1
|
Ryytty S, Nurminen K, Mäkinen P, Suomalainen A, Hämäläinen RH. Heightened sensitivity to adverse effects of metformin in mtDNA mutant patient cells. Life Sci 2025; 366-367:123486. [PMID: 39978587 DOI: 10.1016/j.lfs.2025.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
AIMS Metformin (Met) is a widely used, cost-effective, and relatively safe drug, primarily prescribed for diabetes, that also exhibits beneficial effects in other conditions, such as in cardiovascular diseases, neurological disorders, and cancer. Despite its common use, the safety of Met in patients with primary mitochondrial disease remains uncertain, as both Met and mitochondrial dysfunction increase the risk of lactic acidosis. Here we have examined the effects of Met in patient cells with m.3243A>G mitochondrial DNA mutation. MATERIALS AND METHODS We utilized induced pluripotent stem cells (iPSCs) derived from two m.3243A>G patients, alongside cardiomyocytes differentiated from these iPSCs (iPSC-CMs). The cells were exposed to 10, 100, and 1000 μM Met for 24 h, and the effects on cellular metabolism and mitochondrial function were evaluated. KEY FINDINGS While low concentrations, relative to common therapeutic plasma levels, increased mitochondrial respiration, higher concentrations decreased respiration in both patient and control cells. Furthermore, cells with high level of the m.3243A>G mutation were more sensitive to Met than control cells. Additionally, we observed a clear patient-specific response to Met in cardiomyocytes. SIGNIFICANCE The findings emphasize the critical importance of selecting appropriate Met concentrations in cellular experiments and demonstrate the variability in Met's effects between individuals. Moreover, the results highlight the need for caution when considering Met use in patients with primary mitochondrial disorders.
Collapse
Affiliation(s)
- Sanna Ryytty
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Katriina Nurminen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Petri Mäkinen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland; HUSLab, Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
2
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Bushnell C, Kernan WN, Sharrief AZ, Chaturvedi S, Cole JW, Cornwell WK, Cosby-Gaither C, Doyle S, Goldstein LB, Lennon O, Levine DA, Love M, Miller E, Nguyen-Huynh M, Rasmussen-Winkler J, Rexrode KM, Rosendale N, Sarma S, Shimbo D, Simpkins AN, Spatz ES, Sun LR, Tangpricha V, Turnage D, Velazquez G, Whelton PK. 2024 Guideline for the Primary Prevention of Stroke: A Guideline From the American Heart Association/American Stroke Association. Stroke 2024; 55:e344-e424. [PMID: 39429201 DOI: 10.1161/str.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
AIM The "2024 Guideline for the Primary Prevention of Stroke" replaces the 2014 "Guidelines for the Primary Prevention of Stroke." This updated guideline is intended to be a resource for clinicians to use to guide various prevention strategies for individuals with no history of stroke. METHODS A comprehensive search for literature published since the 2014 guideline; derived from research involving human participants published in English; and indexed in MEDLINE, PubMed, Cochrane Library, and other selected and relevant databases was conducted between May and November 2023. Other documents on related subject matter previously published by the American Heart Association were also reviewed. STRUCTURE Ischemic and hemorrhagic strokes lead to significant disability but, most important, are preventable. The 2024 primary prevention of stroke guideline provides recommendations based on current evidence for strategies to prevent stroke throughout the life span. These recommendations align with the American Heart Association's Life's Essential 8 for optimizing cardiovascular and brain health, in addition to preventing incident stroke. We also have added sex-specific recommendations for screening and prevention of stroke, which are new compared with the 2014 guideline. Many recommendations for similar risk factor prevention were updated, new topics were reviewed, and recommendations were created when supported by sufficient-quality published data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Eliza Miller
- American College of Obstetricians and Gynecologists liaison
| | | | | | | | | | | | | | - Alexis N Simpkins
- American Heart Association Stroke Council Scientific Statement Oversight Committee on Clinical Practice Guideline liaison
| | | | | | | | | | | | | |
Collapse
|
4
|
Gupta V, Jolly B, Bhoyar RC, Divakar MK, Jain A, Mishra A, Senthivel V, Imran M, Scaria V, Sivasubbu S. Spectrum of rare and common mitochondrial DNA variations from 1029 whole genomes of self-declared healthy individuals from India. Comput Biol Chem 2024; 112:108118. [PMID: 38878606 DOI: 10.1016/j.compbiolchem.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
Mitochondrial disorders are a class of heterogeneous disorders caused by genetic variations in the mitochondrial genome (mtDNA) as well as the nuclear genome. The spectrum of mtDNA variants remains unexplored in the Indian population. In the present study, we have cataloged 2689 high confidence single nucleotide variants, small insertions and deletions in mtDNA in 1029 healthy Indian individuals. We found a major proportion (76.5 %) of the variants being rare (AF<=0.005) in the studied population. Intriguingly, we found two 'confirmed' pathogenic variants (m.1555 A>G and m.14484 T>C) with a frequency of ∼1 in 250 individuals in our dataset. The high carrier frequency underscores the need for screening of the mtDNA pathogenic mutations in newborns in India. Interestingly, our analysis also revealed 202 variants in our dataset which have been 'reported' in disease cases as per the MITOMAP database. Additionally, we found the frequency of haplogroup M (52.2 %) to be the highest among all the 18 top-level haplogroups found in our dataset. In comparison to the global population datasets, 20 unique mtDNA variants are found in the Indian population. We hope the whole genome sequencing based compendium of mtDNA variants along with their allele frequencies and heteroplasmy levels in the Indian population will drive additional genome scale studies for mtDNA. Furthermore, the identification of clinically relevant variants in our dataset will aid in better clinical interpretation of the variants in mitochondrial disorders.
Collapse
Affiliation(s)
- Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Mohit Kumar Divakar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohamed Imran
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Majamaa K, Kärppä M, Moilanen JS. Neurological manifestations in adult patients with the m.3243A>G variant in mitochondrial DNA. BMJ Neurol Open 2024; 6:e000825. [PMID: 39324021 PMCID: PMC11423728 DOI: 10.1136/bmjno-2024-000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
ABSTRACT Background The m.3243A>G variant in mitochondrial DNA (mtDNA) is the most common cause of the MELAS (Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) syndrome usually commencing in childhood or adolescence. In adults, the variant presents with versatile and mostly neurological phenotypes, but MELAS may not be common. Objective To examine the frequency of phenotypes in adults with m.3243A>G in a population-based cohort and in a meta-analysis of reported case series. Methods We clinically examined 51 adult patients with m.3243A>G to determine the frequency of phenotypes and to analyse the contribution of variant heteroplasmy, age, sex and mtDNA haplogroup to the phenotypes. The frequencies of neurological features were also assessed in a meta-analysis on 25 published case series reporting 1314 patients. Results Sensorineural hearing impairment (HI), cognitive impairment and myopathy were the most common manifestations, whereas stroke-like episodes were infrequent. Variant heteroplasmy and age were only modest predictors of the phenotypes, although heteroplasmy correlated significantly with disability and Kaplan-Meier analysis showed progression of phenotypes with age. Male sex predicted more severe disability, whereas haplogroup UK was associated with no significant disability. Meta-analysis revealed substantial heterogeneity of phenotype frequencies and preferential inclusion of the MELAS phenotype. Discussion In adult patients with m.3243A>G sensorineural HI, cognitive impairment and myopathy are common manifestations with lifetime prevalences approaching unity. Stroke-like episodes are rare. Variant heteroplasmy, age, sex and mtDNA haplogroup contribute to the severity of the disease. Meta-analysis provided a solid estimate of the various neurological symptoms in adults with m.3243A>G.
Collapse
Affiliation(s)
- Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Jukka S Moilanen
- Research Unit of Clinical Medicine, Clinical Genetics, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
6
|
Gunawardena K, Praveenan S, Dissanayake VHW, Ratnayake P. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes with coexisting nemaline myopathy: a case report. J Med Case Rep 2024; 18:420. [PMID: 39252049 PMCID: PMC11385988 DOI: 10.1186/s13256-024-04723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes and nemaline myopathy are two rare genetic conditions. We report the first case reported in world literature with coexistence of both these rare disorders. CASE PRESENTATION A 11-year-old previously healthy Sri Lankan male child, product of a nonconsanguineous marriage with normal development presented with acute onset short lasting recurring episodes of right-sided eye deviation with impaired consciousness. In between episodes he regained consciousness. Family history revealed a similar presentation in the mother at 36 years of age. Examination was significant for short stature and proximal upper and lower limb weakness. His plasma and cerebrospinal fluid lactate were elevated. Magnetic resonance imaging brain had evidence of an acute infarction in the right occipital territory. Sanger sequencing for common mitochondrial variants of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes confirmed this diagnosis. Whole exome sequencing revealed pathogenic compound heterozygous variants in NEB gene implicating in coexisting nemaline myopathy. Acute presentation was managed with supportive care, antiepileptics, and mitochondrial supplementation. Currently he is stable on daily supplementation of arginine and limb-strengthening physiotherapy. He is being monitored closely clinically and with serum lactate level. CONCLUSION Genetic diseases are rare. Coexistence of two genetic conditions is even rarer. Genetic confirmation of diagnosis is imperative for prediction of complications, accurate management, and genetic counseling.
Collapse
Affiliation(s)
- Kawmadi Gunawardena
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka.
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka.
| | - Somasundaram Praveenan
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Vajira H W Dissanayake
- Department of Anatomy, Genetics and Bioinformatics, Faculty of Medicine, University of Colombo, Colombo 08, Sri Lanka
| | - Pyara Ratnayake
- Pediatric Neurology Department, Lady Ridgeway Hospital for Children, Colombo 08, Sri Lanka
| |
Collapse
|
7
|
Agdamag AC, Nandar PP, Tang WHW. Advanced Heart Failure Therapies in Neuromuscular Diseases. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2024; 26:255-270. [PMID: 39777119 PMCID: PMC11706575 DOI: 10.1007/s11936-024-01046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 01/11/2025]
Abstract
Purpose of Review The main objective of this review article is to discuss the prevalence, utilization, and outcomes associated with advanced heart failure therapies among patients with neuromuscular disorders. Recent Findings Neuromuscular disorders often have multisystem involvement with a high prevalence of cardiovascular pathology. With the improvement in management of respiratory related complications, heart failure is now the leading cause of mortality in this patient population. Advanced heart failure therapies with durable left ventricular assist devices and heart transplantation have proven to be feasible and safe treatment options in selected patients. Summary Management of neuromuscular disease involves multidisciplinary team involvement given the systemic nature of the disease. Early recognition and close monitoring of these patients will allow for timely initiation of advanced heart failure therapies that can lead to successful outcomes.
Collapse
Affiliation(s)
- Arianne Clare Agdamag
- Section of Advanced Heart Failure and Transplantation Medicine, Department of Cardiovascular Medicine, Miller Family Heart, Vascular and Thoracic Institute, Robert and Suzanne Tomsich, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Phoo Pwint Nandar
- Section of Advanced Heart Failure, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - W. H. Wilson Tang
- Section of Advanced Heart Failure and Transplantation Medicine, Department of Cardiovascular Medicine, Miller Family Heart, Vascular and Thoracic Institute, Robert and Suzanne Tomsich, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
9
|
Sun YC, Chou YP, Ho PH, Chen XX, Chen PY, Chu CH, Lin HC. Bilateral cochlear implants in a MELAS patient. Eur Arch Otorhinolaryngol 2024; 281:3265-3268. [PMID: 38409582 DOI: 10.1007/s00405-024-08532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a maternally inherited mitochondrial disease that affects various systems in the body, particularly the brain, nervous system, and muscles. Among these systems, sensorineural hearing loss is a common additional symptom. METHODS A 42-year-old female patient with MELAS who experienced bilateral profound deafness and underwent bilateral sequential cochlear implantation (CIs). Speech recognition and subjective outcomes were evaluated. RESULTS Following the first CI follow-up, the patient exhibited improved speech recognition ability and decided to undergo the implantation of the second ear just two months after the initial CI surgery. The second CI also demonstrated enhanced speech recognition ability. Subjective outcomes were satisfactory for bilateral CIs. CONCLUSIONS MELAS patients receiving bilateral CIs can attain satisfactory post-CI speech recognition, spatial hearing, and sound qualities.
Collapse
Affiliation(s)
- Yung-Chen Sun
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Audiology and Speech Language Pathology, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Yu-Pu Chou
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei-Hsuan Ho
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Audiology and Speech Language Pathology, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Xiang-Xiang Chen
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Audiology and Speech Language Pathology, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Pey-Yu Chen
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Audiology and Speech Language Pathology, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Chia-Huei Chu
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Audiology and Speech Language Pathology, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan
| | - Hung-Ching Lin
- Department of Otolaryngology and Head Neck Surgery, MacKay Memorial Hospital, Taipei, Taiwan.
- Department of Audiology and Speech Language Pathology, MacKay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, 252, Taiwan.
| |
Collapse
|
10
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
11
|
Missen S, Wilson C, Potter H, Vincent AL, Murphy R, Roxburgh R, Rodrigues M, Poke G, Robertson SP, Thorburn DR, Glamuzina E. Mitochondrial disease in New Zealand: a nationwide prevalence study. Intern Med J 2024; 54:388-397. [PMID: 37732891 DOI: 10.1111/imj.16211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The complexities of mitochondrial disease make epidemiological studies challenging, yet this information is important in understanding the healthcare burden and addressing service and educational needs. Existing studies are limited to quaternary centres or focus on a single genotype or phenotype and estimate disease prevalence at 12.5 per 100 000. New Zealand's (NZ) size and partially integrated national healthcare system make it amenable to a nationwide prevalence study. AIM To estimate the prevalence of molecularly confirmed and suspected mitochondrial disease on 31 December 2015 in NZ. METHODS Cases were identified from subspecialists and laboratory databases and through interrogation of the Ministry of Health National Minimum Dataset with a focus on presentations between 2000 and 2015. Patient records were reviewed, and those with a diagnosis of 'mitochondrial disease' who were alive and residing in NZ on the prevalence date were included. These were divided into molecularly confirmed and clinically suspected cases. Official NZ estimated resident population data were used to calculate prevalence. RESULTS Seven hundred twenty-three unique national health index numbers were identified. Five hundred five were excluded. The minimum combined prevalence for mitochondrial disease was 4.7 per 100 000 (95% confidence interval (CI): 4.1-5.4). The minimum prevalence for molecularly confirmed and suspected disease was 2.9 (95% CI 2.4-3.4) and 1.8 (95% CI 1.4-2.2) cases per 100 000 respectively. CONCLUSIONS Within the limitations of this study, comparison to similar prevalence studies performed by specialist referral centres suggests mitochondrial disease is underdiagnosed in NZ. This highlights a need for improved education and referral pathways for mitochondrial disease in NZ.
Collapse
Affiliation(s)
- Sarah Missen
- Child Health Service, Whangarei Hospital, Te Whatu Ora - Health New Zealand, Te Tai Tokerau, Whangarei, New Zealand
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Callum Wilson
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Adult and Paediatric National Metabolic Service, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
| | - Howard Potter
- Canterbury Health Labs, Te Whatu Ora - Health New Zealand, Waitaha Canterbury, Christchurch, New Zealand
| | - Andrea L Vincent
- Greenlane Eye Clinic, Greenlane Clinical Centre, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Auckland Diabetes Centre, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Te Mana Ki Tua, Specialist Weight Management Service, Middlemore Hospital, Te Whatu Ora - Health New Zealand, Counties Manukau, Auckland, New Zealand
| | - Richard Roxburgh
- Department of Neurology, Auckland City Hospital, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Centre for Brain Research, Neurogenetics Clinics, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Miriam Rodrigues
- Department of Neurology, Auckland City Hospital, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
- Centre for Brain Research, Neurogenetics Clinics, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gemma Poke
- Central Hub, Genetic Health Service New Zealand, Te Whatu Ora - Health New Zealand, Wellington, New Zealand
| | | | - David R Thorburn
- Genomic Medicine Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Emma Glamuzina
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Adult and Paediatric National Metabolic Service, Te Whatu Ora - Health New Zealand, Te Toka Tumai, Auckland, New Zealand
| |
Collapse
|
12
|
Ambrogetti R, Kavanagh E, ElTayeb K. Late-onset mitochondrial encephalopathy with lactic acidosis and stroke-like episodes and the role of serial imaging. BMJ Case Rep 2024; 17:e259102. [PMID: 38417938 PMCID: PMC10900402 DOI: 10.1136/bcr-2023-259102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Mitochondria are essential for human metabolic function. Over 350 genetic mutations are associated with mitochondrial diseases, which are inherited in a matrilineal fashion. In mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), defective mitochondrial function and resultant impaired cellular energy production compromise vascular perfusion in affected tissues. Early diagnostic criteria suggested the diagnosis should be considered in those under 40. However, a broader range of phenotypes are now recognised, including those that present for the first time later in life. The primary presenting feature in MELAS is a stroke-like episode invariably resulting in patients undergoing neuroradiological imaging. We present a case of a woman with a first presentation of a stroke-like episode and seizures in her 40s who was eventually diagnosed with MELAS. We detail her clinical presentation, treatment and diagnosis, emphasising the role of serial imaging in her diagnosis.
Collapse
Affiliation(s)
- Robert Ambrogetti
- Internal Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ethan Kavanagh
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Khalid ElTayeb
- Neurology, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
13
|
Acquaah J, Ferdinand P, Roffe C. Adult-onset mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS): a diagnostic challenge. BMJ Case Rep 2024; 17:e256306. [PMID: 38413140 PMCID: PMC10900328 DOI: 10.1136/bcr-2023-256306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Rare causes of stroke-like presentations can be difficult to diagnose. We report a case of a man in his 40s who first presented with stroke symptoms, but whose clinical course was not typical for a stroke. A detailed investigation of the patient's medical history revealed bilateral sensorineural hearing loss which prompted a wider diagnostic assessment.Furthermore, lack of vascular risk factors and a normal angiogram strengthened our suspicion of an unusual underlying condition. Raised lactic acid levels and genetic analysis confirmed a diagnosis of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome.
Collapse
Affiliation(s)
- Jason Acquaah
- Neurosciences, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Phillip Ferdinand
- Neurosciences, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
| | - Christine Roffe
- Neurosciences, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK
- Stroke Research, Keele University School of Medicine, Keele, UK
| |
Collapse
|
14
|
Cannon SJ, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA. Penetrance and expressivity of mitochondrial variants in a large clinically unselected population. Hum Mol Genet 2024; 33:465-474. [PMID: 37988592 PMCID: PMC10877468 DOI: 10.1093/hmg/ddad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Whole genome sequencing (WGS) from large clinically unselected cohorts provides a unique opportunity to assess the penetrance and expressivity of rare and/or known pathogenic mitochondrial variants in population. Using WGS from 179 862 clinically unselected individuals from the UK Biobank, we performed extensive single and rare variant aggregation association analyses of 15 881 mtDNA variants and 73 known pathogenic variants with 15 mitochondrial disease-relevant phenotypes. We identified 12 homoplasmic and one heteroplasmic variant (m.3243A>G) with genome-wide significant associations in our clinically unselected cohort. Heteroplasmic m.3243A>G (MAF = 0.0002, a known pathogenic variant) was associated with diabetes, deafness and heart failure and 12 homoplasmic variants increased aspartate aminotransferase levels including three low-frequency variants (MAF ~0.002 and beta~0.3 SD). Most pathogenic mitochondrial disease variants (n = 66/74) were rare in the population (<1:9000). Aggregated or single variant analysis of pathogenic variants showed low penetrance in unselected settings for the relevant phenotypes, except m.3243A>G. Multi-system disease risk and penetrance of diabetes, deafness and heart failure greatly increased with m.3243A>G level ≥ 10%. The odds ratio of these traits increased from 5.61, 12.3 and 10.1 to 25.1, 55.0 and 39.5, respectively. Diabetes risk with m.3243A>G was further influenced by type 2 diabetes genetic risk. Our study of mitochondrial variation in a large-unselected population identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected settings. m.3243A>G was an exception at higher heteroplasmy showing a significant impact on health making it a good candidate for incidental reporting.
Collapse
Affiliation(s)
- Stuart J Cannon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Timothy Hall
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kevin Colclough
- Exeter Genomics Laboratory, RILD Building, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, United Kingdom
| | - Roisin M Boggan
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew T Hattersley
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| | - Kashyap A Patel
- Department of Clinical and Biomedical Sciences, University of Exeter, 79 Heavitree Road, Exeter, EX2 4TH, United Kingdom
| |
Collapse
|
15
|
Martikainen MH, Majamaa K. Incidence and prevalence of mtDNA-related adult mitochondrial disease in Southwest Finland, 2009-2022: an observational, population-based study. BMJ Neurol Open 2024; 6:e000546. [PMID: 38361968 PMCID: PMC10868302 DOI: 10.1136/bmjno-2023-000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
Background Mitochondrial diseases are common inherited metabolic disorders. Due to improved case ascertainment and diagnosis methods, the detection of new diagnoses of mitochondrial disease can be expected to increase. In December 2009, the prevalence of mitochondrial DNA (mtDNA)-related mitochondrial disease was 4.6/100 000 (95% CI, 2.7 to 7.2) in the adult population of Southwest Finland. We investigated the number of new diagnoses and the incidence of mitochondrial disease in Southwest Finland between December 2009 and December 2022. Methods We collected data on all adult patients from Southwest Finland diagnosed with mitochondrial disease on 31 December 2009 and 31 December 2022. Most patients had been diagnosed at the Turku University Hospital (TUH) neurology outpatient clinic. Patients were also identified by searching the TUH electronic patient database for relevant International Classification of Diseases, Tenth Revision codes and conducted mtDNA analyses. Results 42 new patients were diagnosed giving a mean annual rate of 3.2 new diagnoses. In 2022, the minimum prevalence estimate of adult mtDNA-related mitochondrial disease was 9.2/100 000 (95% CI, 6.5 to 12.7). The prevalence of adult mtDNA disease associated with m.3243A>G was 4.2/100 000 (95% CI, 2.5 to 6.7), and that with large-scale mtDNA deletions was 1.3/100 000 (95% CI, 0.4 to 2.9). During the 13-year period, the annual incidence of adult mtDNA disease was 0.6/100 000 and that of adult m.3243A>G-related disease 0.3/100 000. Conclusion Our results suggest that improved means of diagnostics and dedicated effort increase the detection of mitochondrial disease.
Collapse
Affiliation(s)
- Mika H Martikainen
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurocenter and Medical Research Center, Oulu University Hospital, Oulu, Finland
- Clinical Neurosciences, Dept. of Clinical Medicine, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Neurocenter and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
16
|
Saunders C, Longman C, Gorman G, James K, Oliwa A, Petty R, Snadden L, Farrugia ME. The West of Scotland Cohort of Mitochondrial Individuals with the m.3243A>G Variant: Variations in Phenotypes and Predictors of Disease Severity. J Neuromuscul Dis 2024; 11:179-189. [PMID: 38108361 PMCID: PMC10789362 DOI: 10.3233/jnd-230166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The m.3243A>G variant is the commonest mitochondrial (mt) DNA pathogenic variant and a frequent cause of mitochondrial disease. Individuals present with a variety of clinical manifestations from diabetes to neurological events resembling strokes. Due to this, patients are commonly cared for by a multidisciplinary team. OBJECTIVES This project aimed to identify patients with confirmed mt.3243A>G-related mitochondrial disease attending the Muscle Clinic at Queen Elizabeth University Hospital in Glasgow. We explored potential correlates between clinical phenotypes and mtDNA heteroplasmy levels, HbA1c levels, body mass index, and specific clinical manifestations. We investigated if there were discrepancies between non-neurological speciality labelling in clinical records and individuals' phenotypes. METHODS Data were gathered from the West of Scotland electronic records. Phenotypes were ascertained by a clinician with expertise in mitochondrial disorders. Statistical analyses were applied to study relationships between tissue heteroplasmy, HbA1c and clinical phenotypes including body mass index (BMI). RESULTS Forty-six individuals were identified from 31 unrelated pedigrees. Maternally inherited diabetes and deafness was the prominent syndromic phenotype (48%). A significant association was found between overall number of symptoms and bowel dysmotility (p < 0.01). HbA1c was investigated as a predictor of severity with potential association seen. Although used widely as a prognosticator, neither corrected blood nor urine mtDNA heteroplasmy levels were associated with increased number of symptoms. In 74.1% of records, syndromic phenotypes were incorrectly used by non-neurological specialities. CONCLUSIONS This m.3243 A > G patient cohort present with marked clinical heterogeneity. Urine and blood heteroplasmy levels are not reliable predictors of disease severity. HbA1c may be a novel predictor of disease severity with further research required to investigate this association. We infer that prognosis may be worse in patients with low BMIs and in those with bowel dysmotility. These results underscore a multidisciplinary approach and highlight a problem with inaccurate use of the existing nomenclature.
Collapse
Affiliation(s)
- Charlie Saunders
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Cheryl Longman
- Genetics Department, West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Kelly James
- Department of Geographical and Earth Sciences, University of Glasgow, Glasgow, G20 8QQ, UK
| | - Agata Oliwa
- Genetics Department, West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Richard Petty
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Lesley Snadden
- Genetics Department, West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Maria Elena Farrugia
- Neurology Department, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
17
|
Wang J, Yan D, Cui H, Zhang R, Ma X, Chen L, Hu C, Wu J. Identification of eight genomic protective alleles for mitochondrial diabetes by Kinship-graph convolutional network. J Diabetes Investig 2024; 15:52-62. [PMID: 38157301 PMCID: PMC10759726 DOI: 10.1111/jdi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
AIMS Nearly 85% of maternally inherited diabetes and deafness (MIDD) are caused by the m.3243A>G mutation in the mitochondrial DNA. However, the clinical phenotypes of MIDD may also be influenced by the nuclear genome, this study aimed to investigate nuclear genome variants that influence clinical phenotypes associated with m.3243A>G mutation in MIDD based on whole-genome sequencing of the patients belonging to pedigrees. MATERIALS AND METHODS We analyzed a whole-genome sequencing (WGS) dataset from blood samples of 38 MIDD patients with the m.3243A > G mutation belonging to 10 pedigrees, by developing a Kinship-graph convolutional network approach, called Ki-GCN, integrated with the conventional genome-wide association study (GWAS) methods. RESULTS We identified eight protective alleles in the nuclear genome that have protective effects against the onset of MIDD, related deafness, and also type 2 diabetes. Based on these eight protective alleles, we constructed an effective logistic regression model to predict the early or late onset of MIDD patients. CONCLUSIONS There are protective alleles in the nuclear genome that are associated with the onset-age of MIDD patients and might also provide protective effects on the deafness derived from MIDD patients.
Collapse
Affiliation(s)
- Jiahao Wang
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dandan Yan
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Haoyue Cui
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaojing Ma
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Luonan Chen
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiangChina
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Institute for Metabolic DiseaseFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
| | - Jiarui Wu
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
18
|
Cox BC, Pearson JY, Mandrekar J, Gavrilova RH. The clinical spectrum of MELAS and associated disorders across ages: a retrospective cohort study. Front Neurol 2023; 14:1298569. [PMID: 38156086 PMCID: PMC10753009 DOI: 10.3389/fneur.2023.1298569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Objective Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a severe multisystemic disease, although some have a milder phenotype. We aimed to evaluate the clinical spectrum of this disease from MELAS patients to asymptomatic carriers and identify predictors of severity. Methods We reviewed 81 patients, who had MELAS or had positive genetics without meeting clinical criteria. Patients who met criteria including lactic acidosis, encephalomyopathy, and stroke-like episodes (SLE) were categorized as MELAS, symptomatic non-MELAS, and asymptomatic. MELAS was further categorized as "standard-onset" if the first stroke-like episode (SLE) occurred before age 40 or "late-onset." Results Eighty-one patients were included: 42 MELAS (13 late-onset), 30 symptomatic non-MELAS, and 9 asymptomatic. MELAS patients had lower BMI at onset (mean 18.6 vs. 25.1 asymptomatic and 22.0 symptomatic non-MELAS, p < 0.05). There was a trend toward higher serum heteroplasmy in MELAS compared to symptomatic non-MELAS and asymptomatic (means 39.3, 29.3, and 21.8% p = 0.09). Symptomatic non-MELAS had more sensorineural hearing loss as first presenting symptom (51.6% vs. 24.4%, p < 0.05). MELAS had higher prevalence of seizures (88.1% vs. 16.7%, p < 0.05) and shorter survival from onset to death (50% mortality at 25 years vs. 10%, p < 0.05). Late-onset MELAS had longer disease duration from first symptom to first SLE (mean 16.6 vs. 9.3 yrs) and also lived longer (mean age at death 62 vs. 30). Standard-onset MELAS had more neurologic involvement at onset than late-onset (51.7% vs. 15.4%). Late-onset patients had more prevalent diabetes (69.2% vs. 13.8%) and nephropathy (53.8% vs. 10.3%). Patients with late-onset MELAS also had more organ systems involved (mean 4.1 vs. 2.7, p < 0.05). There was a trend toward higher heteroplasmy levels in standard-onset (mean 44.8% vs. 25.3%, p = 0.18). Discussion Our study highlights the spectrum of MELAS. The lower BMI in MELAS at presentation as well as higher rates of sensorineural hearing loss as initial symptom in symptomatic non-MELAS may be useful clinical markers. While many patients present before age 40 with SLE, some can present with SLE later in life. Standard onset MELAS is more likely to present with neurologic symptoms. Late-onset is more likely to suffer diabetes or nephropathy and have more organ systems involved.
Collapse
Affiliation(s)
- Benjamin C. Cox
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jennifer Y. Pearson
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jay Mandrekar
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ralitza H. Gavrilova
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Joo SY, Jang SH, Kim JA, Kim SJ, Kim B, Kim HY, Choi JY, Gee HY, Jung J. Prevalence and Clinical Characteristics of Mitochondrial DNA Mutations in Korean Patients With Sensorineural Hearing Loss. J Korean Med Sci 2023; 38:e355. [PMID: 38084023 PMCID: PMC10713439 DOI: 10.3346/jkms.2023.38.e355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Mutations in mitochondrial DNA (mtDNA) are associated with several genetic disorders, including sensorineural hearing loss. However, the prevalence of mtDNA mutations in a large cohort of Korean patients with hearing loss has not yet been investigated. Thus, this study aimed to investigate the frequency of mtDNA mutations in a cohort of with pre- or post-lingual hearing loss of varying severity. METHODS A total of 711 Korean families involving 1,099 individuals were evaluated. Six mitochondrial variants associated with deafness (MTRNR1 m.1555A>G, MTTL1 m.3243A>G, MTCO1 m.7444G>A and m.7445A>G, and MTTS1 m.7471dupC and m.7511T>C) were screened using restriction fragment length polymorphism. The prevalence of the six variants was also analyzed in a large control dataset using whole-genome sequencing data from 4,534 Korean individuals with unknown hearing phenotype. RESULTS Overall, 12 of the 711 (1.7%) patients with hearing loss had mtDNA variants, with 10 patients from independent families positive for the MTRNR1 m.1555A>G mutation and 2 patients positive for the MTCO1 m.7444G>A mutation. The clinical characteristics of patients with the mtDNA variants were characterized by post-lingual progressive hearing loss due to the m.1555A>G variant (9 of 472; 1.9%). In addition, 18/4,534 (0.4%) of the Korean population have mitochondrial variants associated with hearing loss, predominantly the m.1555A>G variant. CONCLUSION A significant proportion of Korean patients with hearing loss is affected by the mtDNA variants, with the m.1555A>G variant being the most prevalent. These results clarify the genetic basis of hearing loss in the Korean population and emphasize the need for genetic testing for mtDNA variants.
Collapse
Affiliation(s)
- Sun Young Joo
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Se Jin Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Bonggi Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
| | - Jae Young Choi
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea.
| | - Jinsei Jung
- Won-Sang Lee Institute for Hearing Loss, Seoul, Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Yagi K, Okazaki S, Ohbatake A, Nakaya M, Liu J, Arite E, Miyamoto Y, Ito N, Nakano K, Yamaaki N, Honoki H, Fujisaka S, Chujo D, Tsunoda SI, Yanagimoto K, Nozue T, Yamada M, Ooe K, Araki T, Nakashima A, Azami Y, Sodemoto Y, Tadokoro K, Nagano M, Noguchi T, Nohara A, Origasa H, Niida Y, Tada H. Negative correlation between organ heteroplasmy, particularly hepatic heteroplasmy, and age at death revealed by post-mortem studies of m.3243A > G cases. Mol Genet Metab 2023; 140:107691. [PMID: 37660570 DOI: 10.1016/j.ymgme.2023.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Mitochondrial DNA m.3243A > G mutation causes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and its associated multi-organ disorders, including diabetes. To clarify associations between m.3243A > G organ heteroplasmy and clinical phenotypes, including the age at death, we combined genetic and pathological examinations from seven unreported and 36 literature cases of autopsied subjects. Clinical characteristics of subjects were as follows: male, 13; female, 28; unknown, 2; the age at death, 36.9 ± 20.2 [4-82] years; BMI, 16.0 ± 2.9 [13.0-22.3]; diabetes, N = 21 (49%), diabetes onset age 38.6 ± 14.2 years; deafness, N = 27 (63%); stroke-like episodes (StLEp), N = 25 (58%); congestive heart failure (CHF), N = 15 (35%); CHF onset age, 51.3 ± 14.5 years. Causes of death (N = 32) were as follows: cardiac, N = 13 (41%); infection, N = 8 (25%); StLEp, N = 4 (13%); gastrointestinal, N = 4 (13%); renal, N = 2 (6%); hepatic, N = 1 (2%). High and low heteroplasmies were confirmed in non-regenerative and regenerative organs, respectively. Heteroplasmy of the liver, spleen, leukocytes, and kidney for all subjects was significantly associated with the age at death. Furthermore, the age at death was related to juvenile-onset (any m.3243A > G-related symptoms appeared before 20) and stroke-like episodes. Multiple linear regression analysis with the age at death as an objective variable showed the significant contribution of liver heteroplasty and juvenile-onset to the age at death. m.3243A > G organ heteroplasmy levels, particularly hepatic heteroplasmy, are significantly associated with the age at death in deceased cases.
Collapse
Affiliation(s)
- Kunimasa Yagi
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan; Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan.
| | - Satoko Okazaki
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Azusa Ohbatake
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Masako Nakaya
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Jianhui Liu
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Eiko Arite
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Yukiko Miyamoto
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Naoko Ito
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Kaoru Nakano
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Naoto Yamaaki
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Hisae Honoki
- First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Daisuke Chujo
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; First Department of Internal Medicine, Toyama University, Toyama 934-0194, Japan
| | - Shin-Ichiro Tsunoda
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Kunio Yanagimoto
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Tsuyoshi Nozue
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Masayo Yamada
- Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama 247-8581, Japan
| | - Kotaro Ooe
- Department of Internal Medicine, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan
| | - Tsutomu Araki
- Department of Internal Medicine, Saiseikai Kanazawa Hospital, Kanazawa 920-0353, Japan
| | - Akikatsu Nakashima
- Department of Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Japan
| | | | | | - Kenichi Tadokoro
- Bio Medical Laboratory (BML), Inc., 1361-1 Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Makoto Nagano
- Bio Medical Laboratory (BML), Inc., 1361-1 Matoba, Kawagoe, Saitama 350-1101, Japan
| | - Tohru Noguchi
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Atushi Nohara
- Department of Internal Medicine, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Japan
| | - Hideki Origasa
- The Institute of Statistical Mathematics, Toyama University, Toyama 934-0194, Japan
| | - Yo Niida
- Center for Clinical Genomics, Kanazawa Medical University Hospital, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan
| | - Hayato Tada
- Second Department of Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| |
Collapse
|
21
|
Ryytty S, Hämäläinen RH. The Mitochondrial m.3243A>G Mutation on the Dish, Lessons from In Vitro Models. Int J Mol Sci 2023; 24:13478. [PMID: 37686280 PMCID: PMC10487608 DOI: 10.3390/ijms241713478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The m.3243A>G mutation in the tRNA Leu(UUR) gene (MT-TL1) is one of the most common pathogenic point mutations in human mtDNA. Patient symptoms vary widely and the severity of the disease ranges from asymptomatic to lethal. The reason for the high heterogeneity of m.3243A>G-associated disease is still unknown, and the treatment options are limited, with only supportive interventions available. Furthermore, the heteroplasmic nature of the m.3243A>G mutation and lack of specific animal models of mtDNA mutations have challenged the study of m.3243A>G, and, besides patient data, only cell models have been available for studies. The most commonly used cell models are patient derived, such as fibroblasts and induced pluripotent stem cell (iPSC)-derived models, and cybrid models where the mutant DNA is transferred to an acceptor cell. Studies on cell models have revealed cell-type-specific effects of the m.3243A>G mutation and that the tolerance for this mutation varies between cell types and between patients. In this review, we summarize the literature on the effects of m.3243A>G in cell models.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
22
|
Rahmadanthi FR, Maksum IP. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. BIOLOGY 2023; 12:871. [PMID: 37372155 DOI: 10.3390/biology12060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Transfer RNA (tRNA) genes in the mitochondrial DNA genome play an important role in protein synthesis. The 22 tRNA genes carry the amino acid that corresponds to that codon but changes in the genetic code often occur such as gene mutations that impact the formation of adenosine triphosphate (ATP). Insulin secretion does not occur because the mitochondria cannot work optimally. tRNA mutation may also be caused by insulin resistance. In addition, the loss of tRNA modification can cause pancreatic β cell dysfunction. Therefore, both can be indirectly associated with diabetes mellitus because diabetes mellitus, especially type 2, is caused by insulin resistance and the body cannot produce insulin. In this review, we will discuss tRNA in detail, several diseases related to tRNA mutations, how tRNA mutations can lead to type 2 diabetes mellitus, and one example of a point mutation that occurs in tRNA.
Collapse
Affiliation(s)
- Fanny Rizki Rahmadanthi
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
23
|
Kobayashi A, Takeiwa T, Ikeda K, Inoue S. Roles of Noncoding RNAs in Regulation of Mitochondrial Electron Transport Chain and Oxidative Phosphorylation. Int J Mol Sci 2023; 24:9414. [PMID: 37298366 PMCID: PMC10253563 DOI: 10.3390/ijms24119414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The mitochondrial electron transport chain (ETC) plays an essential role in energy production by inducing oxidative phosphorylation (OXPHOS) to drive numerous biochemical processes in eukaryotic cells. Disorders of ETC and OXPHOS systems are associated with mitochondria- and metabolism-related diseases, including cancers; thus, a comprehensive understanding of the regulatory mechanisms of ETC and OXPHOS systems is required. Recent studies have indicated that noncoding RNAs (ncRNAs) play key roles in mitochondrial functions; in particular, some ncRNAs have been shown to modulate ETC and OXPHOS systems. In this review, we introduce the emerging roles of ncRNAs, including microRNAs (miRNAs), transfer-RNA-derived fragments (tRFs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the mitochondrial ETC and OXPHOS regulation.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA;
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Hidaka 350-1241, Japan;
| |
Collapse
|
24
|
Carecchio M, Mainardi M, Bonato G. The clinical and genetic spectrum of primary familial brain calcification. J Neurol 2023; 270:3270-3277. [PMID: 36862146 DOI: 10.1007/s00415-023-11650-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Primary familial brain calcification (PFBC), formerly known as Fahr's disease, is a rare neurodegenerative disease characterized by bilateral progressive calcification of the microvessels of the basal ganglia and other cerebral and cerebellar structures. PFBC is thought to be due to an altered function of the Neurovascular Unit (NVU), where abnormal calcium-phosphorus metabolism, functional and microanatomical alterations of pericytes and mitochondrial alterations cause a dysfunction of the blood-brain barrier (BBB) and the generation of an osteogenic environment with surrounding astrocyte activation and progressive neurodegeneration. Seven causative genes have been discovered so far, of which four with dominant (SLC20A2, PDGFB, PDGFRB, XPR1) and three with recessive inheritance (MYORG, JAM2, CMPK2). Clinical presentation ranges from asymptomatic subjects to movement disorders, cognitive decline and psychiatric disturbances alone or in various combinations. Radiological patterns of calcium deposition are similar in all known genetic forms, but central pontine calcification and cerebellar atrophy are highly suggestive of MYORG mutations and extensive cortical calcification has been associated with JAM2 mutations. Currently, no disease-modifying drugs or calcium-chelating agents are available and only symptomatic treatments can be offered.
Collapse
Affiliation(s)
- Miryam Carecchio
- Department of Neuroscience, University of Padua, Via Niccolò Giustiniani, 5, 35128, Padua, Italy.
| | - Michele Mainardi
- Department of Neuroscience, University of Padua, Via Niccolò Giustiniani, 5, 35128, Padua, Italy
| | - Giulia Bonato
- Department of Neuroscience, University of Padua, Via Niccolò Giustiniani, 5, 35128, Padua, Italy
| |
Collapse
|
25
|
Yang X, Sun A, Ji K, Wang X, Yang X, Zhao X. Clinical features of epileptic seizures in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Seizure 2023; 106:110-116. [PMID: 36827862 DOI: 10.1016/j.seizure.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to characterize the clinical features of epilepsy in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) and analyze the clinical determinants for drug-resistant epilepsy in MELAS. METHODS A single-center, retrospective study was conducted to investigate the clinical features of epilepsy in patients with MELAS. Collected variables included seizure semiology, electroencephalography (EEG), muscle biopsy, genetic testing, neuroimaging findings, resting serum lactic value and modified Rankin scale (mRS) of patients with MELAS. We also investigated the differences between the adult-onset group and the child-onset group and analyzed the risk factors for drug-resistant epilepsy in MELAS. RESULTS We studied 97 patients (56 males: 41 females) with confirmed MELAS. Epileptic seizure occurred in 100.0% of patients and the initial symptom of 69.1% patients was epileptic seizure. The average age of disease onset was 21.0 years, ranging from 2 to 60 years. The seizure types of these patients with MELAS were variable, with generalized onset (51.5%) to be the most common type. The EEG changes in the patients with MELAS were mainly slow wave (90.9%) and epileptiform discharge (68.2%). The child-onset group with earlier seizure onset presented significantly higher resting serum lactic value (p = 0.0048) and lower incidence of stroke-like lesion in the brain (p = 0.003), especially in the temporal lobe (p < 0.001), compared with the adult-onset group. Importantly, drug-resistant epilepsy in MELAS was demonstrated to be closely related to the earlier age of seizure onset (p = 0.013), as well as the higher mRS score (p < 0.001) and higher resting serum lactic value (p = 0.009). CONCLUSION Early identification of MELAS should be considered among individuals with recurrent epilepsy through clinical screening. Age of seizure onset and resting serum lactic value may predict the development of drug-resistant epilepsy in MELAS. Close observation and appropriate anti-epileptic treatment are indispensable for individuals with MELAS to improve the prognosis. Further studies with larger sample size are required to further evaluate the risk factors of drug-resistant epilepsy in MELAS and provide guidance on treatment of MELAS.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China
| | - Anqi Sun
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR. China
| | - Xiaotang Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China
| | - Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China.
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR. China.
| |
Collapse
|
26
|
Naftali J, Mermelstein M, Landau YE, Barnea R, Shelly S, Auriel E, Peretz S. Clinical score for early diagnosis and treatment of stroke-like episodes in MELAS syndrome. Acta Neurol Belg 2023:10.1007/s13760-023-02196-z. [PMID: 36792807 DOI: 10.1007/s13760-023-02196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Stroke-like episodes (SLEs) in patients with MELAS syndrome are often initially misdiagnosed as acute ischemic stroke (AIS), resulting in treatment delay. We aimed to determine clinical features that may distinguish SLEs from AISs and explore the benefit of early L-arginine treatment on patient outcomes. METHODS We looked retrospectively for MELAS patients admitted between January 2005 and January 2022 and compared them to an AIS cohort with similar lesion topography. MELAS patients who received L-arginine within 40 days of their first SLE were defined as the early treatment group and the remaining as late or no treatment group. RESULTS Twenty-three SLEs in 10 MELAS patients and 21 AISs were included. SLE patients had significantly different features: they were younger, more commonly reported hearing loss, lower body mass index, had more commonly a combination of headache and/or seizures at presentation, serum lactate was higher, and hemiparesis was less common. An SLE Early Clinical Score (SLEECS) was constructed by designating one point to each above features. SLEECS ≥ 4 had 80% sensitivity and 100% specificity for SLE diagnosis. Compared to late or no treatment, early treatment group patients (n = 5) had less recurrent SLEs (total 2 vs. 11), less seizures (14% vs. 25%, p = 0.048), lower degree of disability at first and last follow-up (modified ranking scale, mRS 2 ± 0.7 vs. 4.2 ± 1, p = 0.005; 2 ± 0.7 vs. 5.8 ± 0.5, p < 0.001, respectively), and a lower mortality (0% vs. 80% p = 0.048). CONCLUSIONS The SLEECS model may aid in the early diagnosis and treatment of SLEs and lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Jonathan Naftali
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel
| | - Maor Mermelstein
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel
| | - Yuval E Landau
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Metabolic Diseases Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Rani Barnea
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Shelly
- Department of Neurology, Sheba Medical Center, Tel Aviv, Israel.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eitan Auriel
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomi Peretz
- Department of Neurology, Rabin Medical Center, Zeev Jabotinsky St 39, 49100, Petah Tikva, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Ibayashi K, Fujino Y, Mimaki M, Fujimoto K, Matsuda S, Goto YI. Estimation of the Number of Patients With Mitochondrial Diseases: A Descriptive Study Using a Nationwide Database in Japan. J Epidemiol 2023; 33:68-75. [PMID: 33907064 PMCID: PMC9794447 DOI: 10.2188/jea.je20200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To provide a better healthcare system for patients with mitochondrial diseases, it is important to understand the basic epidemiology of these conditions, including the number of patients affected. However, little information about them has appeared in Japan to date. METHODS To gather data of patients with mitochondrial diseases, we estimated the number of patients with mitochondrial diseases from April 2018 through March 2019 using a national Japanese health care claims database, the National Database (NDB). Further, we calculated the prevalence of patients, and sex ratio, age class, and geographical distribution. RESULTS From April 2018 through March 2019, the number of patients with mitochondrial diseases was 3,629, and the prevalence was 2.9 (95% confidence interval [CI], 2.8-3.0) per 100,000 general population. The ratio of females and males was 53 to 47, and the most frequent age class was 40-49 years old. Tokyo had the greatest number of patients with mitochondrial diseases, at 477, whereas Yamanashi had the fewest, at 13. Kagoshima had the highest prevalence of patients with mitochondrial diseases, 8.4 (95% CI, 7.1-10.0) per 100,000 population, whereas Yamanashi had the lowest, 1.6 (95% CI, 0.8-2.7). CONCLUSION The number of patients with mitochondrial diseases estimated by this study, 3,269, was more than double that indicated by the Japanese government. This result may imply that about half of all patients are overlooked for reasons such as low severity of illness, suggesting that the Japanese healthcare system needs to provide additional support for these patients.
Collapse
Affiliation(s)
- Koki Ibayashi
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Masakazu Mimaki
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenji Fujimoto
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Shinya Matsuda
- Department of Public Health, University of Occupational and Environmental Health, Japan, Fukuoka, Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| |
Collapse
|
28
|
Lee SH, Lee CJ, Won D, Kang SM. Adult-onset MELAS syndrome in a 51-year-old woman without typical clinical manifestations: a case report. Eur Heart J Case Rep 2023; 7:ytad028. [PMID: 36733687 PMCID: PMC9887669 DOI: 10.1093/ehjcr/ytad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Background Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a multi-organ disorder resulting from mitochondrial DNA (mtDNA) mutations. We report a case of suspected MELAS syndrome that progressed to left ventricular dysfunction 24 years after an initial diagnosis of atrioventricular block (AVB). Case summary A 51-year-old woman was referred to heart failure clinic because of dyspnoea on exertion and progressive cardiomegaly. She had a dual-chamber pacemaker implanted for 24 years because of a high-degree AVB. She was treated for diabetes mellitus for 23 years and used hearing aids for 12 years because of sensorineural hearing loss. Transthoracic echocardiography revealed reduced left ventricular ejection fraction (26%), with increased thickness and unusual texture of the myocardium. The absence of abnormal findings on serum and urine protein electrophoresis suggested that light-chain amyloidosis was unlikely. In addition, 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy revealed no definite uptake in the myocardium. Endomyocardial biopsy revealed a hypertrophy of myocytes in haematoxylin-eosin staining, and electron microscopy revealed a disarrangement of mitochondrial cristae, which were suggestive of mitochondrial cardiomyopathy. A mtDNA test detected the m.3243A > G mutation in the MT-TL1 gene. According to these findings, MELAS syndrome was the most probable diagnosis despite the absence of common symptoms such as stroke-like episodes or lactic acidosis. Discussion The patient had progressed to heart failure with reduced ejection fraction 24 years after the first cardiac manifestation. An identification of the mutation in the MT-TL1 gene, indicative of MELAS syndrome, enabled the diagnosis of MELAS syndrome without typical manifestations.
Collapse
Affiliation(s)
- Sang-Hyup Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Chan Joo Lee
- Corresponding author. Tel: +82 2 2228 8450, Fax: +82 2 2227 7732,
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | | |
Collapse
|
29
|
Zheng H, Zhang X, Tian L, Liu B, He X, Wang L, Ding S, Guo Y, Cai J. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes with an MT-TL1 m.3243A>G point mutation: Neuroradiological features and their implications for underlying pathogenesis. Front Neurosci 2023; 16:1028762. [PMID: 36685235 PMCID: PMC9853426 DOI: 10.3389/fnins.2022.1028762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Objective Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is one of the most common inherited mitochondrial disorders. Due to the high clinical and genetic heterogeneity of MELAS, it is still a major challenge for clinicians to accurately diagnose the disease at an early stage. Herein, we evaluated the neuroimaging findings of MELAS with an m.3243A>G mutation in MT-TL1 and analyzed the possible underlying pathogenesis of stroke-like episodes. Materials and methods Fifty-nine imaging studies in 24 patients who had a confirmed genetic diagnosis of m.3243A>G (MT-TL1; tRNA Leu) associated with MELAS were reviewed in our case series. The anatomic location, morphological features, signal/intensity characteristics and temporal evolution of lesions were analyzed on magnetic resonance imaging (MRI), and computed tomography (CT) images. The supplying vessels and metabolite content of the lesions were also evaluated by using MR angiography (MRA)/CT angiography (CTA), and MR spectroscopy (MRS), respectively. Results The lesions were most commonly located in the posterior brain, with 37 (37/59, 63%) in the occipital lobe, 32 (32/59, 54%) in the parietal lobe, and 30 (30/59, 51%) in the temporal lobe. The signal characteristics of the lesions varied and evolved over time. Bilateral basal ganglia calcifications were found in 6 of 9 (67%) patients who underwent CT. Cerebral and cerebellar atrophy were found in 38/59 (64%) and 40/59 (68%) patients, respectively. Lesion polymorphism was found in 37/59 (63%) studies. MRS showed elevated lactate doublet peaks in 9/10 (90%) cases. MRA or CTA revealed that the lesion-related arteries were slightly dilated compared with those of the contralateral side in 4 of 6 (67%) cases. Conclusion The imaging features of MELAS vary depending on the disease stage. Polymorphic lesions in a single imaging examination should be considered a diagnostic clue for MELAS. Stroke-like episodes may be involved in a complex pathogenetic process, including mitochondrial angiopathy, mitochondrial cytopathy, and neuronal excitotoxicity.
Collapse
Affiliation(s)
- Helin Zheng
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Medical Affairs, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoya He
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Longlun Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Ding
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Pediatric Neurology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yi Guo,
| | - Jinhua Cai
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Department of Radiology, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China,Jinhua Cai,
| |
Collapse
|
30
|
Bharathidasan K, Evans A, Fernandez FMAO, Motes AT, Nugent K. Mitochondrial Myopathy in a 21-Year-Old Man Presenting With Bilateral Lower Extremity Weakness and Swelling. J Prim Care Community Health 2023; 14:21501319231172697. [PMID: 37162197 PMCID: PMC10184240 DOI: 10.1177/21501319231172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.
Collapse
Affiliation(s)
| | - Abbie Evans
- Texas Tech University Health Science Center, Lubbock, TX, USA
| | | | | | - Kenneth Nugent
- Texas Tech University Health Science Center, Lubbock, TX, USA
| |
Collapse
|
31
|
Alenezi AF, Almelahi MA, Fekih-Romdhana F, Jahrami HA. Delay in diagnosing a patient with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome who presented with status epilepticus and lactic acidosis: a case report. J Med Case Rep 2022; 16:361. [PMID: 36210452 PMCID: PMC9549677 DOI: 10.1186/s13256-022-03613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome is a rare mitochondrial genetic disorder that can present with a variety of clinical manifestations, including stroke, hearing loss, seizures, and lactic acidosis. The most common genetic mutation associated with this syndrome is M.3243A>G. The main underlying mechanism of the disease relates to protein synthesis, energy depletion, and nitric oxide deficiency. Controlling disease complications and improving patient quality of life are the primary aims of treatment options. Case presentation A 28-year-old Arabic female visited Al-Amiri Hospital in Kuwait. The patient was newly diagnosed with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome following her admission as a case of status epilepticus requiring further investigation. The patient’s seizures were controlled, and she was evaluated to rule out the most serious complications by carrying out appropriate clinical, laboratory, and radiological imaging. The patient was discharged from the hospital after 2 weeks with a follow-up plan. Conclusion This case report emphasizes the importance of considering mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome as a potential cause of status epilepticus with lactic acidosis in a young female patient with a past history of stroke-like episodes. It also stresses the most important workup to rule out every possible life-threatening complication to improve patients’ lives.
Collapse
|
32
|
Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, Ji D. Pathogenic mitochondrial DNA 3243A>G mutation: From genetics to phenotype. Front Genet 2022; 13:951185. [PMID: 36276941 PMCID: PMC9582660 DOI: 10.3389/fgene.2022.951185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA (mtDNA) m.3243A>G mutation is one of the most common pathogenic mtDNA variants, showing complex genetics, pathogenic molecular mechanisms, and phenotypes. In recent years, the prevention of mtDNA-related diseases has trended toward precision medicine strategies, such as preimplantation genetic diagnosis (PGD) and mitochondrial replacement therapy (MRT). These techniques are set to allow the birth of healthy children, but clinical implementation relies on thorough insights into mtDNA genetics. The genotype and phenotype of m.3243A>G vary greatly from mother to offspring, which compromises genetic counseling for the disease. This review is the first to systematically elaborate on the characteristics of the m.3243A>G mutation, from genetics to phenotype and the relationship between them, as well as the related influencing factors and potential strategies for preventing disease. These perceptions will provide clarity for clinicians providing genetic counseling to m.3243A>G patients.
Collapse
Affiliation(s)
- Danyang Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Chunmei Liang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Tao Zhang
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
| | - Muqing Lian
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- *Correspondence: Dongmei Ji,
| |
Collapse
|
33
|
Yamadori Y, Yamagami Y, Matsumoto Y, Koizumi M, Nakamura A, Mizuta D, Yasuda K, Shirakami G. General anesthesia with remimazolam for a pediatric patient with MELAS and recurrent epilepsy: a case report. JA Clin Rep 2022; 8:75. [PMID: 36112237 PMCID: PMC9481841 DOI: 10.1186/s40981-022-00564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease. We report here the safe use of remimazolam in a pediatric MELAS patient. Case presentation A 10-year-old girl (118 cm, 16 kg) was scheduled for an open gastrostomy to improve nutrition and epileptic seizure control. We induced and maintained general anesthesia with remimazolam, remifentanil, fentanyl, and rocuronium. We also performed a bilateral subcostal transversus abdominis plane block before the surgery. The surgery finished uneventfully. After we discontinued remimazolam administration, the patient woke up immediately but calmly without flumazenil. Epileptic seizures did not occur during intra- and early post-operative periods. Conclusion Remimazolam enabled us to provide a pediatric MELAS patient with general anesthesia without causing delayed emergence or epileptic seizures.
Collapse
|
34
|
Ryytty S, Modi SR, Naumenko N, Shakirzyanova A, Rahman MO, Vaara M, Suomalainen A, Tavi P, Hämäläinen RH. Varied Responses to a High m.3243A>G Mutation Load and Respiratory Chain Dysfunction in Patient-Derived Cardiomyocytes. Cells 2022; 11:cells11162593. [PMID: 36010669 PMCID: PMC9406376 DOI: 10.3390/cells11162593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The m.3243A>G mutation in mitochondrial tRNA-Leu(UUR) is one of the most common pathogenic mitochondrial DNA mutations in humans. The clinical manifestations are highly heterogenous and the causes for the drastic clinical variability are unknown. Approximately one third of patients suffer from cardiac disease, which often increases mortality. Why only some patients develop cardiomyopathy is unknown. Here, we studied the molecular effects of a high m.3243A>G mutation load on cardiomyocyte functionality, using cells derived from induced pluripotent stem cells (iPSC-CM) of two different m.3243A>G patients, only one of them suffering from severe cardiomyopathy. While high mutation load impaired mitochondrial respiration in both patients' iPSC-CMs, the downstream consequences varied. mtDNA mutant cells from a patient with no clinical heart disease showed increased glucose metabolism and retained cellular ATP levels, whereas cells from the cardiac disease patient showed reduced ATP levels. In this patient, the mutations also affected intracellular calcium signaling, while this was not true in the other patient's cells. Our results reflect the clinical variability in mitochondrial disease patients and show that iPSC-CMs retain tissue specific features seen in patients.
Collapse
Affiliation(s)
- Sanna Ryytty
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Shalem R. Modi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Nikolay Naumenko
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anastasia Shakirzyanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Muhammad Obaidur Rahman
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Miia Vaara
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anu Suomalainen
- Stem Cell and Metabolism Research Program, Research Programs Unit, University of Helsinki, 00290 Helsinki, Finland
- HUSLab, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
35
|
Seed LM, Dean A, Krishnakumar D, Phyu P, Horvath R, Harijan PD. Molecular and neurological features of MELAS syndrome in paediatric patients: A case series and review of the literature. Mol Genet Genomic Med 2022; 10:e1955. [PMID: 35474314 PMCID: PMC9266612 DOI: 10.1002/mgg3.1955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome is one of the most well-known mitochondrial diseases, with most cases attributed to m.3243A>G. MELAS syndrome patients typically present in the first two decades of life with a broad, multi-systemic phenotype that predominantly features neurological manifestations--stroke-like episodes. However, marked phenotypic variability has been observed among paediatric patients, creating a clinical challenge and delaying diagnoses. METHODS A literature review of paediatric MELAS syndrome patients and a retrospective analysis in a UK tertiary paediatric neurology centre were performed. RESULTS Three children were included in this case series. All patients presented with seizures and had MRI changes not confined to a single vascular territory. Blood heteroplasmy varied considerably, and one patient required a muscle biopsy. Based on a literature review of 114 patients, the mean age of presentation is 8.1 years and seizures are the most prevalent manifestation of stroke-like episodes. Heteroplasmy is higher in a tissue other than blood in most cases. CONCLUSION The threshold for investigating MELAS syndrome in children with suspicious neurological symptoms should be low. If blood m.3243A>G analysis is negative, yet clinical suspicion remains high, invasive testing or further interrogation of the mitochondrial genome should be considered.
Collapse
Affiliation(s)
- Lydia M. Seed
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Andrew Dean
- Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
- Department of HistopathologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Deepa Krishnakumar
- Department of Paediatric NeurosciencesCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Poe Phyu
- Department of Clinical NeuroradiologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rita Horvath
- Department of Clinical NeuroscienceUniversity of CambridgeCambridgeUK
| | - Pooja Devi Harijan
- Department of Paediatric NeurosciencesCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
36
|
Leaffer EB, De Vivo DC, Engelstad K, Fryer RH, Gu Y, Shungu DC, Hirano M, DiMauro S, Hinton VJ. Visual memory failure presages conversion to MELAS phenotype. Ann Clin Transl Neurol 2022; 9:841-852. [PMID: 35522125 PMCID: PMC9186137 DOI: 10.1002/acn3.51564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To examine the correlation between verbal and visual memory function and correlation with brain metabolites (lactate and N-Acetylaspartate, NAA) in individuals with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). METHODS Memory performance and brain metabolites (ventricular lactate, occipital lactate, and occipital NAA) were examined in 18 MELAS, 58 m.3243A > G carriers, and 20 familial controls. Measures included the Selective Reminding Test (verbal memory), Benton Visuospatial Retention Test (visual memory), and MR Spectroscopy (NAA, Lactate). ANOVA, chi-squared/Fisher's exact tests, paired t-tests, Pearson correlations, and Spearman correlations were used. RESULTS When compared to carriers and controls, MELAS patients had the: (1) most impaired memory functions (Visual: p = 0.0003; Verbal: p = 0.02), (2) greatest visual than verbal memory impairment, (3) highest brain lactate levels (p < 0.0001), and (4) lowest brain NAA levels (p = 0.0003). Occipital and ventricular lactate to NAA ratios correlated significantly with visual memory performance (p ≤ 0.001). Higher lactate levels (p ≤ 0.01) and lower NAA levels (p = 0.0009) correlated specifically with greater visual memory dysfunction in MELAS. There was little or no correlation with verbal memory. INTERPRETATION Individuals with MELAS are at increased risk for impaired memory. Although verbal and visual memory are both affected, visual memory is preferentially affected and more clearly associated with brain metabolite levels. Preferential involvement of posterior brain regions is a distinctive clinical signature of MELAS. We now report a distinctive cognitive phenotype that targets visual memory more prominently and earlier than verbal memory. We speculate that this finding in carriers presages a conversion to the MELAS phenotype.
Collapse
Affiliation(s)
- Emily B Leaffer
- Sergievsky Center & Department of Neurology, Columbia University, New York City, New York, USA.,Department of Psychology, Queens College & The Graduate Center, City University of New York, New York City, New York, USA.,Northeast Cognitive Assessment, Rye Brook, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Robert H Fryer
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Yian Gu
- Taub Institute, Department of Neurology, Department of Epidemiology, Columbia University, New York City, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medical College, New York City, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Veronica J Hinton
- Sergievsky Center & Department of Neurology, Columbia University, New York City, New York, USA.,Department of Psychology, Queens College & The Graduate Center, City University of New York, New York City, New York, USA
| |
Collapse
|
37
|
Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine 2022; 76:103815. [PMID: 35085849 PMCID: PMC8790490 DOI: 10.1016/j.ebiom.2022.103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning. METHODS We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains. FINDINGS A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied. INTERPRETATION mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process. FUNDING Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Juan Tortajada
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Bengisu K Bulduk
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Department of Internal Medicine-Hospital Clínic of Barcelona (HCB); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain; Institute of Evolutionary Biology (IBE), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain.
| |
Collapse
|
38
|
Jiang Z, Cai X, Kong J, Zhang R, Ding Y. Maternally transmitted diabetes mellitus may be associated with mitochondrial ND5 T12338C and tRNA Ala T5587C variants. Ir J Med Sci 2022; 191:2625-2633. [PMID: 34993838 DOI: 10.1007/s11845-021-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mutations/variants in mitochondrial genomes are found to be associated with type 2 diabetes mellitus (T2DM), but the pathophysiology of this disease remains largely unknown. AIM The aim of this study is to investigate the relationship between mitochondrial DNA (mtDNA) variants and T2DM. METHODOLOGY A maternally inherited T2DM pedigree is underwent clinical, genetic, and molecular assessment. Moreover, the complete mitochondrial genomes of the matrilineal relatives of this family are PCR amplified and sequenced. We also utilize the phylogenetic conservation analysis, haplogroup classification, and the pathogenicity scoring system to determine the T2DM-associated potential pathogenic mtDNA variants. RESULT Four of seven matrilineal relatives of this pedigree suffered from T2DM with variable ages of onset. Screening for the entire mtDNA genes of matrilineal members reveals co-existence of ND5 T12338C and tRNAAla T5587C variants, as well as 21 genetic polymorphisms which belong to East Asian haplogroup F2. Interestingly, the T12338C variant causes the alternation of first amino acid Met to Thr, shortened two amino acids of ND5 protein. Furthermore, T5587C variant is located at position 73 in the 3'end of mt-tRNAAla and may have structural and functional consequences. CONCLUSIONS The co-occurrence of ND5 T12338C and tRNAAla T5587C variants may impair the mitochondrial function, which are associated with the development of T2DM in this family.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Cai
- Department of Pathology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Jing Kong
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyi Zhang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
39
|
Meschia JF, Fornage M. Genetic Basis of Stroke Occurrence, Prevention, and Outcome. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Tetsuka S, Ogawa T, Hashimoto R, Kato H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metab Brain Dis 2021; 36:2181-2193. [PMID: 34118021 DOI: 10.1007/s11011-021-00772-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a disease that should be considered as a differential diagnosis to acute ischemic stroke taking into account its onset pattern and neurological symptoms, which are similar to those of an ischemic stroke. Technological advancements in neuroimaging modalities have greatly facilitated differential diagnosis between stroke and MELAS on diagnostic imaging. Stroke-like episodes in MELAS have the following features: (1) symptoms are neurolocalized according to lesion site; (2) epileptic seizures are often present; (3) lesion distribution is inconsistent with vascular territory; (4) lesions are common in the posterior brain regions; (5) lesions continuously develop in adjacent sites over several weeks or months; (6) neurological symptoms and stroke-like lesions tend to be reversible, as presented on magnetic resonance imaging; (7) the rate of recurrence is high; and; (8) brain dysfunction and atrophy are slowly progressive. The m.3243ANG mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu(UUR) is most commonly associated with MELAS. Although the precise pathophysiology is still unclear, one possible hypothesis for these episodes is a neuronal hyperexcitability theory, including neuron-astrocyte uncoupling. Supplementation, such as with L-arginine or taurine, has been proposed as preventive treatments for stroke-like episodes. As this disease is still untreatable and devastating, numerous drugs are being tested, and new gene therapies hold great promise for the future. This article contributes to the understanding of MELAS and its implications for clinical practice, by deepening their insight into the latest pathophysiological hypotheses and therapeutic developments.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan.
| | - Tomoko Ogawa
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Ritsuo Hashimoto
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Hiroyuki Kato
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| |
Collapse
|
41
|
Lipponen J, Helisalmi S, Raivo J, Siitonen A, Doi H, Rusanen H, Lehtilahti M, Ryytty M, Laakso M, Tanaka F, Majamaa K, Kytövuori L. Molecular epidemiology of hereditary ataxia in Finland. BMC Neurol 2021; 21:382. [PMID: 34600502 PMCID: PMC8487109 DOI: 10.1186/s12883-021-02409-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetics of cerebellar ataxia is complex. Hundreds of causative genes have been identified, but only a few cause more than single cases. The spectrum of ataxia-causing genes differs considerably between populations. The aim of the study was to investigate the molecular epidemiology of ataxia in the Finnish population. PATIENTS AND METHODS All patients in hospital database were reviewed for the diagnosis of unspecified ataxia. Acquired ataxias and nongenetic ataxias such as those related to infection, trauma or stroke were excluded. Sixty patients with sporadic ataxia with unknown etiology and 36 patients with familial ataxia of unknown etiology were recruited in the study. Repeat expansions in the SCA genes (ATXN1, 2, 3, 7, 8/OS, CACNA1A, TBP), FXN, and RFC1 were determined. Point mutations in POLG, SPG7 and in mitochondrial DNA (mtDNA) were investigated. In addition, DNA from 8 patients was exome sequenced. RESULTS A genetic cause of ataxia was found in 33 patients (34.4%). Seven patients had a dominantly inherited repeat expansion in ATXN8/OS. Ten patients had mitochondrial ataxia resulting from mutations in nuclear mitochondrial genes POLG or RARS2, or from a point mutation m.8561C > G or a single deletion in mtDNA. Interestingly, five patients were biallelic for the recently identified pathogenic repeat expansion in RFC1. All the five patients presented with the phenotype of cerebellar ataxia, neuropathy, and vestibular areflexia (CANVAS). Moreover, screening of 54 patients with Charcot-Marie-Tooth neuropathy revealed four additional patients with biallelic repeat expansion in RFC1, but none of them had cerebellar symptoms. CONCLUSIONS Expansion in ATXN8/OS results in the majority of dominant ataxias in Finland, while mutations in RFC1 and POLG are the most common cause of recessive ataxias. Our results suggest that analysis of RFC1 should be included in the routine diagnostics of idiopathic ataxia and Charcot-Marie-Tooth polyneuropathy.
Collapse
Affiliation(s)
- Joonas Lipponen
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Joose Raivo
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ari Siitonen
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Harri Rusanen
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Maria Lehtilahti
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Mervi Ryytty
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, 90014, Oulu, Finland. .,Department of Neurology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
42
|
Klein Gunnewiek TM, Verboven AHA, Pelgrim I, Hogeweg M, Schoenmaker C, Renkema H, Beyrath J, Smeitink J, de Vries BBA, Hoen PBAC', Kozicz T, Nadif Kasri N. Sonlicromanol improves neuronal network dysfunction and transcriptome changes linked to m.3243A>G heteroplasmy in iPSC-derived neurons. Stem Cell Reports 2021; 16:2197-2212. [PMID: 34329596 PMCID: PMC8452519 DOI: 10.1016/j.stemcr.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at m.3243 (m.3243A>G) of the MT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated human induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Medical Imaging, Anatomie, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, the Netherlands
| | - Iris Pelgrim
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands; Khondrion B.V., Nijmegen, the Netherlands
| | - Mark Hogeweg
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | | | | | | | - Bert B A de Vries
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Peter-Bram A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomie, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, the Netherlands; Department of Laboratory Medicine and Pathology. Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, 55905 Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
43
|
Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest 2021; 131:136055. [PMID: 33463549 DOI: 10.1172/jci136055] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, β-hydroxy acylcarnitines, and β-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.
Collapse
Affiliation(s)
- Rohit Sharma
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Bryn Reinstadler
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Kristin Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Owen S Skinner
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| | - Erin Stackowitz
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ronald G Haller
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Institute for Exercise and Environmental Medicine of Texas Health Presbyterian Hospital, Dallas, Texas, USA
| | | | | | - Melissa A Walker
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert Fryer
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ashok Khatri
- Endocrine Division and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Darryl C De Vivo
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, and.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
44
|
Nguyen T, Alzahrani T, Krepp J, Panjrath G. Cardiovascular Outcomes in Patients With Mitochondrial Disease in the United States: A Propensity Score Analysis. Tex Heart Inst J 2021; 48:469117. [PMID: 34383956 DOI: 10.14503/thij-20-7243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial disease comprises a wide range of genetic disorders caused by mitochondrial dysfunction. Its rarity, however, has limited the ability to assess its effects on clinical outcomes. To evaluate this relationship, we collected data from the 2016 National Inpatient Sample, which includes data from >7 million hospital stays. We identified 705 patients (mean age, 22 ± 20.7 yr; 54.2% female; 67.4% white) whose records included the ICD-10-CM code E88.4. We also identified a propensity-matched cohort of 705 patients without mitochondrial disease to examine the effect of mitochondrial disease on major adverse cardiovascular events, including all-cause in-hospital death, cardiac arrest, and acute congestive heart failure. Patients with mitochondrial disease were at significantly greater risk of major adverse cardiovascular events (odds ratio [OR]=2.42; 95% CI, 1.29-4.57; P=0.005), systolic heart failure (OR=2.37; 95% CI, 1.08-5.22; P=0.027), and all-cause in-hospital death (OR=14.22; 95% CI, 1.87-108.45; P<0.001). These findings suggest that mitochondrial disease significantly increases the risk of inpatient major adverse cardiovascular events.
Collapse
Affiliation(s)
- Tran Nguyen
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC
| | - Talal Alzahrani
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC
| | - Joseph Krepp
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC
| | - Gurusher Panjrath
- Division of Cardiology, Department of Medicine, George Washington University, Washington, DC
| |
Collapse
|
45
|
Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) Syndrome: Frequency, Clinical Features, Imaging, Histopathologic, and Molecular Genetic Findings in a Third-level Health Care Center in Mexico. Neurologist 2021; 26:143-148. [PMID: 34190208 DOI: 10.1097/nrl.0000000000000331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, is a multisystemic entity of mitochondrial inheritance. To date, there is no epidemiological information on MELAS syndrome in Mexico. CASE SERIES A retrospective, cross-sectional design was employed to collect and analyze the data. The clinical records of patients with mitochondrial cytopathies in the period ranging from January 2018 to March 2020 were reviewed. Patients who met definitive Yatsuga diagnostic criteria for MELAS syndrome were included to describe frequency, clinical, imaging, histopathologic, and molecular studies. Of 56 patients diagnosed with mitochondrial cytopathy, 6 patients met definitive Yatsuga criterion for MELAS (10.7%). The median age at diagnosis was 34 years (30 to 34 y), 2 females and the median time from onset of symptoms at diagnosis 3.5 years (1 to 10 y). The median of the number of stroke-like episodes before the diagnosis was 3 (range, 2 to 3). The main findings in computed tomography were basal ganglia calcifications (33%), whereas in magnetic resonance imaging were a lactate peak in the spectroscopy sequence in 2 patients. Five patients (84%) had red-ragged fibers and phantom fibers in the Cox stain in the muscle biopsy. Four patients (67%) had presence of 3243A>G mutation in the mitochondrial MT-TL1 gene. One patient died because of status epilepticus. CONCLUSIONS MELAS syndrome represents a common diagnostic challenge for clinicians, often delaying definitive diagnosis. It should be suspected in young patients with stroke of undetermined etiology associated with other systemic and neurological features.
Collapse
|
46
|
Klein Gunnewiek TM, Van Hugte EJH, Frega M, Guardia GS, Foreman K, Panneman D, Mossink B, Linda K, Keller JM, Schubert D, Cassiman D, Rodenburg R, Vidal Folch N, Oglesbee D, Perales-Clemente E, Nelson TJ, Morava E, Nadif Kasri N, Kozicz T. m.3243A > G-Induced Mitochondrial Dysfunction Impairs Human Neuronal Development and Reduces Neuronal Network Activity and Synchronicity. Cell Rep 2021; 31:107538. [PMID: 32320658 DOI: 10.1016/j.celrep.2020.107538] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Eline J H Van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Gemma Solé Guardia
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katharina Foreman
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Daan Panneman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - David Cassiman
- Department of Hepatology, UZ Leuven, 3000 Leuven, Belgium
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Noemi Vidal Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy J Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands.
| | - Tamas Kozicz
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| |
Collapse
|
47
|
Sudden Unexpected Death in MELAS Syndrome Due to Diabetic Ketoacidosis. Am J Forensic Med Pathol 2021; 41:331-332. [PMID: 32732592 DOI: 10.1097/paf.0000000000000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We present a case report of a 25 year-old man with MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes) syndrome, who died suddenly and unexpectedly from diabetic ketoacidosis. This case report illustrates why it is important for medical examiners to be familiar with the clinical and autopsy features of MELAS syndrome and to be aware of the common complications, which may lead to sudden unexpected death.
Collapse
|
48
|
Coussa RG, Sohn EH, Han IC, Parikh S, Traboulsi EI. Mitochondrial DNA A3243G variant-associated retinopathy: a meta-analysis of the clinical course of visual acuity and correlation with systemic manifestations. Ophthalmic Genet 2021; 42:420-430. [PMID: 33827363 DOI: 10.1080/13816810.2021.1907598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The mitochondrial DNA A3243G (m.3243A>G) variant causes a wide spectrum of phenotypes, with pigmentary retinopathy as the most common ocular finding. We undertook this meta-analysis to investigate the clinical course of visual acuity (VA) in patients with m.3243A>G variant and provide key clinical correlations with systemic manifestations. METHODS A PubMed literature search was performed and studies were selected after satisfying pre-set inclusion criteria. Demographic and clinical data, including retinal findings and systemic manifestations were recorded. Cross-sectional and linear regression analyses were used to investigate the relationship between VA and age, as well as between the age at diagnosis of retinopathy and the mean ages at diagnosis of sensorineural hearing loss or diabetes. The age and prevalence of systemic manifestations among patients with and without retinopathy were studied using t-tests and Mann-Whitney U-tests (performed on binarized data). Likelihood ratios were computed. RESULTS The mean VA (average of both eyes) of 90 patients (72.2% female; 65/90) were collected from 18 studies published between 1990 and 2018. The baseline mean age was 45.2 years (range 17 to 92). The mean logMAR VA was 0.10 (- 0.12 to 1.39). There was a statistically significant linear correlation between the logMAR VA and age (p = .008). The VA of patients less than or equal to 50 years of age was significantly better than that of patients older than 50 years (0.06 vs.0.18 logMAR, p = .002). 67 patients (74.4%) showed a characteristic pigmentary retinopathy with a mean age at diagnosis of 47.9 years (17 to 92) and VA of 0.14 logMAR (- 0.12 to 1.24). Age at diagnosis of retinopathy was linearly correlated with age at diagnosis of hearing loss or diabetes (p < .001). Patients with retinopathy were more likely to have hearing loss (83.6% vs. 56.5%, p = .03) or diabetes (56.7% vs. 17.4%, p = .001) than those without retinopathy. Those with both hearing loss and diabetes had an earlier onset of retinopathy than those without (46.4 vs. 60.4 years, p = .01). Patients without both hearing loss and diabetes were 5.3-fold less likely to develop a retinopathy. CONCLUSIONS Patients with m.3243A>G variant pigmentary retinopathy maintain highly functional VA until around the fifth decade of life, after which significant visual decline ensues. Patients without hearing loss and diabetes have a lower likelihood of exhibiting a retinopathy, which tends to appear about one decade after hearing loss and diabetes are diagnosed.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sumit Parikh
- Cleveland Clinic, Mitochondrial Medicine Center, Cleveland, Ohio, USA
| | - Elias I Traboulsi
- Cleveland Clinic, Cole Eye Institute, Center for Genetic Eye Diseases, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Pozzi A, Dowling DK. Small mitochondrial RNAs as mediators of nuclear gene regulation, and potential implications for human health. Bioessays 2021; 43:e2000265. [PMID: 33763872 DOI: 10.1002/bies.202000265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial-transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. Second, emerging studies have described the existence of small RNAs encoded by the mitochondria and proposed their involvement in RNA interference. We present a roadmap to testing this hypothesis.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|