1
|
Stervbo U, Seidel M, Uszkoreit J, Kaliszczyk S, Anft M, Eisenacher M, Westhoff TH, Babel N. Case Report: Co-occurrence of tubulitis and SARS-CoV-2 specific T-cells in a kidney transplant recipient. FRONTIERS IN TRANSPLANTATION 2025; 4:1537656. [PMID: 40343198 PMCID: PMC12060256 DOI: 10.3389/frtra.2025.1537656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Background Kidney transplantation is associated with an increased risk of severe COVID-19 disease. Additionally, cells of the kidney express ACE-2 making them a potential target of the SARS-CoV-2 virus. Both uncontrolled viral replication and T-cell receptor (TCR) mediated cellular immunity towards the infected cells could lead to tissue destruction in the kidney. In cases where pathological findings are not always capable of providing definitive diagnosis, insights into the TCR repertoire could offer valuable information. Here we present a case of potentially infection driven tubulitis in a kidney transplant patient. Methods The source of kidney infiltrating T-cells was assessed through next generation TCR sequencing. Using cells from the living donor and overlapping peptide pool of SARS-CoV-2 S-, N-, and M-protein (Wuhan variant), antigen specific T-cells were isolated from peripheral blood by overnight stimulation and subsequent isolation using antibodies and magnetic beads against CD154 and CD137. The clonotypes of these two samples were compared to the clonotypes in a single kidney biopsy cylinder. Results We found that 11.1% of the repertoire of the kidney infiltrating T cells were identical to SARS-CoV-2 specific T-cells in the periphery, and only 3.1% of the repertoire was identical to allo-specific TCRs. We also observed substantial overlap between the TCR repertoires of virus-specific and donor-specific T cells, with high similarity and even identical TCR sequences present in both populations. The TCRs with dual specificity constituted a larger proportion of the allo-specific than the virus specific population. These results indicate that SARS-CoV-2 specific T-cells may directly spill into an allo-specific T cell response and that either class of T-cells may cause the observed tubulitis. Conclusion TCR-seq of whole biopsies is a method to evaluate the ingragraft TCR repertoire can complement routine pathology and provide further insights into the mechanisms underlying a diagnosis.
Collapse
Affiliation(s)
- Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Seidel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Julian Uszkoreit
- CUBiMed.RUB, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Medical Bioinformatics, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Sviatlana Kaliszczyk
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Martin Eisenacher
- CUBiMed.RUB, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Medizinisches Proteom-Center, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Timm H. Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
- Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, and Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Singh MK, Han S, Ju S, Ranbhise JS, Ha J, Yeo SG, Kim SS, Kang I. Hsp70: A Multifunctional Chaperone in Maintaining Proteostasis and Its Implications in Human Disease. Cells 2025; 14:509. [PMID: 40214463 PMCID: PMC11989206 DOI: 10.3390/cells14070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Hsp70, a 70 kDa molecular chaperone, plays a crucial role in maintaining protein homeostasis. It interacts with the DnaJ family of co-chaperones to modulate the functions of client proteins involved in various cellular processes, including transmembrane transport, extracellular vesicle trafficking, complex formation, and proteasomal degradation. Its presence in multiple cellular organelles enables it to mediate stress responses, apoptosis, and inflammation, highlighting its significance in disease progression. Initially recognized for its essential roles in protein folding, disaggregation, and degradation, later studies have demonstrated its involvement in several human diseases. Notably, Hsp70 is upregulated in multiple cancers, where it promotes tumor proliferation and serves as a tumor immunogen. Additionally, epichaperome networks stabilize protein-protein interactions in large and long-lived assemblies, contributing to both cancer progression and neurodegeneration. However, extracellular Hsp70 (eHsp70) in the tumor microenvironment can activate immune cells, such as natural killer (NK) cells, suggesting its potential in immunotherapeutic interventions, including CAR T-cell therapy. Given its multifaceted roles in cellular physiology and pathology, Hsp70 holds immense potential as both a biomarker and a therapeutic target across multiple human diseases. This review highlights the structural and functional importance of Hsp70, explores its role in disease pathogenesis, and discusses its potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna S. Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Kulski JK, Pfaff AL, Koks S. SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative. Genes (Basel) 2024; 15:1185. [PMID: 39336776 PMCID: PMC11431313 DOI: 10.3390/genes15091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia;
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
4
|
Laurynenka V, Harley JB. The 330 risk loci known for systemic lupus erythematosus (SLE): a review. FRONTIERS IN LUPUS 2024; 2:1398035. [PMID: 39624492 PMCID: PMC11609870 DOI: 10.3389/flupu.2024.1398035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
An in-depth literature review of up to 2023 reveals 330 risk loci found by genetic association at p ≤ 5 × 10-8, with systemic lupus erythematosus (SLE) in at least one study of 160 pertinent publications. There are 225 loci found in East Asian (EAS), 106 in European (EU), 11 in African-American (AA), 18 Mixed American (MA), and 1 in Egyptian ancestries. Unexpectedly, most of these associations are found to date at p ≤ 5 × 10-8 in a single ancestry. However, the EAS and EU share 40 risk loci that are independently established. The great majority of the identified loci [250 (75.8%) of 330] do not contain a variant that changes an amino acid sequence. Meanwhile, most overlap with known regulatory elements in the genome [266 (80.6%) of 330], suggesting a major role for gene regulation in the genetic mechanisms of SLE. To evaluate the pathways altered by SLE-associated variants, we generated gene sets potentially regulated by SLE loci that consist of the nearest genes, published attributions, and genes predicted by computational tools. The most useful insights, at present, suggest that SLE genetic mechanisms involve (1) the regulation of both adaptive and innate immune responses including immune cell activation and differentiation; (2) the regulation of production and response to cytokines, including type I interferon; (3) apoptosis; (4) the sensing and removal of immune complexes and apoptotic particles; and (5) immune response to infections, including Epstein-Barr Virus, and symbiont microorganisms. These mechanisms affected by SLE genes involve multiple cell types, including B cells/plasma cells, T cells, dendritic cells, monocytes/macrophages, natural killer cells, neutrophils, and endothelial cells. The genetics of SLE from GWAS data reveal an incredibly complex profusion of interrelated molecular processes and interacting cells participating in SLE pathogenesis, mostly unified in the molecular regulation of inflammatory responses. These genetic associations in lupus and affected molecular pathways not only give us an understanding of the disease pathogenesis but may also help in drug discoveries for SLE treatment.
Collapse
Affiliation(s)
- Viktoryia Laurynenka
- US Department of Veterans Affairs Medical Center, Research Service, Cincinnati, OH, United States
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati, OH, United States
| | - John B. Harley
- US Department of Veterans Affairs Medical Center, Research Service, Cincinnati, OH, United States
- Cincinnati Education and Research for Veterans Foundation (CERVF), Cincinnati, OH, United States
| |
Collapse
|
5
|
Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Gooley T, Stevenson P. HLA Haplotypes and Relapse After Hematopoietic Cell Transplantation. J Clin Oncol 2024; 42:886-897. [PMID: 38051980 PMCID: PMC10927336 DOI: 10.1200/jco.23.01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE Recurrence of blood malignancy is the major cause of hematopoietic cell transplant failure. HLA class II molecules play a fundamental role in antitumor responses but the role of class II haplotypes is not known. METHODS HLA-DR, -DQ, -DM, and -DO allele variation was determined in 1,629 related haploidentical transplants to study the clinical significance of individual molecules and haplotypes. RESULTS Outcome correlated with patient and donor variation for HLA-DRβ residue 86 (Gly/Val), HLA-DQ (G1/G2) heterodimers, and donor HLA-DM (DM11,11/nonDM11,11) molecules, and depended on patient-donor mismatching. Risks of relapse were lower for DRβ-86 GlyGly patients when the donor was GlyVal (hazard ratio [HR], 0.46 [95% CI, 0.30 to 0.68]; P < .001); GlyVal patients benefited from HLA-DRB1-matched donors, whereas no donor was superior to another for ValVal patients. G1G2 patients with G1G2-mismatched donors had lower relapse. Transplantation from donors with DMα residue 184 ArgHis was associated with higher risk of relapse (HR, 1.60 [95% CI, 1.09 to 2.36]; P = .02) relative to ArgArg. Relapse and mortality risks differed across HLA-DR-DQ-DM haplotypes. CONCLUSION HLA class II haplotypes may be functional constituents of the transplantation barrier, and their consideration in patients and donors may improve the success of transplantation.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington School of Medicine, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mari Malkki
- Division of Translational Science and Therapeutics, Fred Hutchinson Cancer Center, Seattle, WA
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Stephen R. Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program/Be The Match, Minneapolis, MN
| | - Theodore Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Philip Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
6
|
Marzouka NAD, Alnaqbi H, Al-Aamri A, Tay G, Alsafar H. Investigating the genetic makeup of the major histocompatibility complex (MHC) in the United Arab Emirates population through next-generation sequencing. Sci Rep 2024; 14:3392. [PMID: 38337023 PMCID: PMC10858242 DOI: 10.1038/s41598-024-53986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.
Collapse
Affiliation(s)
- Nour Al Dain Marzouka
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amira Al-Aamri
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Hayeck TJ, Li Y, Mosbruger TL, Bradfield JP, Gleason AG, Damianos G, Shaw GTW, Duke JL, Conlin LK, Turner TN, Fernández-Viña MA, Sarmady M, Monos DS. The Impact of Patterns in Linkage Disequilibrium and Sequencing Quality on the Imprint of Balancing Selection. Genome Biol Evol 2024; 16:evae009. [PMID: 38302106 PMCID: PMC10853003 DOI: 10.1093/gbe/evae009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.
Collapse
Affiliation(s)
- Tristan J Hayeck
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy L Mosbruger
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Adam G Gleason
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - George Damianos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace Tzun-Wen Shaw
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jamie L Duke
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura K Conlin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcelo A Fernández-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri S Monos
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Li F, Niu B, Liu L, Zhu M, Yang H, Qin B, Peng X, Chen L, Xu C, Zhou X. Characterization of genetic humanized mice with transgenic HLA DP401 or DRA but deficient in endogenous murine MHC class II genes upon Staphylococcus aureus pneumonia. Animal Model Exp Med 2023; 6:585-597. [PMID: 37246733 PMCID: PMC10757210 DOI: 10.1002/ame2.12331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus can cause serious infections by secreting many superantigen exotoxins in "carrier" or "pathogenic" states. HLA DQ and HLA DR humanized mice have been used as a small animal model to study the role of two molecules during S. aureus infection. However, the contribution of HLA DP to S. aureus infection is unknown yet. METHODS In this study, we have produced HLA DP401 and HLA DRA0101 humanized mice by microinjection of C57BL/6J zygotes. Neo-floxed IAβ+/- mice were crossbred with Ella-Cre and further crossbred with HLA DP401 or HLA-DRA0101 humanized mice. After several rounds of traditional crossbreeding, we finally obtained HLA DP401-IAβ-/- and HLA DRA-IAβ-/- humanized mice, in which human DP401 or DRA0101 molecule was introduced into IAβ-/- mice deficient in endogenous murine MHC class II molecules. A transnasal infection murine model of S. aureus pneumonia was induced in the humanized mice by administering 2 × 108 CFU of S. aureus Newman dropwise into the nasal cavity. The immune responses and histopathology changes were further assessed in lungs in these infected mice. RESULTS We evaluated the local and systemic effects of S. aureus delivered intranasally in HLA DP401-IAβ-/- and HLA DRA-IAβ-/- transgenic mice. S. aureus Newman infection significantly increased the mRNA level of IL 12p40 in lungs in humanized mice. An increase in IFN-γ and IL-6 protein was observed in HLA DRA-IAβ-/- mice. We observed a declining trend in the percentage of F4/80+ macrophages in lungs in HLA DP401-IAβ-/- mice and a decreasing ratio of CD4+ to CD8+ T cells in lungs in IAβ-/- mice and HLA DP401-IAβ-/- mice. A decreasing ratio of Vβ3+ to Vβ8+ T cells was also found in the lymph node of IAβ-/- mice and HLA DP401-IAβ-/- mice. S. aureus Newman infection resulted in a weaker pathological injury in lungs in IAβ-/- genetic background mice. CONCLUSION These humanized mice will be an invaluable mouse model to resolve the pathological mechanism of S. aureus pneumonia and study what role DP molecule plays in S. aureus infection.
Collapse
Affiliation(s)
- Feng Li
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Bowen Niu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Lingling Liu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Mengmin Zhu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Hua Yang
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Boyin Qin
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Xiuhua Peng
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Lixiang Chen
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Chunhua Xu
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal ScienceShanghai Public Health Clinical CenterShanghaiChina
| |
Collapse
|
9
|
Ortiz GG, Torres-Mendoza BMG, Ramírez-Jirano J, Marquez-Pedroza J, Hernández-Cruz JJ, Mireles-Ramirez MA, Torres-Sánchez ED. Genetic Basis of Inflammatory Demyelinating Diseases of the Central Nervous System: Multiple Sclerosis and Neuromyelitis Optica Spectrum. Genes (Basel) 2023; 14:1319. [PMID: 37510224 PMCID: PMC10379341 DOI: 10.3390/genes14071319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Demyelinating diseases alter myelin or the coating surrounding most nerve fibers in the central and peripheral nervous systems. The grouping of human central nervous system demyelinating disorders today includes multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) as distinct disease categories. Each disease is caused by a complex combination of genetic and environmental variables, many involving an autoimmune response. Even though these conditions are fundamentally similar, research into genetic factors, their unique clinical manifestations, and lesion pathology has helped with differential diagnosis and disease pathogenesis knowledge. This review aims to synthesize the genetic approaches that explain the differential susceptibility between these diseases, explore the overlapping clinical features, and pathological findings, discuss existing and emerging hypotheses on the etiology of demyelination, and assess recent pathogenicity studies and their implications for human demyelination. This review presents critical information from previous studies on the disease, which asks several questions to understand the gaps in research in this field.
Collapse
Affiliation(s)
- Genaro Gabriel Ortiz
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in Medicine Hospital, Civil University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara 44329, Jalisco, Mexico
| | - Blanca M G Torres-Mendoza
- Department of Philosophical and Methodological Disciplines and Service of Molecular Biology in Medicine Hospital, Civil University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
| | - Javier Ramírez-Jirano
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
| | - Jazmin Marquez-Pedroza
- Neurosciences Division, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
- Coordination of Academic Activities, Western Biomedical Research Center, Mexican Social Security Institute (Instituto Mexicano del Seguro Social, IMSS), Guadalajara 44340, Jalisco, Mexico
| | - José J Hernández-Cruz
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara 44329, Jalisco, Mexico
| | - Mario A Mireles-Ramirez
- Department of Neurology, High Specialty Medical Unit, Western National Medical Center of the Mexican Institute of Social Security, Guadalajara 44329, Jalisco, Mexico
| | - Erandis D Torres-Sánchez
- Department of Medical and Life Sciences, University Center of la Cienega, University of Guadalajara, Ocotlan 47820, Jalisco, Mexico
| |
Collapse
|
10
|
Pagadala M, Sears TJ, Wu VH, Pérez-Guijarro E, Kim H, Castro A, Talwar JV, Gonzalez-Colin C, Cao S, Schmiedel BJ, Goudarzi S, Kirani D, Au J, Zhang T, Landi T, Salem RM, Morris GP, Harismendy O, Patel SP, Alexandrov LB, Mesirov JP, Zanetti M, Day CP, Fan CC, Thompson WK, Merlino G, Gutkind JS, Vijayanand P, Carter H. Germline modifiers of the tumor immune microenvironment implicate drivers of cancer risk and immunotherapy response. Nat Commun 2023; 14:2744. [PMID: 37173324 PMCID: PMC10182072 DOI: 10.1038/s41467-023-38271-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.
Collapse
Affiliation(s)
- Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Timothy J Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hyo Kim
- Undergraduate Bioengineering Program, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrea Castro
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James V Talwar
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Steven Cao
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | | | | | - Divya Kirani
- Undergraduate Biology and Bioinformatics Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jessica Au
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rany M Salem
- Division of Epidemiology, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gerald P Morris
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Olivier Harismendy
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sandip Pravin Patel
- Center for Personalized Cancer Therapy, Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, 92037, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jill P Mesirov
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
- The Laboratory of Immunology and Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chun Chieh Fan
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK, 74136, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wesley K Thompson
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, 92093, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, CA, 92093, USA
| | | | - Hannah Carter
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Front Genet 2023; 14:1004138. [PMID: 36911412 PMCID: PMC9995861 DOI: 10.3389/fgene.2023.1004138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Components of the immune response have previously been associated with the pathophysiology of atopic dermatitis (AD), specifically the Human Leukocyte Antigen (HLA) Class II region via genome-wide association studies, however the exact elements have not been identified. Methods: This study examines the genetic variation of HLA Class II genes using next generation sequencing (NGS) and evaluates the resultant amino acids, with particular attention on binding site residues, for associations with AD. The Genetics of AD cohort was used to evaluate HLA Class II allelic variation on 464 subjects with AD and 384 controls. Results: Statistically significant associations with HLA-DP α and β alleles and specific amino acids were found, some conferring susceptibility to AD and others with a protective effect. Evaluation of polymorphic residues in DP binding pockets revealed the critical role of P1 and P6 (P1: α31M + (β84G or β84V) [protection]; α31Q + β84D [susceptibility] and P6: α11A + β11G [protection]) and were replicated with a national cohort of children consisting of 424 AD subjects. Independently, AD susceptibility-associated residues were associated with the G polymorphism of SNP rs9277534 in the 3' UTR of the HLA-DPB1 gene, denoting higher expression of these HLA-DP alleles, while protection-associated residues were associated with the A polymorphism, denoting lower expression. Discussion: These findings lay the foundation for evaluating non-self-antigens suspected to be associated with AD as they potentially interact with particular HLA Class II subcomponents, forming a complex involved in the pathophysiology of AD. It is possible that a combination of structural HLA-DP components and levels of expression of these components contribute to AD pathophysiology.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronald A. Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jenna R. Wasserman
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amalia Dinou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Georgios Damianos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ioanna Kotsopoulou
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nikolaos Tairis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Deborah A. Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Timothy L. Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Albert C. Yan
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Section of Dermatology, Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman Schools of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Timoteo VJ, Chiang KM, Yang HC, Pan WH. Common and ethnic-specific genetic determinants of hemoglobin concentration between Taiwanese Han Chinese and European Whites: findings from comparative two-stage genome-wide association studies. J Nutr Biochem 2023; 111:109126. [PMID: 35964923 DOI: 10.1016/j.jnutbio.2022.109126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 12/23/2022]
Abstract
Human iron nutrition is a result of interplays between genetic and environmental factors. However, there has been scarcity of data on the genetic variants associated with altered iron homeostasis and ethnic-specific associations are further lacking. In this study, we compared between the Taiwanese Han Chinese (HC) and European Whites the genetic determinants of hemoglobin (Hb) concentration, a biochemical parameter that in part reflects the amount of functional iron in the body. Through sex-specific two-stage genome-wide association studies (2S-GWAS), we observed the consistent Hb-association of SNPs in TMPRSS6 (chr 22), ABO (chr 9), and PRKCE (chr 2) across sexes in both ethnic groups. Specific to the Taiwanese HC, the Hb-association of AXIN1, together with other loci near the chr 16 alpha-globin gene cluster, was found novel. On the other hand, majority of the Hb-associated SNPs among Europeans were identified along the chr 6 major histocompatibility complex (MHC) region, which has established roles in immune system control. We report here strong Hb-associations of HFE and members of gene families (SLC17; H2A, H2B, H3, H4, H1; TRIM; ZSCAN, ZKSCAN, ZNF; HLA; BTN, OR), numerous SNPs in/nearby CARMIL1, PRRC2A, PSORS1C1, NOTCH4, TSBP1, C6orf15, and distinct associations with non-coding RNA genes. Our findings provide evidence for both common and ethnic-specific genetic determinants of Hb between East Asians and Caucasians. These will help to further our understanding of the iron and/or erythropoiesis physiology in humans and to identify high risk subgroups for iron imbalances - a primary requirement to meet the goal of precision nutrition for optimal health.
Collapse
Affiliation(s)
- Vanessa Joy Timoteo
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Kuang-Mao Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei City, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan.
| |
Collapse
|
13
|
Sun Y, Yuan F, Wang L, Dai D, Zhang Z, Liang F, Liu N, Long J, Zhao X, Xi Y. Recombination and mutation shape variations in the major histocompatibility complex. J Genet Genomics 2022; 49:1151-1161. [PMID: 35358716 DOI: 10.1016/j.jgg.2022.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/14/2023]
Abstract
The major histocompatibility complex (MHC) is closely associated with numerous diseases, but its high degree of polymorphism complicates the discovery of disease-associated variants. In principle, recombination and de novo mutations are two critical factors responsible for MHC polymorphisms. However, direct evidence for this hypothesis is lacking. Here, we report the generation of fine-scale MHC recombination and de novo mutation maps of ∼5 Mb by deep sequencing (> 100×) of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families (a total of 190 individuals). Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries. The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate, particularly in MHC recombinant individuals. Notably, mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC, respectively, and evolution of the MHC locus was mainly controlled by positive selection. These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.
Collapse
Affiliation(s)
- Yuying Sun
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Fang Yuan
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Ling Wang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Dongfa Dai
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhijian Zhang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fei Liang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Nan Liu
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Juan Long
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiao Zhao
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yongzhi Xi
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
14
|
Whole genome DNA and RNA sequencing of whole blood elucidates the genetic architecture of gene expression underlying a wide range of diseases. Sci Rep 2022; 12:20167. [PMID: 36424512 PMCID: PMC9686236 DOI: 10.1038/s41598-022-24611-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in Framingham Heart Study. We identified 6,778,286 cis-eQTL variant-gene transcript (eGene) pairs at p < 5 × 10-8 (2,855,111 unique cis-eQTL variants and 15,982 unique eGenes) and 1,469,754 trans-eQTL variant-eGene pairs at p < 1e-12 (526,056 unique trans-eQTL variants and 7233 unique eGenes). In addition, 442,379 cis-eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the top GO terms for cis-eGenes are enriched for immune functions (FDR < 0.05). The cis-eQTL variants are enriched for SNPs reported to be associated with 815 traits in prior GWAS, including cardiovascular disease risk factors. As proof of concept, we used this eQTL resource in conjunction with genetic variants from public GWAS databases in causal inference testing (e.g., COVID-19 severity). After Bonferroni correction, Mendelian randomization analyses identified putative causal associations of 60 eGenes with systolic blood pressure, 13 genes with coronary artery disease, and seven genes with COVID-19 severity. This study created a comprehensive eQTL resource via BioData Catalyst that will be made available to the scientific community. This will advance understanding of the genetic architecture of gene expression underlying a wide range of diseases.
Collapse
|
15
|
Liu C, Joehanes R, Ma J, Wang Y, Sun X, Keshawarz A, Sooda M, Huan T, Hwang SJ, Bui H, Tejada B, Munson PJ, Cumhur D, Heard-Costa NL, Pitsillides AN, Peloso GM, Feolo M, Sharopova N, Vasan RS, Levy D. Whole Genome DNA and RNA Sequencing of Whole Blood Elucidates the Genetic Architecture of Gene Expression Underlying a Wide Range of Diseases. RESEARCH SQUARE 2022:rs.3.rs-1598646. [PMID: 35664994 PMCID: PMC9164515 DOI: 10.21203/rs.3.rs-1598646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in Framingham Heart Study. We identified 6,778,286 cis -eQTL variant-gene transcript (eGene) pairs at p < 5x10 - 8 (2,855,111 unique cis -eQTL variants and 15,982 unique eGenes) and 1,469,754 trans -eQTL variant-eGene pairs at p < 1e-12 (526,056 unique trans -eQTL variants and 7,233 unique eGenes). In addition, 442,379 cis -eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the top GO terms for cis- eGenes are enriched for immune functions (FDR < 0.05). The cis -eQTL variants are enriched for SNPs reported to be associated with 815 traits in prior GWAS, including cardiovascular disease risk factors. As proof of concept, we used this eQTL resource in conjunction with genetic variants from public GWAS databases in causal inference testing (e.g., COVID-19 severity). After Bonferroni correction, Mendelian randomization analyses identified putative causal associations of 60 eGenes with systolic blood pressure, 13 genes with coronary artery disease, and seven genes with COVID-19 severity. This study created a comprehensive eQTL resource via BioData Catalyst that will be made available to the scientific community. This will advance understanding of the genetic architecture of gene expression underlying a wide range of diseases.
Collapse
|
16
|
Liu C, Joehanes R, Ma J, Wang Y, Sun X, Keshawarz A, Sooda M, Huan T, Hwang SJ, Bui H, Tejada B, Munson PJ, Cumhur D, Heard-Costa NL, Pitsillides AN, Peloso GM, Feolo M, Sharopova N, Vasan RS, Levy D. Whole Genome DNA and RNA Sequencing of Whole Blood Elucidates the Genetic Architecture of Gene Expression Underlying a Wide Range of Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.04.13.22273841. [PMID: 35547845 PMCID: PMC9094109 DOI: 10.1101/2022.04.13.22273841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in Framingham Heart Study. We identified 6,778,286 cis -eQTL variant-gene transcript (eGene) pairs at p <5×10 -8 (2,855,111 unique cis -eQTL variants and 15,982 unique eGenes) and 1,469,754 trans -eQTL variant-eGene pairs at p <1e-12 (526,056 unique trans -eQTL variants and 7,233 unique eGenes). In addition, 442,379 cis -eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs). Gene Ontology (GO) analyses revealed that the top GO terms for cis- eGenes are enriched for immune functions (FDR <0.05). The cis -eQTL variants are enriched for SNPs reported to be associated with 815 traits in prior GWAS, including cardiovascular disease risk factors. As proof of concept, we used this eQTL resource in conjunction with genetic variants from public GWAS databases in causal inference testing (e.g., COVID-19 severity). After Bonferroni correction, Mendelian randomization analyses identified putative causal associations of 60 eGenes with systolic blood pressure, 13 genes with coronary artery disease, and seven genes with COVID-19 severity. This study created a comprehensive eQTL resource via BioData Catalyst that will be made available to the scientific community. This will advance understanding of the genetic architecture of gene expression underlying a wide range of diseases.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Roby Joehanes
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiantao Ma
- Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Yuxuan Wang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Xianbang Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Amena Keshawarz
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Meera Sooda
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tianxiao Huan
- University of Massachusetts Medical School, Worcester, MA, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Helena Bui
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Tejada
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Munson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Nancy L Heard-Costa
- Framingham Heart Study, Framingham, MA, USA
- Departments of Medicine and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | | | - Gina M Peloso
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Michael Feolo
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- Departments of Medicine and Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Fine human genetic map based on UK10K data set. Hum Genet 2022; 141:273-281. [DOI: 10.1007/s00439-021-02415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/03/2021] [Indexed: 11/04/2022]
|
18
|
Wang QS, Huang H. Methods for statistical fine-mapping and their applications to auto-immune diseases. Semin Immunopathol 2022; 44:101-113. [PMID: 35041074 PMCID: PMC8837575 DOI: 10.1007/s00281-021-00902-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/22/2021] [Indexed: 01/07/2023]
Abstract
Although genome-wide association studies (GWAS) have identified thousands of loci in the human genome that are associated with different traits, understanding the biological mechanisms underlying the association signals identified in GWAS remains challenging. Statistical fine-mapping is a method aiming to refine GWAS signals by evaluating which variant(s) are truly causal to the phenotype. Here, we review the types of statistical fine-mapping methods that have been widely used to date, with a focus on recently developed functionally informed fine-mapping (FIFM) methods that utilize functional annotations. We then systematically review the applications of statistical fine-mapping in autoimmune disease studies to highlight the value of statistical fine-mapping in biological contexts.
Collapse
Affiliation(s)
- Qingbo S Wang
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Perry BI, Bowker N, Burgess S, Wareham NJ, Upthegrove R, Jones PB, Langenberg C, Khandaker GM. Evidence for Shared Genetic Aetiology Between Schizophrenia, Cardiometabolic, and Inflammation-Related Traits: Genetic Correlation and Colocalization Analyses. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac001. [PMID: 35156041 PMCID: PMC8827407 DOI: 10.1093/schizbullopen/sgac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Schizophrenia commonly co-occurs with cardiometabolic and inflammation-related traits. It is unclear to what extent the comorbidity could be explained by shared genetic aetiology. METHODS We used GWAS data to estimate shared genetic aetiology between schizophrenia, cardiometabolic, and inflammation-related traits: fasting insulin (FI), fasting glucose, glycated haemoglobin, glucose tolerance, type 2 diabetes (T2D), lipids, body mass index (BMI), coronary artery disease (CAD), and C-reactive protein (CRP). We examined genome-wide correlation using linkage disequilibrium score regression (LDSC); stratified by minor-allele frequency using genetic covariance analyzer (GNOVA); then refined to locus-level using heritability estimation from summary statistics (ρ-HESS). Regions with local correlation were used in hypothesis prioritization multi-trait colocalization to examine for colocalisation, implying common genetic aetiology. RESULTS We found evidence for weak genome-wide negative correlation of schizophrenia with T2D (rg = -0.07; 95% C.I., -0.03,0.12; P = .002) and BMI (rg = -0.09; 95% C.I., -0.06, -0.12; P = 1.83 × 10-5). We found a trend of evidence for positive genetic correlation between schizophrenia and cardiometabolic traits confined to lower-frequency variants. This was underpinned by 85 regions of locus-level correlation with evidence of opposing mechanisms. Ten loci showed strong evidence of colocalization. Four of those (rs6265 (BDNF); rs8192675 (SLC2A2); rs3800229 (FOXO3); rs17514846 (FURIN)) are implicated in brain-derived neurotrophic factor (BDNF)-related pathways. CONCLUSIONS LDSC may lead to downwardly-biased genetic correlation estimates between schizophrenia, cardiometabolic, and inflammation-related traits. Common genetic aetiology for these traits could be confined to lower-frequency common variants and involve opposing mechanisms. Genes related to BDNF and glucose transport amongst others may partly explain the comorbidity between schizophrenia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Golam M Khandaker
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
20
|
Arnocky S, Hodges-Simeon C, Davis AC, Desmarais R, Greenshields A, Liwski R, Quillen EE, Cardenas R, Breedlove SM, Puts D. Heterozygosity of the major histocompatibility complex predicts later self-reported pubertal maturation in men. Sci Rep 2021; 11:19862. [PMID: 34615944 PMCID: PMC8494901 DOI: 10.1038/s41598-021-99334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Individual variation in the age of pubertal onset is linked to physical and mental health, yet the factors underlying this variation are poorly understood. Life history theory predicts that individuals at higher risk of mortality due to extrinsic causes such as infectious disease should sexually mature and reproduce earlier, whereas those at lower risk can delay puberty and continue to invest resources in somatic growth. We examined relationships between a genetic predictor of infectious disease resistance, heterozygosity of the major histocompatibility complex (MHC), referred to as the human leukocyte antigen (HLA) gene in humans, and self-reported pubertal timing. In a combined sample of men from Canada (n = 137) and the United States (n = 43), MHC heterozygosity predicted later self-reported pubertal development. These findings suggest a genetic trade-off between immunocompetence and sexual maturation in human males.
Collapse
Affiliation(s)
| | | | | | | | - Anna Greenshields
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Robert Liwski
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | | | | | | | - David Puts
- Pennsylvania State University, State College, USA
| |
Collapse
|
21
|
Kulski JK, Suzuki S, Shiina T. Haplotype Shuffling and Dimorphic Transposable Elements in the Human Extended Major Histocompatibility Complex Class II Region. Front Genet 2021; 12:665899. [PMID: 34122517 PMCID: PMC8193847 DOI: 10.3389/fgene.2021.665899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
The major histocompatibility complex (MHC) on chromosome 6p21 is one of the most single-nucleotide polymorphism (SNP)-dense regions of the human genome and a prime model for the study and understanding of conserved sequence polymorphisms and structural diversity of ancestral haplotypes/conserved extended haplotypes. This study aimed to follow up on a previous analysis of the MHC class I region by using the same set of 95 MHC haplotype sequences downloaded from a publicly available BioProject database at the National Center for Biotechnology Information to identify and characterize the polymorphic human leukocyte antigen (HLA)-class II genes, the MTCO3P1 pseudogene alleles, the indels of transposable elements as haplotypic lineage markers, and SNP-density crossover (XO) loci at haplotype junctions in DNA sequence alignments of different haplotypes across the extended class II region (∼1 Mb) from the telomeric PRRT1 gene in class III to the COL11A2 gene at the centromeric end of class II. We identified 42 haplotypic indels (20 Alu, 7 SVA, 13 LTR or MERs, and 2 indels composed of a mosaic of different transposable elements) linked to particular HLA-class II alleles. Comparative sequence analyses of 136 haplotype pairs revealed 98 unique XO sites between SNP-poor and SNP-rich genomic segments with considerable haplotype shuffling located in the proximity of putative recombination hotspots. The majority of XO sites occurred across various regions including in the vicinity of MTCO3P1 between HLA-DQB1 and HLA-DQB3, between HLA-DQB2 and HLA-DOB, between DOB and TAP2, and between HLA-DOA and HLA-DPA1, where most XOs were within a HERVK22 sequence. We also determined the genomic positions of the PRDM9-recombination suppression sequence motif ATCCATG/CATGGAT and the PRDM9 recombination activation partial binding motif CCTCCCCT/AGGGGAG in the class II region of the human reference genome (NC_ 000006) relative to published meiotic recombination positions. Both the recombination and anti-recombination PRDM9 binding motifs were widely distributed throughout the class II genomic regions with 50% or more found within repeat elements; the anti-recombination motifs were found mostly in L1 fragmented repeats. This study shows substantial haplotype shuffling between different polymorphic blocks and confirms the presence of numerous putative ancestral recombination sites across the class II region between various HLA class II genes.
Collapse
Affiliation(s)
- Jerzy K Kulski
- Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia.,Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
22
|
Kulski JK, Suzuki S, Shiina T. SNP-Density Crossover Maps of Polymorphic Transposable Elements and HLA Genes Within MHC Class I Haplotype Blocks and Junction. Front Genet 2021; 11:594318. [PMID: 33537058 PMCID: PMC7848197 DOI: 10.3389/fgene.2020.594318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The genomic region (~4 Mb) of the human major histocompatibility complex (MHC) on chromosome 6p21 is a prime model for the study and understanding of conserved polymorphic sequences (CPSs) and structural diversity of ancestral haplotypes (AHs)/conserved extended haplotypes (CEHs). The aim of this study was to use a set of 95 MHC genomic sequences downloaded from a publicly available BioProject database at NCBI to identify and characterise polymorphic human leukocyte antigen (HLA) class I genes and pseudogenes, MICA and MICB, and retroelement indels as haplotypic lineage markers, and single-nucleotide polymorphism (SNP) crossover loci in DNA sequence alignments of different haplotypes across the Olfactory Receptor (OR) gene region (~1.2 Mb) and the MHC class I region (~1.8 Mb) from the GPX5 to the MICB gene. Our comparative sequence analyses confirmed the identity of 12 haplotypic retroelement markers and revealed that they partitioned the HLA-A/B/C haplotypes into distinct evolutionary lineages. Crossovers between SNP-poor and SNP-rich regions defined the sequence range of haplotype blocks, and many of these crossover junctions occurred within particular transposable elements, lncRNA, OR12D2, MUC21, MUC22, PSORS1A3, HLA-C, HLA-B, and MICA. In a comparison of more than 250 paired sequence alignments, at least 38 SNP-density crossover sites were mapped across various regions from GPX5 to MICB. In a homology comparison of 16 different haplotypes, seven CEH/AH (7.1, 8.1, 18.2, 51.x, 57.1, 62.x, and 62.1) had no detectable SNP-density crossover junctions and were SNP poor across the entire ~2.8 Mb of sequence alignments. Of the analyses between different recombinant haplotypes, more than half of them had SNP crossovers within 10 kb of LTR16B/ERV3-16A3_I, MLT1, Charlie, and/or THE1 sequences and were in close vicinity to structurally polymorphic Alu and SVA insertion sites. These studies demonstrate that (1) SNP-density crossovers are associated with putative ancestral recombination sites that are widely spread across the MHC class I genomic region from at least the telomeric OR12D2 gene to the centromeric MICB gene and (2) the genomic sequences of MHC homozygous cell lines are useful for analysing haplotype blocks, ancestral haplotypic landscapes and markers, CPSs, and SNP-density crossover junctions.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
23
|
Petersen MI, Carignano HA, Suarez Archilla G, Caffaro ME, Alvarez I, Miretti MM, Trono K. Expression-based analysis of genes related to single nucleotide polymorphism hits associated with bovine leukemia virus proviral load in Argentinean dairy cattle. J Dairy Sci 2020; 104:1993-2007. [PMID: 33246606 DOI: 10.3168/jds.2020-18924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
Abstract
In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.
Collapse
Affiliation(s)
- M I Petersen
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - H A Carignano
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Genética, Instituto Nacional de Tecnología Agropecuaria, B1686 Hurlingham, Argentina.
| | - G Suarez Archilla
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, S2300 Rafaela, Argentina
| | - M E Caffaro
- Instituto de Genética, Instituto Nacional de Tecnología Agropecuaria, B1686 Hurlingham, Argentina
| | - I Alvarez
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - M M Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, FCEQyN, Universidad Nacional de Misiones, N3300 Posadas, Argentina
| | - K Trono
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Bruijnesteijn J, de Groot NG, Bontrop RE. The Genetic Mechanisms Driving Diversification of the KIR Gene Cluster in Primates. Front Immunol 2020; 11:582804. [PMID: 33013938 PMCID: PMC7516082 DOI: 10.3389/fimmu.2020.582804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
The activity and function of natural killer (NK) cells are modulated through the interactions of multiple receptor families, of which some recognize MHC class I molecules. The high level of MHC class I polymorphism requires their ligands either to interact with conserved epitopes, as is utilized by the NKG2A receptor family, or to co-evolve with the MHC class I allelic variation, which task is taken up by the killer cell immunoglobulin-like receptor (KIR) family. Multiple molecular mechanisms are responsible for the diversification of the KIR gene system, and include abundant chromosomal recombination, high mutation rates, alternative splicing, and variegated expression. The combination of these genetic mechanisms generates a compound array of diversity as is reflected by the contraction and expansion of KIR haplotypes, frequent birth of fusion genes, allelic polymorphism, structurally distinct isoforms, and variegated expression, which is in contrast to the mainly allelic nature of MHC class I polymorphism in humans. A comparison of the thoroughly studied human and macaque KIR gene repertoires demonstrates a similar evolutionarily conserved toolbox, through which selective forces drove and maintained the diversified nature of the KIR gene cluster. This hypothesis is further supported by the comparative genetics of KIR haplotypes and genes in other primate species. The complex nature of the KIR gene system has an impact upon the education, activity, and function of NK cells in coherence with an individual’s MHC class I repertoire and pathogenic encounters. Although selection operates on an individual, the continuous diversification of the KIR gene system in primates might protect populations against evolving pathogens.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Natasja G de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
25
|
Suzuki H, Joshita S, Hirayama A, Shinji A, Mukawa K, Sako M, Yoshimura N, Suga T, Umemura T, Ashihara N, Yamazaki T, Ota M. Polymorphism at rs9264942 is associated with HLA-C expression and inflammatory bowel disease in the Japanese. Sci Rep 2020; 10:12424. [PMID: 32709981 PMCID: PMC7381613 DOI: 10.1038/s41598-020-69370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
An expression quantitative trait locus (eQTL) single-nucleotide polymorphism (SNP) at rs9264942 was earlier associated with human leukocyte antigen (HLA)-C expression in Europeans. HLA-C has also been related to inflammatory bowel disease (IBD) risk in the Japanese. This study examined whether an eQTL SNP at rs9264942 could regulate HLA-C expression and whether four SNP haplotypes, including the eQTL SNP at rs9264942 and three SNPs at rs2270191, rs3132550, and rs6915986 of IBD risk carried in the HLA-C*12:02~B*52:01~DRB1*15:02 allele, were associated with IBD in the Japanese. HLA-C expression on CD3e+CD8a+ lymphocytes was significantly higher for the CC or CT genotype than for the TT genotype of rs9264942. The TACC haplotype of the four SNPs was associated with a strong susceptibility to ulcerative colitis (UC) but protection against Crohn’s disease (CD) as well as with disease clinical outcome. While UC protectivity was significant but CD susceptibility was not for the CGTT haplotype, the significance of UC protectivity disappeared but CD susceptibility reached significance for the CGCT haplotype. In conclusion, our findings support that the eQTL SNP at rs9264942 regulates HLA-C expression in the Japanese and suggest that the four SNPs, which are in strong linkage disequilibrium, may be surrogate marker candidates of a particular HLA haplotype, HLA-C*12:02~B*52:01~DRB1*15:02, related to IBD susceptibility and disease outcome.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Atsuhiro Hirayama
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Inflammatory Bowel Disease, Yokohama City University Medical Center, Yokohama, Japan
| | - Akihiro Shinji
- Department of Medical Oncology, Japanese Red Cross Society Suwa Red Cross Hospital, Suwa, Japan
| | - Kenji Mukawa
- Department of Gastroenterology, Japanese Red Cross Society Suwa Red Cross Hospital, Suwa, Japan
| | - Minako Sako
- Center for Inflammatory Bowel Disease, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Naoki Yoshimura
- Center for Inflammatory Bowel Disease, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Tomoaki Suga
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Norihiro Ashihara
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masao Ota
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
26
|
Isshiki M, Naka I, Watanabe Y, Nishida N, Kimura R, Furusawa T, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Eddie R, Ohtsuka R, Ohashi J. Admixture and natural selection shaped genomes of an Austronesian-speaking population in the Solomon Islands. Sci Rep 2020; 10:6872. [PMID: 32327716 PMCID: PMC7181741 DOI: 10.1038/s41598-020-62866-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/16/2020] [Indexed: 11/24/2022] Open
Abstract
People in the Solomon Islands today are considered to have derived from Asian- and Papuan-related ancestors. Papuan-related ancestors colonized Near Oceania about 47,000 years ago, and Asian-related ancestors were Austronesian (AN)-speaking population, called Lapita, who migrated from Southeast Asia about 3,500 years ago. These two ancestral populations admixed in Near Oceania before the expansion of Lapita people into Remote Oceania. To understand the impact of the admixture on the adaptation of AN-speaking Melanesians in Near Oceania, we performed the genome-wide single nucleotide polymorphism (SNP) analysis of 21 individuals from Munda, the main town of the New Georgia Islands in the western Solomon Islands. Population samples from Munda were genetically similar to other Solomon Island population samples. The analysis of genetic contribution from the two different ancestries to the Munda genome revealed significantly higher proportions of Asian- and Papuan-related ancestries in the region containing the annexin A1 (ANXA1) gene (Asian component > 82.6%) and in the human leukocyte antigen (HLA) class II region (Papuan component > 85.4%), respectively. These regions were suspected to have undergone natural selection since the time of admixture. Our results suggest that admixture had affected adaptation of AN-speaking Melanesians in the Solomon Islands.
Collapse
Affiliation(s)
- Mariko Isshiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yusuke Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nao Nishida
- Genome Medical Science Project, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Takuro Furusawa
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazumi Natsuhara
- Department of International Health and Nursing, Faculty of Nursing, Toho University, Tokyo, 143-8540, Japan
| | - Taro Yamauchi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Minato Nakazawa
- Graduate School of Health Sciences, Kobe University, Kobe, 654-0142, Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ricky Eddie
- National Gizo Hospital, Ministry of Health and Medical Services, P.O. Box 36, Gizo, Solomon Islands
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
27
|
Radwan J, Babik W, Kaufman J, Lenz TL, Winternitz J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet 2020; 36:298-311. [DOI: 10.1016/j.tig.2020.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022]
|
28
|
Nordin J, Ameur A, Lindblad-Toh K, Gyllensten U, Meadows JRS. SweHLA: the high confidence HLA typing bio-resource drawn from 1000 Swedish genomes. Eur J Hum Genet 2019; 28:627-635. [PMID: 31844174 PMCID: PMC7170882 DOI: 10.1038/s41431-019-0559-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
There is a need to accurately call human leukocyte antigen (HLA) genes from existing short-read sequencing data, however there is no single solution that matches the gold standard of Sanger sequenced lab typing. Here we aimed to combine results from available software programs, minimizing the biases of applied algorithm and HLA reference. The result is a robust HLA population resource for the published 1000 Swedish genomes, and a framework for future HLA interrogation. HLA 2nd-field alleles were called using four imputation and inference methods for the classical eight genes (class I: HLA-A, HLA-B, HLA-C; class II: HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRB1). A high confidence population set (SweHLA) was determined using an n−1 concordance rule for class I (four software) and class II (three software) alleles. Results were compared across populations and individual programs benchmarked to SweHLA. Per gene, 875 to 988 of the 1000 samples were genotyped in SweHLA; 920 samples had at least seven loci called. While a small fraction of reference alleles were common to all software (class I = 1.9% and class II = 4.1%), this did not affect the overall call rate. Gene-level concordance was high compared to European populations (>0.83%), with COX and PGF the dominant SweHLA haplotypes. We noted that 15/18 discordant alleles (delta allele frequency >2) were previously reported as disease-associated. These differences could in part explain across-study genetic replication failures, reinforcing the need to use multiple software solutions. SweHLA demonstrates a way to use existing NGS data to generate a population resource agnostic to individual HLA software biases.
Collapse
Affiliation(s)
- Jessika Nordin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ulf Gyllensten
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
D'Antonio M, Reyna J, Jakubosky D, Donovan MKR, Bonder MJ, Matsui H, Stegle O, Nariai N, D'Antonio-Chronowska A, Frazer KA. Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease. eLife 2019; 8:e48476. [PMID: 31746734 PMCID: PMC6904215 DOI: 10.7554/elife.48476] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account have substantially greater power compared with only using single variants. We examined the association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, postulating that downregulation of RNF5 expression is the likely causal mechanism. Our study provides insights into the genetic architecture of the MHC region and pinpoints disease associations that are due to differential expression of HLA genes and non-HLA genes.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Joaquin Reyna
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
| | - David Jakubosky
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
| | - Margaret KR Donovan
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoSan DiegoUnited States
- Department of Biomedical InformaticsUniversity of California, San DiegoSan DiegoUnited States
| | - Marc-Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics InstituteCambridgeUnited Kingdom
| | - Hiroko Matsui
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics InstituteCambridgeUnited Kingdom
| | - Naoki Nariai
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Agnieszka D'Antonio-Chronowska
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| | - Kelly A Frazer
- Institute for Genomic MedicineUniversity of California, San DiegoSan DiegoUnited States
- Department of PediatricsRady Children’s Hospital, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
30
|
A method for genome-wide genealogy estimation for thousands of samples. Nat Genet 2019; 51:1321-1329. [PMID: 31477933 DOI: 10.1038/s41588-019-0484-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/15/2019] [Indexed: 01/29/2023]
Abstract
Knowledge of genome-wide genealogies for thousands of individuals would simplify most evolutionary analyses for humans and other species, but has remained computationally infeasible. We have developed a method, Relate, scaling to >10,000 sequences while simultaneously estimating branch lengths, mutational ages and variable historical population sizes, as well as allowing for data errors. Application to 1,000 Genomes Project haplotypes produces joint genealogical histories for 26 human populations. Highly diverged lineages are present in all groups, but most frequent in Africa. Outside Africa, these mainly reflect ancient introgression from groups related to Neanderthals and Denisovans, while African signals instead reflect unknown events unique to that continent. Our approach allows more powerful inferences of natural selection than has previously been possible. We identify multiple regions under strong positive selection, and multi-allelic traits including hair color, body mass index and blood pressure, showing strong evidence of directional selection, varying among human groups.
Collapse
|
31
|
Abeid SN, Motrane M, Farhane H, Harich N. Alu elements within the human major histocompatibility class I region in the Comoros Islands: genetic variation and population relationships. Ann Hum Biol 2019; 46:169-174. [PMID: 31116034 DOI: 10.1080/03014460.2019.1620854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Background: Alu elements are attractive markers for population genetics, disease, forensics and paternity analyses, due to their particular characteristics. Five polymorphic Alu insertions within the MHC class I region have been little examined in human populations. Aim: The analysis of the genetic diversity of autochthonous Comorians from the three major islands of the archipelago by these polymorphic MHC Alus and to assess their relationships together and with other populations. Subjects and methods: Two hundred and fifty-seven unrelated participants from the Comoros archipelago, Grande Comore (86), Anjouan (93) and Moheli (78), were examined for five MHC Alu insertions. The data were analysed for intra- and inter-population genetic variation. Results: All MHC Alu were polymorphic in the three samples and only one significant differentiation was observed between Anjouan and Moheli. According to the MDS and AMOVA results, the populations included in the inter-population analyses were grouped in three major clusters according to their genetic ancestry. The haplotype diversity showed by the Comorians is higher than in previously studied African populations and occupies an intermediate position between African and Asian clusters. Conclusion: MHC Alu insertions are useful markers to study micro-geographical genetic variations. Using these polymorphisms, new insights have been obtained about the biological history and evolution of the Comoros.
Collapse
Affiliation(s)
- Said Nassor Abeid
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| | - Majida Motrane
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| | - Hamid Farhane
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| | - Nourdin Harich
- a Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie , Faculté des Sciences, Université Chouaïb Doukkali , El Jadida , Morocco
| |
Collapse
|
32
|
Increased MHC Matching by C4 Gene Compatibility in Unrelated Donor Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:891-898. [DOI: 10.1016/j.bbmt.2018.12.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
|
33
|
Reher D, Key FM, Andrés AM, Kelso J. Immune Gene Diversity in Archaic and Present-day Humans. Genome Biol Evol 2019; 11:232-241. [PMID: 30566634 PMCID: PMC6347564 DOI: 10.1093/gbe/evy271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Genome-wide analyses of two Neandertals and a Denisovan have shown that these archaic humans had lower genetic heterozygosity than present-day people. A similar reduction in genetic diversity of protein-coding genes (gene diversity) was found in exome sequences of three Neandertals. Reduced gene diversity, particularly in genes involved in immunity, may have important functional consequences. In fact, it has been suggested that reduced diversity in immune genes may have contributed to Neandertal extinction. We therefore explored gene diversity in different human groups, and at different time points on the Neandertal lineage, with a particular focus on the diversity of genes involved in innate immunity and genes of the Major Histocompatibility Complex (MHC). We find that the two Neandertals and a Denisovan have similar gene diversity, all significantly lower than any present-day human. This is true across gene categories, with no gene set showing an excess decrease in diversity compared with the genome-wide average. Innate immune-related genes show a similar reduction in diversity to other genes, both in present-day and archaic humans. There is also no observable decrease in gene diversity over time in Neandertals, suggesting that there may have been no ongoing reduction in gene diversity in later Neandertals, although this needs confirmation with a larger sample size. In both archaic and present-day humans, genes with the highest levels of diversity are enriched for MHC-related functions. In fact, in archaic humans the MHC genes show evidence of having retained more diversity than genes involved only in the innate immune system.
Collapse
Affiliation(s)
- David Reher
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Felix M Key
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Aida M Andrés
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, United Kingdom
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
34
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
35
|
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O’Sullivan JM. Type 1 Diabetes Mellitus-Associated Genetic Variants Contribute to Overlapping Immune Regulatory Networks. Front Genet 2018; 9:535. [PMID: 30524468 PMCID: PMC6258722 DOI: 10.3389/fgene.2018.00535] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disorder characterized by the autoimmune destruction of insulin-producing pancreatic islet beta cells in genetically predisposed individuals. Genome-wide association studies (GWAS) have identified over 60 risk regions across the human genome, marked by single nucleotide polymorphisms (SNPs), which confer genetic predisposition to T1D. There is increasing evidence that disease-associated SNPs can alter gene expression through spatial interactions that involve distal loci, in a tissue- and development-specific manner. Here, we used three-dimensional (3D) genome organization data to identify genes that physically co-localized with DNA regions that contained T1D-associated SNPs in the nucleus. Analysis of these SNP-gene pairs using the Genotype-Tissue Expression database identified a subset of SNPs that significantly affected gene expression. We identified 246 spatially regulated genes including HLA-DRB1, LAT, MICA, BTN3A2, CTLA4, CD226, NOTCH1, TRIM26, PTEN, TYK2, CTSH, and FLRT3, which exhibit tissue-specific effects in multiple tissues. We observed that the T1D-associated variants interconnect through networks that form part of the immune regulatory pathways, including immune-cell activation, cytokine signaling, and programmed cell death protein-1 (PD-1). Our results implicate T1D-associated variants in tissue and cell-type specific regulatory networks that contribute to pancreatic beta cell inflammation and destruction, adaptive immune signaling, and immune-cell proliferation and activation. A number of other regulatory changes we identified are not typically considered to be central to the pathology of T1D. Collectively, our data represent a novel resource for the hypothesis-driven development of diagnostic, prognostic, and therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Denis M. Nyaga
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Craig Jefferies
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Children’s Health, Auckland, New Zealand
| | - Jo K. Perry
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
36
|
Revisiting the potential power of human leukocyte antigen (HLA) genes on relationship testing by massively parallel sequencing-based HLA typing in an extended family. J Hum Genet 2018; 64:29-38. [PMID: 30348993 DOI: 10.1038/s10038-018-0521-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022]
Abstract
The human leukocyte antigen (HLA) genes are the most polymorphic genes in the human genome and have great power in forensic applications, especially in relationship testing and personal identification. However, the extreme polymorphism of HLA has made unambiguous genotyping of these genes very challenging and resulted in the limited application in relationship testing. Fortunately, massively parallel sequencing (MPS) technology offers the promise of unambiguous and high-throughput HLA typing. In this study, 11 HLA genes were typed in one extended family residing in North China and encompassing six generations. Phase-resolved genotypes for HLA genes were generated and HLA haplotype structure was defined. The paternity/kinship index, or in other words, likelihood ratio (LR) was calculated. A total of 88 alleles were identified, of which eight alleles were newly discovered. The inheritance of HLA alleles followed Mendelian law. With the discovery of new HLA alleles and three recombination events, a total of eleven new HLA haplotypes were identified in this population. LR distribution showed that, when HLA alleles were applied, the Log10LR for a single locus could reach very high and the median average Log10LRs of HLA genes were much higher than that of short tandem repeat loci. The result showed that high-throughput HLA genotyping could be achieved rapidly by MPS, and the contribution of HLA genes on system performance could be high, which may be applied as a supplement in forensic genetics studies. This study was also valuable in demonstrating the genetic mechanisms governing the generation of polymorphisms of the HLA genes.
Collapse
|
37
|
Classical HLA alleles tag SNP in families from Antioquia with type 1 diabetes mellitus. BIOMEDICA 2018; 38:329-337. [PMID: 30335238 DOI: 10.7705/biomedica.v38i3.3768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Introduction: The HLA region strongly associates with autoimmune diseases, such as type 1 diabetes. An alternative way to test classical HLA alleles is by using tag SNP. A set of tag SNP for several classical HLA alleles has been reported as associated with susceptibility or resistance to this disease in Europeans.
Objective: We aimed at validating the methodology based on tag SNP focused on the inference of classical HLA alleles, and at evaluating their association with type 1 diabetes mellitus in a sample of 200 families from Antioquia.
Materials and methods: We studied a sample of 200 families from Antioquia. Each family had one or two children with T1D. We genotyped 13 SNPs using tetra-primer ARMS-PCR or PCRRFLP. In addition, we tested the validity of the tag SNP reported for Europeans in 60 individuals from a population of Colombians living in Medellín (CLM) from the 1000 Genomes Project database. Statistical analyses included the Hardy-Weinberg equilibrium, the transmission disequilibrium and the linkage disequilibrium tests.
Results: The linkage disequilibrium was low in reported tag SNP and classical HLA alleles in this CLM population. Association analyses revealed both risk and protection factors to develop type 1 diabetes mellitus. Appropriate tag SNPs for the CLM population were determined by using the genotype information available in the 1000 Genome Project database.
Conclusions: Although linkage disequilibrium patterns in this CLM population were different from those reported in Europeans, we did find strong evidence of the role of HLA in the development of type 1 diabetes mellitus in the study population.
Collapse
|
38
|
Wood MA, Paralkar M, Paralkar MP, Nguyen A, Struck AJ, Ellrott K, Margolin A, Nellore A, Thompson RF. Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer 2018; 18:414. [PMID: 29653567 PMCID: PMC5899330 DOI: 10.1186/s12885-018-4325-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Background Tumor neoantigens are drivers of cancer immunotherapy response; however, current prediction tools produce many candidates requiring further prioritization. Additional filtration criteria and population-level understanding may assist with prioritization. Herein, we show neoepitope immunogenicity is related to measures of peptide novelty and report population-level behavior of these and other metrics. Methods We propose four peptide novelty metrics to refine predicted neoantigenicity: tumor vs. paired normal peptide binding affinity difference, tumor vs. paired normal peptide sequence similarity, tumor vs. closest human peptide sequence similarity, and tumor vs. closest microbial peptide sequence similarity. We apply these metrics to neoepitopes predicted from somatic missense mutations in The Cancer Genome Atlas (TCGA) and a cohort of melanoma patients, and to a group of peptides with neoepitope-specific immune response data using an extension of pVAC-Seq (Hundal et al., pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med 8:11, 2016). Results We show neoepitope burden varies across TCGA diseases and HLA alleles, with surprisingly low repetition of neoepitope sequences across patients or neoepitope preferences among sets of HLA alleles. Only 20.3% of predicted neoepitopes across TCGA patients displayed novel binding change based on our binding affinity difference criteria. Similarity of amino acid sequence was typically high between paired tumor-normal epitopes, but in 24.6% of cases, neoepitopes were more similar to other human peptides, or bacterial (56.8% of cases) or viral peptides (15.5% of cases), than their paired normal counterparts. Applied to peptides with neoepitope-specific immune response, a linear model incorporating neoepitope binding affinity, protein sequence similarity between neoepitopes and their closest viral peptides, and paired binding affinity difference was able to predict immunogenicity (AUROC = 0.66). Conclusions Our proposed prioritization criteria emphasize neoepitope novelty and refine patient neoepitope predictions for focus on biologically meaningful candidate neoantigens. We have demonstrated that neoepitopes should be considered not only with respect to their paired normal epitope, but to the entire human proteome, and bacterial and viral peptides, with potential implications for neoepitope immunogenicity and personalized vaccines for cancer treatment. We conclude that putative neoantigens are highly variable across individuals as a function of cancer genetics and personalized HLA repertoire, while the overall behavior of filtration criteria reflects predictable patterns. Electronic supplementary material The online version of this article (10.1186/s12885-018-4325-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mary A Wood
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Portland VA Research Foundation, Portland, OR, USA
| | - Mayur Paralkar
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mihir P Paralkar
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Carnegie Mellon University, Pittsburgh, PA, USA
| | - Austin Nguyen
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Oregon State University, Corvallis, OR, USA
| | - Adam J Struck
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
| | - Kyle Ellrott
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Adam Margolin
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health and Science University, Portland, OR, USA. .,Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA. .,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, USA. .,VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
39
|
Hidden genomic MHC disparity between HLA-matched sibling pairs in hematopoietic stem cell transplantation. Sci Rep 2018; 8:5396. [PMID: 29599509 PMCID: PMC5876349 DOI: 10.1038/s41598-018-23682-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/16/2018] [Indexed: 12/30/2022] Open
Abstract
Matching classical HLA alleles between donor and recipient is an important factor in avoiding adverse immunological effects in HSCT. Siblings with no differences in HLA alleles, either due to identical-by-state or identical-by-descent status, are considered to be optimal donors. We carried out a retrospective genomic sequence and SNP analysis of 336 fully HLA-A, -B, -DRB1 matched and 14 partially HLA-matched sibling HSCT pairs to determine the level of undetected mismatching within the MHC segment as well as to map their recombination sites. The genomic sequence of 34 genes locating in the MHC region revealed allelic mismatching at 1 to 8 additional genes in partially HLA-matched pairs. Also, fully matched pairs were found to have mismatching either at HLA-DPB1 or at non-HLA region within the MHC segment. Altogether, 3.9% of fully HLA-matched HSCT pairs had large genomic mismatching in the MHC segment. Recombination sites mapped to certain restricted locations. The number of mismatched nucleotides correlated with the risk of GvHD supporting the central role of full HLA matching in HSCT. High-density genome analysis revealed that fully HLA-matched siblings may not have identical MHC segments and even single allelic mismatching at any classical HLA gene often implies larger genomic differences along MHC.
Collapse
|
40
|
Nowak J, Nestorowicz K, Graczyk-Pol E, Mika-Witkowska R, Rogatko-Koros M, Jaskula E, Koscinska K, Madej S, Tomaszewska A, Nasilowska-Adamska B, Szczepinski A, Halaburda K, Dybko J, Kuliczkowski K, Czerw T, Giebel S, Holowiecki J, Baranska M, Pieczonka A, Wachowiak J, Czyz A, Gil L, Lojko-Dankowska A, Komarnicki M, Bieniaszewska M, Kucharska A, Hellmann A, Gronkowska A, Jedrzejczak WW, Markiewicz M, Koclega A, Kyrcz-Krzemien S, Mielcarek M, Kalwak K, Styczynski J, Wysocki M, Drabko K, Wojcik B, Kowalczyk J, Gozdzik J, Pawliczak D, Gwozdowicz S, Dziopa J, Szlendak U, Witkowska A, Zubala M, Gawron A, Warzocha K, Lange A. HLA-inferred extended haplotype disparity level is more relevant than the level of HLA mismatch alone for the patients survival and GvHD in T cell-replate hematopoietic stem cell transplantation from unrelated donor. Hum Immunol 2018; 79:403-412. [PMID: 29605688 DOI: 10.1016/j.humimm.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/18/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Serious risks in unrelated hematopoietic stem cell transplantation (HSCT) including graft versus host disease (GvHD) and mortality are associated with HLA disparity between donor and recipient. The increased risks might be dependent on disparity in not-routinely-tested multiple polymorphisms in genetically dense MHC region, being organized in combinations of two extended MHC haplotypes (Ehp). We assessed the clinical role of donor-recipient Ehp disparity levels in N = 889 patients by the population-based detection of HLA allele phase mismatch. We found increased GvHD incidences and mortality rates with increasing Ehp mismatch level even with the same HLA mismatch level. In multivariate analysis HLA mismatch levels were excluded from models and Ehp disparity level remained independent prognostic factor for high grade acute GvHD (p = 0.000037, HR = 10.68, 95%CI 5.50-32.5) and extended chronic GvHD (p < 0.000001, HR = 15.51, CI95% 5.36-44.8). In group with single HLA mismatch, patients with double Ehp disparity had worse 5-year overall survival (45% vs. 56%, p = 0.00065, HR = 4.05, CI95% 1.69-9.71) and non-relapse mortality (40% vs. 31%, p = 0.00037, HR = 5.63, CI95% 2.04-15.5) than patients with single Ehp disparity. We conclude that Ehp-linked factors contribute to the high morbidity and mortality in recipients given HLA-mismatched unrelated transplant and Ehp matching should be considered in clinical HSCT.
Collapse
Affiliation(s)
- Jacek Nowak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | - Klaudia Nestorowicz
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Elzbieta Graczyk-Pol
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Renata Mika-Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Rogatko-Koros
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Emilia Jaskula
- Department of Clinical Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wrocław, Poland
| | - Katarzyna Koscinska
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wrocław, Poland
| | - Sylwia Madej
- Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wrocław, Poland
| | - Agnieszka Tomaszewska
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Barbara Nasilowska-Adamska
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Andrzej Szczepinski
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Kazimierz Halaburda
- Department of Hematopoietic Stem Cell Transplantation, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Jaroslaw Dybko
- Department of Hematology, Blood Malignancies and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Kazimierz Kuliczkowski
- Department of Hematology, Blood Malignancies and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Czerw
- Department of Bone Marrow Transplantation and Oncohematology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Oncohematology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Jerzy Holowiecki
- Department of Bone Marrow Transplantation and Oncohematology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Malgorzata Baranska
- Department of Oncology Hematology and Paediatric Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Pieczonka
- Department of Oncology Hematology and Paediatric Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Oncology Hematology and Paediatric Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Czyz
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Lidia Gil
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Lojko-Dankowska
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Mieczyslaw Komarnicki
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Gdansk Medical University Clinical Center, Gdansk, Poland
| | - Agnieszka Kucharska
- Department of Hematology and Transplantology, Gdansk Medical University Clinical Center, Gdansk, Poland
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Gdansk Medical University Clinical Center, Gdansk, Poland
| | - Anna Gronkowska
- Department of Hematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Wieslaw W Jedrzejczak
- Department of Hematology, Oncology and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Miroslaw Markiewicz
- Department of Hematology and Bone Marrow Transplantation, Silesian Medical University, Katowice, Poland
| | - Anna Koclega
- Department of Hematology and Bone Marrow Transplantation, Silesian Medical University, Katowice, Poland
| | - Slawomira Kyrcz-Krzemien
- Department of Hematology and Bone Marrow Transplantation, Silesian Medical University, Katowice, Poland
| | - Monika Mielcarek
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kalwak
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Styczynski
- Department of Pediatric Hematology and Oncology, Collegium Medicum Nicolaus Copernicus University Hospital, Bydgoszcz, Poland
| | - Mariusz Wysocki
- Department of Pediatric Hematology and Oncology, Collegium Medicum Nicolaus Copernicus University Hospital, Bydgoszcz, Poland
| | - Katarzyna Drabko
- Department of Paediatric Hematology, Oncology and Transplantology, Medical University, Lublin, Poland
| | - Beata Wojcik
- Department of Paediatric Hematology, Oncology and Transplantology, Medical University, Lublin, Poland
| | - Jerzy Kowalczyk
- Department of Paediatric Hematology, Oncology and Transplantology, Medical University, Lublin, Poland
| | - Jolanta Gozdzik
- Department of Transplantation Children's University Hospital, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Daria Pawliczak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Slawomir Gwozdowicz
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Joanna Dziopa
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Urszula Szlendak
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Witkowska
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Marta Zubala
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Agnieszka Gawron
- Department of Immunogenetics, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Krzysztof Warzocha
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Andrzej Lange
- Department of Clinical Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Lower Silesian Center for Cellular Transplantation with National Bone Marrow Donor Registry, Wrocław, Poland
| |
Collapse
|
41
|
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Poli MA, Miretti MM. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics 2018; 19:142. [PMID: 29439661 PMCID: PMC5812220 DOI: 10.1186/s12864-018-4523-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Collapse
Affiliation(s)
- Hugo A. Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Dana L. Roldan
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - María J. Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino, B2700 Pergamino, Argentina
| | - María A. Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Ariel Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P. Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
| | - Gerónimo Gutierrez
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Irene Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Mario A. Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Marcos M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical (GIGA - IBS), Universidad Nacional de Misiones, N3300 Posadas, Argentina
| |
Collapse
|
42
|
Lighten J, Papadopulos AST, Mohammed RS, Ward BJ, G Paterson I, Baillie L, Bradbury IR, Hendry AP, Bentzen P, van Oosterhout C. Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat Commun 2017; 8:1294. [PMID: 29101318 PMCID: PMC5670221 DOI: 10.1038/s41467-017-01183-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Red Queen host-parasite co-evolution can drive adaptations of immune genes by positive selection that erodes genetic variation (Red Queen arms race) or results in a balanced polymorphism (Red Queen dynamics) and long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously by analysing the major histocompatibility complex (MHC) in guppies (Poecilia reticulata and P. obscura) and swamp guppies (Micropoecilia picta). Sub-functionalisation of MHC alleles into 'supertypes' explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen arms race. Building on the divergent allele advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution.
Collapse
Affiliation(s)
- Jackie Lighten
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| | - Alexander S T Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Ryan S Mohammed
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Ben J Ward
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| | - Ian G Paterson
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2
| | - Lyndsey Baillie
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Ian R Bradbury
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2.,Science Branch, Department of Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, NL, Canada, A1C 5X1
| | - Andrew P Hendry
- McGill University, 859 Sherbrooke Street West, Montreal, QC, Canada, H3A 0C4.,Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC, Canada, H3A 0C4
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
43
|
Carignano HA, Beribe MJ, Caffaro ME, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Miretti MM, Poli MA. BOLA-DRB3gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle. Anim Genet 2017; 48:420-430. [DOI: 10.1111/age.12566] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Affiliation(s)
- H. A. Carignano
- Instituto de Genética; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - M. J. Beribe
- Estación Experimental Agropecuaria Pergamino - INTA; Pergamino B2700 Argentina
| | - M. E. Caffaro
- Instituto de Genética; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - A. Amadio
- Estación Experimental Agropecuaria Rafaela - INTA; Rafaela S2300 Santa Fe Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Ciudad Autónoma de Buenos Aires C1033AAJ Argentina
| | - J. P. Nani
- Estación Experimental Agropecuaria Rafaela - INTA; Rafaela S2300 Santa Fe Argentina
| | - G. Gutierrez
- Instituto de Virología; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - I. Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Ciudad Autónoma de Buenos Aires C1033AAJ Argentina
- Instituto de Virología; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - K. Trono
- Instituto de Virología; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - M. M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Ciudad Autónoma de Buenos Aires C1033AAJ Argentina
- Grupo de Investigación en Genética Aplicada; Instituto de Biología Subtropical (GIGA - IBS); Universidad Nacional de Misiones; Posadas N3300 Argentina
| | - M. A. Poli
- Instituto de Genética; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| |
Collapse
|
44
|
Steele NZR, Carr JS, Bonham LW, Geier EG, Damotte V, Miller ZA, Desikan RS, Boehme KL, Mukherjee S, Crane PK, Kauwe JSK, Kramer JH, Miller BL, Coppola G, Hollenbach JA, Huang Y, Yokoyama JS. Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: A case-control study. PLoS Med 2017; 14:e1002272. [PMID: 28350795 PMCID: PMC5369701 DOI: 10.1371/journal.pmed.1002272] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a progressive disorder that affects cognitive function. There is increasing support for the role of neuroinflammation and aberrant immune regulation in the pathophysiology of AD. The immunoregulatory human leukocyte antigen (HLA) complex has been linked to susceptibility for a number of neurodegenerative diseases, including AD; however, studies to date have failed to consistently identify a risk HLA haplotype for AD. Contributing to this difficulty are the complex genetic organization of the HLA region, differences in sequencing and allelic imputation methods, and diversity across ethnic populations. METHODS AND FINDINGS Building on prior work linking the HLA to AD, we used a robust imputation method on two separate case-control cohorts to examine the relationship between HLA haplotypes and AD risk in 309 individuals (191 AD, 118 cognitively normal [CN] controls) from the San Francisco-based University of California, San Francisco (UCSF) Memory and Aging Center (collected between 1999-2015) and 11,381 individuals (5,728 AD, 5,653 CN controls) from the Alzheimer's Disease Genetics Consortium (ADGC), a National Institute on Aging (NIA)-funded national data repository (reflecting samples collected between 1984-2012). We also examined cerebrospinal fluid (CSF) biomarker measures for patients seen between 2005-2007 and longitudinal cognitive data from the Alzheimer's Disease Neuroimaging Initiative (n = 346, mean follow-up 3.15 ± 2.04 y in AD individuals) to assess the clinical relevance of identified risk haplotypes. The strongest association with AD risk occurred with major histocompatibility complex (MHC) haplotype A*03:01~B*07:02~DRB1*15:01~DQA1*01:02~DQB1*06:02 (p = 9.6 x 10-4, odds ratio [OR] [95% confidence interval] = 1.21 [1.08-1.37]) in the combined UCSF + ADGC cohort. Secondary analysis suggested that this effect may be driven primarily by individuals who are negative for the established AD genetic risk factor, apolipoprotein E (APOE) ɛ4. Separate analyses of class I and II haplotypes further supported the role of class I haplotype A*03:01~B*07:02 (p = 0.03, OR = 1.11 [1.01-1.23]) and class II haplotype DRB1*15:01- DQA1*01:02- DQB1*06:02 (DR15) (p = 0.03, OR = 1.08 [1.01-1.15]) as risk factors for AD. We followed up these findings in the clinical dataset representing the spectrum of cognitively normal controls, individuals with mild cognitive impairment, and individuals with AD to assess their relevance to disease. Carrying A*03:01~B*07:02 was associated with higher CSF amyloid levels (p = 0.03, β ± standard error = 47.19 ± 21.78). We also found a dose-dependent association between the DR15 haplotype and greater rates of cognitive decline (greater impairment on the 11-item Alzheimer's Disease Assessment Scale cognitive subscale [ADAS11] over time [p = 0.03, β ± standard error = 0.7 ± 0.3]; worse forgetting score on the Rey Auditory Verbal Learning Test (RAVLT) over time [p = 0.02, β ± standard error = -0.2 ± 0.06]). In a subset of the same cohort, dose of DR15 was also associated with higher baseline levels of chemokine CC-4, a biomarker of inflammation (p = 0.005, β ± standard error = 0.08 ± 0.03). The main study limitations are that the results represent only individuals of European-ancestry and clinically diagnosed individuals, and that our study used imputed genotypes for a subset of HLA genes. CONCLUSIONS We provide evidence that variation in the HLA locus-including risk haplotype DR15-contributes to AD risk. DR15 has also been associated with multiple sclerosis, and its component alleles have been implicated in Parkinson disease and narcolepsy. Our findings thus raise the possibility that DR15-associated mechanisms may contribute to pan-neuronal disease vulnerability.
Collapse
Affiliation(s)
- Natasha Z. R. Steele
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jessie S. Carr
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Luke W. Bonham
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ethan G. Geier
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Vincent Damotte
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Zachary A. Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, United States of America
| | - Kevin L. Boehme
- Brigham Young University, Provo, Utah, United States of America
| | - Shubhabrata Mukherjee
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Paul K. Crane
- University of Washington School of Medicine, Seattle, Washington, United States of America
| | | | - Joel H. Kramer
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Bruce L. Miller
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Giovanni Coppola
- Departments of Neurology and Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Yadong Huang
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jennifer S. Yokoyama
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
45
|
Human leucocyte antigen (HLA) class I and II typing in Belgian multiple sclerosis patients. Acta Neurol Belg 2017; 117:61-65. [PMID: 27797002 DOI: 10.1007/s13760-016-0716-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
This is one of the first studies to compare the frequencies of different human leucocyte antigen (HLA) class I and II alleles and haplotype HLA-DRB1*15-DQB1*06 in a cohort of 119 patients with multiple sclerosis (MS) and a cohort of 124 healthy controls in Belgium. An association with MS was found for the HLA-DRB1*15 (odds ratio [OR] 2.60 [95% confidence interval (CI) 1.51-4.50]) and HLA-DQB1*06 (OR 1.97 [95% CI 1.18-3.29]) alleles, and for haplotype DRB1*15-DQB1*06 (OR 2.63 [95% CI 1.52-4.56]). The HLA-B*07 allele also tended to be more frequent in MS patients (OR 1.46 [95% CI 0.80-2.65]) and more frequent among MS patients with than in those without the HLA-DRB1*15 allele (26/54 [48.1%] versus 6/65 [9.2%]; p value <0.0001). Other alleles were underrepresented in MS patients, such as the HLA-DRB1*07 (OR 0.39 [95% CI 0.21-0.73]) and HLA-A*02 (OR 0.56 [95% CI 0.34-0.94]), showing a protective role against the disease. The HLA-B*44 (OR 0.58 [95% CI 0.31-1.09]) and HLA-DRB1*04 (OR 0.75 [95% CI 0.42-1.34]) alleles tended to be less frequent in MS patients. Altogether, the significant results observed in this population are in line with those from other countries and confirm that propensity to MS can be due to a complex presence of various HLA class I and class II alleles.
Collapse
|
46
|
Cui Z, Xie LJ, Chen FJ, Pei ZY, Zhang LJ, Qu Z, Huang J, Gu QH, Zhang YM, Wang X, Wang F, Meng LQ, Liu G, Zhou XJ, Zhu L, Lv JC, Liu F, Zhang H, Liao YH, Lai LH, Ronco P, Zhao MH. MHC Class II Risk Alleles and Amino Acid Residues in Idiopathic Membranous Nephropathy. J Am Soc Nephrol 2016; 28:1651-1664. [PMID: 27852637 DOI: 10.1681/asn.2016020114] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/21/2016] [Indexed: 11/03/2022] Open
Abstract
Epitopes of phospholipase A2 receptor (PLA2R), the target antigen in idiopathic membranous nephropathy (iMN), must be presented by the HLA-encoded MHC class II molecules to stimulate autoantibody production. A genome-wide association study identified risk alleles at HLA and PLA2R loci, with the top variant rs2187668 within HLA-DQA1 showing a risk effect greater than that of the top variant rs4664308 within PLA2R1. How the HLA risk alleles affect epitope presentation by MHC class II molecules in iMN is unknown. Here, we genotyped 261 patients with iMN and 599 healthy controls at the HLA-DRB1, HLA-DQA1, HLA-DQB1, and HLA-DPB1 loci with four-digit resolution and extracted the encoded amino acid sequences from the IMGT/HLA database. We predicted T cell epitopes of PLA2R and constructed MHC-DR molecule-PLA2R peptide-T cell receptor structures using Modeler. We identified DRB1*1501 (odds ratio, 4.65; 95% confidence interval [95% CI], 3.39 to 6.41; P<0.001) and DRB1*0301 (odds ratio, 3.96; 95% CI, 2.61 to 6.05; P<0.001) as independent risk alleles for iMN and associated with circulating anti-PLA2R antibodies. Strong gene-gene interaction was noted between rs4664308(AA) and HLA-DRB1*1501/DRB1*0301. Amino acid positions 13 (P<0.001) and 71 (P<0.001) in the MHC-DRβ1 chain independently associated with iMN. Structural models showed that arginine13 and alanine71, encoded by DRB1*1501, and lysine71, encoded by DRB1*0301, facilitate interactions with T cell epitopes of PLA2R. In conclusion, we identified two risk alleles of HLA class II genes and three amino acid residues on positions 13 and 71 of the MHC-DRβ1 chain that may confer susceptibility to iMN by presenting T cell epitopes on PLA2R.
Collapse
Affiliation(s)
- Zhao Cui
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Li-Jun Xie
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Renal Division, Department of Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fang-Jin Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and Center for Theoretical Biology, Peking University, Beijing, China
| | | | | | - Zhen Qu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Jing Huang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Qiu-Hua Gu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Yi-Miao Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Xin Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Fang Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Li-Qiang Meng
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Gang Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Ji-Cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Fan Liu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomic, Chinese Academy of Science, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Yun-Hua Liao
- Renal Division, Department of Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu-Hua Lai
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering and Center for Theoretical Biology, Peking University, Beijing, China
| | - Pierre Ronco
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Paris, France.,Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1155, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service de Néphrologie et Dialyses, Hôpital Tenon, Paris, France; and
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; .,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
47
|
Sasazuki T, Inoko H, Morishima S, Morishima Y. Gene Map of the HLA Region, Graves’ Disease and Hashimoto Thyroiditis, and Hematopoietic Stem Cell Transplantation. Adv Immunol 2016; 129:175-249. [DOI: 10.1016/bs.ai.2015.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Saw WY, Liu X, Khor CC, Takeuchi F, Katsuya T, Kimura R, Nabika T, Ohkubo T, Tabara Y, Yamamoto K, Yokota M, Teo YY, Kato N. Mapping the genetic diversity of HLA haplotypes in the Japanese populations. Sci Rep 2015; 5:17855. [PMID: 26648100 PMCID: PMC4673465 DOI: 10.1038/srep17855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
Japan has often been viewed as an Asian country that possesses a genetically homogenous community. The basis for partitioning the country into prefectures has largely been geographical, although cultural and linguistic differences still exist between some of the districts/prefectures, especially between Okinawa and the mainland prefectures. The Major Histocompatibility Complex (MHC) region has consistently emerged as the most polymorphic region in the human genome, harbouring numerous biologically important variants; nevertheless the presence of population-specific long haplotypes hinders the imputation of SNPs and classical HLA alleles. Here, we examined the extent of genetic variation at the MHC between eight Japanese populations sampled from Okinawa, and six other prefectures located in or close to the mainland of Japan, specifically focusing at the haplotypes observed within each population, and what the impact of any variation has on imputation. Our results indicated that Okinawa was genetically farther to the mainland Japanese than were Gujarati Indians from Tamil Indians, while the mainland Japanese from six prefectures were more homogeneous than between northern and southern Han Chinese. The distribution of haplotypes across Japan was similar, although imputation was most accurate for Okinawa and several mainland prefectures when population-specific panels were used as reference.
Collapse
Affiliation(s)
- Woei-Yuh Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549.,Life Sciences Institute, National University of Singapore, Singapore 117456
| | - Xuanyao Liu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan 162-8655
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan 565-0871
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan 903-0215
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan 693-8501
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan 162-8655
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan 606-8501
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan 830-0011
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Japan 464-8651
| | | | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549.,Life Sciences Institute, National University of Singapore, Singapore 117456.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672.,Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan 162-8655.,Department of Statistics and Applied Probability, National University of Singapore, Singapore
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, National Center for Global Health and Medicine, Tokyo, Japan 162-8655
| |
Collapse
|
49
|
Boone PM, Yuan B, Gu S, Ma Z, Gambin T, Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, Walker K, Wang Q, Muzny DM, Gibbs RA, Hejtmancik JF, Lupski JR, Posey JE, Lewis RA. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 2015; 4:77-94. [PMID: 26788539 PMCID: PMC4707028 DOI: 10.1002/mgg3.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Juvenile-onset cataracts are known among the Hutterites of North America. Despite being identified over 30 years ago, this autosomal recessive condition has not been mapped, and the disease gene is unknown. METHODS We performed whole exome sequencing of three Hutterite-type cataract trios and follow-up genotyping and mapping in four extended kindreds. RESULTS Trio exomes enabled genome-wide autozygosity mapping, which localized the disease gene to a 9.5-Mb region on chromosome 6p. This region contained two candidate variants, LEMD2 c.T38G and MUC21 c.665delC. Extended pedigrees recruited for variant genotyping revealed multiple additional relatives with juvenile-onset cataract, as well as six deceased relatives with both cataracts and sudden cardiac death. The candidate variants were genotyped in 84 family members, including 17 with cataracts; only the variant in LEMD2 cosegregated with cataracts (LOD = 9.62). SNP-based fine mapping within the 9.5 Mb linked region supported this finding by refining the cataract locus to a 0.5- to 2.9-Mb subregion (6p21.32-p21.31) containing LEMD2 but not MUC21. LEMD2 is expressed in mouse and human lenses and encodes a LEM domain-containing protein; the c.T38G missense mutation is predicted to mutate a highly conserved residue within this domain (p.Leu13Arg). CONCLUSION We performed a genetic and genomic study of Hutterite-type cataract and found evidence for an association of this phenotype with sudden cardiac death. Using combined genetic and genomic approaches, we mapped cataracts to a small portion of chromosome 6 and propose that they result from a homozygous missense mutation in LEMD2.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Shen Gu
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Mahim Jain
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Janson J White
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Kimberly Walker
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Qiaoyan Wang
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Donna M Muzny
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Richard A Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - James R Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Richard A Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas; Department of OphthalmologyBaylor College of MedicineHoustonTexas; Department of MedicineBaylor College of MedicineHoustonTexas
| |
Collapse
|
50
|
Clark PM, Kunkel M, Monos DS. The dichotomy between disease phenotype databases and the implications for understanding complex diseases involving the major histocompatibility complex. Int J Immunogenet 2015; 42:413-22. [PMID: 26456690 DOI: 10.1111/iji.12236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/14/2015] [Accepted: 08/16/2015] [Indexed: 01/08/2023]
Abstract
Many genes related to innate and adaptive immunity reside within the major histocompatibility complex (MHC) and have been associated with a multitude of complex, immune-related disorders. Despite years of genetic study, this region has seen few causative determinants discovered for immune-mediated diseases. Reported associations have been curated in various databases including the Genetic Association Database, NCBI database of clinically relevant variants (ClinVar) and the Human Gene Mutation Database and together capture genetic associations and annotated pathogenic loci within the MHC and across the genome for a variety of complex, immune-mediated diseases. A review of these three distinct databases reveals disparate annotations between associated genes and pathogenic loci, alluding to the polygenic, multifactorial nature of immune-mediated diseases and the pleiotropic character of genes within the MHC. The technical limitations and inherent biases imposed by current approaches and technologies in studying the MHC create a strong case for the need to perform targeted deep sequencing of the MHC and other immunologically relevant loci in order to fully elucidate and study the causative elements of complex immune-mediated diseases.
Collapse
Affiliation(s)
- P M Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - M Kunkel
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - D S Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|