1
|
Zhao Z, Wang Y, Yang L, Qian X, Yang A, Liu J, Jacquemyn H, Li T, Xing X. Metabolic Shifts and Nutrient Transfer Patterns in Orchid Seeds During Symbiotic Germination. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40369997 DOI: 10.1111/pce.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025]
Abstract
Symbiotic germination in orchids is a complex biological process driven by a unique dependence on mycorrhizal fungi. It is generally assumed that, due to a lack of endosperm, orchids fully rely on fungi for carbon sources. However, orchid seed embryos store substantial nutrient reserves, but the metabolic functions of these reserves and their roles in establishing symbiosis during germination remain unclear. Here, we used time-series transcriptomics and ultrastructural morphological analyses to investigate the early stages of symbiotic germination in Gymnadenia conopsea, a terrestrial orchid widely distributed across Eurasia. We identify three distinct phases during early seed germination (seed imbibition, fungal invasion and symbiotic establishment) that correspond with pronounced changes in gene expression and energy metabolism. During imbibition, lipid metabolism was already active, leading the oleosomes to fuse into large lipid vacuoles, whereas carbohydrate metabolism became dominant after fungal invasion, with lipid droplets appearing within fungal hyphae. Based on this transcriptomic and morphological evidence, we propose a potential model in which lipid vacuoles facilitate lipid transfer from the seeds to the fungi during the initial invasion, after which the fungi supply carbohydrates to the seeds for further development.
Collapse
Affiliation(s)
- Zeyu Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yaoyao Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Luna Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Aiyiwei Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiaxin Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Taiqiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xiaoke Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
2
|
Luu H, Ris Lambers JH, Lutz JA, Metz M, Snell RS. The importance of regeneration processes on forest biodiversity in old-growth forests in the Pacific Northwest. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230016. [PMID: 38583471 PMCID: PMC10999264 DOI: 10.1098/rstb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/08/2023] [Indexed: 04/09/2024] Open
Abstract
Forest diversity is the outcome of multiple species-specific processes and tolerances, from regeneration, growth, competition and mortality of trees. Predicting diversity thus requires a comprehensive understanding of those processes. Regeneration processes have traditionally been overlooked, due to high stochasticity and assumptions that recruitment is not limiting for forests. Thus, we investigated the importance of seed production and seedling survival on forest diversity in the Pacific Northwest (PNW) using a forest gap model (ForClim). Equations for regeneration processes were fit to empirical data and added into the model, followed by simulations where regeneration processes and parameter values varied. Adding regeneration processes into ForClim improved the simulation of species composition, compared to Forest Inventory Analysis data. We also found that seed production was not as important as seedling survival, and the time it took for seedlings to grow into saplings was a critical recruitment parameter for accurately capturing tree species diversity in PNW forest stands. However, our simulations considered historical climate only. Due to the sensitivity of seed production and seedling survival to weather, future climate change may alter seed production or seedling survival and future climate change simulations should include these regeneration processes to predict future forest dynamics in the PNW. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Hoang Luu
- Environmental and Plant Biology, Ohio University, Athens, OH 45701-2978, USA
| | | | - James A. Lutz
- Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Rebecca S. Snell
- Environmental and Plant Biology, Ohio University, Athens, OH 45701-2978, USA
| |
Collapse
|
3
|
Razzaque S, Juenger TE. Seed traits and recruitment interact with habitats to generate patterns of local adaptation in a perennial grass. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3111-3124. [PMID: 38381563 DOI: 10.1093/jxb/erae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
A fundamental challenge in the field of ecology involves understanding the adaptive traits and life history stages regulating the population dynamics of species across diverse habitats. Seed traits and early seedling vigor are thought to be key functional traits in plants, with important consequences for recruitment, establishment, and population persistence. However, little is known about how diverse seed traits interact with seed and microsite availability to impact plant populations. Here, we performed a factorial experiment involving seed addition and surface soil disturbance to explore the combined effects of seed and site availability using genotypes characterized by varying seed mass and dormancy traits. Additionally, we included hybrids that exhibited recombined seed trait relationships compared with natural genotypes, allowing us to assess the impact of specific seed traits on establishment across different sites. We detected a significant three-way interaction between seed addition, site conditions, and soil surface disturbance, influencing both seedling establishment and adult recruitment in Panicum hallii, a perennial grass found in coastal mesic (lowland) and inland xeric (upland) habitats. This establishment/recruitment pattern suggests that mesic and xeric establishment at foreign sites is constrained by the interplay of seed and site limitations. Notably, soil surface disturbance facilitated establishment and recruitment of the xeric genotype while limiting the mesic genotype across all sites. Our results highlight the importance of seed size and dormancy as key factors impacting seedling establishment and adult recruitment, suggesting a potential interactive relationship between these traits.
Collapse
Affiliation(s)
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Bellis J, Osazuwa-Peters O, Maschinski J, Keir MJ, Parsons EW, Kaye TN, Kunz M, Possley J, Menges E, Smith SA, Roth D, Brewer D, Brumback W, Lange JJ, Niederer C, Turner-Skoff JB, Bontrager M, Braham R, Coppoletta M, Holl KD, Williamson P, Bell T, Jonas JL, McEachern K, Robertson KL, Birnbaum SJ, Dattilo A, Dollard JJ, Fant J, Kishida W, Lesica P, Link SO, Pavlovic NB, Poole J, Reemts CM, Stiling P, Taylor DD, Titus JH, Titus PJ, Adkins ED, Chambers T, Paschke MW, Heineman KD, Albrecht MA. Identifying predictors of translocation success in rare plant species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14190. [PMID: 37768181 DOI: 10.1111/cobi.14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The fundamental goal of a rare plant translocation is to create self-sustaining populations with the evolutionary resilience to persist in the long term. Yet, most plant translocation syntheses focus on a few factors influencing short-term benchmarks of success (e.g., survival and reproduction). Short-term benchmarks can be misleading when trying to infer future growth and viability because the factors that promote establishment may differ from those required for long-term persistence. We assembled a large (n = 275) and broadly representative data set of well-documented and monitored (7.9 years on average) at-risk plant translocations to identify the most important site attributes, management techniques, and species' traits for six life-cycle benchmarks and population metrics of translocation success. We used the random forest algorithm to quantify the relative importance of 29 predictor variables for each metric of success. Drivers of translocation outcomes varied across time frames and success metrics. Management techniques had the greatest relative influence on the attainment of life-cycle benchmarks and short-term population trends, whereas site attributes and species' traits were more important for population persistence and long-term trends. Specifically, large founder sizes increased the potential for reproduction and recruitment into the next generation, whereas declining habitat quality and the outplanting of species with low seed production led to increased extinction risks and a reduction in potential reproductive output in the long-term, respectively. We also detected novel interactions between some of the most important drivers, such as an increased probability of next-generation recruitment in species with greater seed production rates, but only when coupled with large founder sizes. Because most significant barriers to plant translocation success can be overcome by improving techniques or resolving site-level issues through early intervention and management, we suggest that by combining long-term monitoring with adaptive management, translocation programs can enhance the prospects of achieving long-term success.
Collapse
Affiliation(s)
- Joe Bellis
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
- Center for Plant Conservation, Escondido, California, USA
| | - Oyomoare Osazuwa-Peters
- Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joyce Maschinski
- Center for Plant Conservation, Escondido, California, USA
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | - Matthew J Keir
- Department of Land and Natural Resources, Hawai'i Division of Forestry and Wildlife, Honolulu, Hawaii, USA
| | - Elliott W Parsons
- Pacific Regional Invasive Species and Climate Change Management Network, University of Hawaii at Mānoa, Honolulu, Hawaii, USA
| | - Thomas N Kaye
- Institute for Applied Ecology, Corvallis, Oregon, USA
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Kunz
- North Carolina Botanical Garden, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Eric Menges
- Archbold Biological Station, Venus, Florida, USA
| | - Stacy A Smith
- Archbold Biological Station, Venus, Florida, USA
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Daniela Roth
- New Mexico Energy, Minerals, and Natural Resources Department, Forestry Division, Santa Fe, New Mexico, USA
| | - Debbie Brewer
- Fort Huachuca Environmental and Natural Resources Division, Fort Huachuca, Arizona, USA
| | | | - James J Lange
- Fairchild Tropical Botanic Garden, Coral Gables, Florida, USA
| | | | | | - Megan Bontrager
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Richard Braham
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Karen D Holl
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Paula Williamson
- Department of Biology, Texas State University, San Marcos, Texas, USA
| | | | - Jayne L Jonas
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Kathryn McEachern
- U.S. Geological Survey, WERC-Channel Islands Field Station, Ventura, California, USA
| | | | | | - Adam Dattilo
- Tennessee Valley Authority, Knoxville, Tennessee, USA
| | - John J Dollard
- Croatan National Forest, Forest Service, New Bern, North Carolina, USA
| | | | - Wendy Kishida
- Department of Land and Natural Resources, Hawai'i Division of Forestry and Wildlife, Honolulu, Hawaii, USA
| | - Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Steven O Link
- Department of Natural Resources, Energy and Environmental Sciences Program, Pendleton, Oregon, USA
| | - Noel B Pavlovic
- U.S. Geological Survey, GLSC - Lake Michigan Ecological Research Station, Chesterton, Indiana, USA
| | - Jackie Poole
- Texas Parks & Wildlife Department, Austin, Texas, USA
| | | | - Peter Stiling
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - David D Taylor
- Daniel Boone National Forest, USDA Forest Service, Winchester, Kentucky, USA
| | - Jonathan H Titus
- Biology Department, Science Center, State University of New York, Fredonia, New York, USA
| | | | - Edith D Adkins
- Pacific Cooperative Studies Unit, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Timothy Chambers
- U.S Army Natural Resources Program on Oahu, Schofield Barracks, Hawaii, USA
| | - Mark W Paschke
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado, USA
| | | | - Matthew A Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Wilsey B, Kaul A, Polley HW. Establishment from seed is more important for exotic than for native plant species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10132. [PMID: 38323131 PMCID: PMC10840371 DOI: 10.1002/pei3.10132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Climate change has initiated movement of both native and non-native (exotic) species across the landscape. Exotic species are hypothesized to establish from seed more readily than comparable native species. We tested the hypothesis that seed limitation is more important for exotic species than native grassland species. We compared seed limitation and invasion resistance over three growing seasons between 18 native and 18 exotic species, grown in both monocultures and mixtures in a field experiment. Half of the plots received a seed mix of the contrasting treatment (i.e., exotic species were seeded into native plots, and native species were seeded into exotic plots), and half served as controls. We found that (1) establishment in this perennial grassland is seed limited, (2) establishment from seed is greater in exotic than native species, and (3) community resistance to seedling establishment was positively related to diversity of extant species, but only in native communities. Native-exotic species diversity and composition differences did not converge over time. Our results imply that native to exotic transformations occur when diversity declines in native vegetation and exotic seeds arrive from adjacent sites, suggesting that managing for high diversity will reduce transformations to exotic dominance.
Collapse
Affiliation(s)
- Brian Wilsey
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Andrew Kaul
- Center for Conservation and Sustainable DevelopmentMissouri Botanical GardenSt. LouisMissouriUSA
| | - H. Wayne Polley
- Grassland, Soil and Water Research LaboratoryUSDA‐ARSTempleTexasUSA
| |
Collapse
|
6
|
Jia P, Qu G, Jia J, Li D, Sun Y, Liu L. Long-term Spartina alterniflora invasion simplified soil seed bank and regenerated community in a coastal marsh wetland. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2754. [PMID: 36177771 DOI: 10.1002/eap.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 06/16/2023]
Abstract
The coastal wetland is easily invaded by alien species due to locating in the land and sea transitional area. As a potential driving regeneration force, the soil seed bank is vital to the community restoration and species diversity protection. To reveal the long-term Spartina alterniflora invasion impact on the soil seed banks and regenerated communities, we investigated the seed banks under the different vegetation types (S. alterniflora, Phragmites australis, Scirpus mariqueter, ruderal and unvegetated site) and soil depths (0-5 and 5-10 cm) in the coastal salt marsh wetland, Chongming island, eastern China. The results showed that the soil seed bank richness and species density under different vegetation types were higher than the aboveground vegetation, and those of 0-5 cm seed banks were higher than 5-10 cm, except for the unvegetated site. The species richness and S. alterniflora seed proportion in the seed banks under S. alterniflora communities (S.AS) were lower and larger respectively than those of other sites. The species composition between S.AS and the aboveground communities showed high similarity with aggregation phylogenetic structures in two soil depths. The seed bank variations at 0-5 and 5-10 cm depths were interpreted 3.03% and 2.25% by the aboveground communities, while 4.92% and 5.55% were interpreted by the soil microbial biomass. The SEM model explained 98.1% and 91.8% of the seed banks richness at the 0-5 cm depth and 5-10 cm depth, respectively, and explained 98.8% and 46.1% of the seed banks species density at the 0-5 cm depth and 5-10 cm depth, respectively. The aboveground vegetation biomass and abundance directly affected the 0-5 cm seed banks richness and species density, while its height and biomass only affected the 5-10 cm seed banks species density. The 0-10 cm soil depth microbial biomass indirectly affected the 0-5 cm seed banks richness and species density, while affected the 5-10 cm seed banks richness. Soil physical and chemical properties only indirectly affected the 0-5 cm seed banks species density. The results provided a reference for the ecological evaluation of the impacts of S. alterniflora invasion into the coastal salt marsh wetland of eastern China, and guidance for the protection and restoration of the native plant communities.
Collapse
Affiliation(s)
- Peng Jia
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Guojuan Qu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jing Jia
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dezhi Li
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Key Laboratory of Urbanization and Ecological Restoration of Shanghai, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China
| | - Yuming Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Lu Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Abstract
For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.
Collapse
Affiliation(s)
- Nicolas L Louw
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Kasturi Lele
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Ruby Ye
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Collin B Edwards
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| |
Collapse
|
8
|
Rehm EM, D'Antonio C, Yelenik S. Crossing the threshold: Invasive grasses inhibit forest restoration on Hawaiian islands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2841. [PMID: 36920234 DOI: 10.1002/eap.2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Forest removal for livestock grazing is a striking example of human-caused state change leading to a stable, undesirable invasive grass system that is resistant to restoration efforts. Understanding which factors lead to resilience to the alternative grass state can greatly benefit managers when planning forest restoration. We address how thresholds of grass cover and seed rain might influence forest recovery in a restoration project on Hawai'i Island, USA. Since the 1980s, over 400,000 Acacia koa (koa) trees have been planted across degraded pasture, and invasive grasses still dominate the understory with no native woody-plant recruitment. Between this koa/grass matrix are remnant native Metrosideros polymorpha ('ōhi'a) trees beneath which native woody plants naturally recruit. We tested whether there were threshold levels of native woody understory that accelerate recruitment under both tree species by monitoring seed rain at 40 trees (20 koa and 'ōhi'a) with a range of native woody understory basal area (BA). We found a positive relationship between total seed rain (but not bird-dispersed seed rain) and native woody BA and a negative relationship between native woody BA and grass cover, with no indication of threshold dynamics. We also experimentally combined grass removal levels with seed rain density (six levels) of two common understory species in plots under koa (n = 9) and remnant 'ōhi'a (n = 9). Few seedlings emerged when no grass was removed despite adding seeds at densities two to 75 times higher than naturally occurring. However, seedling recruitment increased two to three times once at least 50% of grass was removed. Existing survey data of naturally occurring seedlings also supported a threshold of grass cover below which seedlings were able to establish. Thus, removal of all grasses is not necessary to achieve system responses: Even moderate reductions (~50%) can increase rates of native woody recruitment. The nonlinear thresholds found here highlight how incremental changes to an inhibitory factor lead to limited restoration success until a threshold is crossed. The resources needed to fully eradicate an invasive species may be unwarranted for state change, making understanding where thresholds lie of the utmost importance to prioritize resources.
Collapse
Affiliation(s)
- Evan M Rehm
- Biology Department, Austin Peay State University, Clarksville, Tennessee, USA
| | - Carla D'Antonio
- Department of Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Stephanie Yelenik
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Volcano, Hawaii, USA
- Rocky Mountain Research Station, US Forest Service, Reno, Nevada, USA
| |
Collapse
|
9
|
Chen L, Wang G, Teng M, Wang L, Yang F, Jin G, Du H, Xu Y. Non-gene-editing microbiome engineering of spontaneous food fermentation microbiota-Limitation control, design control, and integration. Compr Rev Food Sci Food Saf 2023; 22:1902-1932. [PMID: 36880579 DOI: 10.1111/1541-4337.13135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | | | | | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Guangyuan Jin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Allbee SA, Rogers HS, Sullivan LL. The effects of dispersal, herbivory, and competition on plant community assembly. Ecology 2023; 104:e3859. [PMID: 36054771 PMCID: PMC10078099 DOI: 10.1002/ecy.3859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023]
Abstract
Dispersal is a key process in community assembly but is often considered separately from downstream assembly processes (e.g., competition, herbivory). However, dispersal varies by species and can interact with other assembly processes through establishment as species enter communities. Here, we sought to distinguish the role of dispersal in community assembly and its interaction with two biotic assembly processes: competition and herbivory. We used a tallgrass prairie restoration experiment that manipulated the competitive and herbivore environments while allowing for natural dispersal and establishment from a diverse regional species pool into areas of low diversity. Dispersal, competition, and herbivory all influenced local communities. By tracking the spread of four target species across the plots, we found interspecific and intraspecific differences in establishment patterns, with herbivores influencing the number of individuals present and the distances species moved. At the community level, only dispersal and competition significantly influenced alpha diversity, but all three processes additively influenced community composition. There was also evidence of herbivore-competition and herbivore-colonization trade-offs in our experiment. Some species that could tolerate herbivory were less likely to establish in competitive environments, while others that could tolerate herbivory were more likely to disperse greater distances. More work is needed to understand the contexts under which dispersal variation affects community assembly and its synergy with other processes.
Collapse
Affiliation(s)
- Samantha A Allbee
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Iowa State University, Ames, Iowa, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology (EEOB), Iowa State University, Ames, Iowa, USA
| | - Lauren L Sullivan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Kamocki AK, Kołos A, Pogorzelec M, Ożgo M. Microhabitat Conditions and Inter-Species Competition Predict the Successful Restoration of Declining Relict Species Populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:608. [PMID: 36612929 PMCID: PMC9819776 DOI: 10.3390/ijerph20010608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The local populations of relict plant taxa living near the limits of their geographical range are particularly vulnerable to extinction. For example, Salix lapponum is one of the rarest and most endangered glacial relicts in Western and Central Europe. In Poland, the number of its sites has dramatically decreased over the past few decades, prompting us to take conservation measures focused on saving endangered populations. During a field experiment aimed at the reconstruction of the downy willow population in the Knyszyn Forest (NE Poland), 730 individuals of the species were planted in four different natural sites. The seedlings were obtained by micropropagation from parts of vegetative individuals taken from the most abundant population of this species in eastern Poland (Lake Bikcze). The success of the reintroduction, measured by the number of individuals that survived 2-3 years in the wild and took up growth, was about 67%, however, with low flowering efficiency (7.5%). Additionally, monitoring showed significant differences in plant survival and growth rates under different habitat conditions prevailing at the site and with different cover from competing species, especially tall grasses. However, the restoration projects for relict shrub species should include periodic removal of competing plants and protection of plants from trampling and browsing by herbivorous mammals to increase reintroduction success.
Collapse
Affiliation(s)
- Andrzej K. Kamocki
- Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Białystok, Poland
| | - Aleksander Kołos
- Department of Forest Environment, Białystok University of Technology, 15-351 Białystok, Poland
| | - Magdalena Pogorzelec
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, 20-626 Lublin, Poland
| | - Małgorzata Ożgo
- Department of Evolutionary Biology, Kazimierz Wielki University, 85-093 Bydgoszcz, Poland
| |
Collapse
|
12
|
van den Bosch K, Witkowski E, Thompson D, Cron G. Reprappendixoductive ecology offers some answers to the pepperbark tree persistence puzzle in the Kruger National Park, South Africa. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Barber C, Zaiats A, Applestein C, Rosenthal L, Caughlin TT. Bayesian models for spatially explicit interactions between neighbouring plants. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Andrii Zaiats
- Biological Sciences Boise State University Boise Idaho USA
| | - Cara Applestein
- Biological Sciences Boise State University Boise Idaho USA
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Boise Idaho USA
| | - Lisa Rosenthal
- Department of Plant Pathology University of California Davis California USA
| | | |
Collapse
|
14
|
Carnicero P, Wessely J, Moser D, Font X, Dullinger S, Schönswetter P. Postglacial range expansion of high-elevation plants is restricted by dispersal ability and habitat specialization. JOURNAL OF BIOGEOGRAPHY 2022; 49:1739-1752. [PMID: 36245965 PMCID: PMC9541807 DOI: 10.1111/jbi.14390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/16/2023]
Abstract
Aim Species' ecological traits influence their spatial genetic patterns. Bedrock preference strongly shapes the phylogeography of alpine plants, but its interactions with other ecological traits have rarely been disentangled. Here, we explore whether dispersal ability and degree of habitat specialization account for divergent postglacial expansion patterns of high-elevation plants in spite of similar bedrock preference. Location The Pyrenees, southwestern Europe. Taxon Cirsium glabrum (Asteraceae), Salix pyrenaica (Salicaceae) and Silene borderei (Caryophyllaceae). Methods Phylogenetic, genetic structure and demographic modelling analyses based on restriction-site-associated DNA sequencing (RADseq) data from a range-wide populational sampling were conducted. Occurrence data and environmental variables were used to construct species distribution models, which were projected under current and Last Glacial Maximum conditions, and were combined with RADseq data to reconstruct the postglacial history of the study species. The degree of habitat specialization of each species was estimated based on the plant communities within which they occur, and their climatic niche breadth. Results Salix pyrenaica, which occupies a broad range of habitats, shows a high level of range filling, a blurred genetic structure and an admixture cline between the two main genetic groups, congruent with rapid postglacial expansion. The microsite specialists C. glabrum and S. borderei exhibit a strong genetic structure and low levels of range filling, indicative of slow postglacial expansion. The good disperser C. glabrum shows higher levels of admixture between genetic groups and weaker population differentiation than the poor disperser S. borderei. Main Conclusions Factors other than bedrock preference have a strong impact on the postglacial range dynamics of high-elevation species. Habitat specialization plays an important role, allowing species occupying a broad range of habitats to more rapidly expand their ranges after environmental change. The effect of dispersal ability is lower than expected for the study species.
Collapse
Affiliation(s)
- Pau Carnicero
- Department of BotanyUniversity of InnsbruckInnsbruckAustria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Dietmar Moser
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Xavier Font
- Department of Evolutionary Biology, Ecology and Environmental SciencesUniversity of BarcelonaBarcelonaSpain
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | |
Collapse
|
15
|
Blandino C, Fernández-Pascual E, Newton RJ, Pritchard HW. Regeneration from seed in herbaceous understorey of ancient woodlands of temperate Europe. ANNALS OF BOTANY 2022; 129:761-774. [PMID: 35020780 PMCID: PMC9292608 DOI: 10.1093/aob/mcac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/07/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS European ancient woodlands are subject to land use change, and the distribution of herbaceous understorey species may be threatened because of their poor ability to colonize isolated forest patches. The regeneration niche can determine the species assembly of a community, and seed germination traits may be important descriptors of this niche. METHODS We analysed ecological records for 208 herbaceous species regarded as indicators of ancient woodlands in Europe and, where possible, collated data on seed germination traits, reviewed plant regeneration strategies and measured seed internal morphology traits. The relationship between plant regeneration strategies and ecological requirements was explored for 57 species using ordination and classification analysis. KEY RESULTS Three regeneration strategies were identified. Species growing in closed-canopy areas tend to have morphological seed dormancy, often requiring darkness and low temperatures for germination, and their shoots emerge in early spring, thus avoiding the competition for light from canopy species. These species are separated into two groups: autumn and late winter germinators. The third strategy is defined by open-forest plants with a preference for gaps, forest edges and riparian forests. They tend to have physiological seed dormancy and germinate in light and at higher temperatures, so their seedlings emerge in spring or summer. CONCLUSION Seed germination traits are fundamental to which species are good or poor colonizers of the temperate forest understorey and could provide a finer explanation than adult plant traits of species distribution patterns. Seed dormancy type, temperature stratification and light requirements for seed germination are important drivers of forest floor colonization patterns and should be taken in account when planning successful ecological recovery of temperate woodland understories.
Collapse
Affiliation(s)
- Cristina Blandino
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Florence, Italy
| | - Eduardo Fernández-Pascual
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
- IMIB – Biodiversity Research Institute, University of Oviedo, Mieres, Spain
| | - Rosemary J Newton
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
| | - Hugh W Pritchard
- Science Directorate, Royal Botanic Gardens, Kew, Wakehurst, Ardlingly, West Sussex, UK
| |
Collapse
|
16
|
Barber C, Graves SJ, Hall JS, Zuidema PA, Brandt J, Bohlman SA, Asner GP, Bailón M, Caughlin TT. Species-level tree crown maps improve predictions of tree recruit abundance in a tropical landscape. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2585. [PMID: 35333420 DOI: 10.1002/eap.2585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Predicting forest recovery at landscape scales will aid forest restoration efforts. The first step in successful forest recovery is tree recruitment. Forecasts of tree recruit abundance, derived from the landscape-scale distribution of seed sources (i.e., adult trees), could assist efforts to identify sites with high potential for natural regeneration. However, previous work revealed wide variation in the effect of seed sources on seedling abundance, from positive to no effect. We quantified the relationship between adult tree seed sources and tree recruits and predicted where natural recruitment would occur in a fragmented, tropical, agricultural landscape. We integrated species-specific tree crown maps generated from hyperspectral imagery and property ownership data with field data on the spatial distribution of tree recruits from five species. We then developed hierarchical Bayesian models to predict landscape-scale recruit abundance. Our models revealed that species-specific maps of tree crowns improved recruit abundance predictions. Conspecific crown area had a much stronger impact on recruitment abundance (8.00% increase in recruit abundance when conspecific tree density increases from zero to one tree; 95% credible interval (CI): 0.80% to 11.57%) than heterospecific crown area (0.03% increase with the addition of a single heterospecific tree, 95% CI: -0.60% to 0.68%). Individual property ownership was also an important predictor of recruit abundance: The best performing model had varying effects of conspecific and heterospecific crown area on recruit abundance, depending on individual property ownership. We demonstrate how novel remote sensing approaches and cadastral data can be used to generate high-resolution and landscape-level maps of tree recruit abundance. Spatial models parameterized with field, cadastral, and remote sensing data are poised to assist decision support for forest landscape restoration.
Collapse
Affiliation(s)
- Cristina Barber
- Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Sarah J Graves
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jefferson S Hall
- Smithsonian Tropical Research Institute, ForestGEO, Panama City, Panama
| | - Pieter A Zuidema
- Forest Ecology and Forest Management group, Wageningen University, Wageningen, The Netherlands
| | - Jodi Brandt
- Human-Environment Systems, Boise State University, Boise, Idaho, USA
| | - Stephanie A Bohlman
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Mario Bailón
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | |
Collapse
|
17
|
Composition Characteristics of an Urban Forest Soil Seed Bank and Its Influence on Vegetation Restoration: A Case Study in Dadu Terrace, Central Taiwan. SUSTAINABILITY 2022. [DOI: 10.3390/su14074178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The contributions of urban forests and green spaces to sustainable development have been confirmed. Meanwhile, cities worldwide have shown that investments in urban forestry can greatly contribute to citizens’ quality of life. This study was conducted in urban forests in the Dadu Terrace of Taichung City, central Taiwan, which were frequently disturbed by fires and had grassland severely invaded by Panicum maximum after the forest degraded. We sampled 46 plots in Dadu Terrace to understand the relationship between the soil seed bank and vegetation as well as to evaluate the feasibility of applying soil seed bank transfers for ecological restoration in Dadu Terrace. The grassland was dominated by Panicum maximum. Forest vegetation was distinguished by cluster analysis into five types, i.e., Ficus microcarpa type, Acacia confusa type, Litsea glutinosa type, Cinnamomum camphora type, and Trema orientalis type. In the aboveground survey, we recorded 141 vascular plants, including 129 seed plants and 12 ferns. There were 40 identified species of naturalized plants. A total of 29,914 seedlings were recorded in the soil seed bank, with an average seed density of 9634 seeds/m2 and a total of 91 species. There were 40 species of naturalized plants, accounting for 90.9% of the total seed reserves. This showed that Dadu Terrace was severely affected by the invasion of naturalized species. The species number and seed reserves of woody plants of the Panicum maximum type were significantly lower than those of forest vegetation. The composition of the soil seed bank was dominated by naturalized plants, indicating that the high frequency of fire reduced the proportion of native species and woody plants in the soil seed bank. Acacia confusa type was the main forest type in Dadu Terrace. Although several woody species and seed reserves were in its soil seed bank, the naturalized proportions were even higher. Trema orientalis type was the secondary forest type in Dadu Terrace; it had the smallest forest area. However, it was the only vegetation type with a greater tree seed abundance than herbs and the lowest proportion of naturalized seed abundance. Trema orientalis type vegetation has a relatively high soil transfer value for ecological restoration but lacks diversity. Our results revealed that the characteristics of the soil seed bank of Dadu Terrace make it challenging to restore the grassland to the forest by natural succession. Therefore, we suggest that artificial restoration is necessary for Dadu Terrace.
Collapse
|
18
|
Seget B, Bogdziewicz M, Holeksa J, Ledwoń M, Milne-Rostkowska F, Piechnik Ł, Rzepczak A, Żywiec M. Costs and benefits of masting: economies of scale are not reduced by negative density-dependence in seedling survival in Sorbus aucuparia. THE NEW PHYTOLOGIST 2022; 233:1931-1938. [PMID: 34845725 DOI: 10.1111/nph.17887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Masting is a widespread reproductive strategy in plants that helps to reduce seed predation and increase pollination. However, masting can involve costs, notably negative density-dependent (NDD) seedling survival caused by concentrating reproduction in intermittent events. Masting benefits have received widespread attention, but the costs are understudied, which precludes understanding why some plant species have evolved intense masting, while others reproduce regularly. We followed seed production, seed predation (both 13 yr), and seedling recruitment and survival (11 yr) in Sorbus aucuparia. We tested whether NDD in seedling survival after mast years can reduce the benefits of pulsed reproduction that come through predator satiation. Seed predation rates were extreme in our population (mean = 75%), but were reduced by masting. The commonly accepted, but untested, assertion that pulsed recruitment is associated with strong NDD was unsupported. Consequently, the proportion of seedlings that survived their first year increased with fruit production. This provides a rare test of economies of scale beyond the seed stage. Our results provide estimation of the costs of mast seeding, and indicate that these may be lower than expected. Low masting costs, if common, may help explain why masting is such a widespread reproductive strategy throughout the plant kingdom.
Collapse
Affiliation(s)
- Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, 31-512, Poland
| | - Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint-Martin-d'Hères, 38400, France
| | - Jan Holeksa
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Mateusz Ledwoń
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków, 31-016, Poland
| | - Fiona Milne-Rostkowska
- Department of Plant Ecology and Environmental Protection, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznań, 61-614, Poland
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, 31-512, Poland
| | - Alicja Rzepczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań, 61-704, Poland
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, Kraków, 31-512, Poland
| |
Collapse
|
19
|
Garzon‐Lopez CX, Barcenas EM, Ordoñez A, Jansen PA, Bohlman SA, Olff H. Recruitment limitation in three large‐seeded plant species in a tropical moist forest. Biotropica 2022. [DOI: 10.1111/btp.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Carol X. Garzon‐Lopez
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
- Ecology and plant physiology group (Ecofiv) Universidad de los Andes Bogota Colombia
| | | | - Alejandro Ordoñez
- Section for Ecoinformatics and Biodiversity Department of Bioscience Aarhus University Aarhus C Denmark
- Department of Bioscience Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE) Aarhus University Aarhus C Denmark
| | - Patrick A. Jansen
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
- Smithsonian Tropical Research Institute Ancon Panama
- Department of Environmental Sciences Wageningen University Wageningen The Netherlands
| | - Stephanie A. Bohlman
- Smithsonian Tropical Research Institute Ancon Panama
- School of Forest, Fisheries and Geomatics Sciences University of Florida Gainesville Florida USA
| | - Han Olff
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences (GELIFES) University of Groningen Groningen The Netherlands
| |
Collapse
|
20
|
Li YY, Boeraeve M, Cho YH, Jacquemyn H, Lee YI. Mycorrhizal Switching and the Role of Fungal Abundance in Seed Germination in a Fully Mycoheterotrophic Orchid, Gastrodia confusoides. FRONTIERS IN PLANT SCIENCE 2022; 12:775290. [PMID: 35095954 PMCID: PMC8792533 DOI: 10.3389/fpls.2021.775290] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Mycorrhizal associations are essential for orchid germination and seedling establishment, and thus may constrain the distribution and abundance of orchids under natural conditions. Previous studies have shown that germination and seedling establishment in several orchids often decline with increasing distance from adult plants, resulting in non-random spatial patterns of seedling establishment. In contrast, individuals of the fully mycoheterotrophic orchid Gastrodia confusoides often tend to have random aboveground spatial patterns of distribution within bamboo forests. Since G. confusoides is parasitic on litter-decaying fungi, its random spatial patterns of distribution may be due to highly scattered patterns of litter-decaying fungi within bamboo forests. To test this hypothesis, we first identified the main mycorrhizal fungi associating with developing seeds and adult plants at a bamboo forest site in Taiwan using Miseq high-throughput DNA sequencing. Next, we combined seed germination experiments with quantitative PCR (qPCR) analyses to investigate to what extent the abundance of mycorrhizal fungi affected spatial patterns of seed germination. Our results show that seed germination and subsequent growth to an adult stage in G. confusoides required a distinct switch in mycorrhizal partners, in which protocorms associated with a single Mycena OTU, while adults mainly associated with an OTU from the genus Gymnopus. A strong, positive relationship was observed between germination and Mycena abundance in the litter, but not between germination and Gymnopus abundance. Fungal abundance was not significantly related to the distance from the adult plants, and consequently germination was also not significantly related to the distance from adult plants. Our results provide the first evidence that the abundance of litter-decaying fungi varies randomly within the bamboo forest and independently from G. confusoides adults.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Beijing Key Laboratory of Seed Disease Testing and Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Yu-Hsiu Cho
- Biology Department, National Museum of Natural Science, Taichung, Taiwan
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Maron JL, Lightfoot DC, Rodriguez‐Cabal MA, Collins SL, Rudgers JA. Climate mediates long‐term impacts of rodent exclusion on desert plant communities. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- John L. Maron
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| | - David C. Lightfoot
- Museum of Southwestern Biology University of New Mexico Albuquerque NM 87131 USA
| | - Mariano A. Rodriguez‐Cabal
- Grupo de Ecología de Invasiones INIBIOMA ‐ CONICET Universidad Nacional del Comahue Av. de los Pioneros 2350 CP. 8400 Bariloche, Rio Negro Argentina
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont 05405 USA
| | - Scott L. Collins
- Department of Biology University of New Mexico Albuquerque NM 87131 USA
| | | |
Collapse
|
22
|
Iler AM, CaraDonna PJ, Forrest JR, Post E. Demographic Consequences of Phenological Shifts in Response to Climate Change. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011921-032939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
When a phenological shift affects a demographic vital rate such as survival or reproduction, the altered vital rate may or may not have population-level consequences. We review the evidence that climate change affects populations by shifting species’ phenologies, emphasizing the importance of demographic life-history theory. We find many examples of phenological shifts having both positive and negative consequences for vital rates. Yet, few studies link phenological shifts to changes in vital rates known to drive population dynamics, especially in plants. When this link is made, results are largely consistent with life-history theory: Phenological shifts have population-level consequences when they affect survival in longer-lived organisms and reproduction in shorter-lived organisms. However, there are just as many cases in which demographic mechanisms buffer population growth from phenologically induced changes in vital rates. We provide recommendations for future research aiming to understand the complex relationships among climate, phenology, and demography, which will help to elucidate the extent to which phenological shifts actually alter population persistence.
Collapse
Affiliation(s)
- Amy M. Iler
- Negaunee Institute for Plant Science Conservation and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | - Paul J. CaraDonna
- Negaunee Institute for Plant Science Conservation and Action, Chicago Botanic Garden, Glencoe, Illinois 60022, USA
| | | | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Arroyo‐Cosultchi G, Golubov J, Mandujano MC, Salguero‐Gómez R, Martínez AJ. What are the demographic consequences of a seed bank stage for columnar cacti? POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gabriel Arroyo‐Cosultchi
- Departamento El Hombre y su Ambiente Universidad Autónoma Metropolitana Xochimilco México Mexico
| | - Jordan Golubov
- Departamento El Hombre y su Ambiente Universidad Autónoma Metropolitana Xochimilco México Mexico
| | - María C. Mandujano
- Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Laboratorio de Genética y Ecología Universidad Nacional Autónoma de México México Mexico
| | - Roberto Salguero‐Gómez
- Department of Zoology University of Oxford Oxford UK
- School of Biological Sciences, Centre for Biodiversity and Conservation Science The University of Queensland St Lucia Queensland Australia
- Laboratory of Evolutionary Demography Max Planck Institute for Demographic Research Rostock Germany
| | | |
Collapse
|
24
|
Berry EJ, Cleavitt NL. Population dynamics and comparative demographics in sympatric populations of the round‐leaved orchids
Platanthera macrophylla
and
P. orbiculata. POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eric J. Berry
- Biology Department St. Anselm College Manchester New Hampshire USA
| | - Natalie L. Cleavitt
- Department of Natural Resources and the Environment, Fernow Hall Cornell University Ithaca New York USA
| |
Collapse
|
25
|
Freitag M, Klaus VH, Bolliger R, Hamer U, Kleinebecker T, Prati D, Schäfer D, Hölzel N. Restoration of plant diversity in permanent grassland by seeding: Assessing the limiting factors along land‐use gradients. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Freitag
- Institute of Landscape Ecology University of Münster Münster Germany
| | | | - Ralph Bolliger
- Institute of Plant Sciences University of Bern Bern Switzerland
| | - Ute Hamer
- Institute of Landscape Ecology University of Münster Münster Germany
| | - Till Kleinebecker
- Department of Landscape Ecology and Resource Management Justus Liebig University Gießen Gießen Germany
| | - Daniel Prati
- Institute of Plant Sciences University of Bern Bern Switzerland
| | | | - Norbert Hölzel
- Institute of Landscape Ecology University of Münster Münster Germany
| |
Collapse
|
26
|
Huanca Nuñez N, Chazdon RL, Russo SE. Seed-rain-successional feedbacks in wet tropical forests. Ecology 2021; 102:e03362. [PMID: 33834498 DOI: 10.1002/ecy.3362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Tropical forest regeneration after abandonment of former agricultural land depends critically on the input of tree seeds, yet seed dispersal is increasingly disrupted in contemporary human-modified landscapes. Here, we introduce the concept of seed-rain-successional feedbacks as a deterministic process in which seed rain is shaped by successional dynamics internal to a forest site and that acts to reinforce priority effects. We used a combination of time series and chronosequence approaches to investigate how the quantity and taxonomic and functional composition of seed rain change during succession and to evaluate the strength of seed-rain-successional feedbacks, relative to other deterministic and stochastic mechanisms, in secondary wet forests of Costa Rica. We found that both successional niches and seed-rain-successional feedbacks shaped successional trajectories in the seed rain. Determinism due to successional niche assembly was supported by the increasing convergence of community structure to that of a mature forest, in terms of both functional and taxonomic composition. With successional age, the proportions of large-seeded, shade-tolerant species in the seed rain increased, whereas the proportion of animal-dispersed species did not change significantly. Seed-rain-successional feedbacks increased in strength with successional age, as the proportion of immigrant seeds (species not locally represented in the site) decreased with successional age, and the composition of the seed rain became more similar to that of the adult trees at the forest site. The deterministic assembly generated by seed-rain-successional feedback likely contributed to the increasing divergence of secondary forest sites from each other during succession. To the extent that human modification of tropical forest landscapes reduces connectivity via factors such as forest cover loss, our results suggest that seed-rain-successional feedbacks are likely to increasingly shape regeneration trajectories in and amplify floristic heterogeneity among tropical secondary forests.
Collapse
Affiliation(s)
- Nohemi Huanca Nuñez
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, 68588-0118, USA
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043, USA
| | - Sabrina E Russo
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, 68588-0118, USA.,Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska, 68588-0660, USA
| |
Collapse
|
27
|
Dent DH, Estrada-Villegas S. Uniting niche differentiation and dispersal limitation predicts tropical forest succession. Trends Ecol Evol 2021; 36:700-708. [PMID: 33966918 DOI: 10.1016/j.tree.2021.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Tropical secondary forests are increasingly important for carbon sequestration and biodiversity conservation worldwide; yet, we still cannot accurately predict community turnover during secondary succession. We propose that integrating niche differentiation and dispersal limitation will generate an improved theoretical explanation of tropical forest succession. The interaction between seed sources and dispersers regulates seed movement throughout succession, and recent technological advances in animal tracking and molecular analyses enable us to accurately monitor seed movement as never before. We propose a framework to bridge the gap between niche differentiation and dispersal limitation. The Source-Disperser Limitation Framework (SDLF) provides a way to better predict secondary tropical forest succession across gradients of landscape disturbance by integrating seed sources and frugivore behavior.
Collapse
Affiliation(s)
- Daisy H Dent
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, UK; Smithsonian Tropical Research Institute, Balboa, Panama; Max Planck Institute for Animal Behavior, Konstanz, Germany.
| | - Sergio Estrada-Villegas
- Smithsonian Tropical Research Institute, Balboa, Panama; Yale School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
28
|
Nolan M, Dewees S, Ma Lucero S. Identifying effective restoration approaches to maximize plant establishment in California grasslands through a
meta‐analysis. Restor Ecol 2021. [DOI: 10.1111/rec.13370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Madeline Nolan
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA 93106 U.S.A
| | - Shane Dewees
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA 93106 U.S.A
| | - Stephanie Ma Lucero
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara Santa Barbara CA 93106 U.S.A
| |
Collapse
|
29
|
Koshkin S, Zalles Z, Tobin MF, Toumbacaris N, Spiess C. Optimal allocation in annual plants with density-dependent fitness. Theory Biosci 2021; 140:177-196. [PMID: 33846896 DOI: 10.1007/s12064-021-00343-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022]
Abstract
We study optimal two-sector (vegetative and reproductive) allocation models of annual plants in temporally variable environments that incorporate effects of density-dependent lifetime variability and juvenile mortality in a fitness function whose expected value is maximized. Only special cases of arithmetic and geometric mean maximizers have previously been considered in the literature, and we also allow a wider range of production functions with diminishing returns. The model predicts that the time of maturity is pushed to an earlier date as the correlation between individual lifetimes increases, and while optimal schedules are bang-bang at the extremes, the transition is mediated by schedules where vegetative growth is mixed with reproduction for a wide intermediate range. The mixed growth lasts longer when the production function is less concave allowing for better leveraging of plant size when generating seeds. Analytic estimates are obtained for the power means that interpolate between arithmetic and geometric mean and correspond to partially correlated lifetime distributions.
Collapse
|
30
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
31
|
Qiu D, Ma X, Yan J, Shao D, Bai J, Cui B. Biogeomorphological processes and structures facilitate seedling establishment and distribution of annual plants: Implications for coastal restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143842. [PMID: 33302077 DOI: 10.1016/j.scitotenv.2020.143842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Biogeomorphological processes and structures (BPS) can affect plant growth and community structure and promote landscape complexity in ecosystems. However, there is a lack of understanding of how BPS facilitates seedling establishment and distribution of annual plants and promotes the success of coastal restoration. We studied the relationships between seedling establishment of a native annual plant species (Suaeda salsa) and BPS resulting from crabs and plants in a middle elevation salt marsh with moderate tides (where inhabited generally high density of plants and crabs) in the Yellow River Delta of China. While there were many crabs but fewer plants in lower elevation areas with more frequent and stronger tides; and in higher elevation areas with weaker tides there were both fewer crabs and plants. Investigations and field manipulation experiments of microtopography, crabs and plants were conducted to determine if and how these BPS influenced seedling establishment and distribution under tidal influence in the middle elevation salt marshes. Results demonstrated that biogeomorphological structures, mainly concave hollows generated by crab burrowing and concave hollows around plant roots and stems under tidal influence, were associated with the trapping of seeds and influenced the establishment and distribution of seedlings. Additionally, upon senescence, maternal plants with unreleased seeds lodged on the ground and influenced seed retention and seedling establishment. The artificial concave hollows that were created experimentally also trapped many seeds and facilitated seedling establishment. Experimental plantings and creation of artificial hollow microtopography attracted crabs that created burrows, resulting in a positive feedback on seedling establishment. We used information obtained from the experimental component of the study to conduct a hollow microtopography manipulation to successfully restore degraded salt marshes. Understanding the associations between seedling establishment and biogeomorphological processes provides important insights for the utilization of natural or human ecosystem engineering to restore coastal vegetation ecosystems.
Collapse
Affiliation(s)
- Dongdong Qiu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong 257500, China
| | - Xu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong 257500, China
| | - Jiaguo Yan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong 257500, China
| | - Dongdong Shao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong 257500, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong 257500, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong 257500, China.
| |
Collapse
|
32
|
Bartel SL, Orrock JL. An omnivorous mesopredator modifies predation of omnivore‐dispersed seeds. Ecosphere 2021. [DOI: 10.1002/ecs2.3369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Savannah L. Bartel
- University of Wisconsin – Madison 363 Birge Hall, 430 Lincoln Drive Madison Wisconsin53706USA
| | - John L. Orrock
- University of Wisconsin – Madison 363 Birge Hall, 430 Lincoln Drive Madison Wisconsin53706USA
| |
Collapse
|
33
|
Bogdziewicz M, Szymkowiak J, Calama R, Crone EE, Espelta JM, Lesica P, Marino S, Steele MA, Tenhumberg B, Tyre A, Żywiec M, Kelly D. Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals. ANNALS OF BOTANY 2020; 126:971-979. [PMID: 32574370 PMCID: PMC7539353 DOI: 10.1093/aob/mcaa118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/18/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS In a range of plant species, the distribution of individual mean fecundity is skewed and dominated by a few highly fecund individuals. Larger plants produce greater seed crops, but the exact nature of the relationship between size and reproductive patterns is poorly understood. This is especially clear in plants that reproduce by exhibiting synchronized quasi-periodic variation in fruit production, a process called masting. METHODS We investigated covariation of plant size and fecundity with individual-plant-level masting patterns and seed predation in 12 mast-seeding species: Pinus pinea, Astragalus scaphoides, Sorbus aucuparia, Quercus ilex, Q. humilis, Q. rubra, Q. alba, Q. montana, Chionochloa pallens, C. macra, Celmisia lyallii and Phormium tenax. KEY RESULTS Fecundity was non-linearly related to masting patterns. Small and unproductive plants frequently failed to produce any seeds, which elevated their annual variation and decreased synchrony. Above a low fecundity threshold, plants had similar variability and synchrony, regardless of their size and productivity. CONCLUSIONS Our study shows that within-species variation in masting patterns is correlated with variation in fecundity, which in turn is related to plant size. Low synchrony of low-fertility plants shows that the failure years were idiosyncratic to each small plant, which in turn implies that the small plants fail to reproduce because of plant-specific factors (e.g. internal resource limits). Thus, the behaviour of these sub-producers is apparently the result of trade-offs in resource allocation and environmental limits with which the small plants cannot cope. Plant size and especially fecundity and propensity for mast failure years play a major role in determining the variability and synchrony of reproduction in plants.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jakub Szymkowiak
- Population Ecology Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Rafael Calama
- Department of Forest Dynamics and Management, INIA-CIFOR, Ctra A CoruñaMadrid, Spain
| | | | | | - Peter Lesica
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Shealyn Marino
- Department of Biology, Wilkes University, Wilkes-Barre, PA, USA
| | | | - Brigitte Tenhumberg
- School of Biological Sciences and Department of Mathematics, University of Nebraska, Lincoln, NE, USA
| | - Andrew Tyre
- School of Natural Resources, University of Nebraska, Lincoln, NE, USA
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz, Kraków, Poland
| | - Dave Kelly
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
34
|
Řehounková K, Jongepierová I, Šebelíková L, Vítovcová K, Prach K. Topsoil removal in degraded open sandy grasslands: can we restore threatened vegetation fast? Restor Ecol 2020. [DOI: 10.1111/rec.13188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Klára Řehounková
- Faculty of Science University of South Bohemia Branišovská 1760, 370 05 České Budějovice Czech Republic
| | - Ivana Jongepierová
- Nature Conservation Agency of the Czech Republic Kaplanova 1931/1, 148 00 Praha 11, Chodov Czech Republic
| | - Lenka Šebelíková
- Faculty of Science University of South Bohemia Branišovská 1760, 370 05 České Budějovice Czech Republic
| | - Kamila Vítovcová
- Faculty of Science University of South Bohemia Branišovská 1760, 370 05 České Budějovice Czech Republic
| | - Karel Prach
- Faculty of Science University of South Bohemia Branišovská 1760, 370 05 České Budějovice Czech Republic
- Institute of Botany of the Czech Academy of Sciences Department of Plant Ecology Dukelská 135, 379 01 Třeboň Czech Republic
| |
Collapse
|
35
|
Bogdziewicz M, Fernández‐Martínez M, Espelta JM, Ogaya R, Penuelas J. Is forest fecundity resistant to drought? Results from an 18-yr rainfall-reduction experiment. THE NEW PHYTOLOGIST 2020; 227:1073-1080. [PMID: 32329082 PMCID: PMC7496795 DOI: 10.1111/nph.16597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Recruitment is a primary determinant of the long-term dynamics of plant populations in changing environments. However, little information is known about the effects of anthropogenic environmental changes on reproductive ecology of trees. We evaluated the impact of experimentally induced 18 yr of drought on reproduction of three contrasting forest trees: Quercus ilex, Phillyrea latifolia and Arbutus unedo. Rainfall reduction did not decrease tree fecundity. Drought, however, affected the allocation of resources in Q. ilex and A. unedo but not the more drought tolerant P. latifolia. Larger crop production by Q. ilex and A. unedo was associated with a stronger decrease in growth in the rainfall-reduction plots compared with the control plots, suggesting that these species were able to maintain their fecundity by shifting their allocation of resources away from growth. Our results indicated resistance to change in tree fecundity in Mediterranean-type forest subjected to an average 15% decrease in the amount of soil moisture, suggesting that these ecosystems may adapt to a progressive increase in arid conditions. However, the species-specific reductions in growth may indirectly affect future fecundity and ultimately shift community composition, even without immediate direct effects of drought on tree fecundity.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic ZoologyFaculty of BiologyAdam Mickiewicz University61‐614PoznańPoland
- CREAFCerdanyola delVallès08193CataloniaSpain
| | | | | | - Romà Ogaya
- CREAFCerdanyola delVallès08193CataloniaSpain
| | - Josep Penuelas
- CREAFCerdanyola delVallès08193CataloniaSpain
- Global Ecology UnitCSICCerdanyola del Vallès 08193CataloniaSpain
| |
Collapse
|
36
|
Chandler JL, Van Deelen TR, Nibbelink NP, Orrock JL. Large-scale patterns of seed removal by small mammals differ between areas of low- versus high-wolf occupancy. Ecol Evol 2020; 10:7145-7156. [PMID: 32760518 PMCID: PMC7391330 DOI: 10.1002/ece3.6415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 11/06/2022] Open
Abstract
Because most tree species recruit from seeds, seed predation by small-mammal granivores may be important for determining plant distribution and regeneration in forests. Despite the importance of seed predation, large-scale patterns of small-mammal granivory are often highly variable and thus difficult to predict. We hypothesize distributions of apex predators can create large-scale variation in the distribution and abundance of mesopredators that consume small mammals, creating predictable areas of high and low granivory. For example, because gray wolf (Canis lupus) territories are characterized by relatively less use by coyotes (C. latrans) and greater use by foxes (Vulpes vulpes, Urocyon cinereoargentus) that consume a greater proportion of small mammals, wolf territories may be areas of reduced small-mammal granivory. Using large-scale, multiyear field trials at 22 sites with high- and low-wolf occupancy in northern Wisconsin, we evaluated whether removal of seeds of four tree species was lower in wolf territories. Consistent with the hypothesized consequences of wolf occupancy, seed removal of three species was more than 25% lower in high-wolf-occupancy areas across 2 years and small-mammal abundance was more than 40% lower in high-wolf areas during one of two study years. These significant results, in conjunction with evidence of seed consumption in situ and the absence of significant habitat differences between high- and low-wolf areas, suggest that top-down effects of wolves on small-mammal granivory and seed survival may occur. Understanding how interactions among carnivores create spatial patterns in interactions among lower trophic levels may allow for more accurate predictions of large-scale patterns in seed survival and forest composition.
Collapse
Affiliation(s)
| | | | - Nathan P. Nibbelink
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgiaUSA
| | - John L. Orrock
- Department of Integrative BiologyUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
37
|
Post-dispersal factors influence recruitment patterns but do not override the importance of seed limitation in populations of a native thistle. Oecologia 2020; 193:143-153. [PMID: 32322985 DOI: 10.1007/s00442-020-04656-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Whether plant populations are limited by seed or microsite availability is a long-standing debate. However, since both can be important, increasing emphasis is placed on disentangling their relative importance and how they vary through space and time. Although uncommon, seed addition studies that include multiple levels of seed augmentation, and follow plants through to the adult stage, are critical to achieving this goal. Such data are also vital to understanding when biotic pressures, such as herbivory, influence plant abundance. In this study, we experimentally added seeds of a native thistle, Cirsium canescens, at four augmentation densities to plots at two long-term study sites and quantified densities of seedlings and reproductive adults over 9 years. Recruitment to both seedling and adult stages was strongly seed-limited at both sites; however, the relative strength of seed limitation decreased with plant age. Fitting alternative recruitment functions to our data indicated that post-dispersal mortality factors were important as well. Strong density-dependent mortality limited recruitment at one site, while density-independent limitation predominated at the other. Overall, our experimental seed addition demonstrates that the environment at these sites remains suitable for C. canescens survival to reproduction and that seed availability limits adult densities. The results thus provide support for the hypothesis that seed losses due to the invasive weevil, Rhinocyllus conicus, rather than shifting microsite conditions, are driving C. canescens population declines. Shifts in the importance of density-dependent recruitment limitation between sites highlights that alternate strategies may be necessary to recover plant populations at different locations.
Collapse
|
38
|
Beckman NG, Aslan CE, Rogers HS, Kogan O, Bronstein JL, Bullock JM, Hartig F, HilleRisLambers J, Zhou Y, Zurell D, Brodie JF, Bruna EM, Cantrell RS, Decker RR, Efiom E, Fricke EC, Gurski K, Hastings A, Johnson JS, Loiselle BA, Miriti MN, Neubert MG, Pejchar L, Poulsen JR, Pufal G, Razafindratsima OH, Sandor ME, Shea K, Schreiber S, Schupp EW, Snell RS, Strickland C, Zambrano J. Advancing an interdisciplinary framework to study seed dispersal ecology. AOB PLANTS 2020; 12:plz048. [PMID: 32346468 PMCID: PMC7179845 DOI: 10.1093/aobpla/plz048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.
Collapse
Affiliation(s)
- Noelle G Beckman
- Department of Biology & Ecology Center, Utah State University, Logan, UT, USA
| | - Clare E Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford, UK
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| | - Damaris Zurell
- Swiss Federal Research Institute WSL, Dept. Land Change Science, Birmensdorf, Switzerland
- Humboldt-University Berlin, Geography Dept., Berlin, Germany
| | - Jedediah F Brodie
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio M Bruna
- Department of Wildlife Ecology & Conservation & Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | | | - Robin R Decker
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Edu Efiom
- REDD+ Unit, Cross River State Forestry Commission, Calabar, Nigeria
- Biology Department, Lund University, Lund, Sweden
| | - Evan C Fricke
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, MD, USA
| | - Katherine Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Jeremy S Johnson
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Bette A Loiselle
- Center for Latin American Studies and Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Maria N Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Michael G Neubert
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Gesine Pufal
- Natur Conservation and Landscape Ecology, University of Freiburg Freiburg, Germany
| | | | - Manette E Sandor
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | - Katriona Shea
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sebastian Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, USA
| | - Eugene W Schupp
- Department of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USA
| | - Rebecca S Snell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Jenny Zambrano
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
39
|
Newbold C, Knapp BO, Pile LS. Are we close enough? Comparing prairie reconstruction chronosequences to remnants following two site preparation methods in Missouri, U.S.A. Restor Ecol 2020. [DOI: 10.1111/rec.13078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chris Newbold
- Missouri Department of Conservation 3500 E. Gans Road, Columbia MO 65201 U.S.A
| | - Benjamin O. Knapp
- School of Natural ResourcesUniversity of Missouri—Columbia 203‐S ABNR Building, Columbia MO 65211 U.S.A
| | - Lauren S. Pile
- USDA Forest Service—Northern Research Station 202 ABNR Building, Columbia MO 65211 U.S.A
| |
Collapse
|
40
|
Leverkus AB, Crawley MJ. Temporal variation in effect sizes in a long-term, split-plot field experiment. Ecology 2020; 101:e03009. [PMID: 32031674 DOI: 10.1002/ecy.3009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/07/2022]
Abstract
Ecological field experiments initiate successional and evolutionary changes among resident species, yet effect sizes are often reported as if they were constants. Few ecological studies have addressed their questions through long-term, experimental approaches, and many questions remain unanswered regarding temporal patterns in ecological effect sizes. We document temporal variation in effect sizes in response to pulse and press manipulations in a long-term factorial field experiment at Nash's Field, England. The experiment comprises seven treatments applied in a split-plot design to test the single and interactive effects of herbivory by insects, molluscs, and rabbits, liming, nutrient limitation (applied as press experiments), competition (exclusion of grasses or herbs with specific herbicides), and seed limitation (pulse experiments) on plant community dynamics. The response of all vascular plant species was followed for two decades. High species richness was positively related to the minus-grass herbicide in the first decade and negatively related to both nitrogen addition and the abundance of dominant species in both decades. Many significant effects appeared quickly, but some large effects were not detected until year 15. Press experiments produced some long-lasting effects, but effect sizes changed due to both idiosyncratic "year effects" and secular trends. For pulse experiments, most effects, including positive and negative responses to herbicide application and the invasion of most of the sown species, disappeared quickly. However, some endured or grew monotonically, such as the invasion of two sown species that benefited from particular combinations of the press treatments. The fastest effects to appear were the responses from established species. Many of these responses were negative, likely resulting from reduced niche dimensionality and competitive exclusion by new dominant species. Contrarily, one of the largest community-level effects took well over a decade to appear: the natural invasion by one species, which responded to a four-way interaction between experimental treatments. The insights gained from individual effects increased with the duration of the lag before their first appearance, drawing attention to the importance of long-term, manipulative field experiments. This experiment also reinforces the point that factorial experiments are the most insightful way to explore ecological interactions.
Collapse
Affiliation(s)
- Alexandro B Leverkus
- Division of Ecology and Evolution, Imperial College London, Silwood Park, Ascot, SL5 7PY, United Kingdom.,Departamento de Ciencias de la Vida, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Michael J Crawley
- Division of Ecology and Evolution, Imperial College London, Silwood Park, Ascot, SL5 7PY, United Kingdom
| |
Collapse
|
41
|
Maron JL, Hajek KL, Hahn PG, Pearson DE. Seedling recruitment correlates with seed input across seed sizes: implications for coexistence. Ecology 2019; 100:e02848. [PMID: 31351014 DOI: 10.1002/ecy.2848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022]
Abstract
Understanding controls on recruitment is critical to predicting community assembly, diversity, and coexistence. Theory posits that at mean fecundity, recruitment of highly fecund small-seeded plants should be primarily microsite limited, which is indicated by a saturating recruitment function. In contrast, species that produce fewer large seeds are more likely to be seed-limited, which is characterized by a linear recruitment function. If these patterns hold in nature, seed predation that disproportionately affects larger-seeded species can limit their establishment. We tested these predictions by comparing recruitment functions among 16 co-occurring perennial forb species that vary by over two orders of magnitude in seed size. We also assessed how postdispersal seed predation by mice influenced recruitment. We added seeds at densities from zero to three times natural fecundity of each species to undisturbed plots and examined spatial variation in recruitment by conducting experiments across 10 grassland sites that varied in productivity and resource availability. Consistent across two replicated years, most species had linear recruitment functions across the range of added seed densities, indicative of seed-limited recruitment. Depending on year, the recruitment functions of only 19-37% of target species saturated near their average fecundity, and this was not associated with seed size. Recruitment was strongly inhibited by rodent seed predation for large-seeded species but not for smaller-seeded species. Proportional recruitment was more sensitive to spatial variation in recruitment conditions across sites for some small-seeded species than for large-seeded species. These results contradict the common belief that highly fecund small-seeded species suffer from microsite-limited recruitment. Rather, they imply that, at least episodically, recruitment can be strongly correlated to plant fecundity. However, proportional recruitment of small-seeded species was inhibited at productive sites to a greater extent than large-seeded species. Results also show that in a system where the dominant granivore prefers larger seeds, low-fecundity large-seeded species can suffer from even greater seed-limited recruitment than would occur in the absence of predators.
Collapse
Affiliation(s)
- John L Maron
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Karyn L Hajek
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Philip G Hahn
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Dean E Pearson
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA.,Rocky Mountain Research Station, U.S. Department of Agriculture Forest Service, Missoula, Montana, 59801, USA
| |
Collapse
|
42
|
Establishment Limitation Constrains the Abundance of Lactic Acid Bacteria in the Napa Cabbage Phyllosphere. Appl Environ Microbiol 2019; 85:AEM.00269-19. [PMID: 31003989 DOI: 10.1128/aem.00269-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022] Open
Abstract
Patterns of phyllosphere diversity have become increasingly clear with high-throughput sequencing surveys, but the processes that control phyllosphere diversity are still emerging. Through a combination of lab and field experiments using Napa cabbage and lactic acid bacteria (LAB), we examined how dispersal and establishment processes shape the ecological distributions of phyllosphere bacteria. We first determined the abundance and diversity of LAB on Napa cabbage grown at three sites using both culture-based approaches and 16S rRNA gene amplicon sequencing. Across all sites, LAB made up less than 0.9% of the total bacterial community abundance. To assess whether LAB were low in abundance in the Napa cabbage phyllosphere due to a limited abundance in local species pools (source limitation), we quantified LAB in leaf and soil samples across 51 vegetable farms and gardens throughout the northeastern United States. Across all sites, LAB comprised less than 3.2% of the soil bacterial communities and less than 1.6% of phyllosphere bacterial communities. To assess whether LAB are unable to grow in the phyllosphere even if they dispersed at high rates (establishment limitation), we used a gnotobiotic Napa cabbage system in the lab with experimental communities mimicking various dispersal rates of LAB. Even at high dispersal rates, LAB became rare or completely undetectable in experimental communities, suggesting that they are also establishment limited. Collectively, our data demonstrate that the low abundance of LAB in phyllosphere communities may be explained by establishment limitation.IMPORTANCE The quality and safety of vegetable fermentations are dependent on the activities of LAB naturally present in the phyllosphere. Despite their critical role in determining the success of fermentation, the processes that determine the abundance and diversity of LAB in vegetables used for fermentation are poorly characterized. Our work demonstrates that the limited ability of LAB to grow in the cabbage phyllosphere environment may constrain their abundance on cabbage leaves. These results suggest that commercial fermentation of Napa cabbage proceeds despite low and variable abundances of LAB across different growing regions. Propagule limitation may also explain ecological distributions of other rare members of phyllosphere microbes.
Collapse
|
43
|
Early snowmelt projected to cause population decline in a subalpine plant. Proc Natl Acad Sci U S A 2019; 116:12901-12906. [PMID: 31182600 DOI: 10.1073/pnas.1820096116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How climate change influences the dynamics of plant populations is not well understood, as few plant studies have measured responses of vital rates to climatic variables and modeled the impact on population growth. The present study used 25 y of demographic data to analyze how survival, growth, and fecundity respond to date of spring snowmelt for a subalpine plant. Fecundity was estimated by seed production (over 15 y) and also divided into flower number, fruit set, seeds per fruit, and escape from seed predation. Despite no apparent effects on flower number, plants produced more seeds in years with later snowmelt. Survival and probability of flowering were reduced by early snowmelt in the previous year. Based on demographic models, earlier snowmelt with warming is expected to lead to negative population growth, driven especially by changes in seedling establishment and seed production. These results provide a rare example of how climate change is expected to influence the dynamics of a plant population. They furthermore illustrate the potential for strong population impacts even in the absence of more commonly reported visual signs, such as earlier blooming or reduced floral display in early melting years.
Collapse
|
44
|
Albrecht MA, Osazuwa-Peters OL, Maschinski J, Bell TJ, Bowles ML, Brumback WE, Duquesnel J, Kunz M, Lange J, McCue KA, McEachern AK, Murray S, Olwell P, Pavlovic NB, Peterson CL, Possley J, Randall JL, Wright SJ. Effects of life history and reproduction on recruitment time lags in reintroductions of rare plants. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2019; 33:601-611. [PMID: 30461065 DOI: 10.1111/cobi.13255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/07/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Reintroductions are important components of conservation and recovery programs for rare plant species, but their long-term success rates are poorly understood. Previous reviews of plant reintroductions focused on short-term (e.g., ≤3 years) survival and flowering of founder individuals rather than on benchmarks of intergenerational persistence, such as seedling recruitment. However, short-term metrics may obscure outcomes because the unique demographic properties of reintroductions, including small size and unstable stage structure, could create lags in population growth. We used time-to-event analysis on a database of unusually well-monitored and long-term (4-28 years) reintroductions of 27 rare plant species to test whether life-history traits and population characteristics of reintroductions create time-lagged responses in seedling recruitment (i.e., recruitment time lags [RTLs]), an important benchmark of success and indicator of persistence in reintroduced populations. Recruitment time lags were highly variable among reintroductions, ranging from <1 to 17 years after installation. Recruitment patterns matched predictions from life-history theory with short-lived species (fast species) exhibiting consistently shorter and less variable RTLs than long-lived species (slow species). Long RTLs occurred in long-lived herbs, especially in grasslands, whereas short RTLs occurred in short-lived subtropical woody plants and annual herbs. Across plant life histories, as reproductive adult abundance increased, RTLs decreased. Highly variable RTLs were observed in species with multiple reintroduction events, suggesting local processes are just as important as life-history strategy in determining reintroduction outcomes. Time lags in restoration outcomes highlight the need to scale success benchmarks in reintroduction monitoring programs with plant life-history strategies and the unique demographic properties of restored populations. Drawing conclusions on the long-term success of plant reintroduction programs is premature given that demographic processes in species with slow life-histories take decades to unfold.
Collapse
Affiliation(s)
- Matthew A Albrecht
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110, U.S.A
| | - Oyomoare L Osazuwa-Peters
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO, 63110, U.S.A
- Division of Biostatistics, Washington University, St. Louis, MO, 63110, U.S.A
| | - Joyce Maschinski
- Center for Plant Conservation, San Diego Zoo Global, 15600 San Pasqual Valley Road, Escondido, CA, 92027, U.S.A
| | - Timothy J Bell
- Department of Biological Sciences, Chicago State University, SCI 292, 9501 South King Drive, Chicago, IL, 60628, U.S.A
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532-1293, U.S.A
| | - Marlin L Bowles
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532-1293, U.S.A
| | - William E Brumback
- New England Wild Flower Society, 180 Hemenway Road, Framingham, MA, 01701, U.S.A
| | - Janice Duquesnel
- Florida Department of Environmental Protection, Florida Park Service, 77200 Overseas Highway, Islamorada, FL, 33036, U.S.A
| | - Michael Kunz
- North Carolina Botanical Garden, The University of North Carolina at Chapel Hill, CB 3375, Chapel Hill, NC, 27599, U.S.A
| | - Jimmy Lange
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Miami, FL, 33156, U.S.A
| | - Kimberlie A McCue
- Research, Conservation, and Collections, Desert Botanical Garden, 1201 North Galvin Parkway, Phoenix, AZ, 85008, U.S.A
| | - A Kathryn McEachern
- U.S. Geological Survey, Western Ecological Research Center, 1901 Spinnaker Drive, Ventura, CA, 93001, U.S.A
| | - Sheila Murray
- The Arboretum at Flagstaff, 4001 S. Woody Mountain Road, Flagstaff, AZ, 86005, U.S.A
| | - Peggy Olwell
- Division of Fish, Wildlife & Plant Conservation, U.S. Department of Interior, Bureau of Land Management, 1849 C Street NW (LSB-204), Washington, D.C., 20240, U.S.A
| | - Noel B Pavlovic
- U.S. Geological Survey, Great Lakes Science Center, Lake Michigan Ecological Research Station, 1574 N 300 E, Chesterton, IN, 46304, U.S.A
| | - Cheryl L Peterson
- Bok Tower Gardens, 1151 Tower Boulevard, Lake Wales, FL, 33853, U.S.A
| | - Jennifer Possley
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Miami, FL, 33156, U.S.A
| | - John L Randall
- North Carolina Botanical Garden, The University of North Carolina at Chapel Hill, CB 3375, Chapel Hill, NC, 27599, U.S.A
| | - Samuel J Wright
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Miami, FL, 33156, U.S.A
| |
Collapse
|
45
|
Hovick SM, Whitney KD. Propagule pressure and genetic diversity enhance colonization by a ruderal species: a multi‐generation field experiment. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephen M. Hovick
- Department of Evolution, Ecology, and Organismal Biology The Ohio State University Columbus Ohio 43210 USA
| | - Kenneth D. Whitney
- Department of Biology University of New Mexico Albuquerque New Mexico 87131 USA
| |
Collapse
|
46
|
Terborgh J, Zhu K, Alvarez Loayza P, Cornejo Valverde F. Seed limitation in an Amazonian floodplain forest. Ecology 2019; 100:e02642. [PMID: 30712267 DOI: 10.1002/ecy.2642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022]
Abstract
We monitored a close-spaced grid of 289 seed traps in 1.44 ha for 8.4 yr in an Amazonian floodplain forest. In a tree community containing hundreds of species, a median of just three to four species of tree seeds falls annually into each 0.5-m2 establishment site. The number of seed species reaching a given site increased linearly with time for the duration of the monitoring period, indicating a roughly random arrival of seed species in a given site-year. The number of seed species captured each year over the entire grid ranged from one-third to one-half of the total captured over the 8.4 yr of monitoring, revealing a substantial temporal component of variation in the seed rain. Seed rain at the 0.5-m2 scale displayed extreme spatial variability when all potentially viable seeds were tallied, whereas the rain of dispersed seeds was scant, more nearly uniform, and better mixed. Dispersal limitation, defined as failure of seeds to reach establishment sites, is ≥99% per year for a majority of species, explaining why seed augmentation experiments are often successful. Dispersal limitation has been evoked as an explanation for distance-dependent species turnover in tropical tree communities, but that interpretation contrasts with the fact that many Amazonian tree species possess large geographical ranges that extend for hundreds or thousands of kilometers. A better understanding of the processes that bridge the gap between the scales of seedling establishment and the regulation of forest composition will require new methodologies for studying dispersal on scales larger than those yet achieved.
Collapse
Affiliation(s)
- John Terborgh
- Center for Tropical Conservation, Nicholas School of the Environment, Duke University, P.O. Box 90381, Durham, North Carolina, 27708 , USA.,Department of Biology and Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611, USA
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, California, 95064, USA
| | - Patricia Alvarez Loayza
- Center for Tropical Conservation, Nicholas School of the Environment, Duke University, P.O. Box 90381, Durham, North Carolina, 27708 , USA.,Field Museum of Natural History, 1400 S Lakeshore Drive, Chicago, Illinois, 60605, USA
| | | |
Collapse
|
47
|
Boivin T, Doublet V, Candau JN. The ecology of predispersal insect herbivory on tree reproductive structures in natural forest ecosystems. INSECT SCIENCE 2019; 26:182-198. [PMID: 29082661 DOI: 10.1111/1744-7917.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/06/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Plant-insect interactions are key model systems to assess how some species affect the distribution, the abundance, and the evolution of others. Tree reproductive structures represent a critical resource for many insect species, which can be likely drivers of demography, spatial distribution, and trait diversification of plants. In this review, we present the ecological implications of predispersal herbivory on tree reproductive structures by insects (PIHR) in forest ecosystems. Both insect's and tree's perspectives are addressed with an emphasis on how spatiotemporal variation and unpredictability in seed availability can shape such particular plant-animal interactions. Reproductive structure insects show strong trophic specialization and guild diversification. Insects evolved host selection and spatiotemporal dispersal strategies in response to variable and unpredictable abundance of reproductive structures in both space and time. If PIHR patterns have been well documented in numerous systems, evidences of the subsequent demographic and evolutionary impacts on tree populations are still constrained by time-scale challenges of experimenting on such long-lived organisms, and modeling approaches of tree dynamics rarely consider PIHR when including biotic interactions in their processes. We suggest that spatially explicit and mechanistic approaches of the interactions between individual tree fecundity and insect dynamics will clarify predictions of the demogenetic implications of PIHR in tree populations. In a global change context, further experimental and theoretical contributions to the likelihood of life-cycle disruptions between plants and their specialized herbivores, and to how these changes may generate novel dynamic patterns in each partner of the interaction are increasingly critical.
Collapse
Affiliation(s)
| | | | - Jean-Noël Candau
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste Marie, Ontario, Canada
| |
Collapse
|
48
|
Sorenson QM, Damschen EI. The mechanisms affecting seedling establishment in restored savanna understories are seasonally dependent. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Quinn M. Sorenson
- Department of Integrative Biology University of Wisconsin–Madison Madison Wisconsin
| | - Ellen I. Damschen
- Department of Integrative Biology University of Wisconsin–Madison Madison Wisconsin
| |
Collapse
|
49
|
Barker CA, Turley NE, Orrock JL, Ledvina JA, Brudvig LA. Agricultural land-use history does not reduce woodland understory herb establishment. Oecologia 2019; 189:1049-1060. [PMID: 30879140 DOI: 10.1007/s00442-019-04348-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Agricultural land use is a leading cause of habitat degradation, leaving a legacy of ecological impacts long after agriculture has ceased. Yet the mechanisms for legacy effects, such as altered plant community composition, are not well understood. In particular, whether plant community recovery is limited by an inability of populations to establish within post-agricultural areas, owing to altered environmental conditions within these areas, remains poorly known. We evaluated this hypothesis of post-agricultural establishment limitation through a field experiment within longleaf pine woodlands in South Carolina (USA) and a greenhouse experiment using field-collected soils from these sites. In the field, we sowed seeds of 12 understory plant species associated with remnants (no known history of agriculture) into 27 paired remnant and post-agricultural woodlands. We found that post-agricultural woodlands supported higher establishment, resulting in greater species richness of sown species. These results were context dependent, however, with higher establishment in post-agricultural woodlands only when sites were frequently burned, had less leaf litter, or had less sandy soils. In the greenhouse, we found that agricultural history had no impact on plant growth or survival, suggesting that establishment limitation is unlikely driven by differences in soils associated with agricultural history when environmental conditions are not stressful. Rather, the potential for establishment in post-agricultural habitats can be higher than in remnant habitats, with the strength of this effect determined by fire frequency and soil characteristics.
Collapse
Affiliation(s)
- Carrie A Barker
- Department of Plant Biology, Michigan State University, East Lansing, USA. .,Department of Biological Sciences, Louisiana State University, Baton Rouge, USA.
| | - Nash E Turley
- Department of Plant Biology, Michigan State University, East Lansing, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, USA
| | - John L Orrock
- Department of Zoology, University of Wisconsin, Madison, USA
| | - Joseph A Ledvina
- Department of Plant Biology, Michigan State University, East Lansing, USA
| | - Lars A Brudvig
- Department of Plant Biology, Michigan State University, East Lansing, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, USA
| |
Collapse
|
50
|
Mariano V, Rebolo IF, Christianini AV. Fire-sensitive species dominate seed rain after fire suppression: Implications for plant community diversity and woody encroachment in the Cerrado. Biotropica 2019. [DOI: 10.1111/btp.12614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Mariano
- Programa de Pós-graduação em Ecologia e Recursos Naturais; Universidade Federal de São Carlos; São Carlos SP Brazil
| | - Isabele F. Rebolo
- Programa de Pós-graduação em Ecologia e Recursos Naturais; Universidade Federal de São Carlos; São Carlos SP Brazil
| | - Alexander V. Christianini
- Departamento de Ciências Ambientais; Universidade Federal de São Carlos - Campus Sorocaba; Sorocaba SP Brazil
| |
Collapse
|