1
|
Caudill V, Ralph P. Genetic Architecture, Spatial Heterogeneity, and the Arms Race between Newts and Snakes: Exploring Coevolution with Simulations. Am Nat 2025; 205:184-202. [PMID: 39913933 DOI: 10.1086/733456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
AbstractCoevolution between two species can lead to exaggerated phenotypes that vary in a correlated manner across space. However, the conditions under which we expect such spatially varying coevolutionary patterns in polygenic traits are not well understood. We investigate the coevolutionary dynamics between two species undergoing reciprocal adaptation across space and time using simulations inspired by the Taricha newt/Thamnophis garter snake system. One striking observation from this system is that newts in some areas carry much more tetrodotoxin than in other areas, and garter snakes that live near more toxic newts tend to be more resistant to this toxin, a correlation seen across several broad geographic areas. Furthermore, snakes seem to be "winning" the coevolutionary arms race, that is, having a high level of resistance compared with local newt toxicity, despite substantial variation in both toxicity and resistance across the range. We explore how possible genetic architectures of the toxin and resistance traits would affect the coevolutionary dynamics by manipulating both mutation rate and effect size of mutations across many simulations. We find that coevolutionary dynamics alone were not sufficient in our simulations to produce the striking mosaic of levels of toxicity and resistance observed in nature, but simulations with ecological heterogeneity (in trait costliness or interaction rate) did produce such patterns. We also find that differences in polygenicity do not seem sufficient to explain the observation that snakes seem to be winning.
Collapse
|
2
|
Wang N, Shan C, Chen D, Hu Y, Sun Y, Wang Y, Liang B, Liang W. "Isolation by Gentes with Asymmetric Migration" shapes the genetic structure of the common cuckoo in China. Integr Zool 2025; 20:144-159. [PMID: 38872343 DOI: 10.1111/1749-4877.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Amid coevolutionary arms races between brood parasitic birds and their diverse host species, the formation of host-specific races, or gentes, has drawn significant research focus. Nevertheless, numerous questions about gentes evolutionary patterns persist. Here, we investigated the potential for gentes evolution across multiple common cuckoo (Cuculus canorus) populations parasitizing diverse host species in China. Using maternal (mitochondrial and W-linked DNA) and biparental (autosomal and Z-linked DNA) markers, we found consistent clustering of cuckoo gentes (rather than geographical populations) into distinct clades in matrilineal gene trees, indicating robust differentiation. In contrast, biparental markers indicated intermixing of all gentes, suggesting asymmetric gene flow regardless of geography. Unlike the mitonuclear discordance commonly resulting from incomplete lineage sorting, adaptive introgression, or demographic disparities, the observed pattern in brood parasitic cuckoos might reflect biased host preferences between sexes. We hereby present the "Isolation by Gentes with Asymmetric Migration" model. According to this model, the maternal line differentiation of the common cuckoo in China is potentially driven by host preferences in females, whereas males maintained the integrity of the cuckoo species through random mating. To achieve this, cuckoo males could perform flexible migration among gentes or engage in early copulation with females before reaching the breeding sites, allowing female cuckoos to store sperm from various gentes. Future studies collecting additional samples from diverse cuckoo gentes with overlapping distribution and investigating the migratory and copulation patterns of each sex would enhance our understanding of sex-biased differentiation among cuckoo populations in China.
Collapse
Affiliation(s)
- Ning Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chengbin Shan
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dan Chen
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yunbiao Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuehua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bin Liang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, Hohhot, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
3
|
Du C, Feng X, Chen Z, Qiao G. Predicting Potential Distribution of Teinopalpus aureus Integrated Multiple Factors and Its Threatened Status Assessment. INSECTS 2024; 15:879. [PMID: 39590478 PMCID: PMC11594619 DOI: 10.3390/insects15110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
The accurate prediction of the niche and the potential distribution of a species is a fundamental and key content for biodiversity related research in ecology and biogeography, especially for protected species. Biotic interactions have a significant impact on species distribution but are often overlooked by SDMs. Therefore, it is crucial to incorporate biotic interaction factors into SDMs to improve their predictive performance. The Teinopalpus aureus Mell, 1923 is endemic to high altitudes in southern East Asia, renowned for its exceptional beauty and rarity. Despite the significant conservation value, its spatial distribution remains unclear. This study integrated climate data, host plants, and empirical expert maps to predict its potential distribution. The results indicated that utilizing the species richness of host plants as a surrogate for biotic interactions was a simple and effective way to significantly improve the predictive performance of the SDMs. The current suitable distribution of T. aureus and its host plants is highly fragmented, primarily concentrated in the Nanling and Wuyi Mountains, and consisting of numerous isolated small populations. Given climate change, their distribution is significantly shrinking, increasing the threatened level in the future. Especially for the population of T. aureus hainani Lee, the likelihood of extinction is extremely high. Abiotic factors not only directly affect the distribution of T. aureus but also indirectly impact it through the host plants. This was evident in the delayed response of T. aureus to climate change compared to its host plants, which is called the "hysteresis effect" caused by biotic interactions. Overall, we tentatively suggest regarding T. aureus as a vulnerable species. In the future, multiple measures could be taken to indirectly protect the feeding and habitat resources of T. aureus by conserving host plants, thereby enhancing its survival prospects.
Collapse
Affiliation(s)
- Congcong Du
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- Key Laboratory of Ecology of Rare & Endangered Species & Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (X.F.); (Z.C.)
- Guangxi Key Laboratory of Rare & Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
- College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Xueyu Feng
- Key Laboratory of Ecology of Rare & Endangered Species & Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (X.F.); (Z.C.)
- Guangxi Key Laboratory of Rare & Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
- College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Zhilin Chen
- Key Laboratory of Ecology of Rare & Endangered Species & Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China; (X.F.); (Z.C.)
- Guangxi Key Laboratory of Rare & Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
- College of Life Science, Guangxi Normal University, Guilin 541006, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
4
|
Langmore NE, Grealy A, Noh HJ, Medina I, Skeels A, Grant J, Murray KD, Kilner RM, Holleley CE. Coevolution with hosts underpins speciation in brood-parasitic cuckoos. Science 2024; 384:1030-1036. [PMID: 38815013 DOI: 10.1126/science.adj3210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Coevolution between interacting species is thought to increase biodiversity, but evidence linking microevolutionary processes to macroevolutionary patterns is scarce. We leveraged two decades of behavioral research coupled with historical DNA analysis to reveal that coevolution with hosts underpins speciation in brood-parasitic bronze-cuckoos. At a macroevolutionary scale, we show that highly virulent brood-parasitic taxa have higher speciation rates and are more likely to speciate in sympatry than less-virulent and nonparasitic relatives. We reveal the microevolutionary process underlying speciation: Hosts reject cuckoo nestlings, which selects for mimetic cuckoo nestling morphology. Where cuckoos exploit multiple hosts, selection for mimicry drives genetic and phenotypic divergence corresponding to host preference, even in sympatry. Our work elucidates perhaps the most common, but poorly characterized, evolutionary process driving biological diversification.
Collapse
Affiliation(s)
- N E Langmore
- Research School of Biology, Australian National University, Canberra, Australia
| | - A Grealy
- Research School of Biology, Australian National University, Canberra, Australia
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australia
| | - H-J Noh
- Research School of Biology, Australian National University, Canberra, Australia
| | - I Medina
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - A Skeels
- Research School of Biology, Australian National University, Canberra, Australia
| | - J Grant
- Research School of Biology, Australian National University, Canberra, Australia
| | - K D Murray
- Research School of Biology, Australian National University, Canberra, Australia
| | - R M Kilner
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - C E Holleley
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australia
| |
Collapse
|
5
|
Caudill V, Ralph PL. Genetic architecture, spatial heterogeneity, and the coevolutionary arms race between newts and snakes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570693. [PMID: 38106105 PMCID: PMC10723474 DOI: 10.1101/2023.12.07.570693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Coevolution between two species can lead to exaggerated phenotypes that vary in a correlated manner across space. However, the conditions under which we expect such spatially varying coevolutionary patterns in polygenic traits are not well-understood. We investigate the coevolutionary dynamics between two species undergoing reciprocal adaptation across space and time, using simulations inspired by the Taricha newt - Thamnophis garter snake system. One striking observation from this system is that newts in some areas carry much more tetrodotoxin than in other areas, and garter snakes that live near more toxic newts tend to be more resistant to this toxin, a correlation seen across several broad geographic areas. Furthermore, snakes seem to be "winning" the coevolutionary arms race, i.e., having a high level of resistance compared to local newt toxicity, despite substantial variation in both toxicity and resistance across the range. We explore how possible genetic architectures of the toxin and resistance traits would affect the coevolutionary dynamics by manipulating both mutation rate and effect size of mutations across many simulations. We find that coevolutionary dynamics alone were not sufficient in our simulations to produce the striking mosaic of levels of toxicity and resistance observed in nature, but simulations with ecological heterogeneity (in trait costliness or interaction rate) did produce such patterns. We also find that in simulations, newts tend to "win" across most combinations of genetic architectures, although the species with higher mutational genetic variance tends to have an advantage.
Collapse
|
6
|
Buckingham LJ, Ashby B. Separation of evolutionary timescales in coevolving species. J Theor Biol 2024; 579:111688. [PMID: 38096978 DOI: 10.1016/j.jtbi.2023.111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Many coevolutionary processes, including host-parasite and host-symbiont interactions, involve one species or trait which evolves much faster than the other. Whether or not a coevolutionary trajectory converges depends on the relative rates of evolutionary change in the two species, and so current adaptive dynamics approaches generally either determine convergence stability by considering arbitrary (often comparable) rates of evolutionary change or else rely on necessary or sufficient conditions for convergence stability. We propose a method for determining convergence stability in the case where one species is expected to evolve much faster than the other. This requires a second separation of timescales, which assumes that the faster evolving species will reach its evolutionary equilibrium (if one exists) before a new mutation arises in the more slowly evolving species. This method, which is likely to be a reasonable approximation for many coevolving species, both provides straightforward conditions for convergence stability and is less computationally expensive than traditional analysis of coevolution models, as it reduces the trait space from a two-dimensional plane to a one-dimensional manifold. In this paper, we present the theory underlying this new separation of timescales and provide examples of how it could be used to determine coevolutionary outcomes from models.
Collapse
Affiliation(s)
- Lydia J Buckingham
- Department of Mathematical Sciences, University of Bath, Bath, UK; Milner Centre for Evolution, University of Bath, Bath, UK.
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, UK; Milner Centre for Evolution, University of Bath, Bath, UK; Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada; The Pacific Institute on Pathogens, Pandemics and Society (PIPPS), Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Cosmo LG, Assis APA, de Aguiar MAM, Pires MM, Valido A, Jordano P, Thompson JN, Bascompte J, Guimarães PR. Indirect effects shape species fitness in coevolved mutualistic networks. Nature 2023:10.1038/s41586-023-06319-7. [PMID: 37468625 DOI: 10.1038/s41586-023-06319-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
Ecological interactions are one of the main forces that sustain Earth's biodiversity. A major challenge for studies of ecology and evolution is to determine how these interactions affect the fitness of species when we expand from studying isolated, pairwise interactions to include networks of interacting species1-4. In networks, chains of effects caused by a range of species have an indirect effect on other species they do not interact with directly, potentially affecting the fitness outcomes of a variety of ecological interactions (such as mutualism)5-7. Here we apply analytical techniques and numerical simulations to 186 empirical mutualistic networks and show how both direct and indirect effects alter the fitness of species coevolving in these networks. Although the fitness of species usually increased with the number of mutualistic partners, most of the fitness variation across species was driven by indirect effects. We found that these indirect effects prevent coevolving species from adapting to their mutualistic partners and to other sources of selection pressure in the environment, thereby decreasing their fitness. Such decreases are distributed in a predictable way within networks: peripheral species receive more indirect effects and experience higher reductions in fitness than central species. This topological effect was also evident when we analysed an empirical study of an invasion of pollination networks by honeybees. As honeybees became integrated as a central species within networks, they increased the contribution of indirect effects on several other species, reducing their fitness. Our study shows how and why indirect effects can govern the adaptive landscape of species-rich mutualistic assemblages.
Collapse
Affiliation(s)
- Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Ana Paula A Assis
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brazil
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alfredo Valido
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Pedro Jordano
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
- Departamento de Biologia Vegetal y Ecologia, Universidad de Sevilla, Sevilla, Spain
| | - John N Thompson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Cosmo LG, Sales LP, Guimarães PR, Pires MM. Mutualistic coevolution and community diversity favour persistence in metacommunities under environmental changes. Proc Biol Sci 2023; 290:20221909. [PMID: 36629106 PMCID: PMC9832548 DOI: 10.1098/rspb.2022.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Linking local to regional ecological and evolutionary processes is key to understand the response of Earth's biodiversity to environmental changes. Here we integrate evolution and mutualistic coevolution in a model of metacommunity dynamics and use numerical simulations to understand how coevolution can shape species distribution and persistence in landscapes varying in space and time. Our simulations show that coevolution and species richness can synergistically shape distribution patterns by increasing colonization and reducing extinction of populations in metacommunities. Although conflicting selective pressures emerging from mutualisms may increase mismatches with the local environment and the rate of local extinctions, coevolution increases trait matching among mutualists at the landscape scale, counteracting local maladaptation and favouring colonization and range expansions. Our results show that by facilitating colonization, coevolution can also buffer the effects of environmental changes, preventing species extinctions and the collapse of metacommunities. Our findings reveal the mechanisms whereby coevolution can favour persistence under environmental changes and highlight that these positive effects are greater in more diverse systems that retain landscape connectivity.
Collapse
Affiliation(s)
- Leandro G. Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Lilian P. Sales
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
- Biology Department, Faculty of Arts and Science, Concordia University, Montreal, Canada
| | - Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
9
|
Quintero E, Rodríguez-Sánchez F, Jordano P. Reciprocity and interaction effectiveness in generalised mutualisms among free-living species. Ecol Lett 2023; 26:132-146. [PMID: 36450595 PMCID: PMC10099531 DOI: 10.1111/ele.14141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.
Collapse
Affiliation(s)
- Elena Quintero
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain
| | - Francisco Rodríguez-Sánchez
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
10
|
Castillo R, Wurdack M, Pauli T, Keller A, Feldhaar H, Polidori C, Niehuis O, Schmitt T. Evidence for a chemical arms race between cuckoo wasps of the genus Hedychrum and their distantly related host apoid wasps. BMC Ecol Evol 2022; 22:138. [PMID: 36443667 PMCID: PMC9703671 DOI: 10.1186/s12862-022-02093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites' mimicry by changing these cues. We addressed this question by analyzing cuticular hydrocarbon (CHC) profiles of Cerceris and Philanthus wasps and their brood parasites, cuckoo wasps mimicking the CHC profiles of their hosts. Some of these hosts use hydrocarbons to preserve their prey against fungal infestation and thus, they cannot significantly change their CHC composition in response to chemical mimicry by Hedychrum brood parasites. RESULTS We found that the CHC overlap between brood parasites and their hosts was lower in case of host wasps not preserving their prey than in case of prey-preserving host wasps, whose CHC evolution is constrained. Furthermore, the CHC profiles in non-preserving host wasps is more strongly diversified in females than in males, thus in the sex that is chemically mimicked by brood parasites. CONCLUSION Our results provide evidence for a chemical arms race between those hosts that are liberated from stabilizing selection on their chemical template and their parasites.
Collapse
Affiliation(s)
- Ruth Castillo
- grid.8379.50000 0001 1958 8658Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mareike Wurdack
- grid.8379.50000 0001 1958 8658Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Am Hubland, 97074 Würzburg, Germany ,grid.5963.9Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany
| | - Thomas Pauli
- grid.5963.9Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany ,grid.7708.80000 0000 9428 7911Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Breisacher Straße 153, 79110 Freiburg, Germany
| | - Alexander Keller
- grid.5252.00000 0004 1936 973XCellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany
| | - Heike Feldhaar
- grid.7384.80000 0004 0467 6972Animal Population Ecology, Department of Animal Ecology I, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Carlo Polidori
- grid.4708.b0000 0004 1757 2822Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Oliver Niehuis
- grid.5963.9Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104 Freiburg, Germany
| | - Thomas Schmitt
- grid.8379.50000 0001 1958 8658Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Cogni R, Quental TB, Guimarães PR. Ehrlich and Raven escape and radiate coevolution hypothesis at different levels of organization: Past and future perspectives. Evolution 2022; 76:1108-1123. [PMID: 35262199 DOI: 10.1111/evo.14456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
The classic paper by Ehrlich and Raven on coevolution will soon be 60 years old. Although they were not the first to develop the idea of coevolution, their thought-provoking paper certainly popularized this idea and inspired several generations of scientists interested in coevolution. Here, we describe some of their main contributions, quantitatively measure the impact of their seminal paper on different fields of research, and discuss how ideas related to their original paper might push the study of coevolution forward. To guide our discussion, we explore their original hypothesis into three research fields that are associated with distinct scales/levels of organization: (1) the genetic mechanisms underlying coevolutionary interactions; (2) the potential association between coevolutionary diversification and the organization of ecological networks; and (3) the micro- and macroevolutionary mechanisms and expected patterns under their hypothesis. By doing so, we discuss potentially overlooked aspects and future directions for the study of coevolutionary dynamics and diversification.
Collapse
Affiliation(s)
- Rodrigo Cogni
- Department of Ecology, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Tiago B Quental
- Department of Ecology, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Paulo R Guimarães
- Department of Ecology, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
12
|
Craig TP, Itami JK. A geographic mosaic of coevolution between Eurosta solidaginis (Fitch) and its host plant tall goldenrod Solidago altissima (L.). Evolution 2021; 75:3056-3070. [PMID: 34726264 DOI: 10.1111/evo.14391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
A geographic mosaic of coevolution has produced local reciprocal adaptation in tall goldenrod, Solidago altissima (L.), and the goldenrod ball-gall fly, Eurosta solidaginis (Fitch 1855). The fly is selected to induce gall diameters that minimize mortality from natural enemies, and the plant is selected to limit gall growth that reduces plant fitness. We conducted a double reciprocal transplant experiment where S. altissima and E. solidaginis from three sites were grown in gardens at each site to partition the gall morphology variation into fly genotype, plant genotype, and the environment components. The host plant gall diameter induced by each E. solidaginis population was adapted to inhibit local natural enemies from ovipositing on or consuming enclosed larvae. Reciprocally, increasing the gall size induced by the local fly population increased the resistance of the local plant host population to gall growth. Differences among sites in natural enemies produced a mosaic of hotspots of coevolutionary arms races between flies selecting for greater gall diameter and plants for smaller diameters, and coldspots where there is no selection on plant or fly for a change in gall diameter. In contrast, the geographic variations of gall length and gall shape were not due to coevolutionary interactions.
Collapse
Affiliation(s)
- Timothy P Craig
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Joanne K Itami
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
13
|
Wechsler D, Bascompte J. Cheating in mutualisms promotes diversity and complexity. Am Nat 2021; 199:393-405. [DOI: 10.1086/717865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Canitz J, Sikes DS, Knee W, Baumann J, Haftaro P, Steinmetz N, Nave M, Eggert AK, Hwang W, Nehring V. Cryptic diversity within the Poecilochirus carabi mite species complex phoretic on Nicrophorus burying beetles: Phylogeny, biogeography, and host specificity. Mol Ecol 2021; 31:658-674. [PMID: 34704311 DOI: 10.1111/mec.16248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023]
Abstract
Coevolution is often considered a major driver of speciation, but evidence for this claim is not always found because diversity might be cryptic. When morphological divergence is low, molecular data are needed to uncover diversity. This is often the case in mites, which are known for their extensive and often cryptic diversity. We studied mites of the genus Poecilochirus that are phoretic on burying beetles (Silphidae: Nicrophorus). Poecilochirus taxonomy is poorly understood. Most studies on this genus focus on the evolutionary ecology of Poecilochirus carabi sensu lato, a complex of at least two biological species. Based on molecular data of 230 specimens from 43 locations worldwide, we identified 24 genetic clusters that may represent species. We estimate that these mites began to diversify during the Paleogene, when the clade containing P. subterraneus branched off and the remaining mites diverged into two further clades. One clade resembles P. monospinosus. The other clade contains 17 genetic clusters resembling P. carabi s.l.. Among these are P. carabi sensu stricto, P. necrophori, and potentially many additional cryptic species. Our analyses suggest that these clades were formed in the Miocene by large-scale geographic separation; co-speciation of mites with the host beetles can be largely ruled out. Diversification also seems to have happened on a smaller scale, potentially due to adaptation to specific hosts or local abiotic conditions, causing some clusters to specialize on certain beetle species. Our results suggest that biodiversity in this genus was generated by multiple interacting forces shaping the tangled webs of life.
Collapse
Affiliation(s)
- Julia Canitz
- Institute for Biology I, University of Freiburg, Freiburg, Germany.,Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Derek S Sikes
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Wayne Knee
- Canadian National Collection of Insects, Arachnids, and Nematodes, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Julia Baumann
- Institute of Biology, University of Graz, Graz, Austria
| | - Petra Haftaro
- Institute for Biology I, University of Freiburg, Freiburg, Germany
| | - Nadine Steinmetz
- Institute for Biology I, University of Freiburg, Freiburg, Germany
| | - Martin Nave
- Institute for Biology I, University of Freiburg, Freiburg, Germany
| | - Anne-Katrin Eggert
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Wenbe Hwang
- Department of Ecology and Environmental Resources, National University of Tainan, Tainan, Taiwan
| | - Volker Nehring
- Institute for Biology I, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
16
|
Craig TP, Livingston‐Anderson A, Itami JK. A small‐tiled geographic mosaic of coevolution between
Eurosta solidaginis
and its natural enemies and host plant. Ecosphere 2020. [DOI: 10.1002/ecs2.3182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Timothy P. Craig
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| | | | - Joanne K. Itami
- Department of Biology University of Minnesota Duluth Duluth Minnesota55812USA
| |
Collapse
|
17
|
Palacio FX, Siepielski AM, Lacoretz MV, Ordano M. Selection on fruit traits is mediated by the interplay between frugivorous birds, fruit flies, parasitoid wasps and seed‐dispersing ants. J Evol Biol 2020; 33:874-886. [DOI: 10.1111/jeb.13656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Facundo X. Palacio
- Fundación Miguel Lillo and Consejo Nacional de Investigaciones Científicas y Técnicas Tucumán Argentina
| | - Adam M. Siepielski
- Department of Biological Sciences University of Arkansas Fayetteville AR USA
| | - Mariela V. Lacoretz
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Buenos Aires Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo and Consejo Nacional de Investigaciones Científicas y Técnicas Tucumán Argentina
| |
Collapse
|
18
|
Meyerson LA, Pyšek P, Lučanová M, Wigginton S, Tran C, Cronin JT. Plant genome size influences stress tolerance of invasive and native plants via plasticity. Ecosphere 2020. [DOI: 10.1002/ecs2.3145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Laura A. Meyerson
- Department of Natural Resources Science The University of Rhode Island Kingston Rhode Island 02881 USA
| | - Petr Pyšek
- Department of Invasion Ecology Institute of Botany Czech Academy of Sciences CZ‐252 43 Průhonice Czech Republic
- Department of Ecology Faculty of Science Charles University Viničná 7 CZ‐128 44 Prague Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants Institute of Botany Czech Academy of Sciences CZ‐252 43 Průhonice Czech Republic
- Department of Botany Faculty of Science University of South Bohemia CZ‐370 05 České Budějovice Czech Republic
| | - Sara Wigginton
- Department of Natural Resources Science The University of Rhode Island Kingston Rhode Island 02881 USA
| | - Cao‐Tri Tran
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803 USA
| | - James T. Cronin
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803 USA
| |
Collapse
|
19
|
Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. INFECTION GENETICS AND EVOLUTION 2019; 73:425-432. [DOI: 10.1016/j.meegid.2019.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/21/2023]
|
20
|
Effects of Predator-Prey Interactions on Predator Traits: Differentiation of Diets and Venoms of a Marine Snail. Toxins (Basel) 2019; 11:toxins11050299. [PMID: 31130611 PMCID: PMC6563511 DOI: 10.3390/toxins11050299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Species interactions are fundamental ecological forces that can have significant impacts on the evolutionary trajectories of species. Nonetheless, the contribution of predator-prey interactions to genetic and phenotypic divergence remains largely unknown. Predatory marine snails of the family Conidae exhibit specializations for different prey items and intraspecific variation in prey utilization patterns at geographic scales. Because cone snails utilize venom to capture prey and venom peptides are direct gene products, it is feasible to examine the evolution of genes associated with changes in resource utilization. Here, we compared feeding ecologies and venom duct transcriptomes of individuals from three populations of Conus miliaris, a species that exhibits geographic variation in prey utilization and dietary breadth, in order to determine the extent to which dietary differences are correlated with differences in venom composition, and if expanded niche breadth is associated with increased variation in venom composition. While populations showed little to no overlap in resource utilization, taxonomic richness of prey was greatest at Easter Island. Changes in dietary breadth were associated with differences in expression patterns and increased genetic differentiation of toxin-related genes. The Easter Island population also exhibited greater diversity of toxin-related transcripts, but did not show increased variance in expression of these transcripts. These results imply that differences in dietary breadth contribute more to the structural and regulatory differentiation of venoms than differences in diet.
Collapse
|
21
|
Size, weapons, and armor as predictors of competitive outcomes in fossil and contemporary marine communities. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Soteras F, Moré M, Ibañez AC, Iglesias MDR, Cocucci AA. Range overlap between the sword-billed hummingbird and its guild of long-flowered species: An approach to the study of a coevolutionary mosaic. PLoS One 2018; 13:e0209742. [PMID: 30586466 PMCID: PMC6306261 DOI: 10.1371/journal.pone.0209742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
The coevolutionary process among free-living mutualists with extremely long matching traits may favor the formation of mutualistic interaction networks through coevolutionary escalation, complementarity and convergence. These networks may be geographically structured; the links among the species of a local network are shaped by the biotic composition of the community, thus creating selection mosaics at broader geographical scales. Therefore, to fully understand a coevolutionary process, it is crucial to visualize the geographical structure of the interaction network across the landscape. In this study we focused on the poorly known interaction system between Ensifera ensifera and its guild of long-flowered plant species. We combined occurrence data and environmental variables to predict E. ensifera distribution, in addition to range polygons available for plant species in order to evaluate the geographical variation in bill length and plant species richness. A positive relationship between bill length and plant species richness within the E. ensifera range suggests a geographical structuring of the interaction networks. At mid-latitude locations of E. ensifera range, where hummingbirds attained the longest bills, richness of long-flowered plant species was higher than at low latitude locations. These locations likely represent coevolutionary vortices where long-lasting reciprocal selection probably drove the evolution of long traits, consequently drawing new plant species into the coevolutionary network. Conversely, areas where the sword-billed hummingbird was absent or had shorter bills probably represent coevolutionary coldspots. Our results provide a first insight into this phenotypically specialized plant-pollinator network across the landscape and show candidate areas to test the predictions of the coevolutionary hypothesis, such as reciprocal selection.
Collapse
Affiliation(s)
- Florencia Soteras
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET, Universidad Nacional de Córdoba, Casilla de Correo, Córdoba, Argentina
| | - Marcela Moré
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET, Universidad Nacional de Córdoba, Casilla de Correo, Córdoba, Argentina
| | - Ana C. Ibañez
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET, Universidad Nacional de Córdoba, Casilla de Correo, Córdoba, Argentina
| | - María del Rosario Iglesias
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET, Universidad Nacional de Córdoba, Casilla de Correo, Córdoba, Argentina
| | - Andrea A. Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET, Universidad Nacional de Córdoba, Casilla de Correo, Córdoba, Argentina
| |
Collapse
|
23
|
Albrecht J, Classen A, Vollstädt MGR, Mayr A, Mollel NP, Schellenberger Costa D, Dulle HI, Fischer M, Hemp A, Howell KM, Kleyer M, Nauss T, Peters MK, Tschapka M, Steffan-Dewenter I, Böhning-Gaese K, Schleuning M. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat Commun 2018; 9:3177. [PMID: 30093613 PMCID: PMC6085337 DOI: 10.1038/s41467-018-05610-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/17/2018] [Indexed: 12/05/2022] Open
Abstract
Species’ functional traits set the blueprint for pair-wise interactions in ecological networks. Yet, it is unknown to what extent the functional diversity of plant and animal communities controls network assembly along environmental gradients in real-world ecosystems. Here we address this question with a unique dataset of mutualistic bird–fruit, bird–flower and insect–flower interaction networks and associated functional traits of 200 plant and 282 animal species sampled along broad climate and land-use gradients on Mt. Kilimanjaro. We show that plant functional diversity is mainly limited by precipitation, while animal functional diversity is primarily limited by temperature. Furthermore, shifts in plant and animal functional diversity along the elevational gradient control the niche breadth and partitioning of the respective other trophic level. These findings reveal that climatic constraints on the functional diversity of either plants or animals determine the relative importance of bottom-up and top-down control in plant–animal interaction networks. Differential responses of plant and animal functional diversity to climatic variation could affect trait matching in mutualistic interactions. Here, Albrecht et al. show that network structure varies across an elevational gradient owing to bottom-up and top-down effects of functional diversity.
Collapse
Affiliation(s)
- Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Am Hubland, Würzburg, Germany
| | - Maximilian G R Vollstädt
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Antonia Mayr
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Am Hubland, Würzburg, Germany
| | - Neduvoto P Mollel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland.,Tropical Pesticides Research Institute (TPRI), Arusha, Tanzania
| | - David Schellenberger Costa
- Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26129, Oldenburg, Germany.,Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Strasse 159, 07743, Jena, Germany
| | - Hamadi I Dulle
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Markus Fischer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - Kim M Howell
- Department of Zoology and Wildlife Conservation, University of Dar-es-Salaam, Dar-es-Salaam, Tanzania
| | - Michael Kleyer
- Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, Carl von Ossietzky Straße 9-11, 26129, Oldenburg, Germany
| | - Thomas Nauss
- Environmental Informatics, Faculty of Geography, University of Marburg, Deutschhausstraße 12, 35032, Marburg, Germany
| | - Marcell K Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Am Hubland, Würzburg, Germany
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert- Einstein-Allee 11, 89069, Ulm, Germany.,Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa Ancòn, Republic of Panama
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074, Am Hubland, Würzburg, Germany
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum, Max-von-Laue-Straße 13, 60439, Frankfurt am Main, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Primate Seed Dispersal and Forest Restoration: An African Perspective for a Brighter Future. INT J PRIMATOL 2018. [DOI: 10.1007/s10764-018-0049-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Quan AS, Eisen MB. The ecology of the Drosophila-yeast mutualism in wineries. PLoS One 2018; 13:e0196440. [PMID: 29768432 PMCID: PMC5955509 DOI: 10.1371/journal.pone.0196440] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.
Collapse
Affiliation(s)
- Allison S. Quan
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Hochberg ME, Marquet PA, Boyd R, Wagner A. Innovation: an emerging focus from cells to societies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0414. [PMID: 29061887 DOI: 10.1098/rstb.2016.0414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Innovations are generally unexpected, often spectacular changes in phenotypes and ecological functions. The contributions to this theme issue are the latest conceptual, theoretical and experimental developments, addressing how ecology, environment, ontogeny and evolution are central to understanding the complexity of the processes underlying innovations. Here, we set the stage by introducing and defining key terms relating to innovation and discuss their relevance to biological, cultural and technological change. Discovering how the generation and transmission of novel biological information, environmental interactions and selective evolutionary processes contribute to innovation as an ecosystem will shed light on how the dominant features across life come to be, generalize to social, cultural and technological evolution, and have applications in the health sciences and sustainability.This article is part of the theme issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Michael E Hochberg
- Institut des Sciences de l'Evolution, Université de Montpellier, 34095 Montpellier, France .,Santa Fe Institute, Santa Fe, NM 87501, USA.,Institute for Advanced Study in Toulouse, 31015 Toulouse, France
| | - Pablo A Marquet
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Departamento de Ecologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Casilla 653, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 4780, Valparaíso, Chile
| | - Robert Boyd
- Santa Fe Institute, Santa Fe, NM 87501, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Andreas Wagner
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
27
|
Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia 2018; 187:767-782. [PMID: 29761320 DOI: 10.1007/s00442-018-4159-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 05/03/2018] [Indexed: 10/16/2022]
Abstract
Identifying the drivers and evolutionary consequences of species interactions is a major goal of community ecology. Network-based analyses can provide mathematical tools to detect non-random patterns of interactions, and potentially help predicting the consequences of such patterns on evolutionary dynamics of symbiotic systems. Here, we characterize the structure of a lichen network at a very fine phylogenetic scale, by identifying the photosynthetic partners (i.e., cyanobacteria of the genus Nostoc) of lichenized fungi belonging to a monophyletic section of a single genus (i.e., section Polydactylon of the genus Peltigera), worldwide. Even at such a fine phylogenetic scale, we found that interactions were highly modular and anti-nested, indicating strong preferences in interactions. When considering local Peltigera communities, i.e., datasets at small spatial scales with only a slightly broader phylogenetic range, interactions remained modular but were asymmetric, with generalist Nostoc partners interacting with specialized Peltigera species. This asymmetry was not detected with our global spatial scale dataset. We discuss these results in the light of lichen community assembly, and explore how such interaction patterns may influence coevolution in lichens and the evolutionary stability of the mutualism in general.
Collapse
|
28
|
Simmons BI, Sutherland WJ, Dicks LV, Albrecht J, Farwig N, García D, Jordano P, González-Varo JP. Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant-frugivore networks. J Anim Ecol 2018; 87:995-1007. [PMID: 29603211 PMCID: PMC6849527 DOI: 10.1111/1365-2656.12831] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 11/27/2022]
Abstract
There is growing interest in understanding the functional outcomes of species interactions in ecological networks. For many mutualistic networks, including pollination and seed dispersal networks, interactions are generally sampled by recording animal foraging visits to plants. However, these visits may not reflect actual pollination or seed dispersal events, despite these typically being the ecological processes of interest. Frugivorous animals can act as seed dispersers, by swallowing entire fruits and dispersing their seeds, or as pulp peckers or seed predators, by pecking fruits to consume pieces of pulp or seeds. These processes have opposing consequences for plant reproductive success. Therefore, equating visitation with seed dispersal could lead to biased inferences about the ecology, evolution and conservation of seed dispersal mutualisms. Here, we use natural history information on the functional outcomes of pairwise bird–plant interactions to examine changes in the structure of seven European plant–frugivore visitation networks after non‐mutualistic interactions (pulp pecking and seed predation) have been removed. Following existing knowledge of the contrasting structures of mutualistic and antagonistic networks, we hypothesized a number of changes following interaction removal, such as increased nestedness and lower specialization. Non‐mutualistic interactions with pulp peckers and seed predators occurred in all seven networks, accounting for 21%–48% of all interactions and 6%–24% of total interaction frequency. When non‐mutualistic interactions were removed, there were significant increases in network‐level metrics such as connectance and nestedness, while robustness decreased. These changes were generally small, homogenous and driven by decreases in network size. Conversely, changes in species‐level metrics were more variable and sometimes large, with significant decreases in plant degree, interaction frequency, specialization and resilience to animal extinctions and significant increases in frugivore species strength. Visitation data can overestimate the actual frequency of seed dispersal services in plant–frugivore networks. We show here that incorporating natural history information on the functions of species interactions can bring us closer to understanding the processes and functions operating in ecological communities. Our categorical approach lays the foundation for future work quantifying functional interaction outcomes along a mutualism–antagonism continuum, as documented in other frugivore faunas.
Collapse
Affiliation(s)
- Benno I Simmons
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - William J Sutherland
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lynn V Dicks
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK.,Biological Sciences, University of East Anglia, Norwich, UK
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Nina Farwig
- Conservation Ecology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany
| | - Daniel García
- Departamento de Biología de Organismos y Sistemas, Unidad Mixta de Investigación en Biodiversidad (CSIC-UO-PA), Universidad de Oviedo, Oviedo, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Juan P González-Varo
- Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Huang F, Lankau R, Peng S. Coexistence via coevolution driven by reduced allelochemical effects and increased tolerance to competition between invasive and native plants. THE NEW PHYTOLOGIST 2018; 218:357-369. [PMID: 29205373 DOI: 10.1111/nph.14937] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Coevolution can promote long-term coexistence of two competing species if selection acts to reduce the fitness inequality between competitors and/or strengthen negative frequency dependence within each population. However, clear coevolution between plant competitors has been rarely documented. Plant invasions offer opportunities to capture the process of coevolution. Here we investigated how the developing relationship between an invasive forb, Alliaria petiolata, and a native competitor, Pilea pumila, may affect their long-term coexistence, by testing the competitive effects of populations of varying lengths of co-occurrence on each other across a chronosequence of invasion history. Alliaria petiolata and P. pumila tended to develop greater tolerance to competition over invasion history. Their coexistence was promoted more by increases in stabilizing relative to equalizing processes. These changes likely stem in part from reductions in allelopathic traits in the invader and evolution of tolerance in the native. These results suggested that some native species can evolve tolerance against the competitive effects of strong invaders, which likely promoted their persistence in invaded communities. However, the potential for coevolutionary rescue of competing populations is likely to vary across native species, and evolutionary processes should not be expected to compensate for the ecological consequences of exotic invasions.
Collapse
Affiliation(s)
- Fangfang Huang
- State Key Lab of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Richard Lankau
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shaolin Peng
- State Key Lab of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
30
|
terHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, Schreiber SJ, Wade MJ, Walsh MR. Evolution in a Community Context: Trait Responses to Multiple Species Interactions. Am Nat 2018. [DOI: 10.1086/695835] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Lankau RA, Keymer DP. Simultaneous adaptation and maladaptation of tree populations to local rhizosphere microbial communities at different taxonomic scales. THE NEW PHYTOLOGIST 2018; 217:1267-1278. [PMID: 29206295 DOI: 10.1111/nph.14911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Plant populations are often adapted to their local conditions, but the specific selective forces creating this adaptation are often unclear. All plants interact with diverse microbial communities, but we know little about how these microbial communities as a whole shape the evolutionary trajectory of plant populations. We tested whether tree populations were adapted or maladapted to their local rhizosphere microbial communities by growing seedlings sourced from multiple locations with soil microbial communities from all locations in a fully reciprocal design, using seedling growth as a proxy for fitness. In addition, we compared the microbial composition of the experimental inocula with that of the communities we detected associating with naturally occurring trees at the seedling source populations. We found that seedlings grew similarly when inoculated with local vs foreign microbial communities, but this neutral response derived from conflicting patterns - plant populations appeared to be adapted to the presence or absence of whole taxonomic groups in their local microbial community, but were simultaneously maladapted to the particular microbial populations present in their local site. As rapid climate change and other factors push tree populations into new areas, the successful establishment of seedlings may depend critically on the balance between the novelty and familiarity of the microbial communities they encounter.
Collapse
Affiliation(s)
- Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel P Keymer
- Department of Plant Biology, University of Georgia, Athens, GA, 30606, USA
- College of Natural Resources, University of Wisconsin - Stevens Point, Stevens Point, WI, 54481, USA
| |
Collapse
|
32
|
Andersen JC, Mills NJ. Comparative genetics of invasive populations of walnut aphid, Chromaphis juglandicola, and its introduced parasitoid, Trioxys pallidus, in California. Ecol Evol 2018; 8:801-811. [PMID: 29321915 PMCID: PMC5756880 DOI: 10.1002/ece3.3667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 01/08/2023] Open
Abstract
Coevolution may be an important component of the sustainability of importation biological control, but how frequently introduced natural enemies coevolve with their target pests is unclear. Here we explore whether comparative population genetics of the invasive walnut aphid, Chromaphis juglandicola, and its introduced parasitoid, Trioxys pallidus, provide insights into the localized breakdown of biological control services in walnut orchards in California. We found that sampled populations of C. juglandicola exhibited higher estimates of genetic differentiation (FST) than co-occurring populations of T. pallidus. In contrast, estimates of both the inbreeding coefficient (GIS) and contemporary gene flow were higher for T. pallidus than for C. juglandicola. We also found evidence of reciprocal outlier loci in some locations, but none showed significant signatures of selection. Synthesis and applications. Understanding the importance of coevolutionary interactions for the sustainability of biological control remains an important and understudied component of biological control research. Given the observed differences in gene flow and genetic differentiation among populations of T. pallidus and C. juglandicola, we suspect that temporary local disruption of biological control services may occur more frequently than expected while remaining stable at broader regional scales. Further research that combines genomewide single nucleotide polymorphism genotyping with measurements of phenotypic traits is needed to provide more conclusive evidence of whether the occurrence of outlier loci that display significant signatures of selection can be interpreted as evidence of the presence of a geographic mosaic of coevolution in this system.
Collapse
Affiliation(s)
- Jeremy C. Andersen
- Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| | - Nicholas J. Mills
- Department of Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCAUSA
| |
Collapse
|
33
|
Dáttilo W, Lara-Rodríguez N, Jordano P, Guimarães PR, Thompson JN, Marquis RJ, Medeiros LP, Ortiz-Pulido R, Marcos-García MA, Rico-Gray V. Unravelling Darwin's entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc Biol Sci 2017; 283:rspb.2016.1564. [PMID: 27881755 DOI: 10.1098/rspb.2016.1564] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 11/12/2022] Open
Abstract
Trying to unravel Darwin's entangled bank further, we describe the architecture of a network involving multiple forms of mutualism (pollination by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that promotes robustness. We found that species differed strongly in their contributions to the organization of the multi-interaction network, and that only a few species contributed to the structuring of these patterns. Moreover, we observed that the multi-interaction networks did not enhance community robustness compared with each of the three independent mutualistic networks when analysed across a range of simulated scenarios of species extinction. By simulating the removal of highly interacting species, we observed that, overall, these species enhance network nestedness and robustness, but decrease modularity. We discuss how the organization of interlinked mutualistic networks may be essential for the maintenance of ecological communities, and therefore the long-term ecological and evolutionary dynamics of interactive, species-rich communities. We suggest that conserving these keystone mutualists and their interactions is crucial to the persistence of species-rich mutualistic assemblages, mainly because they support other species and shape the network organization.
Collapse
Affiliation(s)
- Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, Mexico
| | - Nubia Lara-Rodríguez
- Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, 03690 Alicante, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, 41092 Sevilla, Spain
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - John N Thompson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St Louis, St Louis, MO 63121-4499, USA
| | - Lucas P Medeiros
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
| | - Raul Ortiz-Pulido
- Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo 42001, Mexico
| | - Maria A Marcos-García
- Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, 03690 Alicante, Spain
| | - Victor Rico-Gray
- Instituto de Neuroetología, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico
| |
Collapse
|
34
|
Rumeu B, Devoto M, Traveset A, Olesen JM, Vargas P, Nogales M, Heleno R. Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12897] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz Rumeu
- Centre for Functional Ecology Department of Life Sciences Calçada Martim de Freitas University of Coimbra 3000‐456 Coimbra Portugal
| | - Mariano Devoto
- Facultad de Agronomía Universidad de Buenos Aires Av. San Martín 4453 C1417DSE Buenos Aires Argentina
| | - Anna Traveset
- Mediterranean Institute of Advanced Studies (CSIC‐UIB) Terrestrial Ecology Group C/Miquel Marqués 21 07190‐Esporles Mallorca Balearic Islands Spain
| | - Jens M. Olesen
- Department of Bioscience Aarhus University DK‐8000 Aarhus C Denmark
| | - Pablo Vargas
- Royal Botanical Garden Madrid (CSIC‐RJB) Plaza de Murillo, 2 28014 Madrid Spain
| | - Manuel Nogales
- Island Ecology and Evolution Research Group (CSIC‐IPNA) 38206 La Laguna Tenerife Canary Islands Spain
| | - Ruben Heleno
- Centre for Functional Ecology Department of Life Sciences Calçada Martim de Freitas University of Coimbra 3000‐456 Coimbra Portugal
| |
Collapse
|
35
|
Luo SX, Yao G, Wang Z, Zhang D, Hembry DH. A Novel, Enigmatic Basal Leafflower Moth Lineage Pollinating a Derived Leafflower Host Illustrates the Dynamics of Host Shifts, Partner Replacement, and Apparent Coadaptation in Intimate Mutualisms. Am Nat 2017; 189:422-435. [PMID: 28350503 DOI: 10.1086/690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leafflower plant/leafflower moth brood pollination mutualisms are widespread in the Paleotropics. Leafflower moths pollinate leafflower plants, but their larvae consume a subset of the hosts' seeds. These interactions are highly phylogenetically constrained: six clades of leafflower plants are each associated with a unique clade of leafflower moths (Epicephala). Here, we report a previously unrecognized basal seventh pollinating Epicephala lineage-associated with the highly derived leafflower clade Glochidion-in Asia. Epicephala lanceolaria is a pollinator and seed predator of Glochidion lanceolarium. Phylogenetic inference indicates that the ancestor of E. lanceolaria most likely shifted onto the ancestor of G. lanceolarium and displaced the ancestral allospecific Epicephala pollinator in at least some host populations. The unusual and apparently coadapted aspects of the G. lanceolarium/E. lanceolaria reproductive cycles suggest that plant-pollinator coevolution may have played a role in this displacement and provide insights into the dynamics of host shifts and trait coevolution in this specialized mutualism.
Collapse
|
36
|
Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, Hochberg ME. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol Ecol 2017; 26:1764-1777. [PMID: 28092408 DOI: 10.1111/mec.14008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 01/21/2023]
Abstract
Numerous theoretical and experimental studies have investigated antagonistic co-evolution between parasites and their hosts. Although experimental tests of theory from a range of biological systems are largely concordant regarding the influence of several driving processes, we know little as to how mechanisms acting at the smallest scales (individual molecular and phenotypic changes) may result in the emergence of structures at larger scales, such as co-evolutionary dynamics and local adaptation. We capitalized on methods commonly employed in community ecology to quantify how the structure of community interaction matrices, so-called bipartite networks, reflected observed co-evolutionary dynamics, and how phages from these communities may or may not have adapted locally to their bacterial hosts. We found a consistent nested network structure for two phage types, one previously demonstrated to exhibit arms race co-evolutionary dynamics and the other fluctuating co-evolutionary dynamics. Both phages increased their host ranges through evolutionary time, but we found no evidence for a trade-off with impact on bacteria. Finally, only bacteria from the arms race phage showed local adaptation, and we provide preliminary evidence that these bacteria underwent (sometimes different) molecular changes in the wzy gene associated with the LPS receptor, while bacteria co-evolving with the fluctuating selection phage did not show local adaptation and had partial deletions of the pilF gene associated with type IV pili. We conclude that the structure of phage-bacteria interaction networks is not necessarily specific to co-evolutionary dynamics, and discuss hypotheses for why only one of the two phages was, nevertheless, locally adapted.
Collapse
Affiliation(s)
- James Gurney
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Lafi Aldakak
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Alex Betts
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Claire Gougat-Barbera
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, Pavillon Marie-Victorin, 90, avenue Vincent-d'Indy, Montréal, H2V 2S9, Canada
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution de Montpellier, UMR5554, Université de Montpellier, CC065, Place E. Bataillon, 34095, Montpellier Cedex 5, France.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA
| |
Collapse
|
37
|
Duncan AB, Dusi E, Jacob F, Ramsayer J, Hochberg ME, Kaltz O. Hot spots become cold spots: coevolution in variable temperature environments. J Evol Biol 2016; 30:55-65. [PMID: 27711983 DOI: 10.1111/jeb.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
Antagonistic coevolution between hosts and parasites is a key process in the genesis and maintenance of biological diversity. Whereas coevolutionary dynamics show distinct patterns under favourable environmental conditions, the effects of more realistic, variable conditions are largely unknown. We investigated the impact of a fluctuating environment on antagonistic coevolution in experimental microcosms of Pseudomonas fluorescens SBW25 and lytic phage SBWΦ2. High-frequency temperature fluctuations caused no deviations from typical coevolutionary arms race dynamics. However, coevolution was stalled during periods of high temperature under intermediate- and low-frequency fluctuations, generating temporary coevolutionary cold spots. Temperature variation affected population density, providing evidence that eco-evolutionary feedbacks act through variable bacteria-phage encounter rates. Our study shows that environmental fluctuations can drive antagonistic species interactions into and out of coevolutionary cold and hot spots. Whether coevolution persists or stalls depends on the frequency of change and the environmental optima of both interacting players.
Collapse
Affiliation(s)
- A B Duncan
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France
| | - E Dusi
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France.,Institute for Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - F Jacob
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France
| | - J Ramsayer
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France.,INRA, UMR 0320 Quantitative Genetics and Evolution, Gif-sur-Yvette, France
| | - M E Hochberg
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France.,Santa Fe Institute, Santa Fe, NM, USA
| | - O Kaltz
- Institut des Sciences de l'Evolution, UMR 5554 (CC065), Université de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Hembry DH, Althoff DM. Diversification and coevolution in brood pollination mutualisms: Windows into the role of biotic interactions in generating biological diversity. AMERICAN JOURNAL OF BOTANY 2016; 103:1783-1792. [PMID: 27765775 PMCID: PMC6110533 DOI: 10.3732/ajb.1600056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/10/2016] [Indexed: 05/05/2023]
Abstract
Brood pollination mutualisms-interactions in which specialized insects are both the pollinators (as adults) and seed predators (as larvae) of their host plants-have been influential study systems for coevolutionary biology. These mutualisms include those between figs and fig wasps, yuccas and yucca moths, leafflowers and leafflower moths, globeflowers and globeflower flies, Silene plants and Hadena and Perizoma moths, saxifrages and Greya moths, and senita cacti and senita moths. The high reciprocal diversity and species-specificity of some of these mutualisms have been cited as evidence that coevolution between plants and pollinators drives their mutual diversification. However, the mechanisms by which these mutualisms diversify have received less attention. In this paper, we review key hypotheses about how these mutualisms diversify and what role coevolution between plants and pollinators may play in this process. We find that most species-rich brood pollination mutualisms show significant phylogenetic congruence at high taxonomic scales, but there is limited evidence for the processes of both cospeciation and duplication, and there are no unambiguous examples known of strict-sense contemporaneous cospeciation. Allopatric speciation appears important across multiple systems, particularly in the insects. Host-shifts appear to be common, and widespread host-shifts by pollinators may displace other pollinator lineages. There is relatively little evidence for a "coevolution through cospeciation" model or that coevolution promotes speciation in these systems. Although we have made great progress in understanding the mechanisms by which brood pollination mutualisms diversify, many opportunities remain to use these intriguing symbioses to understand the role of biotic interactions in generating biological diversity.
Collapse
Affiliation(s)
- David H Hembry
- Department of Ecology and Evolutionary Biology, University of Arizona, P. O. Box 210088, Tucson, Arizona 85721 USA
| | - David M Althoff
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244 USA
| |
Collapse
|
39
|
Parchman TL, Buerkle CA, Soria‐Carrasco V, Benkman CW. Genome divergence and diversification within a geographic mosaic of coevolution. Mol Ecol 2016; 25:5705-5718. [DOI: 10.1111/mec.13825] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022]
Affiliation(s)
| | - C. Alex Buerkle
- Department of Botany University of Wyoming Laramie WY 82071 USA
| | - Víctor Soria‐Carrasco
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN UK
| | - Craig W. Benkman
- Department of Zoology and Physiology University of Wyoming Laramie WY 82071 USA
| |
Collapse
|
40
|
Abstract
Basic research on biodiversity has concentrated on individual species-naming new species, studying distribution patterns, and analyzing their evolutionary relationships. Yet biodiversity is more than a collection of individual species; it is the combination of biological entities and processes that support life on Earth. To understand biodiversity we must catalog it, but we must also assess the ways species interact with other species to provide functional support for the Tree of Life. Ecological interactions may be lost well before the species involved in those interactions go extinct; their ecological functions disappear even though they remain. Here, I address the challenges in studying the functional aspects of species interactions and how basic research is helping us address the fast-paced extinction of species due to human activities.
Collapse
Affiliation(s)
- Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Av. Americo Vespucio s/n, s/n, E-41092 Sevilla, Spain
- * E-mail:
| |
Collapse
|
41
|
Studying Genital Coevolution to Understand Intromittent Organ Morphology. Integr Comp Biol 2016; 56:669-81. [DOI: 10.1093/icb/icw018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
42
|
Rainford JL, Mayhew PJ. Diet Evolution and Clade Richness in Hexapoda: A Phylogenetic Study of Higher Taxa. Am Nat 2015; 186:777-91. [DOI: 10.1086/683461] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Ricklefs RE. Intrinsic dynamics of the regional community. Ecol Lett 2015; 18:497-503. [DOI: 10.1111/ele.12431] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Robert E. Ricklefs
- Department of Biology; University of Missouri-St. Louis; One University Boulevard; St. Louis MO 63121-4499 USA
| |
Collapse
|
44
|
Gu H, Goodale E, Chen J. Emerging directions in the study of the ecology and evolution of plant-animal mutualistic networks: a review. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:65-71. [PMID: 25855224 DOI: 10.13918/j.issn.2095-8137.2015.2.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The study of mutualistic plant and animal networks is an emerging field of ecological research. We reviewed progress in this field over the past 30 years. While earlier studies mostly focused on network structure, stability, and biodiversity maintenance, recent studies have investigated the conservation implications of mutualistic networks, specifically the influence of invasive species and how networks respond to habitat loss. Current research has also focused on evolutionary questions including phylogenetic signal in networks, impact of networks on the coevolution of interacting partners, and network influences on the evolution of interacting species. We outline some directions for future research, particularly the evolution of specialization in mutualistic networks, and provide concrete recommendations for environmental managers.
Collapse
Affiliation(s)
- Hao Gu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla Yunnan 666303, China;2 Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Eben Goodale
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla Yunnan 666303, China
| | - Jin Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla Yunnan 666303, China. ,
| |
Collapse
|
45
|
Suda J, Meyerson LA, Leitch IJ, Pyšek P. The hidden side of plant invasions: the role of genome size. THE NEW PHYTOLOGIST 2015; 205:994-1007. [PMID: 25323486 DOI: 10.1111/nph.13107] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/11/2014] [Indexed: 05/11/2023]
Abstract
The ecological role of genome size in plant biology, biogeography, and morphology has garnered increasing attention as the methods and technology associated with measuring cytological characteristics have become more reliable and accessible. However, how plant genome size influences plant invasions and at what stage in the invasion this influence occurs have been little explored. Several large-scale analyses of published data have yielded valuable interspecific comparisons, but experimental studies that manipulate environmental factors are needed, particularly below the species level, to fully understand the role that genome size plays in plant invasion. In this review, we summarize the available knowledge, discuss the integration of genome size data into invasion research, and suggest how it can be applied to detect and manage invasive species. We also explore how global climate change could exert selective pressures on plant populations with varying genome sizes, thereby increasing the distribution range and invasiveness of some populations while decreasing others. Finally, we outline avenues for future research, including considerations of large-scale studies of intraspecific variation in genome size of invasive populations, testing the interaction of genome size with other factors in macroecological analyses of invasions, as well as the role this trait may play in plant-enemy interactions.
Collapse
Affiliation(s)
- Jan Suda
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague 2, CZ-128 01, Czech Republic
| | - Laura A Meyerson
- University of Rhode Island, 1 Greenhouse Road, Kingston, RI, 02881, USA
| | - Ilia J Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Petr Pyšek
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, Prague, CZ-128 44, Czech Republic
- Centre for Invasion Biology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
46
|
Santamaría L, Méndez PF. Evolution in biodiversity policy - current gaps and future needs. Evol Appl 2015; 5:202-18. [PMID: 25568042 PMCID: PMC3353340 DOI: 10.1111/j.1752-4571.2011.00229.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/17/2011] [Indexed: 12/25/2022] Open
Abstract
The intensity and speed of human alterations to the planet's ecosystems are yielding our static, ahistorical view of biodiversity obsolete. Human actions frequently trigger fast evolutionary responses, affect extant genetic variation and result in the establishment of new communities and co-evolutionary networks for which we lack past analogues. Contemporary evolution interplays with ecological changes to determine the response of organisms and ecosystems to anthropogenic pressures. Examples on wild species include responses to harvest (e.g. fisheries, hunting, angling), habitat loss and fragmentation (e.g. genetic effects of isolation), biotic exchange (e.g. evolutionary responses to control measures), climate change (e.g. local adaptation and its interplay with dispersal processes) and the responses of endangered species to conservation measures. A review of international and EU biodiversity policies showed numerous opportunities for the integration of evolutionary knowledge, with the realistic prospect of improving their efficacy. Such opportunities should be extended to other sectoral policies of direct relevance for biodiversity – notably nature conservation, fisheries, agriculture, water resources, spatial planning and climate change. These avenues for improvement are, however, challenged by the low level of enforcement of biodiversity policies, linked to the nonbinding nature of most biodiversity-policy documents, and the decreasing representation of biodiversity in EU's research policy.
Collapse
Affiliation(s)
- Luis Santamaría
- Laboratory of Spatial Ecology, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB) Esporles, Balearic Islands, Spain
| | - Pablo F Méndez
- Laboratory of Spatial Ecology, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB) Esporles, Balearic Islands, Spain
| |
Collapse
|
47
|
Espíndola A, Carstens BC, Alvarez N. Comparative phylogeography of mutualists and the effect of the host on the genetic structure of its partners. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anahí Espíndola
- Department of Ecology and Evolution; University of Lausanne; Biophore Building 1015 Lausanne Switzerland
- Department of Biological Sciences; University of Idaho; Life Sciences South 252, 875 Perimeter Drive Moscow ID 83844-3051 USA
| | - Bryan C. Carstens
- Department of Evolution; Ecology and Organismal Biology; 300 Aronoff Laboratory; The Ohio State University; 318 West 12th Avenue Columbus OH 43210 USA
| | - Nadir Alvarez
- Department of Ecology and Evolution; University of Lausanne; Biophore Building 1015 Lausanne Switzerland
| |
Collapse
|
48
|
Svensson-Coelho M, Ellis VA, Loiselle BA, Blake JG, Ricklefs RE. Reciprocal Specialization in Multihost Malaria Parasite Communities of Birds: A Temperate-Tropical Comparison. Am Nat 2014; 184:624-35. [DOI: 10.1086/678126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Zhang Y, Zhang S, Li Y, Ma S, Wang C, Xiang M, Liu X, An Z, Xu J, Liu X. Phylogeography and evolution of a fungal-insect association on the Tibetan Plateau. Mol Ecol 2014; 23:5337-55. [DOI: 10.1111/mec.12940] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Yongjie Zhang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
- School of Life Sciences; Shanxi University; Taiyuan 030006 China
- Department of Biology; McMaster University; Hamilton Ontario Canada L8S 4K1
| | - Shu Zhang
- School of Life Sciences; Shanxi University; Taiyuan 030006 China
| | - Yuling Li
- Institute of Grassland; Qinghai Academy of Animal & Veterinary Sciences; Xining 810016 China
| | - Shaoli Ma
- Institute of Grassland; Qinghai Academy of Animal & Veterinary Sciences; Xining 810016 China
| | - Chengshu Wang
- Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Meichun Xiang
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| | - Xin Liu
- Institute of Grassland; Qinghai Academy of Animal & Veterinary Sciences; Xining 810016 China
| | - Zhiqiang An
- Institute of Molecular Medicine; University of Texas Health Science Center at Houston; Houston TX 77030 USA
| | - Jianping Xu
- Department of Biology; McMaster University; Hamilton Ontario Canada L8S 4K1
- Laboratory for Conservation and Utilization of Bio-Resources; Yunnan University; Kunming 650091 China
| | - Xingzhong Liu
- State Key Laboratory of Mycology; Institute of Microbiology; Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
50
|
Pilosof S, Fortuna MA, Cosson JF, Galan M, Kittipong C, Ribas A, Segal E, Krasnov BR, Morand S, Bascompte J. Host-parasite network structure is associated with community-level immunogenetic diversity. Nat Commun 2014; 5:5172. [PMID: 25312328 DOI: 10.1038/ncomms6172] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/08/2014] [Indexed: 12/13/2022] Open
Abstract
Genes of the major histocompatibility complex (MHC) encode proteins that recognize foreign antigens and are thus crucial for immune response. In a population of a single host species, parasite-mediated selection drives MHC allelic diversity. However, in a community-wide context, species interactions may modulate selection regimes because the prevalence of a given parasite in a given host may depend on its prevalence in other hosts. By combining network analysis with immunogenetics, we show that host species infected by similar parasites harbour similar alleles with similar frequencies. We further show, using a Bayesian approach, that the probability of mutual occurrence of a functional allele and a parasite in a given host individual is nonrandom and depends on other host-parasite interactions, driving co-evolution within subgroups of parasite species and functional alleles. Therefore, indirect effects among hosts and parasites can shape host MHC diversity, scaling it from the population to the community level.
Collapse
Affiliation(s)
- Shai Pilosof
- Mitrani Department of Desert Ecology and Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Miguel A Fortuna
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain
| | - Jean-François Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France
| | - Maxime Galan
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France
| | - Chaisiri Kittipong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Alexis Ribas
- Biodiversity Research Group, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, 76100, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology and Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Serge Morand
- 1] Centre National de la Recherche Scientifique-Institut des Sciences de l'Évolution, Université Montpellier 2, Montpellier 34095, France [2] Centre de coopération International en Recherche Agronomique pour le Développement, Animal et Gestion Intégrée des Risques, Campus de Baillarguet, F-34093 Montpellier Cedex 5, France [3] Centre d'Infectiologie Christophe Mérieux du Laos, PO Box 3888, Samsenthai Road, Vientiane, Lao PDR
| | - Jordi Bascompte
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Seville 41092, Spain
| |
Collapse
|