1
|
Parker HR, Edgar JE, Goulder PJ. Autovaccination revisited: potential to boost antiviral immunity and facilitate HIV-1 cure/remission in children. Curr Opin HIV AIDS 2025; 20:271-278. [PMID: 40105005 PMCID: PMC11970616 DOI: 10.1097/coh.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW To review the concept of autovaccination as a strategy to boost anti-HIV-1 immunity and improve immune control, especially as a means to facilitate cure/remission in paediatric HIV-1 infection, where effective interventions in clinical testing remain limited compared to adults. RECENT FINDINGS Early autovaccination studies, conducted 15-25 years ago, suggested potential immunological benefits from exposure to autologous virus in both children and adults, specifically when antiretroviral therapy (ART) was initiated during acute infection. More recent work in nonhuman primates (NHPs) has shown that early ART initiation can significantly reduce the viral setpoint following treatment interruption, primarily through CD8 + T-cell responses, and prevent early immune escape - a phenomenon commonly observed in ART-naive acute infections. Additionally, NHP studies indicate that multiple, short analytical treatment interruptions (ATIs) can delay viral rebound and further lower the viral setpoint via enhanced CD8 + T-cell responses. SUMMARY Recent studies in NHP support the potential for autovaccination via short ATIs to enhance antiviral immunity and improve immune control of HIV-1. With well tolerated, well monitored ATI protocols, autovaccination could be a valuable approach to facilitating cure/remission in children living with HIV (LWH), in whom very early-ART initiation and early-life immunity are associated with low viral reservoirs and high cure/remission potential.
Collapse
Affiliation(s)
- Harriet R. Parker
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
| | - Julia E. Edgar
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip J.R. Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
2
|
Parsons MS, Bolton DL. The utility of nonhuman primate models for understanding acute HIV-1 infection. Curr Opin HIV AIDS 2025; 20:218-227. [PMID: 40099824 PMCID: PMC11970610 DOI: 10.1097/coh.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of HIV-1 infection provide complementary experimental pathways for assessing aspects of acute HIV-1 infection (AHI) that cannot be addressed in humans. This article reviews acute infection studies in SIV-infected or SHIV-infected macaque species over the previous 18 months. RECENT FINDINGS Reviewed studies examined the dynamics of replication-competent viral reservoir establishment during early infection, reservoir maintenance throughout therapy, and factors influencing viral rebound after treatment cessation. Also discussed are acute infection events in the central nervous system and liver and potential links between these events and manifestations of comorbidities during chronic infection. Additional studies addressed how occurrences during acute infection impact the development of natural viral control or posttreatment control. Another report evaluated treatment during acute infection with broadly neutralizing antibodies with enhanced ability to engage innate immune cells, highlighting the ability of this early intervention to shape innate and adaptive antiviral responses. SUMMARY NHP models of HIV-1 infection are a fundamental research tool for investigating AHI events. These models enable detailed pathogenesis characterization and the testing of hypothesis-driven strategies for altering disease courses through interventions during AHI, including targeting viral persistence and comorbidities that persist throughout chronic infection.
Collapse
Affiliation(s)
- Matthew S. Parsons
- Walter Reed Army Institute of Research - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Diane L. Bolton
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| |
Collapse
|
3
|
Peluso M, Sandel D, Deitchman A, Kim S, Dalhuisen T, Tummala H, Tibúrcio R, Zemelko L, Borgo G, Singh S, Schwartz K, Deswal M, Williams M, Hoh R, Shimoda M, Narpala S, Serebryannyy L, Khalili M, Vendrame E, SenGupta D, Whitmore LS, Tisoncik-Go J, Gale M, Koup R, Mullins J, Felber B, Pavlakis G, Reeves J, Petropoulos C, Glidden D, Spitzer M, Gama L, Caskey M, Nussenzweig M, Chew K, Henrich T, Yukl S, Cohn L, Deeks S, Rutishauser R. Combination immunotherapy induces post-intervention control of HIV. RESEARCH SQUARE 2025:rs.3.rs-6141479. [PMID: 40166020 PMCID: PMC11957202 DOI: 10.21203/rs.3.rs-6141479/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The identification of therapeutic strategies to induce sustained antiretroviral therapy (ART)-free control of HIV infection is a major priority.1 Combination immunotherapy including HIV vaccination, immune stimulation/latency reversal, and passive transfer of broadly neutralizing antibodies (bNAbs) has shown promise in non-human primate models,2-7 but few studies have translated such approaches into people. Here, we performed a single-arm, proof-of-concept combination study of these three approaches in ten people with HIV on ART that included (1) therapeutic vaccination with an HIV/Gag conserved element (CE)-targeted DNA+IL-12 prime/MVA boost regimen followed by (2) administration of two bNAbs (10-1074 and VRC07-523LS) and a toll-like receptor 9 (TLR9) agonist (lefitolimod) during ART suppression, followed by (3) repeat bNAb administration at the time of ART interruption. Seven of the ten participants exhibited partial (low viral load set point) or complete (aviremic) post-intervention control after stopping ART, independent of residual bNAb plasma levels. Robust expansion of activated CD8+ T cells early in response to rebounding virus correlated with lower viral load set points. These data suggest that combination immunotherapy approaches might prove effective to induce sustained control of HIV by slowing rebound and improving CD8+ T cell responses, and that these approaches should continue to be optimized.
Collapse
Affiliation(s)
- M.J Peluso
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - D.A Sandel
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - A.N Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
| | - S.J Kim
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - T Dalhuisen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - H.P Tummala
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
| | - R Tibúrcio
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - L Zemelko
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - G.M Borgo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - S.S Singh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - K Schwartz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - M Deswal
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - M.C Williams
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - R Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - M Shimoda
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - S Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - E Vendrame
- Gilead Sciences, Inc., Foster City, CA, USA
| | - D SenGupta
- Gilead Sciences, Inc., Foster City, CA, USA
| | - L. S Whitmore
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, USA
| | - J Tisoncik-Go
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, USA
| | - M Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, USA
- Current affiliation: Department of Microbiology and Immunology, and the Institute on Infectious Diseases, University of Minnesota, Minneapolis, MN, USA
| | - R.A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J.I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - B.K Felber
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - G.N Pavlakis
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - J.D Reeves
- Labcorp-Monogram Biosciences, South San Francisco, CA, USA
| | | | - D.V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - M.H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - L Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Current affiliation: Instituto Butantan, São Paulo, Brazil
| | - M Caskey
- Department of Clinical Investigation, The Rockefeller University, New York, NY, USA
| | - M.C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - K.W Chew
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - T.J Henrich
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - S.A Yukl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - L.B Cohn
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - S.G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - R.L Rutishauser
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Gonelli CA, King HAD, Ko S, Fennessey CM, Iwamoto N, Mason RD, Heimann A, Flebbe DR, Todd JP, Foulds KE, Keele BF, Lifson JD, Koup RA, Roederer M. Antibody prophylaxis may mask subclinical SIV infections in macaques. Nature 2025; 639:205-213. [PMID: 39910294 PMCID: PMC11882457 DOI: 10.1038/s41586-024-08500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/05/2024] [Indexed: 02/07/2025]
Abstract
Broadly neutralizing antibodies (bNAbs) show potential to prevent human immunodeficiency virus (HIV-1) infection in humans1. However, there are limited data on the antibody concentrations required to prevent infection. Clinical trials of bNAb prophylaxis have demonstrated partial efficacy2, but the sampling frequency typically does not allow precise timing of infection events and concurrent antibody levels. Here, using simian immunodeficiency virus (SIV) infection of rhesus macaques, we show that although potent bNAbs can delay the onset of acute viremia, subclinical infections occur while bNAb levels remain high. Serial SIV challenge of monkeys given partially and fully neutralizing bNAbs revealed that 'viral blips'-low and transient plasma viremia-often occur while serum bNAb concentrations are well above currently accepted protective levels. To understand the precise timing of the infections resulting in such blips, we performed plasma viral sequencing on monkeys that were serially challenged with genetically barcoded SIV after bNAb administration. These analyses showed that subclinical infections occurred in most animals that were given potent bNAb prophylaxis. These subclinical infections occurred while antibody concentrations were 2- to 400-fold higher than the levels required to prevent fully viremic breakthrough infection. This study demonstrates that immunoprophylaxis can mask subclinical infections, which may affect the interpretation of prophylactic HIV-1 bNAb clinical trials.
Collapse
Affiliation(s)
- Christopher A Gonelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - SungYoul Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nami Iwamoto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Heimann
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
King HAD, Brammer D, Lewitus E, Fennessey CM, Manalang KM, Shrader HR, Andrew S, Kuri P, Lind M, Pham P, Sanders-Buell E, Bai H, Mason R, Song K, McCarthy E, Helmold Hait S, Todd JP, Pegu A, Foulds KE, Lifson JD, Keele BF, Rolland M, Roederer M, Bolton DL. SIV monoclonal antibody administration spanning treatment interruption in macaques delays viral rebound and selects escape variants. Proc Natl Acad Sci U S A 2025; 122:e2404767122. [PMID: 39883843 PMCID: PMC11804569 DOI: 10.1073/pnas.2404767122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
HIV-1 envelope broadly neutralizing antibodies represent a promising component of HIV-1 cure strategies. To evaluate the therapeutic efficacy of combination monoclonal antibodies (mAbs) in a rigorous nonhuman primate model, we tested different combinations of simian immunodeficiency virus (SIV) neutralizing mAbs in SIVmac251-infected rhesus macaques. Antiretroviral therapy-suppressed animals received anti-SIV mAbs targeting multiple Env epitopes spanning analytical treatment interruption (ATI) in 3 groups (n = 7 each): i) no mAb; ii) 4-mAb combination; and iii) 2-mAb combination. Each mAb was administered at 15 mg/kg, and both mAb-treated groups received ITS103.01, a highly potent CD4-binding site targeting antibody. mAb treatment delayed viral rebound, lowered rebound viremia setpoint and viral diversity, and extended animal lifespan. Compared to controls, for which viremia rebounded 2 wk following ATI, mAb infusion delayed rebound for both groups (P = 0.0003). Animals that received the 4-mAb regimen rebounded 3 to 6 wk post-ATI while the 2-mAb regimen rebounded 5 to 22 wk post-ATI. Envelope escape mutations emerged in rebound virus of mAb-treated animals that abrogated neutralization by ITS103.01, the most potent in the cocktail. These data demonstrate in vivo antiviral activity of SIV mAbs in the context of ATI via immune pressure dominated by the most potent mAb and highlight their potential in adjunctive therapeutic studies.
Collapse
Affiliation(s)
- Hannah A. D. King
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Daniel Brammer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Eric Lewitus
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kimberly M. Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Hannah R. Shrader
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Shayne Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Phillip Kuri
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Matthew Lind
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Phuc Pham
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Hongjun Bai
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Diane L. Bolton
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD20817
| |
Collapse
|
6
|
Vemparala B, Guedj J, Dixit NM. Advances in the mathematical modeling of posttreatment control of HIV-1. Curr Opin HIV AIDS 2025; 20:92-98. [PMID: 39633541 DOI: 10.1097/coh.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Several new intervention strategies have shown significant improvements over antiretroviral therapy (ART) in eliciting lasting posttreatment control (PTC) of HIV-1. Advances in mathematical modelling have offered mechanistic insights into PTC and the workings of these interventions. We review these advances. RECENT FINDINGS Broadly neutralizing antibody (bNAb)-based therapies have shown large increases over ART in the frequency and the duration of PTC elicited. Early viral dynamics models of PTC with ART have been advanced to elucidate the underlying mechanisms, including the role of CD8+ T cells. These models characterize PTC as an alternative set-point, with low viral load, and predict routes to achieving it. Large-scale omic datasets have offered new insights into viral and host factors associated with PTC. Correspondingly, new classes of models, including those using learning techniques, have helped exploit these datasets and deduce causal links underlying the associations. Models have also offered insights into therapies that either target the proviral reservoir, modulate immune responses, or both, assessing their translatability. SUMMARY Advances in mathematical modeling have helped better characterize PTC, elucidated and quantified mechanisms with which interventions elicit it, and informed translational efforts.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
7
|
Mittal S, Garg AK, Desikan R, Dixit NM. Trade-off between the antiviral and vaccinal effects of antibody therapy in the humoral response to HIV. J R Soc Interface 2024; 21:20240535. [PMID: 39626747 PMCID: PMC11614529 DOI: 10.1098/rsif.2024.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024] Open
Abstract
Antibody therapy for HIV-1 infection exerts two broad effects: a drug-like, antiviral effect, which rapidly lowers the viral load, and a vaccinal effect, which may control the viral load long-term by improving the immune response. Here, we elucidate a trade-off between these two effects as they pertain to the humoral response, which may compromise antibody therapy aimed at eliciting long-term HIV-1 remission. We developed a multi-scale computational model that combined within-host viral dynamics and stochastic simulations of the germinal centre (GC) reaction, enabling simultaneous quantification of the antiviral and vaccinal effects of antibody therapy. The model predicted that increasing antibody dosage or antibody-antigen affinity increased immune complex formation and enhanced GC output. Beyond a point, however, a strong antiviral effect reduced antigen levels substantially, extinguishing GCs and limiting the humoral response. We found signatures of this trade-off in clinical studies. Accounting for the trade-off could be important in optimizing antibody therapy for HIV-1 remission.
Collapse
Affiliation(s)
- Soumya Mittal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Amar K. Garg
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore560012, India
- Department of Bioengineering, Indian Institute of Science, Bangalore560012, India
| |
Collapse
|
8
|
Tipoe T, Ogbe A, Lee M, Brown H, Robinson N, Hall R, Petersen C, Lewis H, Thornhill J, Ryan F, Fox J, Fidler S, Frater J. Impact of antiretroviral therapy during primary HIV infection on T-cell immunity after treatment interruption. Eur J Immunol 2024; 54:e2451200. [PMID: 39138621 DOI: 10.1002/eji.202451200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
This study aims to understand the impact of early antiretroviral therapy (ART) on HIV-specific T-cell responses measured after treatment interruption, which may inform strategies to deliver ART-free immune-mediated viral suppression. HIV-specific T-cell immunity was analysed using gamma interferon enzyme-linked immunospot assays in two studies. SPARTAC included individuals with primary HIV infection randomised to 48 weeks of ART (n = 24) or no immediate therapy (n = 37). The PITCH (n = 7) cohort started antiretroviral therapy in primary infection for at least one year, followed by TI. In SPARTAC, participants treated in PHI for 48 weeks followed by TI for 12 weeks, and those who remained untreated for 60 weeks made similar HIV Gag-directed responses (both magnitude and breadth) at week 60. However, the treated group made a greater proportion of novel HIV Gag-directed responses by Week 60, suggestive of a greater reserve to produce new potentially protective responses. In the more intensively followed PITCH study, 6/7 participants showed dominant Gag and/or Pol-specific responses post-TI compared with pre-TI. Although early ART in PHI was not associated with major differences in HIV-specific immunity following TI compared with untreated participants, the potential to make more new Gag-directed responses warrants further investigation as this may inform strategies to achieve ART-free control.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Ming Lee
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Hall
- Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Petersen
- Department of Infectious Disease, Imperial College London, London, UK
| | - Heather Lewis
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Fiona Ryan
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julie Fox
- Guy's and St Thomas' NHS Foundation Trust, London, UK
- NIHR Clinical Research Facility, Guys and St Thomas' NHS Trust, London, UK
| | - Sarah Fidler
- Department of HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
- NIHR Imperial College Biomedical Research Centre, London, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
9
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
10
|
Lim SY, Lee J, Osuna CE, Vikhe P, Schalk DR, Chen E, Fray E, Kumar M, Schultz-Darken N, Rakasz E, Capuano S, Ladd RA, Gil HM, Evans DT, Jeng EK, Seaman M, Martin M, Van Dorp C, Perelson AS, Wong HC, Siliciano JD, Siliciano R, Safrit JT, Nixon DF, Soon-Shiong P, Nussenzweig M, Whitney JB. Induction of durable remission by dual immunotherapy in SHIV-infected ART-suppressed macaques. Science 2024; 383:1104-1111. [PMID: 38422185 PMCID: PMC11022498 DOI: 10.1126/science.adf7966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The eradication of the viral reservoir represents the major obstacle to the development of a clinical cure for established HIV-1 infection. Here, we demonstrate that the administration of N-803 (brand name Anktiva) and broadly neutralizing antibodies (bNAbs) results in sustained viral control after discontinuation of antiretroviral therapy (ART) in simian-human AD8 (SHIV-AD8)-infected, ART-suppressed rhesus macaques. N-803+bNAbs treatment induced immune activation and transient viremia but only limited reductions in the SHIV reservoir. Upon ART discontinuation, viral rebound occurred in all animals, which was followed by durable control in approximately 70% of all N-803+bNAb-treated macaques. Viral control was correlated with the reprogramming of CD8+ T cells by N-803+bNAb synergy. Thus, complete eradication of the replication-competent viral reservoir is likely not a prerequisite for the induction of sustained remission after discontinuation of ART.
Collapse
Affiliation(s)
- So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jina Lee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pratik Vikhe
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dane R. Schalk
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Elsa Chen
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Emily Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mithra Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Eva Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruby A Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Michael Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Malcolm Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Alan S. Perelson
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - James B. Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
11
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
13
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
14
|
Gunst JD, Højen JF, Pahus MH, Rosás-Umbert M, Stiksrud B, McMahon JH, Denton PW, Nielsen H, Johansen IS, Benfield T, Leth S, Gerstoft J, Østergaard L, Schleimann MH, Olesen R, Støvring H, Vibholm L, Weis N, Dyrhol-Riise AM, Pedersen KBH, Lau JSY, Copertino DC, Linden N, Huynh TT, Ramos V, Jones RB, Lewin SR, Tolstrup M, Rasmussen TA, Nussenzweig MC, Caskey M, Reikvam DH, Søgaard OS. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat Med 2023; 29:2547-2558. [PMID: 37696935 PMCID: PMC10579101 DOI: 10.1038/s41591-023-02547-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
Inducing antiretroviral therapy (ART)-free virological control is a critical step toward a human immunodeficiency virus type 1 (HIV-1) cure. In this phase 2a, placebo-controlled, double-blinded trial, 43 people (85% males) with HIV-1 on ART were randomized to (1) placebo/placebo, (2) lefitolimod (TLR9 agonist)/placebo, (3) placebo/broadly neutralizing anti-HIV-1 antibodies (bNAbs) or (4) lefitolimod/bNAb. ART interruption (ATI) started at week 3. Lefitolimod was administered once weekly for the first 8 weeks, and bNAbs were administered twice, 1 d before and 3 weeks after ATI. The primary endpoint was time to loss of virologic control after ATI. The median delay in time to loss of virologic control compared to the placebo/placebo group was 0.5 weeks (P = 0.49), 12.5 weeks (P = 0.003) and 9.5 weeks (P = 0.004) in the lefitolimod/placebo, placebo/bNAb and lefitolimod/bNAb groups, respectively. Among secondary endpoints, viral doubling time was slower for bNAb groups compared to non-bNAb groups, and the interventions were overall safe. We observed no added benefit of lefitolimod. Despite subtherapeutic plasma bNAb levels, 36% (4/11) in the placebo/bNAb group compared to 0% (0/10) in the placebo/placebo group maintained virologic control after the 25-week ATI. Although immunotherapy with lefitolimod did not lead to ART-free HIV-1 control, bNAbs may be important components in future HIV-1 curative strategies. ClinicalTrials.gov identifier: NCT03837756 .
Collapse
Affiliation(s)
- Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper F Højen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Miriam Rosás-Umbert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - James H McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Leth
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Gødstrup Hospital, Gødstrup, Denmark
| | - Jan Gerstoft
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Lars Østergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mariane H Schleimann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Støvring
- Department of Public Health, Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Line Vibholm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne M Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karen B H Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jillian S Y Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sharon R Lewin
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas A Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review summarizes recent studies reporting the induction of vaccinal effects by human immunodeficiency virus (HIV-1) antibody therapy. It also puts into perspective preclinical studies that have identified mechanisms involved in the immunomodulatory properties of antiviral antibodies. Finally, it discusses potential therapeutic interventions to enhance host adaptive immune responses in people living with HIV (PLWH) treated with broadly neutralizing antibodies (bNAbs). RECENT FINDINGS Recent studies in promising clinical trials have shown that, in addition to controlling viremia, anti-HIV-1 bNAbs are able to enhance the host's humoral and cellular immune response. Such vaccinal effects, in particular the induction of HIV-1-specific CD8 + T-cell responses, have been observed upon treatment with two potent bNAbs (3BNC117 and 10-1074) alone or in combination with latency-reversing agents (LRA). While these studies reinforce the idea that bNAbs can induce protective immunity, the induction of vaccinal effects is not systematic and might depend on both the virological status of the patient as well as the therapeutic strategy chosen. SUMMARY HIV-1 bNAbs can enhance adaptive host immune responses in PLWH. The challenge now is to exploit these immunomodulatory properties to design optimized therapeutic interventions to promote and enhance the induction of protective immunity against HIV-1 infection during bNAbs therapy.
Collapse
|
16
|
Frattari GS, Caskey M, Søgaard OS. Broadly neutralizing antibodies for HIV treatment and cure approaches. Curr Opin HIV AIDS 2023; 18:157-163. [PMID: 37144579 DOI: 10.1097/coh.0000000000000802] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW In recent years, clinical trials have explored broadly neutralizing antibodies (bNAbs) as treatment and cure of HIV. Here, we summarize the current knowledge, review the latest clinical studies, and reflect on the potential role of bNAbs in future applications in HIV treatment and cure strategies. RECENT FINDINGS In most individuals who switch from standard antiretroviral therapy to bNAb treatment, combinations of at least two bNAbs effectively suppress viremia. However, sensitivity of archived proviruses to bNAb neutralization and maintaining adequate bNAb plasma levels are key determinants of the therapeutic effect. Combinations of bNAbs with injectable small-molecule antiretrovirals are being developed as long-acting treatment regimens that may require as little as two annual administrations to maintain virological suppression. Further, interventions that combine bNAbs with immune modulators or therapeutic vaccines are under investigation as HIV curative strategies. Interestingly, administration of bNAbs during the early or viremic stage of infection appears to enhance host immune responses against HIV. SUMMARY While accurately predicting archived resistant mutations has been a significant challenge for bNAb-based treatments, combinations of potent bNAbs against nonoverlapping epitopes may help overcome this issue. As a result, multiple long-acting HIV treatment and cure strategies involving bNAbs are now being investigated.
Collapse
Affiliation(s)
- Giacomo Schmidt Frattari
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Ole Schmeltz Søgaard
- Department of Infectious Diseases, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
18
|
Pasternak AO, Berkhout B. HIV persistence: silence or resistance? Curr Opin Virol 2023; 59:101301. [PMID: 36805974 DOI: 10.1016/j.coviro.2023.101301] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 02/19/2023]
Abstract
Despite decades of suppressive antiretroviral therapy, human immunodeficiency virus (HIV) reservoirs in infected individuals persist and fuel viral rebound once therapy is interrupted. The persistence of viral reservoirs is the main obstacle to achieving HIV eradication or a long-term remission. The last decade has seen a profound change in our understanding of the mechanisms behind HIV persistence, which appears to be much more complex than originally assumed. In addition to the persistence of transcriptionally silent proviruses in a stable latent reservoir that is invisible to the immune system, HIV is increasingly recognized to persist by resistance to the immune clearance, which appears to play a surprisingly prominent role in shaping the reservoir. In this review, we discuss some emerging insights into the mechanisms of HIV persistence, as well as their implications for the development of strategies towards an HIV cure.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
19
|
Archin N, Bar K, Burdo T, Caskey M, Chahroudi A, Farzan M, Ho YC, Jones R, Kearney M, Kuritzkes D, Margolis D, Martinez-Picado J, Okoye A, Salgado M, Stevenson M. Highlights from the Tenth International Workshop on HIV Persistence during Therapy, December 13-16, 2022, Miami, Florida-USA. J Virus Erad 2023; 9:100315. [PMID: 36911658 PMCID: PMC9996320 DOI: 10.1016/j.jve.2023.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The International Workshop on HIV Persistence during Therapy provides a forum in which HIV/AIDS researchers gather to share the latest research findings related to viral reservoirs and cure. The Tenth Workshop, which was attended by over 400 delegates, extended over 4 days and comprised eight sessions covering topics from the basic science of viral persistence to therapeutic approaches to HIV cure. Furthermore, satellite sessions on the first day of the Conference featuring cure research endeavours being pursued by the Bill and Melinda Gates Foundation as well as those being coordinated under the National Institutes of Health Martin Delaney Collaboratory program, provided important updates on research advances being made in these initiatives. As with previous conferences, the International Workshop on HIV Persistence during Therapy is primarily abstract-driven with only one invited talk for each of the sessions. This format, therefore, increases the number of presentations from early-stage investigators. Furthermore, presentations by Community representatives illustrated approaches to creating cure research literacy with effective messaging for the Community. The following article offers a synopsis of the meeting sessions. Due to space constraints, some presentations may have only been briefly discussed. Nevertheless, the Workshop abstracts can be found online (https://www/sciencedirect.com/journal/journal-of-virus-eradication/vol/8/suppl/S).
Collapse
Affiliation(s)
- N. Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - K.J. Bar
- Dept of Medicine, University of Pennsylvania, Philadelphia, USA
| | - T. Burdo
- Department of Microbiology, Immunology and Inflammation, Center for Neurovirology and Gene Editing, Temple University, Philadelphia, USA
| | - M. Caskey
- Rockefeller University, New York, USA
| | - A. Chahroudi
- Emory University, School of Medicine, Atlanta, USA
| | - M. Farzan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, USA
| | - Y.-C. Ho
- HIV Reservoirs and Viral Eradication Transformative Science Group (Cure TSG), New Haven, USA
| | - R.B. Jones
- Dept of Medicine, Weill Cornell Medicine, New York, USA
| | - Mary Kearney
- HIV Dynamics and Replication Program, Host-Virus Interaction Branch, National Cancer Institute, National Institutes of Health, Frederick, USA
| | - D. Kuritzkes
- Harvard Medical School Infectious Disease, Boston, USA
| | | | | | - A. Okoye
- Oregon Health and Science University, USA
| | - M. Salgado
- IrsiCaixa Institute for AIDS Research, Badalona, Spain
| | | |
Collapse
|
20
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
21
|
Rosás-Umbert M, Gunst JD, Pahus MH, Olesen R, Schleimann M, Denton PW, Ramos V, Ward A, Kinloch NN, Copertino DC, Escribà T, Llano A, Brumme ZL, Brad Jones R, Mothe B, Brander C, Fox J, Nussenzweig MC, Fidler S, Caskey M, Tolstrup M, Søgaard OS. Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8 + T cell immunity. Nat Commun 2022; 13:6473. [PMID: 36309514 PMCID: PMC9617872 DOI: 10.1038/s41467-022-34171-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
In simian-human immunodeficiency virus (SHIV)-infected non-human primates, broadly neutralizing antibodies (bNAbs) against the virus appear to stimulate T cell immunity. To determine whether this phenomenon also occurs in humans we measured HIV-1-specific cellular immunity longitudinally in individuals with HIV-1 starting antiviral therapy (ART) with or without adjunctive bNAb 3BNC117 treatment. Using the activation-induced marker (AIM) assay and interferon-γ release, we observe that frequencies of Pol- and Gag-specific CD8+ T cells, as well as Gag-induced interferon-γ responses, are significantly higher among individuals that received adjunctive 3BNC117 compared to ART-alone at 3 and 12 months after starting ART. The observed changes in cellular immunity were directly correlated to pre-treatment 3BNC117-sensitivity. Notably, increased HIV-1-specific immunity is associated with partial or complete ART-free virologic control during treatment interruption for up to 4 years. Our findings suggest that bNAb treatment at the time of ART initiation maintains HIV-1-specific CD8+ T cell responses that are associated with ART-free virologic control.
Collapse
Affiliation(s)
| | - Jesper D Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie H Pahus
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Olesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mariane Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Paul W Denton
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Adam Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tuixent Escribà
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
| | - Anuska Llano
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Beatriz Mothe
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Christian Brander
- IrsiCaixa, AIDS Research Institute, Institute for Health Science Research Germans Trias i Pujol (IGTP), Hospital Germans Trias I Pujol, Badalona, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' National Health Service Trust, London, UK
- Department of Genitourinary Medicine and Infectious Disease, The National Institute for Health Research Biomedical Research Centre, King's College London, London, UK
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Sarah Fidler
- Department of Infectious Diseases, Imperial College London, London, UK
- The National Institute for Health Research, Imperial Biomedical Research Centre, London, UK
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
22
|
Lovelace SE, Helmold Hait S, Yang ES, Fox ML, Liu C, Choe M, Chen X, McCarthy E, Todd JP, Woodward RA, Koup RA, Mascola JR, Pegu A. Anti-viral efficacy of a next-generation CD4-binding site bNAb in SHIV-infected animals in the absence of anti-drug antibody responses. iScience 2022; 25:105067. [PMID: 36157588 PMCID: PMC9490026 DOI: 10.1016/j.isci.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 are promising immunotherapeutic agents for treatment of HIV-1 infection. bNAbs can be administered to SHIV-infected rhesus macaques to assess their anti-viral efficacy; however, their delivery into macaques often leads to rapid formation of anti-drug antibody (ADA) responses limiting such assessment. Here, we depleted B cells in five SHIV-infected rhesus macaques by pretreatment with a depleting anti-CD20 antibody prior to bNAb infusions to reduce ADA. Peripheral B cells were depleted following anti-CD20 infusions and remained depleted for at least 9 weeks after the 1st anti-CD20 infusion. Plasma viremia dropped by more than 100-fold in viremic animals after the initial bNAb treatment. No significant humoral ADA responses were detected for as long as B cells remained depleted. Our results indicate that transient B cell depletion successfully inhibited emergence of ADA and improved the assessment of anti-viral efficacy of a bNAb in a SHIV-infected rhesus macaque model. Highly potent CD4bs bNAb reduces viremia up to 4 log10 in SHIV-infected animals Sustained B cell depletion prevents development of ADA responses Lack of ADA enables multiple bNAb infusions over 12 weeks
Collapse
Affiliation(s)
- Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Madison L Fox
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ruth A Woodward
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Immunological studies of spontaneous HIV and simian virus (SIV) controllers have identified virus-specific CD8 + T cells as a key immune mechanism of viral control. The purpose of this review is to consider how knowledge about the mechanisms that are associated with CD8 + T cell control of HIV/SIV in natural infection can be harnessed in HIV remission strategies. RECENT FINDINGS We discuss characteristics of CD8 + T-cell responses that may be critical for suppressing HIV replication in spontaneous controllers comprising HIV antigen recognition including specific human leukocyte antigen types, broadly cross-reactive T cell receptors and epitope targeting, enhanced expansion and antiviral functions, and localization of virus-specific T cells near sites of reservoir persistence. We also discuss the need to better understand the timing of CD8 + T-cell responses associated with viral control of HIV/SIV during acute infection and after treatment interruption as well as the mechanisms by which HIV/SIV-specific CD8 + T cells coordinate with other immune responses to achieve control. SUMMARY We propose implications as to how this knowledge from natural infection can be applied in the design and evaluation of CD8 + T-cell-based remission strategies and offer questions to consider as these strategies target distinct CD8 + T-cell-dependent mechanisms of viral control.
Collapse
|
24
|
Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, Phan CT, Dankwa S, Byrd AU, Garrido C, Amara RR, Chahroudi A, Permar SR, Fouda GG. Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure. Front Immunol 2022; 13:885272. [PMID: 35911681 PMCID: PMC9325996 DOI: 10.3389/fimmu.2022.885272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.
Collapse
Affiliation(s)
- Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Bhrugu Yagnik
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Tiffany M. Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Margaret A. Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Alliyah U. Byrd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States,Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| |
Collapse
|
25
|
Walker-Sperling VEK, Mercado NB, Chandrashekar A, Borducchi EN, Liu J, Nkolola JP, Lewis M, Murry JP, Yang Y, Geleziunas R, Robb ML, Michael NL, Pau MG, Wegmann F, Schuitemaker H, Fray EJ, Kumar MR, Siliciano JD, Siliciano RF, Barouch DH. Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nat Commun 2022; 13:3463. [PMID: 35710819 PMCID: PMC9203527 DOI: 10.1038/s41467-022-31196-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
The latent viral reservoir is the critical barrier for developing an HIV-1 cure. Previous studies have shown that therapeutic vaccination or broadly neutralizing antibody (bNAb) administration, together with a Toll-like receptor 7 (TLR7) agonist, enhanced virologic control or delayed viral rebound, respectively, following discontinuation of antiretroviral therapy (ART) in SIV- or SHIV-infected rhesus macaques. Here we show that the combination of active and passive immunization with vesatolimod may lead to higher rates of post-ART virologic control compared to either approach alone. Therapeutic Ad26/MVA vaccination and PGT121 administration together with TLR7 stimulation with vesatolimod resulted in 70% post-ART virologic control in SHIV-SF162P3-infected rhesus macaques. These data suggest the potential of combining active and passive immunization targeting different immunologic mechanisms as an HIV-1 cure strategy.
Collapse
Affiliation(s)
| | - Noe B Mercado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Maria G Pau
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
26
|
Broadly neutralizing antibodies against HIV-1 and concepts for application. Curr Opin Virol 2022; 54:101211. [DOI: 10.1016/j.coviro.2022.101211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 12/21/2022]
|
27
|
Gaebler C, Nogueira L, Stoffel E, Oliveira TY, Breton G, Millard KG, Turroja M, Butler A, Ramos V, Seaman MS, Reeves JD, Petroupoulos CJ, Shimeliovich I, Gazumyan A, Jiang CS, Jilg N, Scheid JF, Gandhi R, Walker BD, Sneller MC, Fauci A, Chun TW, Caskey M, Nussenzweig MC. Prolonged viral suppression with anti-HIV-1 antibody therapy. Nature 2022; 606:368-374. [PMID: 35418681 PMCID: PMC9177424 DOI: 10.1038/s41586-022-04597-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/28/2022] [Indexed: 01/26/2023]
Abstract
HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.
Collapse
Affiliation(s)
- Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Elina Stoffel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Columbia University Irving Medical Center, New York, NY, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Gaëlle Breton
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Allison Butler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Caroline S Jiang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY, USA
| | - Nikolaus Jilg
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Johannes F Scheid
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Rajesh Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Anthony Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
28
|
Sneller MC, Blazkova J, Justement JS, Shi V, Kennedy BD, Gittens K, Tolstenko J, McCormack G, Whitehead EJ, Schneck RF, Proschan MA, Benko E, Kovacs C, Oguz C, Seaman MS, Caskey M, Nussenzweig MC, Fauci AS, Moir S, Chun TW. Combination anti-HIV antibodies provide sustained virological suppression. Nature 2022; 606:375-381. [PMID: 35650437 PMCID: PMC11059968 DOI: 10.1038/s41586-022-04797-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/25/2022] [Indexed: 01/26/2023]
Abstract
Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.
Collapse
Affiliation(s)
- Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, USA
| | - Jekaterina Tolstenko
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Genevieve McCormack
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rachel F Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Cihan Oguz
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
29
|
Tipoe T, Fidler S, Frater J. An exploration of how broadly neutralizing antibodies might induce HIV remission: the 'vaccinal' effect. Curr Opin HIV AIDS 2022; 17:162-170. [PMID: 35439790 DOI: 10.1097/coh.0000000000000731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bNAbs) are a potential new therapeutic strategy to treat HIV infection. This review explores possible mechanisms of action of bNAbs and summarizes the current evidence supporting their immunomodulatory properties, which might lead to sustained virological remission - the 'vaccinal effect'. RECENT FINDINGS Antiretroviral therapy (ART) is required to confer lasting HIV suppression; stopping ART almost invariably leads to HIV recrudescence from a persistent pool of virally infected cells - the HIV reservoir. HIV-specific broadly neutralizing antibodies (bNAbs) may confer viral control after ART cessation predominantly through blockade of viral entry into uninfected target cells. In some human and animal studies, HIV bNAbs also conferred lasting viral suppression after therapeutic bNAb plasma levels had declined. Immune-modulatory mechanisms have been postulated to underlie this observation - the 'vaccinal effect'. Hypothesized mechanisms include the formation of immune complexes between bNAbs and HIV envelope protein, thereby enhancing antigen presentation and uptake by immune cells, with boosted adaptive immune responses subsequently controlling the HIV reservoir. SUMMARY There is emerging evidence for potent antiviral efficacy of bNAb therapy. Whether bNAbs can induce sustained viral suppression after dropping below therapeutic levels remains controversial. Mechanistic data from on-going and future clinical trials will help answer these questions.
Collapse
Affiliation(s)
- Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London
- Department of GU and HIV Medicine, St Mary's Hospital, Imperial College Healthcare NHS Trust, London
- NIHR Imperial College Biomedical Research, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford
- NIHR Oxford Biomedical Research Centre, Oxford
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Despite improvements in the effectiveness of antiretroviral therapy (ART), there are still unmet needs for people living with HIV which drive the search for a cure for HIV infection. The goal of this review is to discuss the challenges and recent immunotherapeutic advances towards developing a safe, effective and durable cure strategy for HIV. RECENT FINDINGS In recent years, advances have been made in uncovering the mechanisms of persistence of latent HIV and in developing more accurate assays to measure the intact proviral reservoir. Broadly neutralising antibodies and modern techniques to enhance antibody responses have shown promising results. Other strategies including therapeutic vaccination, latency reversal agents, and immunomodulatory agents have shown limited success, but newer interventions including engineered T cells and other immunotherapies may be a potent and flexible strategy for achieving HIV cure. SUMMARY Although progress with newer cure strategies may be encouraging, challenges remain and it is essential to achieve a high threshold of safety and effectiveness in the era of safe and effective ART. It is likely that to achieve sustained HIV remission or cure, a multipronged approach involving a combination of enhancing both adaptive and innate immunity is required.
Collapse
Affiliation(s)
- Ming J Lee
- Department of Infectious Disease, Imperial College London
| | - S Fidler
- Department of Infectious Disease, Imperial College London
- Imperial College NIHR BRC, London
| | - John Frater
- Peter Medawar School of Pathogen Research, Nuffield Department of Medicine, University of Oxford
- Oxford NIHR BRC, Oxford, UK
| |
Collapse
|
31
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
32
|
Pegu A, Xu L, DeMouth ME, Fabozzi G, March K, Almasri CG, Cully MD, Wang K, Yang ES, Dias J, Fennessey CM, Hataye J, Wei RR, Rao E, Casazza JP, Promsote W, Asokan M, McKee K, Schmidt SD, Chen X, Liu C, Shi W, Geng H, Foulds KE, Kao SF, Noe A, Li H, Shaw GM, Zhou T, Petrovas C, Todd JP, Keele BF, Lifson JD, Doria-Rose N, Koup RA, Yang ZY, Nabel GJ, Mascola JR. Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Rep 2022; 38:110199. [PMID: 34986348 PMCID: PMC8767641 DOI: 10.1016/j.celrep.2021.110199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/20/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques. After treatment discontinuation, viremia rebounds transiently and returns to low levels, through CD8-mediated immune control. These viruses remain sensitive to the trispecific antibody, despite loss of sensitivity to one of the parental bNAbs. Similarly, the trispecific bNAb suppresses the emergence of resistance in viruses derived from HIV-1-infected subjects, in contrast to parental bNAbs. Trispecific HIV-1 neutralizing antibodies, therefore, mediate potent antiviral activity in vivo and may minimize the potential for immune escape.
Collapse
Affiliation(s)
- Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Megan E. DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cassandra G. Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michelle D. Cully
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joana Dias
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge MA, USA
| | - Joseph P. Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Shing-Fen Kao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Amy Noe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hui Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Gary J. Nabel
- Sanofi, 640 Memorial Dr., Cambridge MA, USA,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA,Lead contact,To whom correspondence should be addressed: G.J.N: , phone: 857-233-9936; J.R.M. ; 301-496-1852
| |
Collapse
|
33
|
Ertuna YI, Fallet B, Marx AF, Dimitrova M, Kastner AL, Wagner I, Merkler D, Pinschewer DD. Vectored antibody gene delivery restores host B and T cell control of persistent viral infection. Cell Rep 2021; 37:110061. [PMID: 34852228 DOI: 10.1016/j.celrep.2021.110061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
Passive antibody therapy and vectored antibody gene delivery (VAGD) in particular offer an innovative approach to combat persistent viral diseases. Here, we exploit a small animal model to investigate synergies of VAGD with the host's endogenous immune defense for treating chronic viral infection. An adeno-associated virus (AAV) vector delivering the lymphocytic choriomeningitis virus (LCMV)-neutralizing antibody KL25 (AAV-KL25) establishes protective antibody titers for >200 days. When therapeutically administered to chronically infected immunocompetent wild-type mice, AAV-KL25 affords sustained viral load control. In contrast, viral mutational escape thwarts therapeutic AAV-KL25 effects when mice are unable to mount LCMV-specific antibody responses or lack CD8+ T cells. VAGD augments antiviral germinal center B cell and antibody-secreting cell responses and reduces inhibitory receptor expression on antiviral CD8+ T cells. These results indicate that VAGD fortifies host immune defense and synergizes with B cell and CD8 T cell responses to restore immune control of chronic viral infection.
Collapse
Affiliation(s)
- Yusuf I Ertuna
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Benedict Fallet
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Anna-Friederike Marx
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Mirela Dimitrova
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Anna Lena Kastner
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Faculty of Medicine, Geneva University Hospital, 1211 Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Daniel D Pinschewer
- University of Basel, Department of Biomedicine-Haus Petersplatz, Division of Experimental Virology, 4009 Basel, Switzerland.
| |
Collapse
|
34
|
Dias J, Fabozzi G, March K, Asokan M, Almasri CG, Fintzi J, Promsote W, Nishimura Y, Todd JP, Lifson JD, Martin MA, Gama L, Petrovas C, Pegu A, Mascola JR, Koup RA. Concordance of immunological events between intrarectal and intravenous SHIVAD8-EO infection when assessed by Fiebig-equivalent staging. J Clin Invest 2021; 131:e151632. [PMID: 34623326 PMCID: PMC8409578 DOI: 10.1172/jci151632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Primary HIV-1 infection can be classified into six Fiebig stages based on virological and serological laboratory testing, whereas simian-HIV (SHIV) infection in nonhuman primates (NHPs) is defined in time post-infection, making it difficult to extrapolate NHP experiments to the clinics. We identified and extensively characterized the Fiebig-equivalent stages in NHPs challenged intrarectally or intravenously with SHIVAD8-EO. During the first month post-challenge, intrarectally challenged monkeys were up to 1 week delayed in progression through stages. However, regardless of the challenge route, stages I-II predominated before, and stages V-VI predominated after, peak viremia. Decrease in lymph node (LN) CD4+ T cell frequency and rise in CD8+ T cells occurred at stage V. LN virus-specific CD8+ T cell responses, dominated by degranulation and TNF, were first detected at stage V and increased at stage VI. A similar late elevation in follicular CXCR5+ CD8+ T cells occurred, consistent with higher plasma CXCL13 levels at these stages. LN SHIVAD8-EO RNA+ cells were present at stage II, but appeared to decline at stage VI when virions accumulated in follicles. Fiebig-equivalent staging of SHIVAD8-EO infection revealed concordance of immunological events between intrarectal and intravenous infection despite different infection progressions, and can inform comparisons of NHP studies with clinical data.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center
| | | | - Kylie March
- Tissue Analysis Core, Vaccine Research Center
| | | | | | | | | | | | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center
| | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW In this special issue on human immunodeficiency (HIV) cure, we review the role of therapeutic immunization in strategies aimed to eliminate HIV-infected cells and/or mediate sustained control of viral replication in the absence of antiretroviral treatment. RECENT FINDINGS Recent data emerging from studies in simian immunodeficiency virus macaque models using broadly neutralizing antibodies, given alone or in combination with other immunomodulatory agents, as well as data from human clinical studies with novel therapeutic vaccines are showing encouraging results indicating that achieving viral remission or at least partial viral control of HIV without antiretroviral therapy is feasible. SUMMARY Although it remains unclear whether current strategies will be able to awaken a sufficient large fraction of the viral reservoir and/or vaccine-boosted immunity will induce effective, long-lasting viral suppression in chronically infected HIV population, emerging results establish cure strategies that can be further improved upon.
Collapse
Affiliation(s)
- Beatriz Mothe
- Fundació Lluita Contra La Sida, Infectious Diseases Department
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC)
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias I Pujol
- Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic - Central University of Catalonia (UVic - UCC)
- ICREA
- AELIX Therapeutics, Barcelona, Spain
| |
Collapse
|
36
|
Frank I, Cigoli M, Arif MS, Fahlberg MD, Maldonado S, Calenda G, Pegu A, Yang ES, Rawi R, Chuang GY, Geng H, Liu C, Zhou T, Kwong PD, Arthos J, Cicala C, Grasperge BF, Blanchard JL, Gettie A, Fennessey CM, Keele BF, Vaccari M, Hope TJ, Fauci AS, Mascola JR, Martinelli E. Blocking α 4β 7 integrin delays viral rebound in SHIV SF162P3-infected macaques treated with anti-HIV broadly neutralizing antibodies. Sci Transl Med 2021; 13:eabf7201. [PMID: 34408080 PMCID: PMC8977869 DOI: 10.1126/scitranslmed.abf7201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) may favor development of antiviral immunity by engaging the immune system during immunotherapy. Targeting integrin α4β7 with an anti-α4β7 monoclonal antibody (Rh-α4β7) affects immune responses in SIV/SHIV-infected macaques. To explore the therapeutic potential of combining bNAbs with α4β7 integrin blockade, SHIVSF162P3-infected, viremic rhesus macaques were treated with bNAbs only (VRC07-523LS and PGT128 anti-HIV antibodies) or a combination of bNAbs and Rh-α4β7 or were left untreated as a control. Treatment with bNAbs alone decreased viremia below 200 copies/ml in all macaques, but seven of eight macaques (87.5%) in the bNAbs-only group rebounded within a median of 3 weeks (95% CI: 2 to 9). In contrast, three of six macaques treated with a combination of Rh-α4β7 and bNAbs (50%) maintained a viremia below 200 copies/ml until the end of the follow-up period; viremia in the other three macaques rebounded within a median of 6 weeks (95% CI: 5 to 11). Thus, there was a modest delay in viral rebound in the macaques treated with the combination antibody therapy compared to bNAbs alone. Our study suggests that α4β7 integrin blockade may prolong virologic control by bNAbs in SHIVSF162P3-infected macaques.
Collapse
Affiliation(s)
- Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Mariasole Cigoli
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Muhammad S Arif
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marissa D Fahlberg
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | | | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brooke F Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - James L Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Thomas J Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, USA.
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
37
|
Veenhuis RT, Garliss CC, Bailey JR, Blankson JN. CD8 Effector T Cells Function Synergistically With Broadly Neutralizing Antibodies to Enhance Suppression of HIV Infection. Front Immunol 2021; 12:708355. [PMID: 34394110 PMCID: PMC8358597 DOI: 10.3389/fimmu.2021.708355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
HIV-specific CD8 T cells and broadly neutralizing antibodies (bNAbs) both contribute to the control of viremia, but in most cases, neither can completely suppress viral replication. To date, therapeutic vaccines have not been successful in eliciting HIV-specific CD8 T cell or bNAb responses that are capable of preventing long-term viral rebound upon ART cessation. These challenges suggest that a combinatorial approach that harnesses both bNAbs and CD8 T cell responses may be necessary for long term control of viral replication. In this study we demonstrate a synergistic interaction between CD8 T cells and bNAbs using an in vitro model. Our data suggest that this combinatorial approach is very effective at suppressing viral replication in vitro and should be considered in future therapeutic studies.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Caroline C Garliss
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Joel N Blankson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Hsu DC, Mellors JW, Vasan S. Can Broadly Neutralizing HIV-1 Antibodies Help Achieve an ART-Free Remission? Front Immunol 2021; 12:710044. [PMID: 34322136 PMCID: PMC8311790 DOI: 10.3389/fimmu.2021.710044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022] Open
Abstract
Many broadly neutralizing antibodies (bnAbs) targeting the HIV-1 envelope glycoprotein are being assessed in clinical trials as strategies for HIV-1 prevention, treatment, and antiretroviral-free remission. BnAbs can neutralize HIV-1 and target infected cells for elimination. Concerns about HIV-1 resistance to single bnAbs have led to studies of bnAb combinations with non-overlapping resistance profiles. This review focuses on the potential for bnAbs to induce HIV-1 remission, either alone or in combination with latency reversing agents, therapeutic vaccines or other novel therapeutics. Key topics include preliminary activity of bnAbs in preclinical models and in human studies of HIV-1 remission, clinical trial designs, and antibody design strategies to optimize pharmacokinetics, coverage of rebound-competent virus, and enhancement of cellular immune functions.
Collapse
Affiliation(s)
- Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
39
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|