAD2, PAD4, and H3Cit were determined by ELISA method. The SNPs were determined by qPCR using TaqMan probes. Logistic regression models and receiver operating characteristics (ROC) curve were used to assess the association and predictive value of PAD2, PAD4, and H3Cit plasma levels in outcome by ARDs by SARS-CoV-2 pneumonia. RESULTS PAD2, PAD4, and H3Cit concentrations were predictors of invasive mechanical ventilation (IMV) requirement and non-survival. PAD2 were associated with non-survival, while PAD4 and H3Cit were associated with requirement IMV. In addition, PAD2 and PAD4 concentrations were related with inflammation markers such as NLR, MLR, dNLR, SII, SIRI, AISI, and NHL. In the carriers of TT genotype of rs1005753 of PADI2 were associated with increased of H3Cit, while, the carriers of GTG/GTG haplotype of PADI4 was related to the presence of increased of PAD4 circulating levels. CONCLUSION SNPs in PADI2 and PADI4 have a significant influence on concentrations of PAD2, PAD4, and H3Cit, which are predictor markers of requirement IMV and non-survival in severe ARDS by SARS-CoV-2 pneumonia.
Collapse
Affiliation(s)
- Ilse Adriana Gutiérrez-Pérez
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Faculty of Chemical-Biological Sciences. Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - José Rafael Villafan-Bernal
- Investigador por Mexico, Laboratory of Immunogenomics and Metabolic Disease, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Oscar Zaragoza-García
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Faculty of Chemical-Biological Sciences. Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ingrid Fricke-Galindo
- Investigador por Mexico, Laboratory of Immunogenomics and Metabolic Disease, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.
| | - Iris Paola Guzmán-Guzmán
- Laboratory of Multidisciplinary Research and Biomedical Innovation, Faculty of Chemical-Biological Sciences. Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, Mexico.
| |
Collapse
|
4
|
Pisani F, Porciani C, Croia C, Pucino V, Virdis A, Puxeddu I, Migliorini P, Pratesi F. Novel Methods for the Analysis of Serum NET Remnants: Evaluation in Patients with Severe COVID-19. Int J Mol Sci 2025; 26:2221. [PMID: 40076841 PMCID: PMC11899909 DOI: 10.3390/ijms26052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures composed of chromatin and proteins from neutrophil granules. Several studies highlight the heterogeneity of NETs, underscoring the challenges associated with their detection. In patients with COVID-19, high levels of NET fragments, called NET remnants, are detected in the circulation but also in alveoli and bronchioles. NET remnants are usually measured as complexes of DNA and myeloperoxidase (DNA-MPO). Taking advantage of proteomic data on NET composition, we developed new solid-phase assays to detect NET remnants, measuring complexes of DNA with alpha enolase (DNA-eno) or calprotectin (DNA-cal). The two assays were compared with the DNA-MPO test for the detection of in vitro-generated NET and serum NET remnants; all of them showed similar sensitivity in the detection of in vitro-generated NET. In an analysis of 40 patients with severe COVID-19 and 25 healthy subjects, the results of the three assays were highly correlated, and all detected significantly higher levels of NET remnants in patient sera. Moreover, the level of NET remnants correlated with impaired gas exchange and increased with the progressive decline of pulmonary function. The proposed assays thus represent a novel tool with which to evaluate NETosis; using antibodies to different NET constituents may allow their fingerprinting in different disorders.
Collapse
Affiliation(s)
- Francesco Pisani
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (C.P.); (C.C.); (V.P.); (I.P.); (P.M.)
| | - Caterina Porciani
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (C.P.); (C.C.); (V.P.); (I.P.); (P.M.)
| | - Cristina Croia
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (C.P.); (C.C.); (V.P.); (I.P.); (P.M.)
| | - Valentina Pucino
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (C.P.); (C.C.); (V.P.); (I.P.); (P.M.)
| | - Agostino Virdis
- Geriatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Ilaria Puxeddu
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (C.P.); (C.C.); (V.P.); (I.P.); (P.M.)
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (C.P.); (C.C.); (V.P.); (I.P.); (P.M.)
| | - Federico Pratesi
- Department of Translational Medicine and NTMS, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
5
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
6
|
Beltrami VA, Martins FRB, Martins DG, Queiroz-Junior CM, Félix FB, Resende LC, Santos FRDS, Lacerda LDSB, Costa VRDM, da Silva WN, Guimaraes PPG, Guimaraes G, Soriani FM, Teixeira MM, Costa VV, Pinho V. Selective phosphodiesterase 4 inhibitor roflumilast reduces inflammation and lung injury in models of betacoronavirus infection in mice. Inflamm Res 2025; 74:24. [PMID: 39862252 DOI: 10.1007/s00011-024-01985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses. METHODS Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg. In SARS-CoV-2-infected mice, roflumilast was given therapeutically at a dose of 10 mg/kg. Lung histopathology, chemokines (CXCL-1 and CCL2), cytokines (IL-1β, IL-6, TNF, IFN-γ, IL-10 and TGFβ), neutrophil immunohistochemical staining (Ly6G+ cells), macrophage immunofluorescence staining (F4/80+ cells), viral titration plaque assay, real-time PCR virus detection, and blood cell counts were examined. RESULTS Therapeutic treatment with roflumilast at 10 mg/kg reduced lung injury in SARS-CoV-2 or MHV-3-infected mice without compromising viral clearance. In MHV-3-infected mice, reduced lung injury was associated with decreased chemokines levels, prevention of neutrophil aggregates and reduced macrophage accumulation in the lung tissue. However, the prophylactic treatment strategy with roflumilast increased lung injury in MHV-3-infected mice. CONCLUSION Our findings indicate that therapeutic treatment with roflumilast reduced lung injury in MHV-3 and SARS-CoV-2 lung infections. Given the protection induced by roflumilast in inflammation, PDE4 targeting could be a promising therapeutic avenue worth exploring following severe viral infections of the lung.
Collapse
Affiliation(s)
- Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flávia Rayssa Braga Martins
- Departamento Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Débora Gonzaga Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Franciel Batista Félix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Letícia Cassiano Resende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Felipe Rocha da Silva Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Larisse de Souza Barbosa Lacerda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Victor Rodrigues de Melo Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Walison Nunes da Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Pedro Pires Goulart Guimaraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Goulart Guimaraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Frederico Marianetti Soriani
- Departamento Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
7
|
Kobayashi M, Kobayashi N, Deguchi K, Omori S, Nagai M, Fukui R, Song I, Fukuda S, Miyake K, Ichinohe T. TNF-α exacerbates SARS-CoV-2 infection by stimulating CXCL1 production from macrophages. PLoS Pathog 2024; 20:e1012776. [PMID: 39652608 DOI: 10.1371/journal.ppat.1012776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/19/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Since most genetically modified mice are C57BL/6 background, a mouse-adapted SARS-CoV-2 that causes lethal infection in young C57BL/6 mice is useful for studying innate immune protection against SARS-CoV-2 infection. Here, we established two mouse-adapted SARS-CoV-2, ancestral and Delta variants, by serial passaging 80 times in C57BL/6 mice. Although young C57BL/6 mice were resistant to infection with the mouse-adapted ancestral SARS-CoV-2, the mouse-adapted SARS-CoV-2 Delta variant caused lethal infection in young C57BL/6 mice. In contrast, MyD88 and IFNAR1 KO mice exhibited resistance to lethal infection with the mouse-adapted SARS-CoV-2 Delta variant. Treatment with recombinant IFN-α/β at the time of infection protected mice from lethal infection with the mouse-adapted SARS-CoV-2 Delta variant, but intranasal administration of recombinant IFN-α/β at 2 days post infection exacerbated the disease severity following the mouse-adapted ancestral SARS-CoV-2 infection. Moreover, we showed that TNF-α amplified by type I IFN signals exacerbated the SARS-CoV-2 infection by stimulating CXCL1 production from macrophages and neutrophil recruitment into the lung tissue. Finally, we showed that intravenous administration to mice or hamsters with TNF protease inhibitor 2 alleviated the severity of SARS-CoV-2 and influenza virus infection. Our results uncover an unexpected mechanism by which type I interferon-mediated TNF-α signaling exacerbates the disease severity and will aid in the development of novel therapeutic strategies to treat respiratory virus infection and associated diseases such as influenza and COVID-19.
Collapse
Affiliation(s)
- Moe Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nene Kobayashi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kyoka Deguchi
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seira Omori
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Minami Nagai
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Isaiah Song
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Mizukami, Kakuganji, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology,Tonomachi, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
- Laboratory for Regenerative Microbiology, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Cui X, Li T, Yang J, Li X, Xuan P, Wang H. Predictive Value of dsDNA and Nucleosomes as Neutrophil Extracellular Traps-Related Biomarkers for COVID-19 in Older Patients. J Inflamm Res 2024; 17:8831-8838. [PMID: 39564546 PMCID: PMC11575441 DOI: 10.2147/jir.s414688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Background Previous studies have demonstrated that neutrophil extracellular traps (NETs) are crucial in infectious diseases. This study aims to evaluate the clinical value of NET-related biomarkers in identifying the risk of COVID-19 and diagnosing the disease. Methods This study involved 32 patients who tested positive for COVID-19 via polymerase chain reaction (PCR) between April and August 2023. During the same period, 30 healthy volunteers were enrolled as a control group. The principal biomarkers related to NETs are citrullinated histone H3 (CitH3), double-stranded DNA (dsDNA), myeloperoxidase-DNA complex (MPO-DNA), and Nucleosome. Elevated levels in two or more of these biomarkers indicate raised NET concentrations. Multivariable logistic regression analysis was employed to assess whether NET-related biomarkers were the independent risk factor of COVID-19. The diagnostic value of NET-related biomarkers in COVID-19 was further evaluated using receiver operating characteristic (ROC) curve analysis. Statistical procedures were executed in SPSS software (version 24.0, USA). Results Compared with the control group, patients infected with COVID-19 had higher levels of dsDNA and nucleosomes (P < 0.001). Correlation analysis revealed a positive correlation between dsDNA levels and neutrophil count (r = 0.309, P = 0.015) as well as between nucleosome levels and neutrophil count (r = 0.446, P < 0.001). Further analysis showed that dsDNA and nucleosomes were independent risk factors for COVID-19 infection. ROC curve analysis showed that dsDNA area under the curve (AUC) = 0.777, 95% confidence interval (CI), 0.661-0.893, P < 0.001, and nucleosomes (AUC = 0.884, 95% CI, 0.778-0.991, P < 0.001) had well diagnostic value in the diagnosing COVID-19 infection. Conclusion NET-related biomarkers, dsDNA and nucleosomes, were independent risk factors of COVID-19 infection and potentially useful biomarkers in diagnosing COVID-19 infection in older patients.
Collapse
Affiliation(s)
- Xudong Cui
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Tiewei Li
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, People's Republic of China
| | - Jingping Yang
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People's Republic of China
| | - Xiaojuan Li
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, People's Republic of China
| | - Pengfei Xuan
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People's Republic of China
| | - Hongyan Wang
- Respiratory and Critical Care Medicine Department, Inner Mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, People's Republic of China
| |
Collapse
|
9
|
Maisat W, Hou L, Sandhu S, Sin YC, Kim S, Van Pelt H, Chen Y, Emani S, Kong SW, Emani S, Ibla J, Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in congenital cardiac surgery. Pediatr Res 2024:10.1038/s41390-024-03717-z. [PMID: 39528743 PMCID: PMC12065927 DOI: 10.1038/s41390-024-03717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUNDS Pediatric patients with congenital heart disease (CHD) often require surgical repair using cardiopulmonary bypass. Despite advancements, mortality and complication rates remain significant. METHODS & RESULTS We prospectively examined 101 patients undergoing congenital cardiac surgery, identifying a mortality rate of 4.0% and a complication rate of 31.6%. Neonates and infants exhibited multiple complications more frequently. Prolonged bypass time was significantly associated with complications, with each additional 30 min increasing the odds by 1.46 times (95% CI 1.01-2.10, p = 0.042). We further investigated the involvement of damage-associated molecular pattern (DAMP) molecules by proteomics and ELISA. Plasma levels of DAMPs, including histones and high mobility group box 1 (HMGB1), were significantly elevated in the complication group. As these molecules target Toll-like receptor (TLR)2 and TLR4, mRNA expression of TLR2 and TLR4 in neutrophils was upregulated in the complication group. In vitro and in vivo analyses demonstrated that histones and HMGB1 induced the formation of neutrophil extracellular traps (NETs). This finding aligned with greater NETs formation observed at the end of CPB and during the postoperative period in neonates and infants who developed postoperative complications. CONCLUSION Targeting NETs and associated DAMPs may provide a novel therapeutic approach to mitigate complications in this patient population.
Collapse
Affiliation(s)
- Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lifei Hou
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sumiti Sandhu
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Yi-Cheng Sin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Samuel Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hanna Van Pelt
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Sirisha Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sitram Emani
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Juan Ibla
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
10
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
11
|
Lei W, Li X, Li S, Zhou F, Guo Y, Zhang M, Jin X, Zhang H. Targeting neutrophils extracellular traps, a promising anti-thrombotic therapy for natural products from traditional Chinese herbal medicine. Biomed Pharmacother 2024; 179:117310. [PMID: 39226727 DOI: 10.1016/j.biopha.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Thrombi are the main cause of vascular occlusion and contribute significantly to cardiovascular events and death. Neutrophils extracellular traps (NETs)-induced thrombosis plays a vital role in thrombotic complications and it takes the main responsibility for the resistance of fibrinolysis. However, the conventional anti-thrombotic therapies are inadequate to treat NETs-induced thrombotic complications but carry a high risk of bleeding. Consequently, increased attention has shifted towards exploring novel anti-thrombotic treatments targeting NETs. Interestingly, accumulating evidences prove that natural products from traditional Chinese herbal medicines have a great potential to mitigate thrombosis through inhibiting generous NETs formation and degrading excessive NETs. In this review, we elaborated the formation and degradation of NETs and highlighted its pivotal role in immunothrombosis through interactions with platelets and coagulation factors. Since available anti-thrombotic drugs targeting NETs are deficient, we further summarized the natural products and compounds from traditional Chinese herbal medicines which exert effective actions on regulating NETs formation and also have anti-thrombotic effects. Our findings underscore the diverse effects of natural products in targeting NETs, including relieving inflammation and oxidative stress of neutrophils, inhibiting neutrophils activation and DNA efflux, suppressing granule proteins release, reducing histones and promoting DNA degradation. This review aims to highlight the significance of natural medicines in anti-thrombotic therapies through targeting NETs and to lay a groundwork for developing novel anti-thrombotic agents from traditional Chinese herbal medicines.
Collapse
Affiliation(s)
- Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengjie Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yadi Guo
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyan Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinyao Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine,10 Poyanghu Road, Jinghai District, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Gunasekara S, Tamil Selvan M, Murphy CL, Shatnawi S, Cowan S, More S, Ritchey J, Miller CA, Rudd JM. Characterization of Neutrophil Functional Responses to SARS-CoV-2 Infection in a Translational Feline Model for COVID-19. Int J Mol Sci 2024; 25:10054. [PMID: 39337543 PMCID: PMC11432149 DOI: 10.3390/ijms251810054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models. In this study, we utilize a previously established feline model for COVID-19 to investigate neutrophil dysfunction in which experimentally infected cats develop clinical disease that mimics acute COVID-19. Specific pathogen-free cats were inoculated with SARS-CoV-2 (B.1.617.2; Delta variant) (n = 24) or vehicle (n = 6). Plasma, bronchoalveolar lavage fluid, and lung tissues were collected at various time points over 12 days post-inoculation. Systematic and temporal evaluation of the kinetics of neutrophil activation was conducted by measuring markers of activation including myeloperoxidase (MPO), neutrophil elastase (NE), and citrullinated histone H3 (citH3) in SARS-CoV-2-infected cats at 4 and 12 days post-inoculation (dpi) and compared to vehicle-inoculated controls. Cytokine profiling supported elevated innate inflammatory responses with specific upregulation of neutrophil activation and NET formation-related markers, namely IL-8, IL-18, CXCL1, and SDF-1, in infected cats. An increase in MPO-DNA complexes and cell-free dsDNA in infected cats compared to vehicle-inoculated was noted and supported by histopathologic severity in respiratory tissues. Immunofluorescence analyses further supported correlation of NET markers with tissue damage, especially 4 dpi. Differential gene expression analyses indicated an upregulation of genes associated with innate immune and neutrophil activation pathways. Transcripts involved in activation and NETosis pathways were upregulated by 4 dpi and downregulated by 12 dpi, suggesting peak activation of neutrophils and NET-associated markers in the early acute stages of infection. Correlation analyses conducted between NET-specific markers and clinical scores as well as histopathologic scores support association between neutrophil activation and disease severity during SARS-CoV-2 infection in this model. Overall, this study emphasizes the effect of neutrophil activation and NET release in SARS-CoV-2 infection in a feline model, prompting further investigation into therapeutic strategies aimed at mitigating excessive innate inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chelsea L Murphy
- Department of Mathematical Sciences, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer M Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
Dwivedi A, Ui Mhaonaigh A, Carroll M, Khosravi B, Batten I, Ballantine RS, Hendricken Phelan S, O’Doherty L, George AM, Sui J, Hawerkamp HC, Fallon PG, Noppe E, Mason S, Conlon N, Ni Cheallaigh C, Finlay CM, Little MA, Bioresource OBOTSJATTAR(STTAR. Emergence of dysfunctional neutrophils with a defect in arginase-1 release in severe COVID-19. JCI Insight 2024; 9:e171659. [PMID: 39253969 PMCID: PMC11385094 DOI: 10.1172/jci.insight.171659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Neutrophilia occurs in patients infected with SARS-CoV-2 (COVID-19) and is predictive of poor outcomes. Here, we link heterogenous neutrophil populations to disease severity in COVID-19. We identified neutrophils with features of cellular aging and immunosuppressive capacity in mild COVID-19 and features of neutrophil immaturity and activation in severe disease. The low-density neutrophil (LDN) number in circulating blood correlated with COVID-19 severity. Many of the divergent neutrophil phenotypes in COVID-19 were overrepresented in the LDN fraction and were less detectable in normal-density neutrophils. Functionally, neutrophils from patients with severe COVID-19 displayed defects in neutrophil extracellular trap formation and reactive oxygen species production. Soluble factors secreted by neutrophils from these patients inhibited T cell proliferation. Neutrophils from patients with severe COVID-19 had increased expression of arginase-1 protein, a feature that was retained in convalescent patients. Despite this increase in intracellular expression, there was a reduction in arginase-1 release by neutrophils into serum and culture supernatants. Furthermore, neutrophil-mediated T cell suppression was independent of arginase-1. Our results indicate the presence of dysfunctional, activated, and immature neutrophils in severe COVID-19.
Collapse
Affiliation(s)
| | | | | | | | - Isabella Batten
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | - Laura O’Doherty
- Wellcome Trust, Clinical Research Facility
- Department of Infectious Diseases; and
| | | | - Jacklyn Sui
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute
- Department of Immunology, Trinity Translational Medicine Institute; and
| | - Elnè Noppe
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sabina Mason
- Department of Critical Care, Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Niall Conlon
- Department of Infectious Diseases; and
- Department of Immunology, St James’s Hospital, Dublin, Ireland
| | | | | | | | | |
Collapse
|
14
|
Chatterjee S, Bhattacharya M, Saxena S, Lee SS, Chakraborty C. Autoantibodies in COVID-19 and Other Viral Diseases: Molecular, Cellular, and Clinical Perspectives. Rev Med Virol 2024; 34:e2583. [PMID: 39289528 DOI: 10.1002/rmv.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Autoantibodies are immune system-produced antibodies that wrongly target the body's cells and tissues for attack. The COVID-19 pandemic has made it possible to link autoantibodies to both the severity of pathogenic infection and the emergence of several autoimmune diseases after recovery from the infection. An overview of autoimmune disorders and the function of autoantibodies in COVID-19 and other infectious diseases are discussed in this review article. We also investigated the different categories of autoantibodies found in COVID-19 and other infectious diseases including the potential pathways by which they contribute to the severity of the illness. Additionally, it also highlights the probable connection between vaccine-induced autoantibodies and their adverse outcomes. The review also discusses the therapeutic perspectives of autoantibodies. This paper advances our knowledge about the intricate interaction between autoantibodies and COVID-19 by thoroughly assessing the most recent findings.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | | | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Tirupati, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
15
|
Moore KM, Foster SL, Kar M, Floyd KA, Elrod EJ, Williams ME, Velden JV, Ellis M, Malik A, Wali B, Lapp S, Metz A, Bosinger SE, Menachery VD, Seder RA, Amara RR, Kohlmeier JE, Grakoui A, Suthar MS. Eosinophils protect against SARS-CoV-2 following a vaccine breakthrough infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607190. [PMID: 39211190 PMCID: PMC11361157 DOI: 10.1101/2024.08.08.607190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Waning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant. We found that low-dose vaccinated infected mice had a 2-log reduction in lung viral burden, but increased immune cell infiltration in the lung parenchyma, characterized by monocytes, monocyte-derived macrophages, and eosinophils. Single cell RNA-seq revealed viral RNA was highly associated with eosinophils that corresponded to a unique IFN-γ biased signature. Antibody-mediated depletion of eosinophils in vaccinated mice resulted in increased virus replication and dissemination in the lungs, demonstrating that eosinophils in the lungs are protective during SARS-CoV-2 breakthrough infections. These results highlight the critical role for the innate immune response in vaccine mediated protection against SARS-CoV-2.
Collapse
|
16
|
Lou J, Zhang J, Deng Q, Chen X. Neutrophil extracellular traps mediate neuro-immunothrombosis. Neural Regen Res 2024; 19:1734-1740. [PMID: 38103239 PMCID: PMC10960287 DOI: 10.4103/1673-5374.389625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/29/2023] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
Neutrophil extracellular traps are primarily composed of DNA and histones and are released by neutrophils to promote inflammation and thrombosis when stimulated by various inflammatory reactions. Neutrophil extracellular trap formation occurs through lytic and non-lytic pathways that can be further classified by formation mechanisms. Histones, von Willebrand factor, fibrin, and many other factors participate in the interplay between inflammation and thrombosis. Neuro-immunothrombosis summarizes the intricate interplay between inflammation and thrombosis during neural development and the pathogenesis of neurological diseases, providing cutting-edge insights into post-neurotrauma thrombotic events. The blood-brain barrier defends the brain and spinal cord against external assaults, and neutrophil extracellular trap involvement in blood-brain barrier disruption and immunothrombosis contributes substantially to secondary injuries in neurological diseases. Further research is needed to understand how neutrophil extracellular traps promote blood-brain barrier disruption and immunothrombosis, but recent studies have demonstrated that neutrophil extracellular traps play a crucial role in immunothrombosis, and identified modulators of neuro-immunothrombosis. However, these neurological diseases occur in blood vessels, and the mechanisms are unclear by which neutrophil extracellular traps penetrate the blood-brain barrier to participate in immunothrombosis in traumatic brain injury. This review discusses the role of neutrophil extracellular traps in neuro-immunothrombosis and explores potential therapeutic interventions to modulate neutrophil extracellular traps that may reduce immunothrombosis and improve traumatic brain injury outcomes.
Collapse
Affiliation(s)
- Jianbo Lou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
17
|
Cabrera LE, Jokiranta ST, Mäki S, Miettinen S, Kant R, Kareinen L, Sironen T, Pietilä JP, Kantele A, Kekäläinen E, Lindgren H, Mattila P, Kipar A, Vapalahti O, Strandin T. The assembly of neutrophil inflammasomes during COVID-19 is mediated by type I interferons. PLoS Pathog 2024; 20:e1012368. [PMID: 39172744 PMCID: PMC11340896 DOI: 10.1371/journal.ppat.1012368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024] Open
Abstract
The severity of COVID-19 is linked to excessive inflammation. Neutrophils represent a critical arm of the innate immune response and are major mediators of inflammation, but their role in COVID-19 pathophysiology remains poorly understood. We conducted transcriptomic profiling of neutrophils obtained from patients with mild and severe COVID-19, as well as from SARS-CoV-2 infected mice, in comparison to non-infected healthy controls. In addition, we investigated the inflammasome formation potential in neutrophils from patients and mice upon SARS-CoV-2 infection. Transcriptomic analysis of polymorphonuclear cells (PMNs), consisting mainly of mature neutrophils, revealed a striking type I interferon (IFN-I) gene signature in severe COVID-19 patients, contrasting with mild COVID-19 and healthy controls. Notably, low-density granulocytes (LDGs) from severe COVID-19 patients exhibited an immature neutrophil phenotype and lacked this IFN-I signature. Moreover, PMNs from severe COVID-19 patients showed heightened nigericin-induced caspase1 activation, but reduced responsiveness to exogenous inflammasome priming. Furthermore, IFN-I emerged as a priming stimulus for neutrophil inflammasomes. These findings suggest a potential role for neutrophil inflammasomes in driving inflammation during severe COVID-19. Altogether, these findings open promising avenues for targeted therapeutic interventions to mitigate the pathological processes associated with the disease.
Collapse
Affiliation(s)
- Luz E. Cabrera
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Suvi T. Jokiranta
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna Mäki
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| | - Simo Miettinen
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Pietilä
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Meilahti Vaccine Research Center MeVac, Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Kantele
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Meilahti Vaccine Research Center MeVac, Department of Infectious Diseases, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eliisa Kekäläinen
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Virology and Immunology, HUSLAB Clinical Microbiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Lindgren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Division of Virology and Immunology, HUSLAB Clinical Microbiology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Tomas Strandin
- Viral Zoonosis Research Unit, Medicum, Department of Virology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Porter JC, Inshaw J, Solis VJ, Denneny E, Evans R, Temkin MI, De Vasconcelos N, Aramburu IV, Hoving D, Basire D, Crissell T, Guinto J, Webb A, Esmail H, Johnston V, Last A, Rampling T, Lippert L, Helbig ET, Kurth F, Williams B, Flynn A, Lukey PT, Birault V, Papayannopoulos V. Anti-inflammatory therapy with nebulized dornase alfa for severe COVID-19 pneumonia: a randomized unblinded trial. eLife 2024; 12:RP87030. [PMID: 39009040 PMCID: PMC11251720 DOI: 10.7554/elife.87030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Background Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin. Methods Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors. Results We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01-2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004). Conclusions Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin. Funding LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust). Clinical trial number NCT04359654.
Collapse
Affiliation(s)
- Joanna C Porter
- UCL Respiratory, University College LondonLondonUnited Kingdom
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | | | | | - Emma Denneny
- UCL Respiratory, University College LondonLondonUnited Kingdom
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Rebecca Evans
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Mia I Temkin
- Antimicrobial Defence Lab, The Francis Crick InstituteLondonUnited Kingdom
| | | | | | - Dennis Hoving
- Antimicrobial Defence Lab, The Francis Crick InstituteLondonUnited Kingdom
| | - Donna Basire
- UCL Respiratory, University College LondonLondonUnited Kingdom
| | - Tracey Crissell
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Jesusa Guinto
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Alison Webb
- University College London Hospitals NHS TrustLondonUnited Kingdom
| | - Hanif Esmail
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | - Victoria Johnston
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | - Anna Last
- University College London Hospitals NHS TrustLondonUnited Kingdom
- Clinical Research Department, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Thomas Rampling
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | - Lena Lippert
- Charité – Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory MedicineBerlinGermany
| | - Elisa Theresa Helbig
- Charité – Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory MedicineBerlinGermany
| | - Florian Kurth
- Charité – Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory MedicineBerlinGermany
| | - Bryan Williams
- University College London Hospitals NHS TrustLondonUnited Kingdom
- National Institute for Health Research, University College London Hospital Biomedical Research CentreLondonUnited Kingdom
| | | | | | | | | |
Collapse
|
19
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
20
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
21
|
Chu JY, McCormick B, Sundaram K, Hardisty G, Karmakar U, Pumpe C, Krull E, Lucas CD, Amado-Azevedo J, Hordijk PL, Caporali A, Mellor H, Baillie JK, Rossi AG, Vermeren S. ARAP3 protects from excessive formylated peptide-induced microvascular leakage by acting on endothelial cells and neutrophils. J Pathol 2024; 263:347-359. [PMID: 38734878 DOI: 10.1002/path.6288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/13/2024]
Abstract
Vascular permeability is temporarily heightened during inflammation, but excessive inflammation-associated microvascular leakage can be detrimental, as evidenced in the inflamed lung. Formylated peptides regulate vascular leakage indirectly via formylated peptide receptor-1 (FPR1)-mediated recruitment and activation of neutrophils. Here we identify how the GTPase-activating protein ARAP3 protects against formylated peptide-induced microvascular permeability via endothelial cells and neutrophils. In vitro, Arap3-/- endothelial monolayers were characterised by enhanced formylated peptide-induced permeability due to upregulated endothelial FPR1 and enhanced vascular endothelial cadherin internalisation. In vivo, enhanced inflammation-associated microvascular leakage was observed in Arap3-/- mice. Leakage of plasma protein into the lungs of Arap3-/- mice increased within hours of formylated peptide administration. Adoptive transfer experiments indicated this was dependent upon ARAP3 deficiency in both immune and non-immune cells. Bronchoalveolar lavages of formylated peptide-challenged Arap3-/- mice contained neutrophil extracellular traps (NETs). Pharmacological inhibition of NET formation abrogated excessive microvascular leakage, indicating a critical function of NETs in this context. The observation that Arap3-/- mice developed more severe influenza suggests these findings are pertinent to pathological situations characterised by abundant formylated peptides. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Julia Y Chu
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Barry McCormick
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Kruthika Sundaram
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Gareth Hardisty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Caroline Pumpe
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Elizabeth Krull
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Joana Amado-Azevedo
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Peter L Hordijk
- Department of Physiology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Andrea Caporali
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, UK
| | - J Kenneth Baillie
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Zhou Y, Xu L, Jin P, Li N, Chen X, Yang A, Qi H. NET-targeted nanoparticles for antithrombotic therapy in pregnancy. iScience 2024; 27:109823. [PMID: 38756418 PMCID: PMC11097077 DOI: 10.1016/j.isci.2024.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Pulmonary embolism caused by deep vein thrombosis (DVT) is a major contributor to maternal morbidity and mortality. There is still an unmet need for safe and effective treatment options for DVT during pregnancy. Recent research has shown that neutrophil extracellular trap (NET) formation plays a very vital role in thrombosis. We created nanoparticles surface-modified by neutrophil elastase (NE)-binding peptide that can target activated neutrophils specifically in vitro and in vivo. Prussian blue nanoparticles (PB NPs) designed in the core scavenges abnormally elevated reactive oxygen species (ROS) in the vascular microenvironment and acts as a photothermal agent to mediate photothermal therapy (PTT) to damage fibrin network structure. Based on the data we have included, this noninvasive therapeutic approach is considered safe for both mothers and the fetus. Furthermore, our findings indicate that this therapeutic approach has a significant alleviation effect on intrauterine growth restriction caused by maternal thrombosis.
Collapse
Affiliation(s)
- Yijie Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Department of Reproductive Medicine, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Department of Reproductive Medicine, Guiyang Maternal and Child Health Care Hospital, Guiyang 550003, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Pingsong Jin
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xuehai Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Anyu Yang
- Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Ge L, Wang N, Chen Z, Xu S, Zhou L. Expression of Siglec-9 in peripheral blood neutrophils was increased and associated with disease severity in patients with AECOPD. Cytokine 2024; 177:156558. [PMID: 38412768 DOI: 10.1016/j.cyto.2024.156558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The pathogenesis and treatment strategies for chronic obstructive pulmonary disease (COPD) require further exploration. Abnormal neutrophil inflammation and the overexpression of neutrophil extracellular traps (NETs) are closely associated with acute exacerbations of COPD (AECOPD). Siglec-9, a specific receptor expressed on neutrophils that inhibits their function, prompted us to investigate its relationship with NETs found in induced sputum and the severity of the disease. METHODS We collected clinical data from patients with AECOPD and assessed the expression of Siglec-9 in peripheral blood neutrophils and the presence of NETs in induced sputum. We then observed the correlation between Siglec-9, the inflammatory response, and the severity of AECOPD. RESULTS We observed an increase in the expression of Siglec-9 in the peripheral blood neutrophils of patients with AECOPD. Concurrently, these patients exhibited more severe clinical symptoms, higher systemic inflammation levels, and a reduced quality of life compared to those with induced sputum NET expression. Further subgroup analysis of AECOPD patients with high Siglec-9 expression revealed worsened quality of life and more severe inflammation, particularly in indicators such as the BODE index, CRP, peripheral blood neutrophil count, IL-6, IL-8, TNF-α expression, and others. Furthermore, we noted a significant increase in NET-specific expression in the sputum of patients with high Siglec-9 expression levels. In comparison to patients with low Siglec-9 expression, those with high expression experienced more systemic inflammatory reactions and a lower quality of life. Correlation analysis of the aforementioned indicators revealed that the expression ratio of Siglec-9 in the peripheral blood of patients correlated with lung function, quality of life, and NETs in the induced sputum of patients with AECOPD. CONCLUSION The increased expression of Siglec-9 in peripheral blood neutrophils of AECOPD patients leads to elevated NET expression in induced sputum, exacerbating the systemic inflammatory response and worsening lung function and quality of life in these patients.
Collapse
Affiliation(s)
- Linyang Ge
- Department of Respiratory and Critical Care Medicine, Affiliated Gaochun Hospital, Jiangsu University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Gaochun Hospital, Jiangsu University, Nanjing, Jiangsu, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuanglan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Institute of Integrative Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Nakajima A, Yanagimura F, Saji E, Shimizu H, Toyoshima Y, Yanagawa K, Arakawa M, Hokari M, Yokoseki A, Wakasugi T, Okamoto K, Takebayashi H, Fujii C, Itoh K, Takei YI, Ohara S, Yamada M, Takahashi H, Nishizawa M, Igarashi H, Kakita A, Onodera O, Kawachi I. Stage-dependent immunity orchestrates AQP4 antibody-guided NMOSD pathology: a role for netting neutrophils with resident memory T cells in situ. Acta Neuropathol 2024; 147:76. [PMID: 38658413 DOI: 10.1007/s00401-024-02725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies. To address these knowledge gaps, we conducted a comprehensive 'stage-dependent' investigation of immune cell elements in situ in human NMOSD lesions, based on neuropathological techniques for autopsied/biopsied CNS materials. The present study provided three major findings. First, activated or netting neutrophils and melanoma cell adhesion molecule-positive (MCAM+) helper T (TH) 17/cytotoxic T (TC) 17 cells are prominent, and the numbers of these correlate with the size of NMOSD lesions in the initial or early-active stages. Second, forkhead box P3-positive (FOXP3+) regulatory T (Treg) cells are recruited to NMOSD lesions during the initial, early-active or late-active stages, suggesting rapid suppression of proinflammatory autoimmune events in the active stages of NMOSD. Third, compartmentalized resident memory immune cells, including CD103+ tissue-resident memory T (TRM) cells with long-lasting inflammatory potential, are detected under "standby" conditions in all stages. Furthermore, CD103+ TRM cells express high levels of granzyme B/perforin-1 in the initial or early-active stages of NMOSD in situ. We infer that stage-dependent compartmentalized immune traits orchestrate the pathology of anti-AQP4 antibody-guided NMOSD in situ. Our work further suggests that targeting activated/netting neutrophils, MCAM+ TH17/TC17 cells, and CD103+ TRM cells, as well as promoting the expansion of FOXP3+ Treg cells, may be effective in treating and preventing relapses of NMOSD.
Collapse
Affiliation(s)
- Akihiro Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Fumihiro Yanagimura
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, NHO Niigata National Hospital, 3-52 Akasakamachi, Kashiwazaki, Niigata, 945-8585, Japan
| | - Etsuji Saji
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, Brain Disease Center, Agano Hospital, 6317-15 Yasuda, Agano, Niigata, 959-2221, Japan
| | - Kaori Yanagawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Musashi Arakawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Musashi Clinic, 20-1 Hakusanura 2, Chuo-Ku, Niigata, 951-8131, Japan
| | - Mariko Hokari
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Akiko Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, Niigata Medical Center, 27-11 Kobari 3, Nishi-Ku, Niigata, 950-2022, Japan
| | - Takahiro Wakasugi
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Neurology, NHO Nishiniigata Chuo Hospital, 14-1 Masago 1, Nishi-Ku, Niigata, 950-2085, Japan
| | - Kouichirou Okamoto
- Department of Neurosurgery, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8510, Japan
| | - Chihiro Fujii
- Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizonocho, Moriguchi, Osaka, 570-8507, Japan
- Department of Neurology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Yo-Ichi Takei
- Department of Neurology, NHO Matsumoto Medical Center, 2-20-30 Muraimachi-Minami, Matsumoto, Nagano, 399-8701, Japan
| | - Shinji Ohara
- Department of Neurology, NHO Matsumoto Medical Center, 2-20-30 Muraimachi-Minami, Matsumoto, Nagano, 399-8701, Japan
- Department of Neurology, Iida Hospital, 1-15 Odori, Iida, Nagano, 395-8505, Japan
| | - Mitsunori Yamada
- Department of Brain Disease Research, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Department of Pathology and Laboratory Medicine, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-Ku, Niigata, 950-1101, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
- Niigata University of Health and Welfare, 1398 Shimami-Cho, Kita-Ku, Niigata, 950-3198, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan
| | - Izumi Kawachi
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8585, Japan.
- Medical Education Center, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-Ku, Niigata, 951-8510, Japan.
| |
Collapse
|
25
|
Hsieh KH, Chao CH, Cheng YL, Lai YC, Chuang YC, Wang JR, Chang SY, Hung YP, Chen YMA, Liu WL, Chuang WJ, Yeh TM. Enhancement of NETosis by ACE2-cross-reactive anti-SARS-CoV-2 RBD antibodies in patients with COVID-19. J Biomed Sci 2024; 31:39. [PMID: 38637878 PMCID: PMC11027296 DOI: 10.1186/s12929-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND High levels of neutrophil extracellular trap (NET) formation or NETosis and autoantibodies are related to poor prognosis and disease severity of COVID-19 patients. Human angiotensin-converting enzyme 2 (ACE2) cross-reactive anti-severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain (SARS-CoV-2 RBD) antibodies (CR Abs) have been reported as one of the sources of anti-ACE2 autoantibodies. However, the pathological implications of CR Abs in NET formation remain unknown. METHODS In this study, we first assessed the presence of CR Abs in the sera of COVID-19 patients with different severity by serological analysis. Sera and purified IgG from CR Abs positive COVID-19 patients as well as a mouse monoclonal Ab (mAb 127) that can recognize both ACE2 and the RBD were tested for their influence on NETosis and the possible mechanisms involved were studied. RESULTS An association between CR Abs levels and the severity of COVID-19 in 120 patients was found. The CR Abs-positive sera and IgG from severe COVID-19 patients and mAb 127 significantly activated human leukocytes and triggered NETosis, in the presence of RBD. This NETosis, triggered by the coexistence of CR Abs and RBD, activated thrombus-related cells but was abolished when the interaction between CR Abs and ACE2 or Fc receptors was disrupted. We also revealed that CR Abs-induced NETosis was suppressed in the presence of recombinant ACE2 or the Src family kinase inhibitor, dasatinib. Furthermore, we found that COVID-19 vaccination not only reduced COVID-19 severity but also prevented the production of CR Abs after SARS-CoV-2 infection. CONCLUSIONS Our findings provide possible pathogenic effects of CR Abs in exacerbating COVID-19 by enhancing NETosis, highlighting ACE2 and dasatinib as potential treatments, and supporting the benefit of vaccination in reducing disease severity and CR Abs production in COVID-19 patients.
Collapse
Affiliation(s)
- Kun-Han Hsieh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiao-Hsuan Chao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory and Regenerative Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Yi-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Yung-Chun Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc, Tainan, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Diseases and Vaccinology, National Institute of Infectious National Health Research Institutes, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
- Department of Internal Medicine, National Cheng Kung University, Medical College and Hospital, Tainan, Taiwan
| | - Yi-Ming Arthur Chen
- Laboratory of Important Infectious Diseases and Cancer, Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Diseases and Vaccinology, National Institute of Infectious National Health Research Institutes, Miaoli County, 350, Taiwan
| | - Wei-Lun Liu
- School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
- Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, 243, Taiwan
- Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
26
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
27
|
Gatselis NK, Lyberopoulou A, Lygoura V, Giannoulis G, Samakidou A, Vaiou A, Antoniou K, Triantafyllou K, Stefos A, Georgiadou S, Sagris D, Sveroni D, Gabeta S, Ntaios G, Norman GL, Dalekos GN. Calprotectin serum levels on admission and during follow-up predict severity and outcome of patients with COVID-19: A prospective study. Eur J Intern Med 2024; 122:78-85. [PMID: 37953124 DOI: 10.1016/j.ejim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND & AIMS Calprotectin reflects neutrophil activation and is increased in various inflammatory conditions including severe COVID-19. However, serial serum calprotectin measurements in COVID-19 patients are limited. We assessed prospectively, calprotectin levels as biomarker of severity/outcome of the disease and a COVID-19 monitoring parameter in a large cohort of consecutive COVID-19 patients. METHODS Calprotectin serum levels were measured in 736 patients (58.2 % males; median age 63-years; moderate disease, n = 292; severe, n = 444, intubated and/or died, n = 50). Patients were treated with combined immunotherapies according to our published local algorithm. The endpoint was the composite event of intubation due to severe respiratory failure (SRF)/COVID-19-related mortality. RESULTS Median (interquartile range) calprotectin levels were significantly higher in patients with severe disease [7(8.2) vs. 6.1(8.1)μg/mL, p = 0.015]. Calprotectin on admission was the only independent risk factor for intubation/death (HR=1.473, 95 %CI=1.003-2.165, p = 0.048) even after adjustment for age, sex, body mass index, comorbidities, neutrophils, lymphocytes, neutrophil to lymphocytes ratio, ferritin, and CRP. The area under the curve (AUC, 95 %CI) of calprotectin for prediction of intubation/death was 0.619 (0.531-0.708), with an optimal cut-off at 13 μg/mL (sensitivity: 44 %, specificity: 79 %, positive and negative predictive values: 13 % and 95 %, respectively). For intubated/died patients, paired comparisons from baseline to middle of hospitalization and subsequently to intubation/death showed significant increase of calprotectin (p = 0.009 and p < 0.001, respectively). Calprotectin alteration had the higher predictive ability for intubation/death [AUC (95 %CI):0.803 (0.664-0.943), p < 0.001]. CONCLUSIONS Calprotectin levels on admission and their subsequent dynamic alterations could serve as indicator of COVID-19 severity and predict the occurrence of SRF and mortality.
Collapse
Affiliation(s)
- Nikolaos K Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Aggeliki Lyberopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Vasiliki Lygoura
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - George Giannoulis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Anna Samakidou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Antonia Vaiou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Katerina Antoniou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Katerina Triantafyllou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Aggelos Stefos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Sarah Georgiadou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Dimitrios Sagris
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Dafni Sveroni
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - George Ntaios
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece
| | - Gary L Norman
- Research and Development, Headquarters & Technology Center Autoimmunity, Werfen, San Diego, CA 92131, USA
| | - George N Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa, Greece.
| |
Collapse
|
28
|
Gutiérrez-Pérez IA, Buendía-Roldán I, Zaragoza-García O, Pérez-Rubio G, Villafan-Bernal JR, Chávez-Galán L, Parra-Rojas I, Hernández-Zenteno RDJ, Fricke-Galindo I, Castro-Alarcón N, Bautista-Becerril B, Falfán-Valencia R, Guzmán-Guzmán IP. Association of PADI2 and PADI4 polymorphisms in COVID-19 host severity and non-survival. Heliyon 2024; 10:e27997. [PMID: 38524554 PMCID: PMC10958703 DOI: 10.1016/j.heliyon.2024.e27997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Background Enzymes of the peptidylarginine deiminase family (PADs) play a relevant role in the pathogenesis of COVID-19. However, the association of single nucleotide polymorphisms (SNPs) in their genes with COVID-19 severity and death is unknown. Methodology We included 1045 patients who were diagnosed with COVID-19 between October 2020 and December 2021. All subjects were genotyped for PADI2 (rs1005753 and rs2235926) and PADI4 (rs11203366, rs11203367, and rs874881) SNPs by TaqMan assays and their associations with disease severity, death, and inflammatory biomarkers were evaluated. Results 291 patients presented had severe COVID-19 according to PaO2/FiO2, and 393 had a non-survival outcome. Carriers of the rs1005753 G/G genotype in the PADI2 gene presented susceptibility for severe COVID-19, while the heterozygous carriers in rs11203366, rs11203367, and rs874881 of the PADI4 gene showed risk of death. The GTACC haplotype in PADI2-PADI4 was associated with susceptibility to severe COVID-19, while the GCACC haplotype was a protective factor. The GCGTG haplotype was associated with severe COVID-19 but as a protective haplotype for death. Finally, the GTACC haplotype was associated with platelet-to-lymphocyte ratio (PLR), the GCACC haplotype with neutrophil-to-hemoglobin and lymphocyte and the GCGTG haplotype as a protective factor for the elevation of procalcitonin, D-dimer, CRP, LCRP, NHL, SII, NLR, and PLR. Conclusions Our results suggest that the haplotypic combination of GTACC and some individual genotypes of PADI2 and PADI4 contribute to the subjects' susceptibility for severity and death by COVID-19.
Collapse
Affiliation(s)
- Ilse Adriana Gutiérrez-Pérez
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39000, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39000, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - José Rafael Villafan-Bernal
- Investigador por Mexico, Laboratory of Immunogenomics and Metabolic Disease, Mexican National Institute of Genomic Medicine (INMEGEN), Mexico City, 14610, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, 14080, Mexico
| | - Isela Parra-Rojas
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39000, Mexico
| | | | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Natividad Castro-Alarcón
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39000, Mexico
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, 14080, Mexico
| | - Iris Paola Guzmán-Guzmán
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39000, Mexico
| |
Collapse
|
29
|
Torp MK, Stensløkken KO, Vaage J. When Our Best Friend Becomes Our Worst Enemy: The Mitochondrion in Trauma, Surgery, and Critical Illness. J Intensive Care Med 2024:8850666241237715. [PMID: 38505947 DOI: 10.1177/08850666241237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Common for major surgery, multitrauma, sepsis, and critical illness, is a whole-body inflammation. Tissue injury is able to trigger a generalized inflammatory reaction. Cell death causes release of endogenous structures termed damage associated molecular patterns (DAMPs) that initiate a sterile inflammation. Mitochondria are evolutionary endosymbionts originating from bacteria, containing molecular patterns similar to bacteria. These molecular patterns are termed mitochondrial DAMPs (mDAMPs). Mitochondrial debris released into the extracellular space or into the circulation is immunogenic and damaging secondary to activation of the innate immune system. In the circulation, released mDAMPS are either free or exist in extracellular vesicles, being able to act on every organ and cell in the body. However, the role of mDAMPs in trauma and critical care is not fully clarified. There is a complete lack of knowledge how they may be counteracted in patients. Among mDAMPs are mitochondrial DNA, cardiolipin, N-formyl peptides, cytochrome C, adenosine triphosphate, reactive oxygen species, succinate, and mitochondrial transcription factor A. In this overview, we present the different mDAMPs, their function, release, targets, and inflammatory potential. In light of present knowledge, the role of mDAMPs in the pathophysiology of major surgery and trauma as well as sepsis, and critical care is discussed.
Collapse
Affiliation(s)
- May-Kristin Torp
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research, Østfold Hospital Trust, Grålum, Norway
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Jarle Vaage
- Section of Physiology, Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Duloquin G, Pommier T, Georges M, Giroud M, Guenancia C, Béjot Y, Laurent G, Rabec C. Is COVID-19 Infection a Multiorganic Disease? Focus on Extrapulmonary Involvement of SARS-CoV-2. J Clin Med 2024; 13:1397. [PMID: 38592697 PMCID: PMC10932259 DOI: 10.3390/jcm13051397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
First described in December 2019 in Wuhan (China), COVID-19 disease rapidly spread worldwide, constituting the biggest pandemic in the last 100 years. Even if SARS-CoV-2, the agent responsible for COVID-19, is mainly associated with pulmonary injury, evidence is growing that this virus can affect many organs, including the heart and vascular endothelial cells, and cause haemostasis, CNS, and kidney and gastrointestinal tract abnormalities that can impact in the disease course and prognosis. In fact, COVID-19 may affect almost all the organs. Hence, SARS-CoV-2 is essentially a systemic infection that can present a large number of clinical manifestations, and it is variable in distribution and severity, which means it is potentially life-threatening. The goal of this comprehensive review paper in the series is to give an overview of non-pulmonary involvement in COVID-19, with a special focus on underlying pathophysiological mechanisms and clinical presentation.
Collapse
Affiliation(s)
- Gauthier Duloquin
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Thibaut Pommier
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Marjolaine Georges
- Department of Pneumology and Intensive Care Unit, Reference Centre for Rare Lung Diseases, Dijon University Hospital, 14 Boulevard Gaffarel, 21000 Dijon, France;
- Centre des Sciences du Goût et de l’Alimentation, INRA, UMR 6265 CNRS 1234, University of Bourgogne Franche-Comté, 21000 Dijon, France
| | - Maurice Giroud
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Charles Guenancia
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Yannick Béjot
- Department of Neurology, CHU Dijon-Bourgogne, 21000 Dijon, France; (G.D.); (M.G.); (Y.B.)
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
| | - Gabriel Laurent
- Laboratory of Cerebro-Vascular Pathophysiology and Epidemiology (PEC2) EA 7460, University of Bourgogne, 21000 Dijon, France; (T.P.); (C.G.); (G.L.)
- Department of Cardiology, University Hospital of Dijon, 21000 Dijon, France
| | - Claudio Rabec
- Department of Pneumology and Intensive Care Unit, Reference Centre for Rare Lung Diseases, Dijon University Hospital, 14 Boulevard Gaffarel, 21000 Dijon, France;
| |
Collapse
|
31
|
Zhang Y, Bharathi V, Dokoshi T, de Anda J, Ursery LT, Kulkarni NN, Nakamura Y, Chen J, Luo EWC, Wang L, Xu H, Coady A, Zurich R, Lee MW, Matsui T, Lee H, Chan LC, Schepmoes AA, Lipton MS, Zhao R, Adkins JN, Clair GC, Thurlow LR, Schisler JC, Wolfgang MC, Hagan RS, Yeaman MR, Weiss TM, Chen X, Li MMH, Nizet V, Antoniak S, Mackman N, Gallo RL, Wong GCL. Viral afterlife: SARS-CoV-2 as a reservoir of immunomimetic peptides that reassemble into proinflammatory supramolecular complexes. Proc Natl Acad Sci U S A 2024; 121:e2300644120. [PMID: 38306481 PMCID: PMC10861912 DOI: 10.1073/pnas.2300644120] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/28/2023] [Indexed: 02/04/2024] Open
Abstract
It is unclear how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the strong but ineffective inflammatory response that characterizes severe Coronavirus disease 2019 (COVID-19), with amplified immune activation in diverse cell types, including cells without angiotensin-converting enzyme 2 receptors necessary for infection. Proteolytic degradation of SARS-CoV-2 virions is a milestone in host viral clearance, but the impact of remnant viral peptide fragments from high viral loads is not known. Here, we examine the inflammatory capacity of fragmented viral components from the perspective of supramolecular self-organization in the infected host environment. Interestingly, a machine learning analysis to SARS-CoV-2 proteome reveals sequence motifs that mimic host antimicrobial peptides (xenoAMPs), especially highly cationic human cathelicidin LL-37 capable of augmenting inflammation. Such xenoAMPs are strongly enriched in SARS-CoV-2 relative to low-pathogenicity coronaviruses. Moreover, xenoAMPs from SARS-CoV-2 but not low-pathogenicity homologs assemble double-stranded RNA (dsRNA) into nanocrystalline complexes with lattice constants commensurate with the steric size of Toll-like receptor (TLR)-3 and therefore capable of multivalent binding. Such complexes amplify cytokine secretion in diverse uninfected cell types in culture (epithelial cells, endothelial cells, keratinocytes, monocytes, and macrophages), similar to cathelicidin's role in rheumatoid arthritis and lupus. The induced transcriptome matches well with the global gene expression pattern in COVID-19, despite using <0.3% of the viral proteome. Delivery of these complexes to uninfected mice boosts plasma interleukin-6 and CXCL1 levels as observed in COVID-19 patients.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
- Biomedical Engineering, School of Engineering, Westlake University, Hangzhou, Zhejiang310012, China
| | - Vanthana Bharathi
- University of North Carolina Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Jaime de Anda
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Lauryn Tumey Ursery
- University of North Carolina Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nikhil N. Kulkarni
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Yoshiyuki Nakamura
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Jonathan Chen
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Elizabeth W. C. Luo
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Lamei Wang
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Hua Xu
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Alison Coady
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Raymond Zurich
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Michelle W. Lee
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - HongKyu Lee
- Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
| | - Liana C. Chan
- Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Institute for Infection & Immunity, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, CA90502
| | - Athena A. Schepmoes
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Mary S. Lipton
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Rui Zhao
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Joshua N. Adkins
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Geremy C. Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA99354
| | - Lance R. Thurlow
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jonathan C. Schisler
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Robert S. Hagan
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael R. Yeaman
- Division of Molecular Medicine, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Division of Infectious Diseases, Harbor-University of California Los Angeles Medical Center, Los Angeles County, Torrance, CA90502
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Institute for Infection & Immunity, Lundquist Institute for Biomedical Innovation, Harbor-University of California Los Angeles Medical Center, Torrance, CA90502
| | - Thomas M. Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Xinhua Chen
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Melody M. H. Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nigel Mackman
- University of North Carolina Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego, La Jolla, CA92093
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA9009
- California NanoSystems Institute, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
32
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
33
|
Tsumita T, Takeda R, Maishi N, Hida Y, Sasaki M, Orba Y, Sato A, Toba S, Ito W, Teshirogi T, Sakurai Y, Iba T, Naito H, Ando H, Watanabe H, Mizuno A, Nakanishi T, Matsuda A, Zixiao R, Lee J, Iimura T, Sawa H, Hida K. Viral uptake and pathophysiology of the lung endothelial cells in age-associated severe SARS-CoV-2 infection models. Aging Cell 2024; 23:e14050. [PMID: 38098255 PMCID: PMC10861199 DOI: 10.1111/acel.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023] Open
Abstract
Thrombosis is the major cause of death in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the pathology of vascular endothelial cells (ECs) has received much attention. Although there is evidence of the infection of ECs in human autopsy tissues, their detailed pathophysiology remains unclear due to the lack of animal model to study it. We used a mouse-adapted SARS-CoV-2 virus strain in young and mid-aged mice. Only mid-aged mice developed fatal pneumonia with thrombosis. Pulmonary ECs were isolated from these infected mice and RNA-Seq was performed. The pulmonary EC transcriptome revealed that significantly higher levels of viral genes were detected in ECs from mid-aged mice with upregulation of viral response genes such as DDX58 and IRF7. In addition, the thrombogenesis-related genes encoding PLAT, PF4, F3 PAI-1, and P-selectin were upregulated. In addition, the inflammation-related molecules such as CXCL2 and CXCL10 were upregulated in the mid-aged ECs upon viral infection. Our mouse model demonstrated that SARS-CoV-2 virus entry into aged vascular ECs upregulated thrombogenesis and inflammation-related genes and led to fatal pneumonia with thrombosis. Current results of EC transcriptome showed that EC uptake virus and become thrombogenic by activating neutrophils and platelets in the aged mice, suggesting age-associated EC response as a novel finding in human severe COVID-19.
Collapse
Affiliation(s)
- Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ryo Takeda
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Oral Diagnosis and Medicine, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yasuhiro Hida
- Department of Advanced Robotic and Endoscopic SurgeryFujita Health UniversityToyoakeJapan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- International Collaboration Unit, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
| | - Akihiko Sato
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- Drug Discovery and Disease Research LaboratoryShionogi and Co., Ltd.OsakaJapan
| | - Shinsuke Toba
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- Drug Discovery and Disease Research LaboratoryShionogi and Co., Ltd.OsakaJapan
| | - Wataru Ito
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Oral and Maxillofacial Surgery, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Takahito Teshirogi
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Dental Anesthesiology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yuya Sakurai
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Dental Anesthesiology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Tomohiro Iba
- Department of Vascular Physiology, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Hisamichi Naito
- Department of Vascular Physiology, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Amane Mizuno
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Toshiki Nakanishi
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Aya Matsuda
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ren Zixiao
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Department of Oral and Maxillofacial Surgery, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Ji‐Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- International Collaboration Unit, International Institute for Zoonosis ControlHokkaido UniversitySapporoJapan
- One Health Research CenterHokkaido UniversitySapporoJapan
- Institute for Vaccine Research and DevelopmentHokkaido UniversitySapporoJapan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
34
|
de Diego C, Lasierra AB, López-Vergara L, Torralba L, Ruiz de Gopegui P, Lahoz R, Abadía C, Godino J, Cebollada A, Jimeno B, Bello C, Tejada A, Bello S. What is the actual relationship between neutrophil extracellular traps and COVID-19 severity? A longitudinal study. Respir Res 2024; 25:48. [PMID: 38243237 PMCID: PMC10797938 DOI: 10.1186/s12931-023-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) have repeatedly been related to COVID-19 severity and mortality. However, there is no consensus on their quantification, and there are scarce data on their evolution during the disease. We studied circulating NET markers in patients with COVID-19 throughout their hospitalization. METHODS We prospectively included 93 patients (201 blood samples), evaluating the disease severity in 3 evolutionary phases (viral, early, and late inflammation). Of these, 72 had 180 samples in various phases. We also evaluated 55 controls with similar age, sex and comorbidities. We measured 4 NET markers in serum: cfDNA, CitH3, and MPO-DNA and NE-DNA complexes; as well as neutrophil-related cytokines IL-8 and G-CSF. RESULTS The COVID-19 group had higher CitH3 (28.29 vs 20.29 pg/mL, p = 0.022), and cfDNA, MPO-DNA, and NE-DNA (7.87 vs 2.56 ng/mL; 0.80 vs 0.52 and 1.04 vs 0.72, respectively, p < 0.001 for all) than the controls throughout hospitalisation. cfDNA was the only NET marker clearly related to severity, and it remained higher in non-survivors during the 3 phases. Only cfDNA was an independent risk factor for mortality and need for intensive care. Neutrophil count, IL-8, and G-CSF were significantly related to severity. MPO-DNA and NE-DNA showed significant correlations (r: 0.483, p < 0.001), including all 3 phases and across all severity grades, and they only remained significantly higher on days 10-16 of evolution in those who died. Correlations among the other NET markers were lower than expected. CONCLUSIONS The circulating biomarkers of NETs were present in patients with COVID-19 throughout hospitalization. cfDNA was associated with severity and mortality, but the three other markers showed little or no association with these outcomes. Neutrophil activity and neutrophil count were also associated with severity. MPO-DNA and NE-DNA better reflected NET formation. cfDNA appeared to be more associated with overall tissue damage; previous widespread use of this marker could have overestimated the relationship between NETs and severity. Currently, there are limitations to accurate NET markers measurement that make it difficult to assess its true role in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Cristina de Diego
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Lucía López-Vergara
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | - Laura Torralba
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain
| | | | - Raquel Lahoz
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Claudia Abadía
- Department of Biochemistry. Miguel, Servet University Hospital, Zaragoza, Spain
| | - Javier Godino
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Alberto Cebollada
- Biocomputing Technical Scientific Service, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Beatriz Jimeno
- Department of Cytometry and Cell Separation, Aragon Institute of Health Sciences (IACS), Zaragoza, Spain
| | - Carlota Bello
- Department of Radiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | - Antonio Tejada
- Intensive Care Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | - Salvador Bello
- Department of Pulmonary Medicine, Miguel Servet University Hospital, CIBERES, Instituto de Investigación Sanitaria (ISS) Aragón, Avenida Isabel la Católica 1-9, 50009, Zaragoza, Spain.
| |
Collapse
|
35
|
Meinhardt J, Streit S, Dittmayer C, Manitius RV, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci 2024; 25:30-42. [PMID: 38049610 DOI: 10.1038/s41583-023-00769-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.
Collapse
Affiliation(s)
- Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Regina V Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alexiou A, Batiha GES. The Potential Effect of Dapsone on the Inflammatory Reactions in COVID-19: Staggering View. Comb Chem High Throughput Screen 2024; 27:674-678. [PMID: 36999691 DOI: 10.2174/1386207326666230331121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
Severe SARS-CoV-2 infection is linked with an overstated immune response with the succeeding release of pro-inflammatory cytokines and progression of the cytokine storm. In addition, severe SARS-CoV-2 infection is associated with the development of oxidative stress and coagulopathy. Dapsone (DPS) is a bacteriostatic antibiotic that has a potent anti-inflammatory effect. Thus, this mini-review aimed to elucidate the potential role of DPS in mitigating inflammatory disorders in COVID-19 patients. DPS inhibits neutrophil myeloperoxidase, inflammation, and neutrophil chemotaxis. Therefore, DPS could be effective against neutrophilia-induced complications in COVID-19. In addition, DPS could be effective in mitigating inflammatory and oxidative stress disorders by suppressing the expression of inflammatory signaling pathways and the generation of reactive oxygen species (ROS) correspondingly. In conclusion, DPS might be effective in the management of COVID-19 through the attenuation of inflammatory disorders. Therefore, preclinical and clinical studies are reasonable in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
37
|
Maisat W, Hou L, Sandhu S, Sin YC, Kim S, Pelt HV, Chen Y, Emani S, Kong SW, Emani S, Ibla J, Yuki K. Neutrophil extracellular traps formation is associated with postoperative complications in neonates and infants undergoing congenital cardiac surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572768. [PMID: 38187754 PMCID: PMC10769315 DOI: 10.1101/2023.12.21.572768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pediatric patients with congenital heart diseases (CHD) often undergo surgical repair on cardiopulmonary bypass (CPB). Despite a significant medical and surgical improvement, the mortality of neonates and infants remains high. Damage-associated molecular patterns (DAMPs) are endogenous molecules released from injured/damaged tissues as danger signals. We examined 101 pediatric patients who underwent congenital cardiac surgery on CPB. The mortality rate was 4.0%, and the complication rate was 31.6%. We found that neonates/infants experienced multiple complications most, consistent with the previous knowledge. Neonates and infants in the complication group had received more transfusion intraoperatively than the non-complication arm with lower maximum amplitude (MA) on rewarming CPB thromboelastography (TEG). Despite TEG profiles were comparable at ICU admission between the two groups, the complication arm had higher postoperative chest tube output, requiring more blood transfusion. The complication group showed greater neutrophil extracellular traps (NETs) formation at the end of CPB and postoperatively. Plasma histones and high mobility group box 1 (HMGB1) levels were significantly higher in the complication arm. Both induced NETs in vitro and in vivo . As histones and HMGB1 target Toll-like receptor (TLR)2 and TLR4, their mRNA expression in neutrophils was upregulated in the complication arm. Taken together, NETs play a major role in postoperative complication in pediatric cardiac surgery and would be considered a target for intervention. Key points Neonates and infants showed highest postoperative complications with more upregulation of inflammatory transcriptomes of neutrophils.Neonates and infants with organ dysfunction had more NETs formation with higher plasma histones and HMGB1 levels.
Collapse
|
38
|
Nappi F. To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. Int J Mol Sci 2023; 25:47. [PMID: 38203218 PMCID: PMC10778759 DOI: 10.3390/ijms25010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Thromboinflammation, the interplay between thrombosis and inflammation, is a significant pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2 causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators of this process. Neutrophils, the most predominant white blood cells in humans, are strategically positioned to promote thromboinflammation. By releasing decondensed chromatin structures called neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immunogenic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4 (PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NETosis). The neutrophil inflammasome is also required for this process. Understanding the link between the immunological function of neutrophils and the procoagulant and proinflammatory activities of monocytes and platelets is important in understanding thromboinflammation. This text discusses how vascular blockages occur in thromboinflammation due to the interaction between neutrophil extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for understanding the processes that drive thromboinflammation by linking the immunological function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs and inflammasomes is critical for the progression of thromboinflammation in several diseases and was recently shown to be active in COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
39
|
Pilchová V, Gerhauser I, Armando F, Wirz K, Schreiner T, de Buhr N, Gabriel G, Wernike K, Hoffmann D, Beer M, Baumgärtner W, von Köckritz-Blickwede M, Schulz C. Characterization of young and aged ferrets as animal models for SARS-CoV-2 infection with focus on neutrophil extracellular traps. Front Immunol 2023; 14:1283595. [PMID: 38169647 PMCID: PMC10758425 DOI: 10.3389/fimmu.2023.1283595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released by activated neutrophils upon infection [e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] as part of the innate immune response that have protective effects by pathogen entrapment and immobilization or result in detrimental consequences for the host due to the massive release of NETs and their impaired degradation by nucleases like DNase-1. Higher amounts of NETs are associated with coronavirus disease 2019 (COVID-19) severity and are a risk factor for severe disease outcome. The objective of our study was to investigate NET formation in young versus aged ferrets to evaluate their value as translational model for SARS-CoV-2-infection and to correlate different NET markers and virological parameters. In each of the two groups (young and aged), nine female ferrets were intratracheally infected with 1 mL of 106 TCID50/mL SARS-CoV-2 (BavPat1/2020) and euthanized at 4, 7, or 21 days post-infection. Three animals per group served as negative controls. Significantly more infectious virus and viral RNA was found in the upper respiratory tract of aged ferrets. Interestingly, cell-free DNA and DNase-1 activity was generally higher in bronchoalveolar lavage fluid (BALF) but significantly lower in serum of aged compared to young ferrets. In accordance with these data, immunofluorescence microscopy revealed significantly more NETs in lungs of aged compared to young infected ferrets. The association of SARS-CoV-2-antigen in the respiratory mucosa and NET markers in the nasal conchae, but the absence of virus antigen in the lungs, confirms the nasal epithelium as the major location for virus replication as described for young ferrets. Furthermore, a strong positive correlation was found between virus shedding and cell-free DNA or the level of DNAse-1 activity in aged ferrets. Despite the increased NET formation in infected lungs of aged ferrets, the animals did not show a strong NET phenotype and correlation among tested NET markers. Therefore, ferrets are of limited use to study SARS-CoV-2 pathogenesis associated with NET formation. Nevertheless, the mild to moderate clinical signs, virus shedding pattern, and the lung pathology of aged ferrets confirm those animals as a relevant model to study age-dependent COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Veronika Pilchová
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Katrin Wirz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nicole de Buhr
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gülşah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
- Institute for Virology, University for Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
40
|
Chiatamone Ranieri S, Angeletti C. Neutrophil and eosinophil extracellular traps in intensive care unit Covid patients' peripheral smears. Int J Lab Hematol 2023; 45:995-998. [PMID: 37467784 DOI: 10.1111/ijlh.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Affiliation(s)
| | - Chiara Angeletti
- Anestesiology, Intensive Care and Pain Medicine, Emergency Department, Giuseppe Mazzini Civil Hospital, Teramo, Italy
| |
Collapse
|
41
|
Fricke C, Pfaff F, Ulrich L, Halwe NJ, Schön J, Timm L, Hoffmann W, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. SARS-CoV-2 variants of concern elicit divergent early immune responses in hACE2 transgenic mice. Eur J Immunol 2023; 53:e2250332. [PMID: 37609807 DOI: 10.1002/eji.202250332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Laura Timm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Weda Hoffmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
42
|
Perdomo J, Leung HHL. Immune Thrombosis: Exploring the Significance of Immune Complexes and NETosis. BIOLOGY 2023; 12:1332. [PMID: 37887042 PMCID: PMC10604267 DOI: 10.3390/biology12101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
Neutrophil extracellular traps (NETs) are major contributors to inflammation and autoimmunity, playing a key role in the development of thrombotic disorders. NETs, composed of DNA, histones, and numerous other proteins serve as scaffolds for thrombus formation and promote platelet activation, coagulation, and endothelial dysfunction. Accumulating evidence indicates that NETs mediate thrombosis in autoimmune diseases, viral and bacterial infections, cancer, and cardiovascular disease. This article reviews the role and mechanisms of immune complexes in NETs formation and their contribution to the generation of a prothrombotic state. Immune complexes are formed by interactions between antigens and antibodies and can induce NETosis by the direct activation of neutrophils via Fc receptors, via platelet activation, and through endothelial inflammation. We discuss the mechanisms by which NETs induced by immune complexes contribute to immune thrombotic processes and consider the potential development of therapeutic strategies. Targeting immune complexes and NETosis hold promise for mitigating thrombotic events and reducing the burden of immune thrombosis.
Collapse
Affiliation(s)
- José Perdomo
- Haematology Research Group, Faculty Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Halina H. L. Leung
- Haematology Research Unit, St George & Sutherland Clinical Campuses, Faculty of Medicine & Health, School of Clinical Medicine, University of New South Wales, Kogarah, NSW 2217, Australia;
| |
Collapse
|
43
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
44
|
Abstract
The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin. However, the architecture and function of the skin differ significantly from vital organs where highly specialized microenvironments carry out critical functions. Therefore, the detrimental extent this perturbation may have on organ function remains unclear. In this review, we examine organ-specific swarming within the skin, liver, and lungs, with a detailed focus on swarming within microvascular environments. In addition, we examine potential "swarmulants" that initiate both transient and persistent swarms that have been implicated in disease.
Collapse
Affiliation(s)
- Luke Brown
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G. Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
45
|
Huang MYY, Lippuner C, Schiff M, Book M, Stueber F. Neutrophil extracellular trap formation during surgical procedures: a pilot study. Sci Rep 2023; 13:15217. [PMID: 37709941 PMCID: PMC10502064 DOI: 10.1038/s41598-023-42565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Neutrophils can release neutrophil extracellular traps (NETs) containing DNA fibres and antimicrobial peptides to immobilize invading pathogens. NET formation (NETosis) plays a vital role in inflammation and immune responses. In this study we investigated the impact of surgical trauma on NETosis of neutrophils. Nine patients undergoing "Transcatheter/percutaneous aortic valve implantation" (TAVI/PAVI, mild surgical trauma), and ten undergoing "Aortocoronary bypass" (ACB, severe surgical trauma) were included in our pilot study. Peripheral blood was collected before, end of, and after surgery (24 h and 48 h). Neutrophilic granulocytes were isolated and stimulated in vitro with Phorbol-12-myristate-13-acetate (PMA). NETosis rate was examined by microscopy. In addition, HLA-DR surface expression on circulating monocytes was analysed by flow-cytometry as a prognostic marker of the immune status. Both surgical procedures led to significant down regulation of monocytic HLA-DR surface expression, albeit more pronounced in ACB patients, and there was a similar trend in NETosis regulation over the surgical 24H course. Upon PMA stimulation, no significant difference in NETosis was observed over time in TAVI/PAVI group; however, a decreasing NETosis trend with a significant drop upon ACB surgery was evident. The reduced PMA-induced NETosis in ACB group suggests that the inducibility of neutrophils to form NETs following severe surgical trauma may be compromised. Moreover, the decreased monocytic HLA-DR expression suggests a post-operative immunosuppressed status in all patients, with a bigger impact by ACB, which might be attributed to the extracorporeal circulation or tissue damage occurring during surgery.
Collapse
Affiliation(s)
- Melody Ying-Yu Huang
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.
| | - Christoph Lippuner
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Marcel Schiff
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Universitätsklinikum Freiburg, Freiburg, Germany
| | - Malte Book
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Universitätsklinik für Anästhesiologie/Intensiv-/Notfallmedizin/Schmerztherapie, Oldenburg, Germany
| | - Frank Stueber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
46
|
Krinsky N, Sizikov S, Nissim S, Dror A, Sas A, Prinz H, Pri-Or E, Perek S, Raz-Pasteur A, Lejbkowicz I, Cohen-Matsliah SI, Almog R, Chen N, Kurd R, Jarjou'i A, Rokach A, Ben-Chetrit E, Schroeder A, Caulin AF, Yost CC, Schiffman JD, Goldfeder M, Martinod K. NETosis induction reflects COVID-19 severity and long COVID: insights from a 2-center patient cohort study in Israel. J Thromb Haemost 2023; 21:2569-2584. [PMID: 37054916 PMCID: PMC10088279 DOI: 10.1016/j.jtha.2023.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND COVID-19 severity and its late complications continue to be poorly understood. Neutrophil extracellular traps (NETs) form in acute COVID-19, likely contributing to morbidity and mortality. OBJECTIVES This study evaluated immunothrombosis markers in a comprehensive cohort of acute and recovered COVID-19 patients, including the association of NETs with long COVID. METHODS One-hundred-seventy-seven patients were recruited from clinical cohorts at 2 Israeli centers: acute COVID-19 (mild/moderate, severe/critical), convalescent COVID-19 (recovered and long COVID), along with 54 non-COVID controls. Plasma was examined for markers of platelet activation, coagulation, and NETs. Ex vivo NETosis induction capability was evaluated after neutrophil incubation with patient plasma. RESULTS Soluble P-selectin, factor VIII, von Willebrand factor, and platelet factor 4 were significantly elevated in patients with COVID-19 versus controls. Myeloperoxidase (MPO)-DNA complex levels were increased only in severe COVID-19 and did not differentiate between COVID-19 severities or correlate with thrombotic markers. NETosis induction levels strongly correlated with illness severity/duration, platelet activation markers, and coagulation factors, and were significantly reduced upon dexamethasone treatment and recovery. Patients with long COVID maintained higher NETosis induction, but not NET fragments, compared to recovered convalescent patients. CONCLUSIONS Increased NETosis induction can be detected in patients with long COVID. NETosis induction appears to be a more sensitive NET measurement than MPO-DNA levels in COVID-19, differentiating between disease severity and patients with long COVID. Ongoing NETosis induction capability in long COVID may provide insights into pathogenesis and serve as a surrogate marker for persistent pathology. This study emphasizes the need to explore neutrophil-targeted therapies in acute and chronic COVID-19.
Collapse
Affiliation(s)
| | | | | | - Adi Dror
- Peel Therapeutics Israel, Ltd, Nesher, Israel
| | - Anna Sas
- Peel Therapeutics Israel, Ltd, Nesher, Israel
| | | | | | - Shay Perek
- Department of Internal Medicine A, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ayelet Raz-Pasteur
- Department of Internal Medicine A, Rambam Health Care Campus, The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Izabella Lejbkowicz
- Epidemiology Department and Biobank, Rambam Health Care Campus, Haifa, Israel
| | | | - Ronit Almog
- Epidemiology Department and Biobank, Rambam Health Care Campus, Haifa, Israel
| | - Nikanor Chen
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ramzi Kurd
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Jarjou'i
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel Rokach
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Ben-Chetrit
- Department of Internal Medicine, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | - Christian Con Yost
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA; Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Joshua D Schiffman
- Peel Therapeutics, Inc, Salt Lake City, Utah, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA.
| | | | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Lin H, Liu J, Li N, Zhang B, Nguyen VD, Yao P, Feng J, Liu Q, Chen Y, Li G, Zhou Y, Zhou L. NETosis promotes chronic inflammation and fibrosis in systemic lupus erythematosus and COVID-19. Clin Immunol 2023; 254:109687. [PMID: 37419296 DOI: 10.1016/j.clim.2023.109687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.
Collapse
Affiliation(s)
- Huiqing Lin
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ning Li
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Peipei Yao
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guang Li
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, UK; Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, RNA Institute, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiments, Wuhan University School of Medicine, Wuhan 430071, China.
| |
Collapse
|
48
|
Pawar VA, Tyagi A, Verma C, Sharma KP, Ansari S, Mani I, Srivastva SK, Shukla PK, Kumar A, Kumar V. Unlocking therapeutic potential: integration of drug repurposing and immunotherapy for various disease targeting. Am J Transl Res 2023; 15:4984-5006. [PMID: 37692967 PMCID: PMC10492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.
Collapse
Affiliation(s)
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied ScienceDelhi 110054, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State UniversityColumbus, Ohio 43201, USA
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of HaryanaMahendragarh 123029, India
| | - Sekhu Ansari
- Division of Pathology, Cincinnati Children’s Hospital Medical CenterCincinnati, Ohio 45229, USA
| | - Indra Mani
- Department of Microbiology, Gargi College, University of DelhiNew Delhi 110049, India
| | | | - Pradeep Kumar Shukla
- Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology of SciencePrayagraj 211007, UP, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of HaryanaMahendergarh 123031, Haryana, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| |
Collapse
|
49
|
Babkina AS, Yadgarov MY, Volkov AV, Kuzovlev AN, Grechko AV, Golubev AM. Spectrum of Thrombotic Complications in Fatal Cases of COVID-19: Focus on Pulmonary Artery Thrombosis In Situ. Viruses 2023; 15:1681. [PMID: 37632023 PMCID: PMC10458612 DOI: 10.3390/v15081681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
COVID-19-related thrombosis affects the venous and arterial systems. Data from 156 autopsies of COVID-19 patients were retrospectively analyzed to investigate the pattern of thrombotic complications and factors associated with pulmonary artery thrombosis and thromboembolism. Thrombotic complications were observed in a significant proportion (n = 68, 44%), with pulmonary artery thrombosis the most frequently identified thrombotic event (42, 27%). Multivariate analysis revealed that the length of hospital stay (OR 1.1, p = 0.004), neutrophil infiltration in the alveolar spaces (OR 3.6, p = 0.002), and the absence of hyaline membranes (OR 0.1, p = 0.01) were associated with thrombotic complications. Neutrophil infiltration in the alveolar spaces (OR 8, p < 0.001) and the absence of hyaline membranes (OR 0.1, p = 0.003) were also independent predictors of pulmonary artery thrombosis. The association of pulmonary artery thrombosis with an absence of hyaline membranes suggests it occurs later in the course of COVID-19 infection. As neutrophil infiltration in the alveolar spaces may indicate bacterial infection, our studies suggest the consideration of bacterial infections in these critically ill patients.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Mikhail Y. Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Alexey V. Volkov
- Department of Pathological Anatomy, Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia;
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| | - Arkady M. Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.Y.Y.); (A.N.K.); (A.V.G.); (A.M.G.)
| |
Collapse
|
50
|
Anderson R, Feldman C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int J Mol Sci 2023; 24:11038. [PMID: 37446214 DOI: 10.3390/ijms241311038] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Despite innovative advances in anti-infective therapies and vaccine development technologies, community-acquired pneumonia (CAP) remains the most persistent cause of infection-related mortality globally. Confronting the ongoing threat posed by Streptococcus pneumoniae (the pneumococcus), the most common bacterial cause of CAP, particularly to the non-immune elderly, remains challenging due to the propensity of the elderly to develop invasive pneumococcal disease (IPD), together with the predilection of the pathogen for the heart. The resultant development of often fatal cardiovascular events (CVEs), particularly during the first seven days of acute infection, is now recognized as a relatively common complication of IPD. The current review represents an update on the prevalence and types of CVEs associated with acute bacterial CAP, particularly IPD. In addition, it is focused on recent insights into the involvement of the pneumococcal pore-forming toxin, pneumolysin (Ply), in subverting host immune defenses, particularly the protective functions of the alveolar macrophage during early-stage disease. This, in turn, enables extra-pulmonary dissemination of the pathogen, leading to cardiac invasion, cardiotoxicity and myocardial dysfunction. The review concludes with an overview of the current status of macrolide antibiotics in the treatment of bacterial CAP in general, as well as severe pneumococcal CAP, including a consideration of the mechanisms by which these agents inhibit the production of Ply by macrolide-resistant strains of the pathogen.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Charles Feldman
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand Medical School, 7 York Road, Johannesburg 2193, South Africa
| |
Collapse
|