1
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-stage CD8 + CAR T-cell differentiation in patients with large B-cell lymphoma. Nat Commun 2025; 16:4205. [PMID: 40328775 DOI: 10.1038/s41467-025-59298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Advancements in chimeric antigen receptor (CAR) T-cell therapy for treating diffuse large B-cell lymphoma (DLBCL) have been limited by an incomplete understanding of CAR T-cell differentiation in patients. Here, we show via single-cell, multi-modal, and longitudinal analyses, that CD8+ CAR T cells from DLBCL patients successfully treated with axicabtagene ciloleucel undergo two distinct waves of clonal expansion in vivo. The first wave is dominated by an exhausted-like effector memory phenotype during peak expansion (day 8-14). The second wave is dominated by a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny from the infusion product and are biologically uncoupled. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. We demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter A Riedell
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Justin P Kline
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Fukuda K, Ito Y, Amagai M. Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease. Annu Rev Immunol 2025; 43:219-252. [PMID: 40279307 DOI: 10.1146/annurev-immunol-082323-030832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Immune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC-skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| | - Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan;
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan;
| |
Collapse
|
3
|
Courtemanche O, Huppé CA, Blais-Lecours P, Maranda C, Morissette MC, Blanchet MR, Dion G, Marsolais D. Ex Vivo Overactivation of Lymphocyte Subsets in Fibrotic Hypersensitivity Pneumonitis Is Blunted by a Sphingosine-1-Phosphate Receptor Ligand. Int J Mol Sci 2025; 26:3197. [PMID: 40243992 PMCID: PMC11989070 DOI: 10.3390/ijms26073197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Lymphocytes are central to the pathogenesis of hypersensitivity pneumonitis and a strong body of evidence supports that lymphocytes are modulated by sphingosine-1-phosphate receptor-modifying drugs. This exploratory study aimed to determine if a pharmacological sphingosine-1-phosphate receptor ligand interfered with the activation of lymphocytes obtained from fibrotic hypersensitivity pneumonitis patients. Peripheral blood mononuclear cells of 12 patients and 10 control subjects were submitted to CD3/CD28 stimulation, isolated B cells were incubated with a TLR9 ligand; and we tested how these stimulations were impacted by ozanimod, a sphingosine-1-phosphate receptor ligand. T cell and B cell subsets from patients overexpressed CD69 and cytokines such as TNF and IL-4 in response to CD3/CD28 stimulation, compared to controls. In patients with fibrotic hypersensitivity pneumonitis, ozanimod alleviated CD3/CD28 induction of CD69, IL-4, and TNF in CD8, but not CD4 T cells. In isolated B cells stimulated with a TLR9 ligand, ozanimod reduced cell surface expression of CD69, CD86, and CD40, as well as TNF and IL-6 accumulation in supernatant. We conclude that lymphocyte subsets are functionally impacted in patients with fibrotic hypersensitivity pneumonitis and that ozanimod can interfere ex vivo with the overactivation of B cells and CD8 T cells in response to specific stimuli.
Collapse
Affiliation(s)
- Olivier Courtemanche
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Carole-Ann Huppé
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Pascale Blais-Lecours
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Cloé Maranda
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - Mathieu C. Morissette
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Geneviève Dion
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
| | - David Marsolais
- Centre de recherche de l’Institut Universitaire de cardiologie et de pneumologie de Québec, 2725 Chemin Sainte-Foy, Quebec City, QC G1V 4G5, Canada; (O.C.); (C.-A.H.); (P.B.-L.); (C.M.); (M.C.M.); (M.-R.B.); (G.D.)
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Puig-Gámez M, Van Attekum M, Theis T, Dick A, Park JE. Transcriptional signature of rapidly responding NK cells reveals S1P5 and CXCR4 as anti-tumor response disruptors. Sci Rep 2025; 15:10769. [PMID: 40155684 PMCID: PMC11953373 DOI: 10.1038/s41598-025-95211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Natural killer (NK) cells are prototypic cytotoxic innate lymphocytes that can kill target cells, such as tumor cells, in the absence of antigen-restriction. Peripheral NK cells exhibit a high degree of heterogeneity. Here, we set out to broadly assess intrinsic modulators of NK cell degranulation in an unbiased manner. We stimulated human primary blood-borne NK cells pre-treated with different cytokine regimens with the HCT116 human colon cancer cell line and used detection of lysosome-associated membrane glycoprotein 1 (LAMP1) as an identifier of rapid NK cell degranulation. RNA sequencing of FACS-sorted LAMP1hi NK cells showed CXCR4 and S1PR5 were top down-regulated genes. Using compounds that modulate activity of CXCR4 and S1P receptor family members S1P1 and S1P5, we confirmed they play an important immunosuppressive role in NK cell cytotoxicity. Mechanistically, engagement of CXCR4 and S1P1/5 receptors triggered phosphorylation of p42 and Ca2+ influx. CXCR4 activation promoted S1P5 upregulation and vice versa, and joint activation of both receptors amplified the defect NK cell degranulation. Intriguingly, in tumor samples the expression of both receptors and the synthesis of their ligands themselves appear to be coordinately regulated. Together, these data suggest that specifically and simultaneously targeting CXCR4 and S1P5 activity in the tumor microenvironment (TME) could be a beneficial strategy to unleash full cytotoxic potential of cytotoxic NK effector cells in the tumor.
Collapse
Affiliation(s)
- Marta Puig-Gámez
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Martijn Van Attekum
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Theodor Theis
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - Alec Dick
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany
| | - John E Park
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387, Biberach an der Riss, Germany.
| |
Collapse
|
5
|
Islam MZ, Zimmerman S, Lindahl A, Weidanz J, Ordovas-Montanes J, Kostic A, Luber J, Robben M. Single-cell RNA-seq reveals disease-specific CD8+ T cell clonal expansion and a high frequency of transcriptionally distinct double-negative T cells in diabetic NOD mice. PLoS One 2025; 20:e0317987. [PMID: 40106422 PMCID: PMC11922263 DOI: 10.1371/journal.pone.0317987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025] Open
Abstract
T cells primarily drive the autoimmune destruction of pancreatic beta cells in Type 1 diabetes (T1D). However, the profound yet uncharacterized diversity of the T cell populations in vivo has hindered obtaining a clear picture of the T cell changes that occur longitudinally during T1D onset. This study aimed to identify T cell clonal expansion and distinct transcriptomic signatures associated with T1D progression in Non-Obese Diabetic (NOD) mice. Here we profiled the transcriptome and T cell receptor (TCR) repertoire of T cells at single-cell resolution from longitudinally collected peripheral blood and pancreatic islets of NOD mice using single-cell RNA sequencing technology. We detected disease dependent development of infiltrating CD8 + T cells with altered cytotoxic and inflammatory effector states. In addition, we discovered a high frequency of transcriptionally distinct double negative (DN) T cells that fluctuate throughout T1D pathogenesis. This study identifies potential disease relevant TCR sequences and potential disease biomarkers that can be further characterized through future research.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Sam Zimmerman
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexis Lindahl
- Department of Animal Science, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Jon Weidanz
- Department of Kinesiology, The University of Texas at Arlington, Texas, United States of America
- Department of Bioengineering, The University of Texas at Arlington, Texas, United States of America
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Aleksandar Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacob Luber
- Department of Computer Science and Engineering, The University of Texas at Arlington, United States of America
| | - Michael Robben
- Department of Animal Science, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Computer Science and Engineering, The University of Texas at Arlington, United States of America
| |
Collapse
|
6
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-Stage CD8 + CAR T-Cell Differentiation in Patients with Large B-Cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641715. [PMID: 40161759 PMCID: PMC11952315 DOI: 10.1101/2025.03.05.641715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has expanded therapeutic options for patients with diffuse large B-cell lymphoma (DLBCL). However, progress in improving clinical outcomes has been limited by an incomplete understanding of CAR T-cell differentiation in patients. To comprehensively investigate CAR T-cell differentiation in vivo, we performed single-cell, multimodal, and longitudinal analyses of CD28-costimulated CAR T cells from infusion product and peripheral blood (day 8-28) of patients with DLBCL who were successfully treated with axicabtagene ciloleucel. Here, we show that CD8+ CAR T cells undergo two distinct waves of clonal expansion. The first wave is dominated by CAR T cells with an exhausted-like effector memory phenotype during the peak expansion period (day 8-14). The second wave is dominated by CAR T cells with a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny and are biologically uncoupled. Furthermore, lineage tracing analysis via each CAR T cell's endogenous TCR clonotype demonstrates that the two waves originate from different effector precursors in the infusion product. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. These findings suggest that pre-infusion heterogeneity mediates the two waves of in vivo clonal expansion. Our findings provide evidence against the intuitive idea that the post-peak contraction in CAR abundance is solely apoptosis or extravasation of short-lived CAR T cells from peak expansion. Rather, our findings demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nick Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Hair regrowth in alopecia areata and re-pigmentation in vitiligo in response to treatment: Commonalities and differences. J Eur Acad Dermatol Venereol 2025; 39:498-511. [PMID: 39258892 PMCID: PMC11851261 DOI: 10.1111/jdv.20311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research UnitPfizerCollegevillePennsylvaniaUSA
| | - Elena Peeva
- Inflammation & Immunology Research UnitPfizerCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Xia X, Huang Z, Xu C, Fu H, Wang S, Tian J, Rui K. Regulation of intestinal tissue‑resident memory T cells: a potential target for inflammatory bowel disease. Cell Commun Signal 2024; 22:610. [PMID: 39695803 DOI: 10.1186/s12964-024-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue-resident memory T (TRM) cells are populations which settle down in non-lymphoid tissues instead of returning to secondary lymph organs after the antigen presentation. These cells can provide rapid on-site immune protection as well as long-term tissue damage. It is reported that TRM cells from small intestine and colon exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional and functional heterogeneity. In this review, we focus on the reason why they lodge in intestinal tract, their developmental plasticity of going back to to circulation, as well as their regulators associated with retention, maintenance, exhaustion and metabolism. We also elaborate their role in the inflammatory bowel disease (IBD) and discuss the potential therapeutic strategies targeting TRM cells.
Collapse
Affiliation(s)
- Xin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhanjun Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hailong Fu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
9
|
Wang H, Souter MNT, de Lima Moreira M, Li S, Zhou Y, Nelson AG, Yu J, Meehan LJ, Meehan BS, Eckle SBG, Lee HJ, Schröder J, Haque A, Mak JYW, Fairlie DP, McCluskey J, Wang Z, Chen Z, Corbett AJ. MAIT cell plasticity enables functional adaptation that drives antibacterial immune protection. Sci Immunol 2024; 9:eadp9841. [PMID: 39642244 DOI: 10.1126/sciimmunol.adp9841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are known for their rapid effector functions and antibacterial immune protection. Here, we define the plasticity of interferon-γ (IFN-γ)-producing MAIT1 and interleukin-17A (IL-17A)-producing MAIT17 cell subsets in vivo. Whereas T-bet+ MAIT1 cells remained stable in all experimental settings, after adoptive transfer or acute Legionella or Francisella infection, RORγt+ MAIT17 cells could undergo phenotypic and functional conversion into both RORγt+T-bet+ MAIT1/17 and RORγt-T-bet+ MAIT1 cells. This plasticity ensured that MAIT17 cells played a dominant role in generating antibacterial MAIT1 responses in mucosal tissues. Single-cell transcriptomics revealed that MAIT17-derived MAIT1 cells were distinct from canonical MAIT1 cells yet could migrate out of mucosal tissues to contribute to the global MAIT1 pool in subsequent systemic infections. Human IL-17A-secreting MAIT cells also showed similar functional plasticity. Our findings have broad implications for understanding the role of MAIT cells in combatting infections and their potential utility in MAIT cell-targeted vaccines.
Collapse
Affiliation(s)
- Huimeng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michael N T Souter
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcela de Lima Moreira
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Shihan Li
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Computational Sciences Initiative, Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yuchen Zhou
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Tsinghua Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Adam G Nelson
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jinhan Yu
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lucy J Meehan
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S Meehan
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hyun Jae Lee
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jan Schröder
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Computational Sciences Initiative, Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashraful Haque
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - James McCluskey
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
10
|
Obers A, Poch T, Rodrigues G, Christo SN, Gandolfo LC, Fonseca R, Zaid A, Kuai JEY, Lai H, Zareie P, Yakou MH, Dryburgh L, Burn TN, Dosser J, Buquicchio FA, Lareau CA, Walsh C, Judd L, Theodorou MR, Gutbrod K, Dörmann P, Kingham J, Stinear T, Kallies A, Schroeder J, Mueller SN, Park SL, Speed TP, Satpathy AT, Phan TG, Wilhelm C, Zaph C, Evrard M, Mackay LK. Retinoic acid and TGF-β orchestrate organ-specific programs of tissue residency. Immunity 2024; 57:2615-2633.e10. [PMID: 39406245 DOI: 10.1016/j.immuni.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024]
Abstract
Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that whereas skin TRM cells strictly require transforming growth factor β (TGF-β) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive TRM cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal TRM populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated TRM cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.
Collapse
Affiliation(s)
- Andreas Obers
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tobias Poch
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Grace Rodrigues
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Raissa Fonseca
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ali Zaid
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Joey En Yu Kuai
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hongjin Lai
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Pirooz Zareie
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Marina H Yakou
- Olivia Newton-John Cancer Research Institute, LaTrobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lachlan Dryburgh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thomas N Burn
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James Dosser
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Frank A Buquicchio
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Calum Walsh
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Louise Judd
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maria Rafailia Theodorou
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Katharina Gutbrod
- Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Peter Dörmann
- Institute for Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Jenny Kingham
- Australian BioResources Pty Ltd, Moss Vale, NSW, Australia; Animal Services, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tim Stinear
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jan Schroeder
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Terence P Speed
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, Australia; Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Tri Giang Phan
- Precision Immunology Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; St Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Colby Zaph
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Feng X, Yu F, He XL, Cheng PP, Niu Q, Zhao LQ, Li Q, Cui XL, Jia ZH, Ye SY, Liang LM, Song LJ, Xiong L, Xiang F, Wang X, Ma WL, Ye H. CD8 + tissue-resident memory T cells are essential in bleomycin-induced pulmonary fibrosis. Am J Physiol Cell Physiol 2024; 327:C1178-C1191. [PMID: 39246141 DOI: 10.1152/ajpcell.00368.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Human tissue-resident memory T (TRM) cells play a crucial role in protecting the body from infections and cancers. Recent research observed increased numbers of TRM cells in the lung tissues of idiopathic pulmonary fibrosis patients. However, the functional consequences of TRM cells in pulmonary fibrosis remain unclear. Here, we found that the numbers of TRM cells, especially the CD8+ subset, were increased in the mouse lung with bleomycin-induced pulmonary fibrosis. Increasing or decreasing CD8+ TRM cells in mouse lungs accordingly altered the severity of fibrosis. In addition, the adoptive transfer of CD8+ T cells containing a large number of CD8+ TRM cells from fibrotic lungs was sufficient to induce pulmonary fibrosis in control mice. Treatment with chemokine CC-motif ligand (CCL18) induced CD8+ TRM cell expansion and exacerbated fibrosis, whereas blocking C-C chemokine receptor 8 (CCR8) prevented CD8+ TRM recruitment and inhibited pulmonary fibrosis. In conclusion, CD8+ TRM cells are essential for bleomycin-induced pulmonary fibrosis, and targeting CCL18/CCR8/CD8+ TRM cells may be a potential therapeutic approach. NEW & NOTEWORTHY The role of CD8+ TRM cells in the development of pulmonary fibrosis was validated and studied in the classic model of pulmonary fibrosis. It was proposed for the first time that CCL18 has a chemotactic effect on CD8+ TRM cells, thereby exacerbating pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Qin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao-Lin Cui
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zi-Heng Jia
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shu-Yi Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Cheng L, Becattini S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol 2024; 17:810-824. [PMID: 38782240 DOI: 10.1016/j.mucimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Upon infection, CD8+ T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Yu Z, Sasidharan-Nair V, Buchta T, Bonifacius A, Khan F, Pietzsch B, Ahmadi H, Beckstette M, Niemz J, Hilgendorf P, Mausberg P, Keller A, Falk C, Busch DH, Schober K, Cicin-Sain L, Müller F, Brinkmann MM, Eiz-Vesper B, Floess S, Huehn J. DNA methylation profiling identifies TBKBP1 as potent amplifier of cytotoxic activity in CMV-specific human CD8+ T cells. PLoS Pathog 2024; 20:e1012581. [PMID: 39325839 PMCID: PMC11460711 DOI: 10.1371/journal.ppat.1012581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Epigenetic mechanisms stabilize gene expression patterns during CD8+ T cell differentiation. Although adoptive transfer of virus-specific T cells is clinically applied to reduce the risk of virus infection or reactivation in immunocompromised individuals, the DNA methylation pattern of virus-specific CD8+ T cells is largely unknown. Hence, we here performed whole-genome bisulfite sequencing of cytomegalovirus-specific human CD8+ T cells and found that they display a unique DNA methylation pattern consisting of 79 differentially methylated regions (DMRs) when compared to memory CD8+ T cells. Among the top demethylated DMRs in cytomegalovirus-specific CD8+ T cells was TBKBP1, coding for TBK-binding protein 1 that can interact with TANK-binding kinase 1 (TBK1) and mediate pro-inflammatory responses in innate immune cells downstream of intracellular virus sensing. Since TBKBP1 has not yet been reported in T cells, we aimed to unravel its role in virus-specific CD8+ T cells. TBKBP1 demethylation in terminal effector CD8+ T cells correlated with higher TBKBP1 expression at both mRNA and protein level, independent of alternative splicing of TBKBP1 transcripts. Notably, the distinct DNA methylation patterns in CD8+ T cell subsets was stable upon long-term in vitro culture. TBKBP1 overexpression resulted in enhanced TBK1 phosphorylation upon stimulation of CD8+ T cells and significantly improved their virus neutralization capacity. Collectively, our data demonstrate that TBKBP1 modulates virus-specific CD8+ T cell responses and could be exploited as therapeutic target to improve adoptive T cell therapies.
Collapse
Affiliation(s)
- Zheng Yu
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Varun Sasidharan-Nair
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thalea Buchta
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Virology and Innate Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
| | - Fawad Khan
- Department Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CIIM), a joint venture of HZI and Hannover Medical School, Hannover, Germany
| | - Beate Pietzsch
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hosein Ahmadi
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jana Niemz
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philipp Hilgendorf
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Philip Mausberg
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarland University, Saarbrücken, Germany
| | - Christine Falk
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Munich, Germany
| | - Kilian Schober
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
- Department Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualized Infection Medicine (CIIM), a joint venture of HZI and Hannover Medical School, Hannover, Germany
| | - Fabian Müller
- Integrative Cellular Biology and Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Virology and Innate Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Thematical Translation Unit-Immunocompromised Host (TTU-IICH), partner site Hannover-Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence Resolving Infection Susceptibility (RESIST; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, Ventre KS, Lund AW. Lymphatic vessel transit seeds cytotoxic resident memory T cells in skin draining lymph nodes. Sci Immunol 2024; 9:eadk8141. [PMID: 38848340 DOI: 10.1126/sciimmunol.adk8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Lymphatic transport shapes the homeostatic immune repertoire of lymph nodes (LNs). LN-resident memory T cells (TRMs) play an important role in site-specific immune memory, yet how LN TRMs form de novo after viral infection remains unclear. Here, we tracked the anatomical distribution of antiviral CD8+ T cells as they seeded skin and LN TRMs using a model of vaccinia virus-induced skin infection. LN TRMs localized to the draining LNs (dLNs) of infected skin, and their formation depended on the lymphatic egress of effector CD8+ T cells from the skin, already poised for residence. Effector CD8+ T cell transit through skin was required to populate LN TRMs in dLNs, a process reinforced by antigen encounter in skin. Furthermore, LN TRMs were protective against viral rechallenge in the absence of circulating memory T cells. These data suggest that a subset of tissue-infiltrating CD8+ T cells egress from tissues during viral clearance and establish a layer of regional protection in the dLN basin.
Collapse
Affiliation(s)
- Taylor A Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Austin C Schultz
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vanessa Cristaldi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Madeline J Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Katherine S Ventre
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
16
|
Ito T, Ishida Y, Zhang Y, Guichard V, Zhang W, Han R, Guckian K, Chun J, Que J, Smith A, Urban JF, Huang Y. ILC2s navigate tissue redistribution during infection using stage-specific S1P receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.592576. [PMID: 38798480 PMCID: PMC11118432 DOI: 10.1101/2024.05.12.592576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Lymphocytes can circulate as well as take residence within tissues. While the mechanisms by which circulating populations are recruited to infection sites have been extensively characterized, the molecular basis for the recirculation of tissue-resident cells is less understood. Here, we show that helminth infection- or IL-25-induced redistribution of intestinal group 2 innate lymphoid cells (ILC2s) requires access to the lymphatic vessel network. Although the secondary lymphoid structure is an essential signal hub for adaptive lymphocyte differentiation and dispatch, it is redundant for ILC2 migration and effector function. Upon IL-25 stimulation, a dramatic change in epigenetic landscape occurs in intestinal ILC2s, leading to the expression of sphingosine-1-phosphate receptors (S1PRs). Among the various S1PRs, we found that S1PR5 is critical for ILC2 exit from intestinal tissue to lymph. By contrast, S1PR1 plays a dominant role in ILC2 egress from mesenteric lymph nodes to blood circulation and then to distal tissues including the lung where the redistributed ILC2s contribute to tissue repair. The requirement of two S1PRs for ILC2 migration is largely due to the dynamic expression of the tissue-retention marker CD69, which mediates S1PR1 internalization. Thus, our study demonstrates a stage-specific requirement of different S1P receptors for ILC2 redistribution during infection. We therefore propose a fundamental paradigm that innate and adaptive lymphocytes utilize a shared vascular network frame and specialized navigation cues for migration.
Collapse
|
17
|
Liu G, Wang Z, Li S. Heterogeneity and plasticity of tissue-resident memory T cells in skin diseases and homeostasis: a review. Front Immunol 2024; 15:1378359. [PMID: 38779662 PMCID: PMC11109409 DOI: 10.3389/fimmu.2024.1378359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| | - Ziyue Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Sage SE, Leeb T, Jagannathan V, Gerber V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology 2024; 171:549-565. [PMID: 38153159 DOI: 10.1111/imm.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Severe equine asthma (SEA) is a complex respiratory condition characterized by chronic airway inflammation. It shares many clinical and pathological features with human neutrophilic asthma, making it a valuable model for studying this condition. However, the immune mechanisms driving SEA have remained elusive. Although SEA has been primarily associated with a Th2 response, there have also been reports of Th1, Th17, or mixed-mediated responses. To uncover the elusive immune mechanisms driving SEA, we performed single-cell mRNA sequencing (scRNA-seq) on cryopreserved bronchoalveolar cells from 11 Warmblood horses, 5 controls and 6 with SEA. We identified six major cell types, including B cells, T cells, monocytes-macrophages, dendritic cells, neutrophils, and mast cells. All cell types exhibited significant heterogeneity, with previously identified and novel cell subtypes. Notably, we observed monocyte-lymphocyte complexes and detected a robust Th17 signature in SEA, with CXCL13 upregulation in intermediate monocytes. Asthmatic horses exhibited expansion of the B-cell population, Th17 polarization of the T-cell populations, and dysregulation of genes associated with T-cell function. Neutrophils demonstrated enhanced migratory capacity and heightened aptitude for neutrophil extracellular trap formation. These findings provide compelling evidence for a predominant Th17 immune response in neutrophilic SEA, driven by dysregulation of monocyte and T-cell genes. The dysregulated genes identified through scRNA-seq have potential as biomarkers and therapeutic targets for SEA and provide insights into human neutrophilic asthma.
Collapse
Affiliation(s)
- Sophie E Sage
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, Institute of Genetics, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Migayron L, Merhi R, Seneschal J, Boniface K. Resident memory T cells in nonlesional skin and healed lesions of patients with chronic inflammatory diseases: Appearances can be deceptive. J Allergy Clin Immunol 2024; 153:606-614. [PMID: 37995858 DOI: 10.1016/j.jaci.2023.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tissue-resident memory T (TRM) cells serve as a first line of defense in peripheral tissues to protect the organism against foreign pathogens. However, autoreactive TRM cells are increasingly implicated in autoimmunity, as evidenced in chronic autoimmune and inflammatory skin conditions. This highlights the need to characterize their phenotype and understand their role for the purpose of targeting them specifically without affecting local immunity. To date, the investigation of TRM cells in human skin diseases has focused mainly on lesional tissues of patients. Accumulating evidence suggests that self-reactive TRM cells are still present in clinically healed lesions of patients and play a role in disease flares, but TRM cells also populate skin that is apparently normal. This review discusses the ontogeny of TRM cells in the skin as well as recent insights regarding the presence of self-reactive TRM cells in both clinically healed skin and nonlesional skin of patients with autoimmune and inflammatory skin conditions, with a particular focus on psoriasis, atopic dermatitis, and vitiligo.
Collapse
Affiliation(s)
- Laure Migayron
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; R&D Department, SILAB, Brive-la-Gaillarde, France
| | - Ribal Merhi
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France
| | - Julien Seneschal
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France; CHU de Bordeaux, Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, UMR Bordeaux, Bordeaux, France
| | - Katia Boniface
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR5164, F-33000, Bordeaux, France.
| |
Collapse
|
20
|
Callahan D, Smita S, Joachim S, Hoehn K, Kleinstein S, Weisel F, Chikina M, Shlomchik M. Memory B cell subsets have divergent developmental origins that are coupled to distinct imprinted epigenetic states. Nat Immunol 2024; 25:562-575. [PMID: 38200277 PMCID: PMC12036331 DOI: 10.1038/s41590-023-01721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Memory B cells (MBCs) are phenotypically and functionally diverse, but their developmental origins remain undefined. Murine MBCs can be divided into subsets by expression of CD80 and PD-L2. Upon re-immunization, CD80/PD-L2 double-negative (DN) MBCs spawn germinal center B cells (GCBCs), whereas CD80/PD-L2 double-positive (DP) MBCs generate plasmablasts but not GCBCs. Using multiple approaches, including generation of an inducible GCBC-lineage reporter mouse, we demonstrate in a T cell-dependent response that DN cells formed independently of the germinal center (GC), whereas DP cells exhibited either extrafollicular (DPEX) or GCBC (DPGC) origins. Chromatin and transcriptional profiling revealed similarity of DN cells with an early memory precursor. Reciprocally, GCBC-derived DP cells shared distinct genomic features with GCBCs, while DPEX cells had hybrid features. Upon restimulation, DPEX cells were more prone to divide, while DPGC cells differentiated toward IgG1+ plasmablasts. Thus, MBC functional diversity is generated through distinct developmental histories, which imprint characteristic epigenetic patterns onto their progeny, thereby programming them for divergent functional responses.
Collapse
Affiliation(s)
- Derrick Callahan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Joachim
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Steven Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maria Chikina
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Maymí VI, Zhu H, Jager M, Johnson S, Getchell R, Casey JW, Grenier JK, Wherry EJ, Smith NL, Grimson A, Rudd BD. Neonatal CD8+ T Cells Resist Exhaustion during Chronic Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:834-843. [PMID: 38231127 PMCID: PMC11298781 DOI: 10.4049/jimmunol.2300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Chronic viral infections, such as HIV and hepatitis C virus, represent a major public health problem. Although it is well understood that neonates and adults respond differently to chronic viral infections, the underlying mechanisms remain unknown. In this study, we transferred neonatal and adult CD8+ T cells into a mouse model of chronic infection (lymphocytic choriomeningitis virus clone 13) and dissected out the key cell-intrinsic differences that alter their ability to protect the host. Interestingly, we found that neonatal CD8+ T cells preferentially became effector cells early in chronic infection compared with adult CD8+ T cells and expressed higher levels of genes associated with cell migration and effector cell differentiation. During the chronic phase of infection, the neonatal cells retained more immune functionality and expressed lower levels of surface markers and genes related to exhaustion. Because the neonatal cells protect from viral replication early in chronic infection, the altered differentiation trajectories of neonatal and adult CD8+ T cells is functionally significant. Together, our work demonstrates how cell-intrinsic differences between neonatal and adult CD8+ T cells influence key cell fate decisions during chronic infection.
Collapse
Affiliation(s)
- Viviana I. Maymí
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mason Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shawn Johnson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Rodman Getchell
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - James W. Casey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jennifer K. Grenier
- Transcriptional Regulation and Expression Facility, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Macedo BG, Masuda MY, Borges da Silva H. Location versus ID: what matters to lung-resident memory T cells? Front Immunol 2024; 15:1355910. [PMID: 38375476 PMCID: PMC10875077 DOI: 10.3389/fimmu.2024.1355910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.
Collapse
|
23
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
24
|
Hobson R, Levy SH, Flaherty D, Xiao H, Ciener B, Reddy H, Singal C, Kim CY, Teich AF, Shneider NA, Bradshaw EM, Elyaman W. Clonal CD8 T Cells Accumulate in the Leptomeninges and Communicate with Microglia in Human Neurodegeneration. RESEARCH SQUARE 2024:rs.3.rs-3755733. [PMID: 38343836 PMCID: PMC10854309 DOI: 10.21203/rs.3.rs-3755733/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Murine studies have highlighted a crucial role for immune cells in the meninges in surveilling the central nervous system (CNS) and influencing neuroinflammation. However, how meningeal immunity is altered in human neurodegeneration and its effects on CNS inflammation is understudied. We performed the first single-cell analysis of the transcriptomes and T cell receptor (TCR) repertoire of 104,635 immune cells from 55 postmortem human brain and leptomeningeal tissues from donors with neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. RNA and TCR sequencing from paired leptomeninges and brain allowed us to perform lineage tracing to identify the spatial trajectory of clonal T cells in the CNS and its borders. We propose that T cells activated in the brain emigrate to and establish residency in the leptomeninges where they likely contribute to impairments in lymphatic drainage and remotely to CNS inflammation by producing IFNγ and other cytokines. We identified regulatory networks local to the meninges including NK cell-mediated CD8 T cell killing which likely help to control meningeal inflammation. Collectively, these findings provide not only a foundation for future studies into brain border immune surveillance but also highlight important intercellular dynamics that could be leveraged to modulate neuroinflammation.
Collapse
Affiliation(s)
- Ryan Hobson
- Division of Translational Neurobiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Samuel H.S. Levy
- Division of Translational Neurobiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Delaney Flaherty
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Benjamin Ciener
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Hasini Reddy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
| | - Chitra Singal
- Division of Translational Neurobiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Christine Y. Kim
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Neil A. Shneider
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, 10032, USA
- The Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, 10032, USA
| | - Elizabeth M. Bradshaw
- Division of Translational Neurobiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Carol and Gene Ludwig Center for Research on Neurodegeneration, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wassim Elyaman
- Division of Translational Neurobiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, 10032, USA
- The Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, 10032, USA
| |
Collapse
|
25
|
Olivieri G, Cotugno N, Palma P. Emerging insights into atypical B cells in pediatric chronic infectious diseases and immune system disorders: T(o)-bet on control of B-cell immune activation. J Allergy Clin Immunol 2024; 153:12-27. [PMID: 37890706 PMCID: PMC10842362 DOI: 10.1016/j.jaci.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.
Collapse
Affiliation(s)
- Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, Molecular Medicine, and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
26
|
Gress AR, Ronayne CE, Thiede JM, Meyerholz DK, Okurut S, Stumpf J, Mathes TV, Ssebambulidde K, Meya DB, Cresswell FV, Boulware DR, Bold TD. Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy. Nat Commun 2023; 14:8423. [PMID: 38110410 PMCID: PMC10728168 DOI: 10.1038/s41467-023-44152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
After Mycobacterium tuberculosis (Mtb) infection, many effector T cells traffic to the lungs, but few become activated. Here we use an antigen receptor reporter mouse (Nur77-GFP) to identify recently activated CD4 T cells in the lungs. These Nur77-GFPHI cells contain expanded TCR clonotypes, have elevated expression of co-stimulatory genes such as Tnfrsf4/OX40, and are functionally more protective than Nur77-GFPLO cells. By contrast, Nur77-GFPLO cells express markers of terminal exhaustion and cytotoxicity, and the trafficking receptor S1pr5, associated with vascular localization. A short course of immunotherapy targeting OX40+ cells transiently expands CD4 T cell numbers and shifts their phenotype towards parenchymal protective cells. Moreover, OX40 agonist immunotherapy decreases the lung bacterial burden and extends host survival, offering an additive benefit to antibiotics. CD4 T cells from the cerebrospinal fluid of humans with HIV-associated tuberculous meningitis commonly express surface OX40 protein, while CD8 T cells do not. Our data thus propose OX40 as a marker of recently activated CD4 T cells at the infection site and a potential target for immunotherapy in tuberculosis.
Collapse
Affiliation(s)
- Abigail R Gress
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine E Ronayne
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua M Thiede
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, 1165 Medical Laboratories (ML), 51 Newton Rd, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Okurut
- Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda
| | - Julia Stumpf
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
| | - Tailor V Mathes
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - David B Meya
- Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda
| | - Fiona V Cresswell
- Infectious Diseases Institute, P.O. Box 22418, Makerere University, Kampala, Uganda
- MRC/UVRI and London School of Hygiene and Tropical Medicine Uganda Research Unit, PO Box 49, Plot 51-59, Nakiwogo Road Entebbe, Entebbe, Uganda
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, East Sussex, BN1 9PX, UK
| | - David R Boulware
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA
| | - Tyler D Bold
- Department of Medicine, University of Minnesota, 420 Delaware Street, SE MMC 250, Minneapolis, MN, 55455, USA.
- Center for Immunology, 2101 6th St SE, WMBB 2-118, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol 2023; 23:807-823. [PMID: 37253877 PMCID: PMC11448857 DOI: 10.1038/s41577-023-00884-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Tissue localization is a critical determinant of T cell immunity. CD8+ T cells are contact-dependent killers, which requires them to physically be within the tissue of interest to kill peptide-MHC class I-bearing target cells. Following their migration and extravasation into tissues, T cells receive many extrinsic cues from the local microenvironment, and these signals shape T cell differentiation, fate and function. Because major organ systems are variable in their functions and compositions, they apply disparate pressures on T cells to adapt to the local microenvironment. Additional complexity arises in the context of malignant lesions (either primary or metastatic), and this has made understanding the factors that dictate T cell function and longevity in tumours challenging. Moreover, T cell differentiation state influences how cues from the microenvironment are interpreted by tissue-infiltrating T cells, highlighting the importance of T cell state in the context of tissue biology. Here, we review the intertwined nature of T cell differentiation state, location, survival and function, and explain how dysfunctional T cell populations can adopt features of tissue-resident memory T cells to persist in tumours. Finally, we discuss how these factors have shaped responses to cancer immunotherapy.
Collapse
Affiliation(s)
- Jason M Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Wang Z, Yang L, Wang W, Zhou H, Chen J, Ma Z, Wang X, Zhang Q, Liu H, Zhou C, Guo Z, Zhang X. Comparative immunological landscape between pre- and early-stage LUAD manifested as ground-glass nodules revealed by scRNA and scTCR integrated analysis. Cell Commun Signal 2023; 21:325. [PMID: 37957625 PMCID: PMC10644515 DOI: 10.1186/s12964-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/16/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mechanism underlying the malignant progression of precancer to early-stage lung adenocarcinoma (LUAD) as well as their indolence nature remains elusive. METHODS Single-cell RNA sequencing (scRNA) with simultaneous T cell receptor (TCR) sequencing on 5 normal lung tissues, 3 precancerous and 4 early-stage LUAD manifested as pulmonary ground-glass nodules (GGNs) were performed. RESULTS Through this integrated analysis, we have delineated five key modules that drive the malignant progression of early-stage LUAD in a disease stage-dependent manner. These modules are related to cell proliferation and metabolism, immune response, mitochondria, cilia, and cell adhesion. We also find that the tumor micro-environment (TME) of early-stage LUAD manifested as GGN are featured with regulatory T (Tregs) cells accumulation with three possible origins, and loss-functional state (decreased clonal expansion and cytotoxicity) of CD8 + T cells. Instead of exhaustion, the CD8 + T cells are featured with a shift to memory phenotype, which is significantly different from the late stage LUAD. Furthermore, we have identified monocyte-derived macrophages that undergo a lipid-phenotype transition and may contribute to the suppressive TME. Intense interaction between stromal cells, myeloid cells including lipid associated macrophages and LAMP3 + DCs, and lymphocytes were also characterized. CONCLUSIONS Our work provides new insight into the molecular and cellular mechanism underlying malignant progression of LUAD manifested as GGN, and pave way for novel immunotherapies for GGN. Video Abstract.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Li Yang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Wenqiang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Huanhuan Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeheng Ma
- Department of Thoracic Surgery Department, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Xiaoyan Wang
- Department of Pathological Department, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Quncheng Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Haiyang Liu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Chao Zhou
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China
| | - Zhiping Guo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China.
- Henan Provincial Key Laboratory of Chronic Diseases and Health Management, Zhengzhou, 450003, Henan, China.
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No.7, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
29
|
Osman M, Park SL, Mackay LK. Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system. Eur J Immunol 2023; 53:e2250060. [PMID: 36597841 DOI: 10.1002/eji.202250060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T (TRM ) cells play a vital role in local immune protection against infection and cancer. The location of TRM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8+ TRM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on TRM cell generation in the context of vaccination.
Collapse
Affiliation(s)
- Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Morgan RC, Frank C, Greger M, Attaway M, Sigvardsson M, Bartom ET, Kee BL. TGF-β Promotes the Postselection Thymic Development and Peripheral Function of IFN-γ-Producing Invariant NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1376-1384. [PMID: 37702745 PMCID: PMC10592054 DOI: 10.4049/jimmunol.2200809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
IFN-γ-producing invariant NKT (iNKT)1 cells are lipid-reactive innate-like lymphocytes that are resident in the thymus and peripheral tissues where they protect against pathogenic infection. The thymic functions of iNKT1 cells are not fully elucidated, but subsets of thymic iNKT cells modulate CD8 T cell, dendritic cell, B cell, and thymic epithelial cell numbers or function. In this study, we show that a subset of murine thymic iNKT1 cells required TGF-β-induced signals for their postselection development, to maintain hallmark TGF-β-induced genes, and for expression of the adhesion receptors CD49a and CD103. However, the residency-associated receptor CD69 was not TGF-β signaling-dependent. Recently described CD244+ c2 thymic iNKT1 cells, which produce IFN-γ without exogenous stimulation and have NK-like characteristics, reside in this TGF-β-responsive population. Liver and spleen iNKT1 cells do not share this TGF-β gene signature, but nonetheless TGF-β impacts liver iNKT1 cell phenotype and function. Our findings provide insight into the heterogeneity of mechanisms guiding iNKT1 cell development in different tissues and suggest a close association between a subset of iNKT1 cells and TGF-β-producing cells in the thymus that support their development.
Collapse
Affiliation(s)
- Roxroy C. Morgan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Cameron Frank
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
| | - Munmun Greger
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| | - Mary Attaway
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| | | | - Elizabeth T. Bartom
- Dept. of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago IL
| | - Barbara L. Kee
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
31
|
Rotrosen E, Kupper TS. Assessing the generation of tissue resident memory T cells by vaccines. Nat Rev Immunol 2023; 23:655-665. [PMID: 37002288 PMCID: PMC10064963 DOI: 10.1038/s41577-023-00853-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/03/2023]
Abstract
Vaccines have been a hugely successful public health intervention, virtually eliminating many once common diseases of childhood. However, they have had less success in controlling endemic pathogens including Mycobacterium tuberculosis, herpesviruses and HIV. A focus on vaccine-mediated generation of neutralizing antibodies, which has been a successful approach for some pathogens, has been complicated by the emergence of escape variants, which has been seen for pathogens such as influenza viruses and SARS-CoV-2, as well as for HIV-1. We discuss how vaccination strategies aimed at generating a broad and robust T cell response may offer superior protection against pathogens, particularly those that have been observed to mutate rapidly. In particular, we consider here how a focus on generating resident memory T cells may be uniquely effective for providing immunity to pathogens that typically infect (or become reactivated in) the skin, respiratory mucosa or other barrier tissues.
Collapse
Affiliation(s)
- Elizabeth Rotrosen
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Ding M, Zhen Z, Ju M, Quzong S, Zeng X, Guo X, Li R, Xu M, Xu J, Li H, Zhang W. Metabolomic profiling between vitiligo patients and healthy subjects in plateau exhibited significant differences with those in plain. Clin Immunol 2023; 255:109764. [PMID: 37683903 DOI: 10.1016/j.clim.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Vitiligo is the most common disorder of depigmentation, which is caused by multiple factors like metabolic abnormality, oxidative stress and the disorders of immune. In recent years, several studies have used untargeted metabolomics to analyze differential metabolites in patients with vitiligo, however, the subjects in these studies were all in plain area. In our study, multivariate analysis indicated a distinct separation between the healthy subjects from plateau and plain areas in electrospray positive and negative ions modes, respectively. Similarly, a distinct separation between vitiligo patients and healthy controls from plateau and plain areas was detected in the two ions modes. Among the identified metabolites, the serum levels of sphingosine 1-phosphate (S1P) were markedly higher in vitiligo patients compare to healthy subjects in plain and markedly higher in healthy subjects in plateau compare to those in plain. There are significant differences in serum metabolome between vitiligo patients and healthy subjects in both plateau and plain areas, as well as in healthy subjects from plateau and plain areas. S1P metabolism alteration may be involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Meilin Ding
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zha Zhen
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Suolang Quzong
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Xuesi Zeng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoxia Guo
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rui Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Mingming Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jingjing Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210042, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
33
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
Ganley M, Holz LE, Minnell JJ, de Menezes MN, Burn OK, Poa KCY, Draper SL, English K, Chan STS, Anderson RJ, Compton BJ, Marshall AJ, Cozijnsen A, Chua YC, Ge Z, Farrand KJ, Mamum JC, Xu C, Cockburn IA, Yui K, Bertolino P, Gras S, Le Nours J, Rossjohn J, Fernandez-Ruiz D, McFadden GI, Ackerley DF, Painter GF, Hermans IF, Heath WR. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat Immunol 2023; 24:1487-1498. [PMID: 37474653 DOI: 10.1038/s41590-023-01562-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Collapse
Affiliation(s)
- Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Lauren E Holz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Maria N de Menezes
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kean Chan Yew Poa
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah L Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kieran English
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Susanna T S Chan
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Anton Cozijnsen
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Yu Cheng Chua
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Zhengyu Ge
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - John C Mamum
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Calvin Xu
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katsuyuki Yui
- Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Patrick Bertolino
- Centenary Institute and University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Stephanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David F Ackerley
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| | - Ian F Hermans
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| | - William R Heath
- Department of Microbiology and Immunology, The Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
35
|
Heim TA, Schultz AC, Delclaux I, Cristaldi V, Churchill MJ, Lund AW. Lymphatic vessel transit seeds precursors to cytotoxic resident memory T cells in skin draining lymph nodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555369. [PMID: 37693469 PMCID: PMC10491166 DOI: 10.1101/2023.08.29.555369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Resident memory T cells (TRM) provide rapid, localized protection in peripheral tissues to pathogens and cancer. While TRM are also found in lymph nodes (LN), how they develop during primary infection and their functional significance remains largely unknown. Here, we track the anatomical distribution of anti-viral CD8+ T cells as they simultaneously seed skin and LN TRM using a model of skin infection with restricted antigen distribution. We find exquisite localization of LN TRM to the draining LN of infected skin. LN TRM formation depends on lymphatic transport and specifically egress of effector CD8+ T cells that appear poised for residence as early as 12 days post infection. Effector CD8+ T cell transit through skin is necessary and sufficient to populate LN TRM in draining LNs, a process reinforced by antigen encounter in skin. Importantly, we demonstrate that LN TRM are sufficient to provide protection against pathogenic rechallenge. These data support a model whereby a subset of tissue infiltrating CD8+ T cells egress during viral clearance, and establish regional protection in the draining lymphatic basin as a mechanism to prevent pathogen spread.
Collapse
Affiliation(s)
- Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Austin C. Schultz
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vanessa Cristaldi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Hermans L, Denaeghel S, Jansens RJJ, De Pelsmaeker S, Van Nieuwerburgh F, Deforce D, Hegewisch-Solloa E, Mace EM, Cox E, Devriendt B, Favoreel HW. Comparative transcriptomics of porcine liver-resident CD8α dim, liver CD8α high and circulating blood CD8α high NK cells reveals an intermediate phenotype of liver CD8α high NK cells. Front Immunol 2023; 14:1219078. [PMID: 37662951 PMCID: PMC10471975 DOI: 10.3389/fimmu.2023.1219078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Liver-resident NK (lrNK) cells have been studied in humans as well as in mice. Unfortunately, important differences have been observed between murine and human lrNK cells, complicating the extrapolation of data obtained in mice to man. We previously described two NK cell subsets in the porcine liver: A CD8αhigh subset, with a phenotype much like conventional CD8αhigh NK cells found in the peripheral blood, and a specific liver-resident CD8αdim subset which phenotypically strongly resembles human lrNK cells. These data suggest that the pig might be an attractive model for studying lrNK cell biology. In the current study, we used RNA-seq to compare the transcriptome of three porcine NK cell populations: Conventional CD8αhigh NK cells from peripheral blood (cNK cells), CD8αhigh NK cells isolated from the liver, and the liver-specific CD8αdim NK cells. We found that highly expressed transcripts in the CD8αdim lrNK cell population mainly include genes associated with the (adaptive) immune response, whereas transcripts associated with cell migration and extravasation are much less expressed in this subset compared to cNK cells. Overall, our data indicate that CD8αdim lrNK cells show an immature and anti-inflammatory phenotype. Interestingly, we also observed that the CD8αhigh NK cell population that is present in the liver appears to represent a population with an intermediate phenotype. Indeed, while the transcriptome of these cells largely overlaps with that of cNK cells, they also express transcripts associated with liver residency, in particular CXCR6. The current, in-depth characterization of the transcriptome of porcine liver NK cell populations provides a basis to use the pig model for research into liver-resident NK cells.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sofie Denaeghel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robert J. J. Jansens
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, United States
| | - Steffi De Pelsmaeker
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Dieter Deforce
- Faculty of Pharmaceutical Sciences, NXTGNT, Ghent University, Ghent, Belgium
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric Cox
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
37
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
38
|
Hallisey VM, Schwab SR. Get me out of here: Sphingosine 1-phosphate signaling and T cell exit from tissues during an immune response. Immunol Rev 2023; 317:8-19. [PMID: 37212181 DOI: 10.1111/imr.13219] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
During an immune response, the duration of T cell residence in lymphoid and non-lymphoid tissues likely affects T cell activation, differentiation, and memory development. The factors that govern T cell transit through inflamed tissues remain incompletely understood, but one important determinant of T cell exit from tissues is sphingosine 1-phosphate (S1P) signaling. In homeostasis, S1P levels are high in blood and lymph compared to lymphoid organs, and lymphocytes follow S1P gradients out of tissues into circulation using varying combinations of five G-protein coupled S1P receptors. During an immune response, both the shape of S1P gradients and the expression of S1P receptors are dynamically regulated. Here we review what is known, and key questions that remain unanswered, about how S1P signaling is regulated in inflammation and in turn how S1P shapes immune responses.
Collapse
Affiliation(s)
- Victoria M Hallisey
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Susan R Schwab
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
39
|
Depew CE, Nguyen AT, Franke MC, Calderon J, Sciammas R, McSorley SJ. Cutting Edge: Optimal Formation of Hepatic Tissue-Resident Memory CD4 T Cells Requires T-bet Regulation of CD18. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:180-185. [PMID: 37283516 PMCID: PMC10330511 DOI: 10.4049/jimmunol.2300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
CD4 tissue-resident memory T cells (TRMs) allow robust protection of barrier surfaces against pathogens. We investigated the role of T-bet in the formation of liver CD4 TRMs using mouse models. T-bet-deficient CD4 T cells did not efficiently form liver TRMs when compared with wild-type (WT). In addition, ectopic expression of T-bet enhanced the formation of liver CD4 TRMs, but only when in competition with WT CD4 T cells. Liver TRMs also expressed higher levels of CD18, which was T-bet dependent. The WT competitive advantage was blocked by Ab neutralization of CD18. Taken together, our data show that activated CD4 T cells compete for entry to liver niches via T-bet-induced expression of CD18, allowing TRM precursors to access subsequent hepatic maturation signals. These findings uncover an essential role for T-bet in liver TRM CD4 formation and suggest targeted enhancement of this pathway could increase the efficacy of vaccines that require hepatic TRMs.
Collapse
Affiliation(s)
- Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Alana T Nguyen
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Marissa C Franke
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Jesica Calderon
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Roger Sciammas
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| |
Collapse
|
40
|
Abstract
Cytotoxic CD8+ T cells recognize and eliminate infected or cancerous cells. A subset of CD8+ memory T cells called tissue-resident memory T cells (TRM ) resides in peripheral tissues, monitors the periphery for pathogen invasion, and offers a rapid and potent first line of defense at potential sites of re-infection. TRM cells are found in almost all tissues and are transcriptionally and epigenetically distinct from circulating memory populations, which shows their ability to acclimate to the tissue environment to allow for long-term survival. Recent work and the broader availability of single-cell profiling have highlighted TRM heterogeneity among different tissues, as well as identified specialized subsets within individual tissues, that are time and infection dependent. TRM cell phenotypic and transcriptional heterogeneity has implications for understanding TRM function and longevity. This review aims to summarize and discuss the latest findings on CD8+ TRM heterogeneity using single-cell molecular profiling and explore the potential implications for immune protection and the design of immune therapies.
Collapse
Affiliation(s)
- Maximilian Heeg
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Ananda W Goldrath
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
41
|
Chandiran K, Cauley LS. The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response. Front Immunol 2023; 14:1199671. [PMID: 37426662 PMCID: PMC10327426 DOI: 10.3389/fimmu.2023.1199671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFβ) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFβ and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.
Collapse
Affiliation(s)
- Karthik Chandiran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Linda S. Cauley
- Department of Immunology, UCONN Health, Farmington, CT, United States
| |
Collapse
|
42
|
Nowill AE, Caruso M, de Campos-Lima PO. T-cell immunity to SARS-CoV-2: what if the known best is not the optimal course for the long run? Adapting to evolving targets. Front Immunol 2023; 14:1133225. [PMID: 37388738 PMCID: PMC10303130 DOI: 10.3389/fimmu.2023.1133225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
Humanity did surprisingly well so far, considering how unprepared it was to respond to the coronavirus disease 2019 (COVID-19) threat. By blending old and ingenious new technology in the context of the accumulated knowledge on other human coronaviruses, several vaccine candidates were produced and tested in clinical trials in record time. Today, five vaccines account for the bulk of the more than 13 billion doses administered worldwide. The ability to elicit biding and neutralizing antibodies most often against the spike protein is a major component of the protection conferred by immunization but alone it is not enough to limit virus transmission. Thus, the surge in numbers of infected individuals by newer variants of concern (VOCs) was not accompanied by a proportional increase in severe disease and death rate. This is likely due to antiviral T-cell responses, whose evasion is more difficult to achieve. The present review helps navigating the very large literature on T cell immunity induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination. We examine the successes and shortcomings of the vaccinal protection in the light of the emergence of VOCs with breakthrough potential. SARS-CoV-2 and human beings will likely coexist for a long while: it will be necessary to update existing vaccines to improve T-cell responses and attain better protection against COVID-19.
Collapse
Affiliation(s)
- Alexandre E. Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas, SP, Brazil
| | - Manuel Caruso
- CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center, Québec, QC, Canada
| | - Pedro O. de Campos-Lima
- Boldrini Children’s Center, Campinas, SP, Brazil
- Molecular and Morphofunctional Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
43
|
Baxter AE, Huang H, Giles JR, Chen Z, Wu JE, Drury S, Dalton K, Park SL, Torres L, Simone BW, Klapholz M, Ngiow SF, Freilich E, Manne S, Alcalde V, Ekshyyan V, Berger SL, Shi J, Jordan MS, Wherry EJ. The SWI/SNF chromatin remodeling complexes BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8 + T cells. Immunity 2023; 56:1320-1340.e10. [PMID: 37315535 DOI: 10.1016/j.immuni.2023.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Amy E Baxter
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Simone L Park
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leonel Torres
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brandon W Simone
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max Klapholz
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth Freilich
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Victor Alcalde
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Viktoriya Ekshyyan
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Martha S Jordan
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Abdelwahab T, Stadler D, Knöpper K, Arampatzi P, Saliba AE, Kastenmüller W, Martini R, Groh J. Cytotoxic CNS-associated T cells drive axon degeneration by targeting perturbed oligodendrocytes in PLP1 mutant mice. iScience 2023; 26:106698. [PMID: 37182098 PMCID: PMC10172788 DOI: 10.1016/j.isci.2023.106698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Myelin defects lead to neurological dysfunction in various diseases and in normal aging. Chronic neuroinflammation often contributes to axon-myelin damage in these conditions and can be initiated and/or sustained by perturbed myelinating glia. We have previously shown that distinct PLP1 mutations result in neurodegeneration that is largely driven by adaptive immune cells. Here we characterize CD8+ CNS-associated T cells in myelin mutants using single-cell transcriptomics and identify population heterogeneity and disease-associated changes. We demonstrate that early sphingosine-1-phosphate receptor modulation attenuates T cell recruitment and neural damage, while later targeting of CNS-associated T cell populations is inefficient. Applying bone marrow chimerism and utilizing random X chromosome inactivation, we provide evidence that axonal damage is driven by cytotoxic, antigen specific CD8+ T cells that target mutant myelinating oligodendrocytes. These findings offer insights into neural-immune interactions and are of translational relevance for neurological conditions associated with myelin defects and neuroinflammation.
Collapse
Affiliation(s)
- Tassnim Abdelwahab
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - David Stadler
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Institute for Systems Immunology, University of Würzburg, Würzburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Würzburg, Germany
| | | | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Schuster IS, Sng XYX, Lau CM, Powell DR, Weizman OE, Fleming P, Neate GEG, Voigt V, Sheppard S, Maraskovsky AI, Daly S, Koyama M, Hill GR, Turner SJ, O'Sullivan TE, Sun JC, Andoniou CE, Degli-Esposti MA. Infection induces tissue-resident memory NK cells that safeguard tissue health. Immunity 2023; 56:531-546.e6. [PMID: 36773607 PMCID: PMC10360410 DOI: 10.1016/j.immuni.2023.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/17/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Iona S Schuster
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| | - Xavier Y X Sng
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Powell
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Fleming
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Georgia E G Neate
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Valentina Voigt
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Sam Sheppard
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas I Maraskovsky
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Sheridan Daly
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Motoko Koyama
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J Turner
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher E Andoniou
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia
| | - Mariapia A Degli-Esposti
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
46
|
Hodgson R, Crockford TL, Bhandari A, Kepple JD, Back J, Cawthorne E, Abeler-Dörner L, Laing AG, Clare S, Speak A, Adams DJ, Dougan G, Hayday AC, Deobagkar-Lele M, Cornall RJ, Bull KR. Prolidase Deficiency Causes Spontaneous T Cell Activation and Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:547-557. [PMID: 36637239 PMCID: PMC9946897 DOI: 10.4049/jimmunol.2200212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/10/2022] [Indexed: 01/14/2023]
Abstract
Prolidase deficiency (PD) is a multisystem disorder caused by mutations in the PEPD gene, which encodes a ubiquitously expressed metallopeptidase essential for the hydrolysis of dipeptides containing C-terminal proline or hydroxyproline. PD typically presents in childhood with developmental delay, skin ulcers, recurrent infections, and, in some patients, autoimmune features that can mimic systemic lupus erythematosus. The basis for the autoimmune association is uncertain, but might be due to self-antigen exposure with tissue damage, or indirectly driven by chronic infection and microbial burden. In this study, we address the question of causation and show that Pepd-null mice have increased antinuclear autoantibodies and raised serum IgA, accompanied by kidney immune complex deposition, consistent with a systemic lupus erythematosus-like disease. These features are associated with an accumulation of CD4 and CD8 effector T cells in the spleen and liver. Pepd deficiency leads to spontaneous T cell activation and proliferation into the effector subset, which is cell intrinsic and independent of Ag receptor specificity or antigenic stimulation. However, an increase in KLRG1+ effector CD8 cells is not observed in mixed chimeras, in which the autoimmune phenotype is also absent. Our findings link autoimmune susceptibility in PD to spontaneous T cell dysfunction, likely to be acting in combination with immune activators that lie outside the hemopoietic system but result from the abnormal metabolism or loss of nonenzymatic prolidase function. This knowledge provides insight into the role of prolidase in the maintenance of self-tolerance and highlights the importance of treatment to control T cell activation.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tanya L. Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jessica D. Kepple
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer Back
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Adam G. Laing
- Department of Immunobiology, King’s College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom; and
| | - Simon Clare
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | | | - Adrian C. Hayday
- Department of Immunobiology, King’s College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom; and
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J. Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine R. Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Breen MS, Fan X, Levy T, Pollak RM, Collins B, Osman A, Tocheva AS, Sahin M, Berry-Kravis E, Soorya L, Thurm A, Powell CM, Bernstein JA, Kolevzon A, Buxbaum JD. Large 22q13.3 deletions perturb peripheral transcriptomic and metabolomic profiles in Phelan-McDermid syndrome. HGG ADVANCES 2023; 4:100145. [PMID: 36276299 PMCID: PMC9579712 DOI: 10.1016/j.xhgg.2022.100145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused at least in part by haploinsufficiency of the SHANK3 gene, due to sequence variants in SHANK3 or subtelomeric 22q13.3 deletions. Phenotypic differences have been reported between PMS participants carrying small "class I" mutations and large "class II" mutations; however, the molecular perturbations underlying these divergent phenotypes remain obscure. Using peripheral blood transcriptome and serum metabolome profiling, we examined the molecular perturbations in the peripheral circulation associated with a full spectrum of PMS genotypes spanning class I (n = 37) and class II mutations (n = 39). Transcriptomic data revealed 52 genes with blood expression profiles that tightly scale with 22q.13.3 deletion size. Furthermore, we uncover 208 underexpressed genes in PMS participants with class II mutations, which were unchanged in class I mutations. These genes were not linked to 22q13.3 and were strongly enriched for glycosphingolipid metabolism, NCAM1 interactions, and cytotoxic natural killer (NK) immune cell signatures. In silico predictions estimated a reduction in CD56+ CD16- NK cell proportions in class II mutations, which was validated by mass cytometry time of flight. Global metabolomics profiling identified 24 metabolites that were significantly altered in PMS participants with class II mutations and confirmed a general reduction in sphingolipid metabolism. Collectively, these results provide new evidence linking PMS participants carrying class II mutations with decreased expression of cytotoxic cell signatures, reduced relative proportions of NK cells, and lower sphingolipid metabolism. These findings highlight alternative avenues for therapeutic development and offer new mechanistic insights supporting genotype-to-phenotype associations in PMS.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuanjia Fan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca M Pollak
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brett Collins
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aya Osman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna S Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Rosamund Stone Zander Translational Neuroscience Center and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig M Powell
- Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.,Civitan International Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
48
|
Unique properties of tissue-resident memory T cells in the lungs: implications for COVID-19 and other respiratory diseases. Nat Rev Immunol 2022; 23:329-335. [PMID: 36494455 PMCID: PMC9735123 DOI: 10.1038/s41577-022-00815-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Tissue-resident memory T (TRM) cells were originally identified as a tissue-sequestered population of memory T cells that show lifelong persistence in non-lymphoid organs. That definition has slowly evolved with the documentation of TRM cells having variable terms of tissue residency combined with a capacity to return to the wider circulation. Nonetheless, reductionist experiments have identified an archetypical population of TRM cells showing intrinsic permanent residency in a wide range of non-lymphoid organs, with one notable exception: the lungs. Despite the fact that memory T cells generated during a respiratory infection are maintained in the circulation, local TRM cell numbers in the lung decline concomitantly with a decay in T cell-mediated protection. This Perspective describes the mechanisms that underpin long-term T cell lodgement in non-lymphoid tissues and explains why residency is transient for select TRM cell subsets. In doing so, it highlights the unusual nature of memory T cell egress from the lungs and speculates on the broader disease implications of this process, especially during infection with SARS-CoV-2.
Collapse
|
49
|
Kane H, LaMarche NM, Ní Scannail Á, Garza AE, Koay HF, Azad AI, Kunkemoeller B, Stevens B, Brenner MB, Lynch L. Longitudinal analysis of invariant natural killer T cell activation reveals a cMAF-associated transcriptional state of NKT10 cells. eLife 2022; 11:e76586. [PMID: 36458691 PMCID: PMC9831610 DOI: 10.7554/elife.76586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector, and memory adaptive T cells have been well studied, less is known about the transcriptional regulation of different iNKT cell activation states. Here, using single-cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2, and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen-experienced iNKT cells.
Collapse
Affiliation(s)
- Harry Kane
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
| | - Nelson M LaMarche
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Áine Ní Scannail
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Amanda E Garza
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Adiba I Azad
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Britta Kunkemoeller
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Brenneth Stevens
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lydia Lynch
- Trinity Biomedical Science Institute, Trinity College DublinDublinIreland
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
50
|
Suryadevara N, Kumar A, Ye X, Rogers M, Williams JV, Wilson JT, Karijolich J, Joyce S. A molecular signature of lung-resident CD8 + T cells elicited by subunit vaccination. Sci Rep 2022; 12:19101. [PMID: 36351985 PMCID: PMC9645351 DOI: 10.1038/s41598-022-21620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Natural infection as well as vaccination with live or attenuated viruses elicit tissue resident, CD8+ memory T cell (Trm) response. Trm cells so elicited act quickly upon reencounter with the priming agent to protect the host. These Trm cells express a unique molecular signature driven by the master regulators-Runx3 and Hobit. We previously reported that intranasal instillation of a subunit vaccine in a prime boost vaccination regimen installed quick-acting, CD8+ Trm cells in the lungs that protected against lethal vaccinia virus challenge. It remains unexplored whether CD8+ Trm responses so elicited are driven by a similar molecular signature as those elicited by microbes in a real infection or by live, attenuated pathogens in conventional vaccination. We found that distinct molecular signatures distinguished subunit vaccine-elicited lung interstitial CD8+ Trm cells from subunit vaccine-elicited CD8+ effector memory and splenic memory T cells. Nonetheless, the transcriptome signature of subunit vaccine elicited CD8+ Trm resembled those elicited by virus infection or vaccination. Clues to the basis of tissue residence and function of vaccine specific CD8+ Trm cells were found in transcripts that code for chemokines and chemokine receptors, purinergic receptors, and adhesins when compared to CD8+ effector and splenic memory T cells. Our findings inform the utility of protein-based subunit vaccination for installing CD8+ Trm cells in the lungs to protect against respiratory infectious diseases that plague humankind.
Collapse
Affiliation(s)
- Naveenchandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiang Ye
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Meredith Rogers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - John V Williams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Paediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
- Institute for Infection, Immunity, and Inflammation in Children (i4Kids), Pittsburgh, PA, 15224, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - John Karijolich
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Center, Nashville, TN, 37212, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|