1
|
Chen S, Wang T, Chen J, Sui M, Wang L, Zhao X, Sun J, Lu Y. 3D bioprinting technology innovation in female reproductive system. Mater Today Bio 2025; 31:101551. [PMID: 40026632 PMCID: PMC11870202 DOI: 10.1016/j.mtbio.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Several diseases affect the female reproductive system, and both disease factors and treatments impact its integrity and function. Consequently, understanding the mechanisms of disease occurrence and exploring treatment methods are key research focuses in obstetrics and gynecology. However, constructing accurate disease models requires a microenvironment closely resembling the human body, and current animal models and 2D in vitro cell models fall short in this regard. Thus, innovative in vitro female reproductive system models are urgently needed. Additionally, female reproductive system diseases often cause tissue loss, yet effective tissue repair and regeneration have long been a bottleneck in the medical field. 3D bioprinting offers a solution by enabling the construction of implants with tissue repair and regeneration capabilities, promoting cell adhesion, extension, and proliferation. This helps maintain the long-term efficacy of bioactive implants and achieves both structural and functional repair of the reproductive system. By combining live cells with biomaterials, 3D bioprinting can create in vitro 3D biomimetic cellular models, facilitating in-depth studies of cell-cell and cell-extracellular microenvironment interactions, which enhances our understanding of reproductive system diseases and supports disease-specific drug screening. This article reviews 3D bioprinting methods and materials applicable to the female reproductive system, discussing their advantages and limitations to aid in selecting optimal 3D bioprinting strategies. We also summarize and critically evaluate recent advancements in 3D bioprinting applications for tissue regeneration and in vitro disease models and address the prospects and challenges for translating 3D bioprinting technology into clinical applications within the female reproductive system.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | | | - Jiaqi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Mingxing Sui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Luyao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xueyu Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianqiao Sun
- Reproductive Clinical Science, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, 23507, USA
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
2
|
Kim J, Choi YJ, Gal CW, Sung A, Utami SS, Park H, Yun HS. Enhanced Osteogenesis in 2D and 3D Culture Systems Using RGD Peptide and α-TCP Phase Transition within Alginate-Based Hydrogel. Macromol Biosci 2024; 24:e2400190. [PMID: 39116430 DOI: 10.1002/mabi.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Cell-laden hydrogels have been extensively investigated in various tissue engineering fields by their potential capacity to deposit numerous types of cells in a specific area. They are largely used in soft-tissue engineering applications because of their low mechanical strength. In addition, sodium alginate is well-known for its encapsulation, loading capacity and for being easily controllable; however, it lacks cell-binding ligands and hence the ability to adhere cells. In this study, it is aimed to enhance osteogenesis in cells encapsulated in alginate and improve its mechanical properties by introducing a synthetic peptide and calcium phosphate phase transition. To increase cell-hydrogel interactions and increasing cell viability, an RGD peptide is added to a photocrosslinkable methacrylate-modified alginate, and alpha-tricalcium phosphate (α-TCP) is added to the hydrogel to increase its mechanical strength via phase transition. Cell proliferation, growth, and differentiation are assessed in both 2D and 3D cell cultures. The addition of α-TCP significantly improved the mechanical properties of the hydrogel. Moreover, the RGD peptide and α-TCP showed a synergistic effect with significantly improved cell adhesion and osteogenesis in both 2D and 3D cell cultures. Therefore, the functional hydrogel developed in this study can potentially be used for bone tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Chang-Woo Gal
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Aram Sung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Siwi Setya Utami
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| | - Honghyun Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Hui-Suk Yun
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Albrecht FB, Ahlfeld T, Klatt A, Heine S, Gelinsky M, Kluger PJ. Biofabrication's Contribution to the Evolution of Cultured Meat. Adv Healthc Mater 2024; 13:e2304058. [PMID: 38339837 PMCID: PMC11468272 DOI: 10.1002/adhm.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cultured Meat (CM) is a growing field in cellular agriculture, driven by the environmental impact of conventional meat production, which contributes to climate change and occupies ≈70% of arable land. As demand for meat alternatives rises, research in this area expands. CM production relies on tissue engineering techniques, where a limited number of animal cells are cultured in vitro and processed to create meat-like tissue comprising muscle and adipose components. Currently, CM is primarily produced on a small scale in pilot facilities. Producing a large cell mass based on suitable cell sources and bioreactors remains challenging. Advanced manufacturing methods and innovative materials are required to subsequently process this cell mass into CM products on a large scale. Consequently, CM is closely linked with biofabrication, a suite of technologies for precisely arranging cellular aggregates and cell-material composites to construct specific structures, often using robotics. This review provides insights into contemporary biomedical biofabrication technologies, focusing on significant advancements in muscle and adipose tissue biofabrication for CM production. Novel materials for biofabricating CM are also discussed, emphasizing their edibility and incorporation of healthful components. Finally, initial studies on biofabricated CM are examined, addressing current limitations and future challenges for large-scale production.
Collapse
Affiliation(s)
| | - Tilman Ahlfeld
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | - Annemarie Klatt
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Simon Heine
- Reutlingen UniversityReutlingen Research Institute72762ReutlingenGermany
| | - Michael Gelinsky
- Technische Universität DresdenCentre for Translational BoneJoint and Soft Tissue Research01307DresdenGermany
| | | |
Collapse
|
4
|
Majumder N, Ghosh S. 3D biofabrication and space: A 'far-fetched dream' or a 'forthcoming reality'? Biotechnol Adv 2023; 69:108273. [PMID: 37863444 DOI: 10.1016/j.biotechadv.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
The long duration space missions across the Low Earth Orbit (LEO) often expose the voyagers to an abrupt zero gravity influence. The severe extraterrestrial cosmic radiation directly causes a plethora of moderate to chronic healthcare crises. The only feasible solution to manage critical injuries on board is surgical interventions or immediate return to Earth. This led the group of space medicine practitioners to adopt principles from tissue engineering and develop human tissue equivalents as an immediate regenerative therapy on board. The current review explicitly demonstrates the constructive application of different tissue-engineered equivalents matured under the available ground-based microgravity simulation facilities. Further, it elucidates how augmenting the superiority of biomaterial-based 3D bioprinting technology can enhance their clinical applicability. Additionally, the regulatory role of weightlessness condition on the underlying cellular signaling pathways governing tissue morphogenesis has been critically discussed. This information will provide future directions on how 3D biofabrication can be used as a plausible tool for healing on-flight chronic health emergencies. Thus, in our review, we aimed to precisely debate whether 3D biofabrication is deployed to cater to on-flight healthcare anomalies or space-like conditions are being utilized for generating 3D bioprinted human tissue constructs for efficient drug screening and regenerative therapy.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
5
|
Kim J, Raja N, Choi YJ, Gal CW, Sung A, Park H, Yun HS. Enhancement of properties of a cell-laden GelMA hydrogel-based bioink via calcium phosphate phase transition. Biofabrication 2023; 16:015010. [PMID: 37871585 DOI: 10.1088/1758-5090/ad05e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
To improve the properties of the hydrogel-based bioinks, a calcium phosphate phase transition was applied, and the products were examined. We successfully enhanced the mechanical properties of the hydrogels by adding small amounts (< 0.5 wt%) of alpha-tricalcium phosphate (α-TCP) to photo-crosslinkable gelatin methacrylate (GelMA). As a result of the hydrolyzing calcium phosphate phase transition involvingα-TCP, which proceeded for 36 h in the cell culture medium, calcium-deficient hydroxyapatite was produced. Approximately 18 times the compressive modulus was achieved for GelMA with 0.5 wt%α-TCP (20.96 kPa) compared with pure GelMA (1.18 kPa). Although cell proliferation decreased during the early stages of cultivation, both osteogenic differentiation and mineralization activities increased dramatically when the calcium phosphate phase transition was performed with 0.25 wt%α-TCP. The addition ofα-TCP improved the printability and fidelity of GelMA, as well as the structural stability and compressive modulus (approximately six times higher) after three weeks of culturing. Therefore, we anticipate that the application of calcium phosphate phase transition to hydrogels may have the potential for hard tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Chang-Woo Gal
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Aram Sung
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| |
Collapse
|
6
|
Gupta T, Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Is it possible to 3D bioprint load-bearing bone implants? A critical review. Biofabrication 2023; 15:042003. [PMID: 37669643 DOI: 10.1088/1758-5090/acf6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Rehabilitative capabilities of any tissue engineered scaffold rely primarily on the triad of (i) biomechanical properties such as mechanical properties and architecture, (ii) chemical behavior such as regulation of cytokine expression, and (iii) cellular response modulation (including their recruitment and differentiation). The closer the implant can mimic the native tissue, the better it can rehabilitate the damage therein. Among the available fabrication techniques, only 3D bioprinting (3DBP) can satisfactorily replicate the inherent heterogeneity of the host tissue. However, 3DBP scaffolds typically suffer from poor mechanical properties, thereby, driving the increased research interest in development of load-bearing 3DBP orthopedic scaffolds in recent years. Typically, these scaffolds involve multi-material 3D printing, comprising of at-least one bioink and a load-bearing ink; such that mechanical and biological requirements of the biomaterials are decoupled. Ensuring high cellular survivability and good mechanical properties are of key concerns in all these studies. 3DBP of such scaffolds is in early developmental stages, and research data from only a handful of preliminary animal studies are available, owing to limitations in print-capabilities and restrictive materials library. This article presents a topically focused review of the state-of-the-art, while highlighting aspects like available 3DBP techniques; biomaterials' printability; mechanical and degradation behavior; and their overall bone-tissue rehabilitative efficacy. This collection amalgamates and critically analyses the research aimed at 3DBP of load-bearing scaffolds for fulfilling demands of personalized-medicine. We highlight the recent-advances in 3DBP techniques employing thermoplastics and phosphate-cements for load-bearing applications. Finally, we provide an outlook for possible future perspectives of 3DBP for load-bearing orthopedic applications. Overall, the article creates ample foundation for future research, as it gathers the latest and ongoing research that scientists could utilize.
Collapse
Affiliation(s)
- Tanmay Gupta
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mohini Sain
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Carvalho DN, Dani S, Sotelo CG, Pérez-Martín RI, Reis RL, Silva TH, Gelinsky M. Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing. Biomed Mater 2023; 18:055017. [PMID: 37531962 DOI: 10.1088/1748-605x/acecec] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
In the past decade, there has been significant progress in 3D printing research for tissue engineering (TE) using biomaterial inks made from natural and synthetic compounds. These constructs can aid in the regeneration process after tissue loss or injury, but achieving high shape fidelity is a challenge as it affects the construct's physical and biological performance with cells. In parallel with the growth of 3D bioprinting approaches, some marine-origin polymers have been studied due to their biocompatibility, biodegradability, low immunogenicity, and similarities to human extracellular matrix components, making them an excellent alternative to land mammal-origin polymers with reduced disease transmission risk and ethical concerns. In this research, collagen from shark skin, chitosan from squid pens, and fucoidan from brown algae were effectively blended for the manufacturing of an adequate biomaterial ink to achieve a printable, reproducible material with a high shape fidelity and reticulated using four different approaches (phosphate-buffered saline, cell culture medium, 6% CaCl2, and 5 mM Genipin). Materials characterization was composed by filament collapse, fusion behavior, swelling behavior, and rheological and compressive tests, which demonstrated favorable shape fidelity resulting in a stable structure without deformations, and interesting shear recovery properties around the 80% mark. Additionally, live/dead assays were conducted in order to assess the cell viability of an immortalized human mesenchymal stem cell line, seeded directly on the 3D printed constructs, which showed over 90% viable cells. Overall, the Roswell Park Memorial Institute cell culture medium promoted the adequate crosslinking of this biopolymer blend to serve the TE approach, taking advantage of its capacity to hamper pH decrease coming from the acidic biomaterial ink. While the crosslinking occurs, the pH can be easily monitored by the presence of the indicator phenol red in the cell culture medium, which reduces costs and time.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Sophie Dani
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| | - Carmen G Sotelo
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain
| | - Ricardo I Pérez-Martín
- Group of Food Biochemistry, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain
| | - Rui L Reis
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3B's-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Michael Gelinsky
- Centre for Translational Bone, Joint- and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, 01307 Dresden, Germany
| |
Collapse
|
8
|
Sun T, Wang J, Huang H, Liu X, Zhang J, Zhang W, Wang H, Li Z. Low-temperature deposition manufacturing technology: a novel 3D printing method for bone scaffolds. Front Bioeng Biotechnol 2023; 11:1222102. [PMID: 37622000 PMCID: PMC10445654 DOI: 10.3389/fbioe.2023.1222102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The application of three-dimensional printing technology in the medical field has great potential for bone defect repair, especially personalized and biological repair. As a green manufacturing process that does not involve liquefication through heating, low-temperature deposition manufacturing (LDM) is a promising type of rapid prototyping manufacturing and has been widely used to fabricate scaffolds in bone tissue engineering. The scaffolds fabricated by LDM have a multi-scale controllable pore structure and interconnected micropores, which are beneficial for the repair of bone defects. At the same time, different types of cells or bioactive factor can be integrated into three-dimensional structural scaffolds through LDM. Herein, we introduced LDM technology and summarize its applications in bone tissue engineering. We divide the scaffolds into four categories according to the skeleton materials and discuss the performance and limitations of the scaffolds. The ideas presented in this review have prospects in the development and application of LDM scaffolds.
Collapse
Affiliation(s)
- Tianze Sun
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Wentao Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| | - Honghua Wang
- Division of Energy Materials (DNL22), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Dalian, Liaoning, China
| |
Collapse
|
9
|
Sanchez‐Rubio A, Jayawarna V, Maxwell E, Dalby MJ, Salmeron‐Sanchez M. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity. Adv Healthc Mater 2023; 12:e2202110. [PMID: 36938891 PMCID: PMC11469230 DOI: 10.1002/adhm.202202110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Tissue engineering aims at replicating tissues and organs to develop applications in vivo and in vitro. In vivo, by engineering artificial constructs using functional materials and cells to provide both physiological form and function. In vitro, by engineering three-dimensional (3D) models to support drug discovery and enable understanding of fundamental biology. 3D culture constructs mimic cell-cell and cell-matrix interactions and use biomaterials seeking to increase the resemblance of engineered tissues with its in vivo homologues. Native tissues, however, include complex architectures, with compartmentalized regions of different properties containing different types of cells that can be captured by multicompartment constructs. Recent advances in fabrication technologies, such as micropatterning, microfluidics or 3D bioprinting, have enabled compartmentalized structures with defined compositions and properties that are essential in creating 3D cell-laden multiphasic complex architectures. This review focuses on advances in engineered multicompartment constructs that mimic tissue heterogeneity. It includes multiphasic 3D implantable scaffolds and in vitro models, including systems that incorporate different regions emulating in vivo tissues, highlighting the emergence and relevance of 3D bioprinting in the future of biological research and medicine.
Collapse
Affiliation(s)
| | - Vineetha Jayawarna
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Emily Maxwell
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG11 6EWUK
| | | |
Collapse
|
10
|
Altunbek M, Afghah SF, Fallah A, Acar AA, Koc B. Design and 3D Printing of Personalized Hybrid and Gradient Structures for Critical Size Bone Defects. ACS APPLIED BIO MATERIALS 2023; 6:1873-1885. [PMID: 37071829 DOI: 10.1021/acsabm.3c00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Treating critical-size bone defects with autografts, allografts, or standardized implants is challenging since the healing of the defect area necessitates patient-specific grafts with mechanically and physiologically relevant structures. Three-dimensional (3D) printing using computer-aided design (CAD) is a promising approach for bone tissue engineering applications by producing constructs with customized designs and biomechanical compositions. In this study, we propose 3D printing of personalized and implantable hybrid active scaffolds with a unique architecture and biomaterial composition for critical-size bone defects. The proposed 3D hybrid construct was designed to have a gradient cell-laden poly(ethylene glycol) (PEG) hydrogel, which was surrounded by a porous polycaprolactone (PCL) cage structure to recapitulate the anatomical structure of the defective area. The optimized PCL cage design not only provides improved mechanical properties but also allows the diffusion of nutrients and medium through the scaffold. Three different designs including zigzag, zigzag/spiral, and zigzag/spiral with shifting the zigzag layers were evaluated to find an optimal architecture from a mechanical point of view and permeability that can provide the necessary mechanical strength and oxygen/nutrient diffusion, respectively. Mechanical properties were investigated experimentally and analytically using finite element analysis (FEA), and computational fluid dynamics (CFD) simulation was used to determine the permeability of the structures. A hybrid scaffold was fabricated via 3D printing of the PCL cage structure and a PEG-based bioink comprising a varying number of human bone marrow mesenchymal stem cells (hBMSCs). The gradient bioink was deposited inside the PCL cage through a microcapillary extrusion to generate a mineralized gradient structure. The zigzag/spiral design for the PCL cage was found to be mechanically strong with sufficient and optimum nutrient/gas axial and radial diffusion while the PEG-based hydrogel provided a biocompatible environment for hBMSC viability, differentiation, and mineralization. This study promises the production of personalized constructs for critical-size bone defects by printing different biomaterials and gradient cells with a hybrid design depending on the need for a donor site for implantation.
Collapse
Affiliation(s)
- Mine Altunbek
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Seyedeh Ferdows Afghah
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Ali Fallah
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| | - Anil Ahmet Acar
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Bahattin Koc
- Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| |
Collapse
|
11
|
Kilian D, Holtzhausen S, Groh W, Sembdner P, Czichy C, Lode A, Stelzer R, Gelinsky M. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond. Acta Biomater 2023; 158:308-323. [PMID: 36563775 DOI: 10.1016/j.actbio.2022.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
During extrusion printing of pasty biomaterials, internal geometries are mainly adjusted by positioning of straightly deposited strands which does not allow realization of spatially adaptable density gradients in x-, y- and z-direction for anisotropic scaffolds or anatomically shaped constructs. Herein, an alternative concept for printing patterns based on sinusoidal curves was evaluated using a clinically approved calcium phosphate cement (CPC). Infill density in scaffolds was adjusted by varying wavelength and amplitude of a sinus curve. Both wavelength and amplitude factors were defined by multitudes of the applied nozzle diameter. For CPC as a biomaterial ink in bone application, porosity, mechanical stiffness and biological response by seeded immortalized human mesenchymal stem cells - adhesion and pore bridging behavior - were investigated. The internal structure of a xyz-gradient scaffold was proven via X-ray based micro computed tomography (µCT). Silicone was used as a model material to investigate the impact of printing velocity and strand distance on the shape fidelity of the sinus pattern for soft matter printing. The impact of different sinus patterns on mechanical properties was assessed. Density and mechanical properties of CPC scaffolds were successfully adjusted without an adverse effect on adhesion and cell number development. In a proof-of-concept experiment, a sinus-adjusted density gradient in an anatomically shaped construct (human vertebral body) defined via clinical computed tomography (CT) data was demonstrated. This fills a technological gap for extrusion-based printing of freely adjustable, continuously guidable infill density gradients in all spatial directions. STATEMENT OF SIGNIFICANCE: 3D extrusion printing of biomaterials allows the generation of anatomically shaped, patient-specific implants or tissue engineering scaffolds. The density of such a structure is typically adjusted by the strand-to-strand distance of parallel, straight-meandered strands in each deposited layer. By printing in a sinusoidal pattern, design of density gradients is possible with a free, spatial resolution in x-, y- and z-direction. We demonstrated that porosity and mechanical properties can be freely adapted in this way without an adverse effect on cell adhesion. With the example of a CT dataset of a human spine, the anisotropic pattern of a vertebral body was resembled by this printing technique that can be translated to various patterns, materials and application.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Wolfram Groh
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Philipp Sembdner
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ralph Stelzer
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
12
|
Pillai A, Chakka J, Heshmathi N, Zhang Y, Alkadi F, Maniruzzaman M. Multifunctional Three-Dimensional Printed Copper Loaded Calcium Phosphate Scaffolds for Bone Regeneration. Pharmaceuticals (Basel) 2023; 16:ph16030352. [PMID: 36986452 PMCID: PMC10052742 DOI: 10.3390/ph16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Bone regeneration using inorganic nanoparticles is a robust and safe approach. In this paper, copper nanoparticles (Cu NPs) loaded with calcium phosphate scaffolds were studied for their bone regeneration potential in vitro. The pneumatic extrusion method of 3D printing was employed to prepare calcium phosphate cement (CPC) and copper loaded CPC scaffolds with varying wt% of copper nanoparticles. A new aliphatic compound Kollisolv MCT 70 was used to ensure the uniform mixing of copper nanoparticles with CPC matrix. The printed scaffolds were studied for physico-chemical characterization for surface morphology, pore size, wettability, XRD, and FTIR. The copper ion release was studied in phosphate buffer saline at pH 7.4. The in vitro cell culture studies for the scaffolds were performed using human mesenchymal stem cells (hMSCs). The cell proliferation study in CPC-Cu scaffolds showed significant cell growth compared to CPC. The CPC-Cu scaffolds showed improved alkaline phosphatase activity and angiogenic potential compared to CPC. The CPC-Cu scaffolds showed significant concentration dependent antibacterial activity in Staphylococcus aureus. Overall, the CPC scaffolds loaded with 1 wt% Cu NPs showed improved activity compared to other CPC-Cu and CPC scaffolds. The results showed that copper has improved the osteogenic, angiogenic and antibacterial properties of CPC scaffolds, facilitating better bone regeneration in vitro.
Collapse
|
13
|
Liu S, Kilian D, Ahlfeld T, Hu Q, Gelinsky M. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs. Biofabrication 2023; 15. [PMID: 36735961 DOI: 10.1088/1758-5090/acb8dc] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Three-dimensional microextrusion bioprinting has attracted great interest for fabrication of hierarchically structured, functional tissue substitutes with spatially defined cell distribution. Despite considerable progress, several significant limitations remain such as a lack of suitable bioinks which combine favorable cell response with high shape fidelity. Therefore, in this work a novel bioink of alginate-methylcellulose (AlgMC) blend functionalized with egg white (EW) was developed with the aim of solving this limitation. In this regard, a stepwise strategy was proposed to improve and examine the cell response in low-viscosity alginate inks (3%, w/v) with different EW concentrations, and in high-viscosity inks after gradual methylcellulose addition for enhancing printability. The rheological properties and printability of these cell-responsive bioinks were characterized to obtain an optimized formulation eliciting balanced physicochemical and biological properties for fabrication of volumetric scaffolds. The bioprinted AlgMC + EW constructs exhibited excellent shape fidelity while encapsulated human mesenchymal stem cells showed high post-printing viability as well as adhesion and spreading within the matrix. In a proof-of-concept experiment, the impact of these EW-mediated effects on osteogenesis of bioprinted primary human pre-osteoblasts (hOB) was evaluated. Results confirmed a high viability of hOB (93.7 ± 0.15%) post-fabrication in an EW-supported AlgMC bioink allowing cell adhesion, proliferation and migration. EW even promoted the expression of osteogenic genes, coding for bone sialoprotein (integrin binding sialoprotein/bone sialoprotein precursor (IBSP)) and osteocalcin (BGLAP) on mRNA level. To demonstrate the suitability of the novel ink for future fabrication of multi-zonal bone substitutes, AlgMC + EW was successfully co-printed together with a pasty calcium phosphate bone cement biomaterial ink to achieve a partly mineralized 3D volumetric environment with good cell viability and spreading. Along with the EW-mediated positive effects within bioprinted AlgMC-based scaffolds, this highlighted the promising potential of this novel ink for biofabrication of bone tissue substitutes in clinically relevant dimensions.
Collapse
Affiliation(s)
- Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, People's Republic of China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
14
|
Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication 2023; 15. [PMID: 36716498 DOI: 10.1088/1758-5090/acb73d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Tissue interfaces include complex gradient structures formed by transitioning of biochemical and mechanical properties in micro-scale. This characteristic allows the communication and synchronistic functioning of two adjacent but distinct tissues. It is particularly challenging to restore the function of these complex structures by transplantation of scaffolds exclusively produced by conventional tissue engineering methods. Three-dimensional (3D) bioprinting technology has opened an unprecedented approach for precise and graded patterning of chemical, biological and mechanical cues in a single construct mimicking natural tissue interfaces. This paper reviews and highlights biochemical and biomechanical design for 3D bioprinting of various tissue interfaces, including cartilage-bone, muscle-tendon, tendon/ligament-bone, skin, and neuro-vascular/muscular interfaces. Future directions and translational challenges are also provided at the end of the paper.
Collapse
Affiliation(s)
- Mine Altunbek
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ferdows Afghah
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ozum Sehnaz Caliskan
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, NC 27157, United States of America
| | - Bahattin Koc
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| |
Collapse
|
15
|
Dairaghi J, Benito Alston C, Cadle R, Rogozea D, Solorio L, Barco CT, Moldovan NI. A dual osteoconductive-osteoprotective implantable device for vertical alveolar ridge augmentation. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1066501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Repair of large oral bone defects such as vertical alveolar ridge augmentation could benefit from the rapidly developing additive manufacturing technology used to create personalized osteoconductive devices made from porous tricalcium phosphate/hydroxyapatite (TCP/HA)-based bioceramics. These devices can be also used as hydrogel carriers to improve their osteogenic potential. However, the TCP/HA constructs are prone to brittle fracture, therefore their use in clinical situations is difficult. As a solution, we propose the protection of this osteoconductive multi-material (herein called “core”) with a shape-matched “cover” made from biocompatible poly-ɛ-caprolactone (PCL), which is a ductile, and thus more resistant polymeric material. In this report, we present a workflow starting from patient-specific medical scan in Digital Imaging and Communications in Medicine (DICOM) format files, up to the design and 3D printing of a hydrogel-loaded porous TCP/HA core and of its corresponding PCL cover. This cover could also facilitate the anchoring of the device to the patient's defect site via fixing screws. The large, linearly aligned pores in the TCP/HA bioceramic core, their sizes, and their filling with an alginate hydrogel were analyzed by micro-CT. Moreover, we created a finite element analysis (FEA) model of this dual-function device, which permits the simulation of its mechanical behavior in various anticipated clinical situations, as well as optimization before surgery. In conclusion, we designed and 3D-printed a novel, structurally complex multi-material osteoconductive-osteoprotective device with anticipated mechanical properties suitable for large-defect oral bone regeneration.
Collapse
|
16
|
Liu S, Cheng L, Liu Y, Zhang H, Song Y, Park JH, Dashnyam K, Lee JH, Khalak FAH, Riester O, Shi Z, Ostrovidov S, Kaji H, Deigner HP, Pedraz JL, Knowles JC, Hu Q, Kim HW, Ramalingam M. 3D Bioprinting tissue analogs: Current development and translational implications. J Tissue Eng 2023; 14:20417314231187113. [PMID: 37464999 PMCID: PMC10350769 DOI: 10.1177/20417314231187113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/25/2023] [Indexed: 07/20/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a promising and rapidly evolving technology in the field of additive manufacturing. It enables the fabrication of living cellular constructs with complex architectures that are suitable for various biomedical applications, such as tissue engineering, disease modeling, drug screening, and precision regenerative medicine. The ultimate goal of bioprinting is to produce stable, anatomically-shaped, human-scale functional organs or tissue substitutes that can be implanted. Although various bioprinting techniques have emerged to develop customized tissue-engineering substitutes over the past decade, several challenges remain in fabricating volumetric tissue constructs with complex shapes and sizes and translating the printed products into clinical practice. Thus, it is crucial to develop a successful strategy for translating research outputs into clinical practice to address the current organ and tissue crises and improve patients' quality of life. This review article discusses the challenges of the existing bioprinting processes in preparing clinically relevant tissue substitutes. It further reviews various strategies and technical feasibility to overcome the challenges that limit the fabrication of volumetric biological constructs and their translational implications. Additionally, the article highlights exciting technological advances in the 3D bioprinting of anatomically shaped tissue substitutes and suggests future research and development directions. This review aims to provide readers with insight into the state-of-the-art 3D bioprinting techniques as powerful tools in engineering functional tissues and organs.
Collapse
Affiliation(s)
- Suihong Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Yakui Liu
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Yongteng Song
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, South Korea
| | - Khandmaa Dashnyam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| | - Fouad Al-Hakim Khalak
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain
| | - Oliver Riester
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, Germany
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Serge Ostrovidov
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, Germany
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain
| | - Jonathan C Knowles
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, London, UK
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
- National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, South Korea
| | - Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, Villingen-Schwenningen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Joint Research Laboratory on Advanced Pharma Development Initiative, A Joined Venture of TECNALIA and School of Pharmacy, University of the Basque Country (UPV/ EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- Bioprinting Laboratory, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz, Spain
- Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
Barui S, Ghosh D, Laurencin CT. Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives. Regen Biomater 2022; 10:rbac109. [PMID: 36683736 PMCID: PMC9845524 DOI: 10.1093/rb/rbac109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
Collapse
Affiliation(s)
- Srimanta Barui
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
18
|
Pan RL, Martyniak K, Karimzadeh M, Gelikman DG, DeVries J, Sutter K, Coathup M, Razavi M, Sawh-Martinez R, Kean TJ. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 2022; 9:95. [PMID: 36121526 PMCID: PMC9485345 DOI: 10.1186/s40634-022-00518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
Collapse
Affiliation(s)
- Rachel L Pan
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kari Martyniak
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Makan Karimzadeh
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - David G Gelikman
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jonathan DeVries
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kelly Sutter
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Mehdi Razavi
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Rajendra Sawh-Martinez
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Plastic and Reconstructive Surgery, AdventHealth, Orlando, FL, USA
| | - Thomas J Kean
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
19
|
Bedell ML, Torres AL, Hogan KJ, Wang Z, Wang B, Melchiorri AJ, Grande-Allen KJ, Mikos AG. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication 2022; 14:10.1088/1758-5090/ac8768. [PMID: 35931060 PMCID: PMC9633045 DOI: 10.1088/1758-5090/ac8768] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
Collapse
Affiliation(s)
| | | | - Katie J. Hogan
- Department of Bioengineering, Rice University, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX
| | - Bonnie Wang
- Department of Bioengineering, Rice University, Houston, TX
| | | | | | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX
- NIBIB/NIH Center for Engineering Complex Tissues, USA
| |
Collapse
|
20
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
CyMAD bioreactor: A cyclic magnetic actuation device for magnetically mediated mechanical stimulation of 3D bioprinted hydrogel scaffolds. J Mech Behav Biomed Mater 2022; 131:105253. [DOI: 10.1016/j.jmbbm.2022.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022]
|
22
|
Qin C, Wu C. Inorganic biomaterials‐based bioinks for three‐dimensional bioprinting of regenerative scaffolds. VIEW 2022; 3. [DOI: 10.1002/viw.20210018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/08/2022] [Indexed: 01/06/2025] Open
Abstract
AbstractThe application of inorganic biomaterials in regenerative medicine is increasingly expanded. Taking advantages of attractive properties of the inorganic biomaterials, sorts of functional bioinks have been developed based on inorganic biomaterials and were applied to construct inorganic/organic/cell‐laden systems for tissue regeneration via 3D bioprinting technology. In this review, we aim to summarize the existing inorganic biomaterials‐based bioinks (referred to as “inorganic‐bioinks”) for 3D bioprinting regenerative scaffolds. We introduce the recently developed inorganic‐bioinks from the perspective of the function of bioinks, and especially highlight the incorporation of inorganic biomaterials improving the printability, mechanical strength, and bioactivity of the bioinks for different tissue regeneration. Subsequently, the current applications of the inorganic‐bioinks in constructing 3D cell‐laden scaffolds for tissue regeneration are presented. Finally, challenges and prospects for the inorganic biomaterials‐based bioprinting strategy are discussed.
Collapse
Affiliation(s)
- Chen Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. J Funct Biomater 2022; 13:jfb13020075. [PMID: 35735931 PMCID: PMC9225379 DOI: 10.3390/jfb13020075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800-2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels.
Collapse
|
24
|
Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting. J Tissue Eng 2022; 13:20417314221133480. [PMID: 36386465 PMCID: PMC9643769 DOI: 10.1177/20417314221133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/30/2022] [Indexed: 07/20/2023] Open
Abstract
Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling.
Collapse
Affiliation(s)
| | - Swati Midha
- Kennedy Institute of Rheumatology,
University of Oxford, Oxford, UK
| | | | - Aline Miller
- Department of Chemical Engineering,
University of Manchester, Manchester, UK
| | - Ryo Torii
- Department of Mechanical Engineering,
University College London, London, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics and
Musculoskeletal Science, Division of Surgery & Interventional Science,
University College London (UCL), UK
| |
Collapse
|
25
|
Kilian D, Cometta S, Bernhardt A, Taymour R, Golde J, Ahlfeld T, Emmermacher J, Gelinsky M, Lode A. Core-shell bioprinting as a strategy to apply differentiation factors in a spatially defined manner inside osteochondral tissue substitutes. Biofabrication 2021; 14. [PMID: 34933296 DOI: 10.1088/1758-5090/ac457b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-β3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-β3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet Dresden, Fetscherstrasse 74, Dresden, 01307, GERMANY
| | - Silvia Cometta
- Dresden University of Technology, Fetscherstrasse 74, Dresden, Sachsen, 01307, GERMANY
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Dresden University of Technology, Fetscherstrasse 74, Dresden, Sachsen, 01307, GERMANY
| | - Rania Taymour
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Dresden University of Technology, Fetscherstrasse 74, Dresden, Sachsen, 01307, GERMANY
| | - Jonas Golde
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Dresden University of Technology, Fetscherstrasse 74, Dresden, Sachsen, 01307, GERMANY
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet Dresden, Fetscherstrasse 74, Dresden, 01307, GERMANY
| | - Julia Emmermacher
- Centre for translational bone, joint and soft tissue research, Technische Universitat Dresden, Fetscherstrasse 74, Dresden, 01307, GERMANY
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet Dresden, Fetscherstr. 74, Dresden, 01307, GERMANY
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universitaet Dresden, Fetscherstrasse 74, Dresden, 01307, GERMANY
| |
Collapse
|
26
|
Liu Q, Lu WF, Zhai W. Toward stronger robocast calcium phosphate scaffolds for bone tissue engineering: A mini-review and meta-analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112578. [PMID: 35525758 DOI: 10.1016/j.msec.2021.112578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022]
Abstract
Among different treatments of critical-sized bone defects, bone tissue engineering (BTE) is a fast-developing strategy centering around the fabrication of scaffolds that can stimulate tissue regeneration and provide mechanical support at the same time. This area has seen an extensive application of bioceramics, such as calcium phosphate, for their bioactivity and resemblance to the composition of natural bones. Moreover, recent advances in additive manufacturing (AM) have unleashed enormous potential in the fabrication of BTE scaffolds with tailored porous structures as well as desired biological and mechanical properties. Robocasting is an AM technique that has been widely applied to fabricate calcium phosphate scaffolds, but most of these scaffolds do not meet the mechanical requirements for load-bearing BTE scaffolds. In light of this challenge, various approaches have been utilized to mechanically strengthen the scaffolds. In this review, the current state of knowledge and existing research on robocasting of calcium phosphate scaffolds are presented. Applying the Gibson-Ashby model, this review provides a meta-analysis from the published literature of the compressive strength of robocast calcium phosphate scaffolds. Furthermore, this review evaluates different approaches to the mechanical strengthening of robocast calcium phosphate scaffolds. The aim of this review is to provide insightful data and analysis for future research on mechanical strengthening of robocast calcium phosphate scaffolds and ultimately for their clinical applications.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore; The NUS Centre for Additive Manufacturing, National University of Singapore, Singapore 117581, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, Singapore 117411, Singapore; The NUS Centre for Additive Manufacturing, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
27
|
Homogeneous and Reproducible Mixing of Highly Viscous Biomaterial Inks and Cell Suspensions to Create Bioinks. Gels 2021; 7:gels7040227. [PMID: 34842704 PMCID: PMC8628813 DOI: 10.3390/gels7040227] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
Highly viscous bioinks offer great advantages for the three-dimensional fabrication of cell-laden constructs by microextrusion printing. However, no standardised method of mixing a high viscosity biomaterial ink and a cell suspension has been established so far, leading to non-reproducible printing results. A novel method for the homogeneous and reproducible mixing of the two components using a mixing unit connecting two syringes is developed and investigated. Several static mixing units, based on established mixing designs, were adapted and their functionality was determined by analysing specific features of the resulting bioink. As a model system, we selected a highly viscous ink consisting of fresh frozen human blood plasma, alginate, and methylcellulose, and a cell suspension containing immortalized human mesenchymal stem cells. This bioink is crosslinked after fabrication. A pre-crosslinked gellan gum-based bioink providing a different extrusion behaviour was introduced to validate the conclusions drawn from the model system. For characterisation, bioink from different zones within the mixing device was analysed by measurement of its viscosity, shape fidelity after printing and visual homogeneity. When taking all three parameters into account, a comprehensive and reliable comparison of the mixing quality was possible. In comparison to the established method of manual mixing inside a beaker using a spatula, a significantly higher proportion of viable cells was detected directly after mixing and plotting for both bioinks when the mixing unit was used. A screw-like mixing unit, termed “HighVisc”, was found to result in a homogenous bioink after a low number of mixing cycles while achieving high cell viability rates.
Collapse
|
28
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
29
|
Alcala-Orozco CR, Cui X, Hooper GJ, Lim KS, Woodfield TB. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomater 2021; 132:188-216. [PMID: 33713862 DOI: 10.1016/j.actbio.2021.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The evolution of additive manufacturing (AM) technologies, biomaterial development and our increasing understanding of cell biology has created enormous potential for the development of personalized regenerative therapies. In the context of skeletal tissue engineering, physical and biological demands play key roles towards successful construct implantation and the achievement of bone, cartilage and blood vessel tissue formation. Nevertheless, meeting such physical and biological demands to mimic the complexity of human tissues and their functionality is still a significant ongoing challenge. Recent studies have demonstrated that combination of AM technologies and advanced biomaterials has great potential towards skeletal tissue engineering. This review aims to analyze how the most prominent technologies and discoveries in the field converge towards the development of advanced constructs for skeletal regeneration. Particular attention is placed on hybrid biofabrication strategies, combining bioinks for cell delivery with biomaterial inks providing physical support. Hybrid biofabrication has been the focus of recent emerging strategies, however there has been limited review and analysis of these techniques and the challenges involved. Furthermore, we have identified that there are multiple hybrid fabrication strategies, here we present a category system where each strategy is reviewed highlighting their distinct advantages, challenges and potential applications. In addition, bioinks and biomaterial inks are the main components of the hybrid biofabrication strategies, where it is recognized that such platforms still lack optimal physical and biological functionality. Thus, this review also explores the development of composite materials specifically targeting the enhancement of physical and biological functionality towards improved skeletal tissue engineering. STATEMENT OF SIGNIFICANCE: Biofabrication strategies capable of recreating the complexity of native tissues could open new clinical possibilities towards patient-specific regenerative therapies and disease models. Several reviews target the existing additive manufacturing (AM) technologies that may be utilised for biomedical purposes. However, this work presents a unique perspective, describing how such AM technologies have been recently translated towards hybrid fabrication strategies, targeting the fabrication of constructs with converging physical and biological properties. Furthermore, we address composite bioinks and biomaterial inks that have been engineered to overcome traditional limitations, and might be applied to the hybrid fabrication strategies outlined. This work offers ample perspectives and insights into the current and future challenges for the fabrication of skeletal tissues aiming towards clinical and biomedical applications.
Collapse
|
30
|
Sikkema R, Keohan B, Zhitomirsky I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13183070. [PMID: 34577971 PMCID: PMC8471633 DOI: 10.3390/polym13183070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Natural bone is a composite organic-inorganic material, containing hydroxyapatite (HAP) as an inorganic phase. In this review, applications of natural alginic acid (ALGH) polymer for the fabrication of composites containing HAP are described. ALGH is used as a biocompatible structure directing, capping and dispersing agent for the synthesis of HAP. Many advanced techniques for the fabrication of ALGH-HAP composites are attributed to the ability of ALGH to promote biomineralization. Gel-forming and film-forming properties of ALGH are key factors for the development of colloidal manufacturing techniques. Electrochemical fabrication techniques are based on strong ALGH adsorption on HAP, pH-dependent charge and solubility of ALGH. Functional properties of advanced composite ALGH-HAP films and coatings, scaffolds, biocements, gels and beads are described. The composites are loaded with other functional materials, such as antimicrobial agents, drugs, proteins and enzymes. Moreover, the composites provided a platform for their loading with cells for the fabrication of composites with enhanced properties for various biomedical applications. This review summarizes manufacturing strategies, mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
|
31
|
Szustak M, Gendaszewska-Darmach E. Nanocellulose-Based Scaffolds for Chondrogenic Differentiation and Expansion. Front Bioeng Biotechnol 2021; 9:736213. [PMID: 34485266 PMCID: PMC8415884 DOI: 10.3389/fbioe.2021.736213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Nanocellulose deserves special attention among the large group of biocompatible biomaterials. It exhibits good mechanical properties, which qualifies it for potential use as a scaffold imitating cartilage. However, the reconstruction of cartilage is a big challenge due to this tissue's limited regenerative capacity resulting from its lack of vascularization, innervations, and sparsely distributed chondrocytes. This feature restricts the infiltration of progenitor cells into damaged sites. Unfortunately, differentiated chondrocytes are challenging to obtain, and mesenchymal stem cells have become an alternative approach to promote chondrogenesis. Importantly, nanocellulose scaffolds induce the differentiation of stem cells into chondrocyte phenotypes. In this review, we present the recent progress of nanocellulose-based scaffolds promoting the development of cartilage tissue, especially within the emphasis on chondrogenic differentiation and expansion.
Collapse
Affiliation(s)
| | - Edyta Gendaszewska-Darmach
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
32
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
33
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
34
|
Kilian D, Sembdner P, Bretschneider H, Ahlfeld T, Mika L, Lützner J, Holtzhausen S, Lode A, Stelzer R, Gelinsky M. 3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00153-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Magnetic resonance imaging (MRI) is a common clinical practice to visualize defects and to distinguish different tissue types and pathologies in the human body. So far, MRI data have not been used to model and generate a patient-specific design of multilayered tissue substitutes in the case of interfacial defects. For orthopedic cases that require highly individual surgical treatment, implant fabrication by additive manufacturing holds great potential. Extrusion-based techniques like 3D plotting allow the spatially defined application of several materials, as well as implementation of bioprinting strategies. With the example of a typical multi-zonal osteochondral defect in an osteochondritis dissecans (OCD) patient, this study aimed to close the technological gap between MRI analysis and the additive manufacturing process of an implant based on different biomaterial inks. A workflow was developed which covers the processing steps of MRI-based defect identification, segmentation, modeling, implant design adjustment, and implant generation. A model implant was fabricated based on two biomaterial inks with clinically relevant properties that would allow for bioprinting, the direct embedding of a patient’s own cells in the printing process. As demonstrated by the geometric compatibility of the designed and fabricated model implant in a stereolithography (SLA) model of lesioned femoral condyles, a novel versatile CAD/CAM workflow was successfully established that opens up new perspectives for the treatment of multi-zonal (osteochondral) defects.
Graphic abstract
Collapse
|
35
|
Aytac Z, Dubey N, Daghrery A, Ferreira JA, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Innovations in Craniofacial Bone and Periodontal Tissue Engineering - From Electrospinning to Converged Biofabrication. INTERNATIONAL MATERIALS REVIEWS 2021; 67:347-384. [PMID: 35754978 PMCID: PMC9216197 DOI: 10.1080/09506608.2021.1946236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 06/02/2023]
Abstract
From a materials perspective, the pillars for the development of clinically translatable scaffold-based strategies for craniomaxillofacial (CMF) bone and periodontal regeneration have included electrospinning and 3D printing (biofabrication) technologies. Here, we offer a detailed analysis of the latest innovations in 3D (bio)printing strategies for CMF bone and periodontal regeneration and provide future directions envisioning the development of advanced 3D architectures for successful clinical translation. First, the principles of electrospinning applied to the generation of biodegradable scaffolds are discussed. Next, we present on extrusion-based 3D printing technologies with a focus on creating scaffolds with improved regenerative capacity. In addition, we offer a critical appraisal on 3D (bio)printing and multitechnology convergence to enable the reconstruction of CMF bones and periodontal tissues. As a future outlook, we highlight future directions associated with the utilization of complementary biomaterials and (bio)fabrication technologies for effective translation of personalized and functional scaffolds into the clinics.
Collapse
Affiliation(s)
- Zeynep Aytac
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Arwa Daghrery
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Jessica A. Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Isaac J. de Souza Araújo
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
| | - Miguel Castilho
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jos Malda
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, School of Dentistry, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
36
|
Qu M, Wang C, Zhou X, Libanori A, Jiang X, Xu W, Zhu S, Chen Q, Sun W, Khademhosseini A. Multi-Dimensional Printing for Bone Tissue Engineering. Adv Healthc Mater 2021; 10:e2001986. [PMID: 33876580 PMCID: PMC8192454 DOI: 10.1002/adhm.202001986] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/15/2021] [Indexed: 02/05/2023]
Abstract
The development of 3D printing has significantly advanced the field of bone tissue engineering by enabling the fabrication of scaffolds that faithfully recapitulate desired mechanical properties and architectures. In addition, computer-based manufacturing relying on patient-derived medical images permits the fabrication of customized modules in a patient-specific manner. In addition to conventional 3D fabrication, progress in materials engineering has led to the development of 4D printing, allowing time-sensitive interventions such as programed therapeutics delivery and modulable mechanical features. Therapeutic interventions established via multi-dimensional engineering are expected to enhance the development of personalized treatment in various fields, including bone tissue regeneration. Here, recent studies utilizing 3D printed systems for bone tissue regeneration are summarized and advances in 4D printed systems are highlighted. Challenges and perspectives for the future development of multi-dimensional printed systems toward personalized bone regeneration are also discussed.
Collapse
Affiliation(s)
- Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Canran Wang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weizhe Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics (C-MIT) University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
37
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
38
|
Mahendiran B, Muthusamy S, Sampath S, Jaisankar SN, Popat KC, Selvakumar R, Krishnakumar GS. Recent trends in natural polysaccharide based bioinks for multiscale 3D printing in tissue regeneration: A review. Int J Biol Macromol 2021; 183:564-588. [PMID: 33933542 DOI: 10.1016/j.ijbiomac.2021.04.179] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Biofabrication by three-dimensional (3D) printing has been an attractive technology in harnessing the possibility to print anatomical shaped native tissues with controlled architecture and resolution. 3D printing offers the possibility to reproduce complex microarchitecture of native tissues by printing live cells in a layer by layer deposition to provide a biomimetic structural environment for tissue formation and host tissue integration. Plant based biomaterials derived from green and sustainable sources have represented to emulate native physicochemical and biological cues in order to direct specific cellular response and formation of new tissues through biomolecular recognition patterns. This comprehensive review aims to analyze and identify the most commonly used plant based bioinks for 3D printing applications. An overview on the role of different plant based biomaterial of terrestrial origin (Starch, Nanocellulose and Pectin) and marine origin (Ulvan, Alginate, Fucoidan, Agarose and Carrageenan) used for 3D printing applications are discussed elaborately. Furthermore, this review will also emphasis in the functional aspects of different 3D printers, appropriate printing material, merits and demerits of numerous plant based bioinks in developing 3D printed tissue-like constructs. Additionally, the underlying potential benefits, limitations and future perspectives of plant based bioinks for tissue engineering (TE) applications are also discussed.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Shalini Muthusamy
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai 600020, Tamil Nadu, India
| | - Ketul C Popat
- Biomaterial Surface Micro/Nanoengineering Laboratory, Department of Mechanical Engineering/School of Biomedical Engineering/School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado-80523, USA
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced studies, Coimbatore 641004, Tamil Nadu, India
| | | |
Collapse
|
39
|
Bagnol R, Sprecher C, Peroglio M, Chevalier J, Mahou R, Büchler P, Richards G, Eglin D. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Acta Biomater 2021; 125:322-332. [PMID: 33631396 DOI: 10.1016/j.actbio.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Christoph Sprecher
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jerome Chevalier
- University of Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, F-69621, Villeurbanne, France
| | | | - Philippe Büchler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
40
|
Ng WL, Ayi TC, Liu YC, Sing SL, Yeong WY, Tan BH. Fabrication and Characterization of 3D Bioprinted Triple-layered Human Alveolar Lung Models. Int J Bioprint 2021; 7:332. [PMID: 33997432 PMCID: PMC8114097 DOI: 10.18063/ijb.v7i2.332] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The global prevalence of respiratory diseases caused by infectious pathogens has resulted in an increased demand for realistic in-vitro alveolar lung models to serve as suitable disease models. This demand has resulted in the fabrication of numerous two-dimensional (2D) and three-dimensional (3D) in-vitro alveolar lung models. The ability to fabricate these 3D in-vitro alveolar lung models in an automated manner with high repeatability and reliability is important for potential scalable production. In this study, we reported the fabrication of human triple-layered alveolar lung models comprising of human lung epithelial cells, human endothelial cells, and human lung fibroblasts using the drop-on-demand (DOD) 3D bioprinting technique. The polyvinylpyrrolidone-based bio-inks and the use of a 300 mm nozzle diameter improved the repeatability of the bioprinting process by achieving consistent cell output over time using different human alveolar lung cells. The 3D bioprinted human triple-layered alveolar lung models were able to maintain cell viability with relative similar proliferation profile over time as compared to non-printed cells. This DOD 3D bioprinting platform offers an attractive tool for highly repeatable and scalable fabrication of 3D in-vitro human alveolar lung models.
Collapse
Affiliation(s)
- Wei Long Ng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.,HP-NTU Digital Manufacturing Corporate Lab, 65 Nanyang Avenue, 637460, Singapore
| | - Teck Choon Ayi
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore
| | - Yi-Chun Liu
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore
| | - Swee Leong Sing
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.,HP-NTU Digital Manufacturing Corporate Lab, 65 Nanyang Avenue, 637460, Singapore
| | - Boon-Huan Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore.,Lee Kong Chian School of Medicine, Novena Campus, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| |
Collapse
|
41
|
Abstract
3D-Bioprinting has seen a rapid expansion in the last few years, with an increasing number of reported bioinks. Alginate is a natural biopolymer that forms hydrogels by ionic cross-linking with calcium ions. Due to its biocompatibility and ease of gelation, it is an ideal ingredient for bioinks. This review focuses on recent advances on bioink formulations based on the combination of alginate with other polysaccharides. In particular, the molecular weight of the alginate and its loading level have an impact on the material's performance, as well as the loading of the divalent metal salt and its solubility, which affects the cross-linking of the gel. Alginate is often combined with other polysaccharides that can sigificantly modify the properties of the gel, and can optimise alginate for use in different biological applications. It is also possible to combine alginate with sacrificial polymers, which can temporarily reinforce the 3D printed construct, but then be removed at a later stage. Other additives can be formulated into the gels to enhance performance, including nanomaterials that tune rheological properties, peptides to encourage cell adhesion, or growth factors to direct stem cell differentiation. The ease of formulating multiple components into alginate gels gives them considerable potential for further development. In summary, this review will facilitate the identification of different alginate-polysaccharide bioink formulations and their optimal applications, and help inform the design of second generation bioinks, allowing this relatively simple gel system to achieve more sophisticated control over biological processes.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| | - David K Smith
- Department of Chemistry, University of York, Heslington, YO10 5DD, UK.
| |
Collapse
|
42
|
Li N, Guo R, Zhang ZJ. Bioink Formulations for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:630488. [PMID: 33614614 PMCID: PMC7892967 DOI: 10.3389/fbioe.2021.630488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike the conventional techniques used to construct a tissue scaffolding, three-dimensional (3D) bioprinting technology enables fabrication of a porous structure with complex and diverse geometries, which facilitate evenly distributed cells and orderly release of signal factors. To date, a range of cell-laden materials, such as natural or synthetic polymers, have been deployed by the 3D bioprinting technique to construct the scaffolding systems and regenerate substitutes for the natural extracellular matrix (ECM). Four-dimensional (4D) bioprinting technology has attracted much attention lately because it aims to accommodate the dynamic structural and functional transformations of scaffolds. However, there remain challenges to meet the technical requirements in terms of suitable processability of the bioink formulations, desired mechanical properties of the hydrogel implants, and cell-guided functionality of the biomaterials. Recent bioprinting techniques are reviewed in this article, discussing strategies for hydrogel-based bioinks to mimic native bone tissue-like extracellular matrix environment, including properties of bioink formulations required for bioprinting, structure requirements, and preparation of tough hydrogel scaffolds. Stimulus mechanisms that are commonly used to trigger the dynamic structural and functional transformations of the scaffold are analyzed. At the end, we highlighted the current challenges and possible future avenues of smart hydrogel-based bioink/scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Na Li
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Spangenberg J, Kilian D, Czichy C, Ahlfeld T, Lode A, Günther S, Odenbach S, Gelinsky M. Bioprinting of Magnetically Deformable Scaffolds. ACS Biomater Sci Eng 2021; 7:648-662. [DOI: 10.1021/acsbiomaterials.0c01371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Janina Spangenberg
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Stefan Günther
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, 01069 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
44
|
Ahlfeld T, Lode A, Richter RF, Pradel W, Franke A, Rauner M, Stadlinger B, Lauer G, Gelinsky M, Korn P. Toward Biofabrication of Resorbable Implants Consisting of a Calcium Phosphate Cement and Fibrin-A Characterization In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22031218. [PMID: 33530649 PMCID: PMC7865817 DOI: 10.3390/ijms22031218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cleft alveolar bone defects can be treated potentially with tissue engineered bone grafts. Herein, we developed novel biphasic bone constructs consisting of two clinically certified materials, a calcium phosphate cement (CPC) and a fibrin gel that were biofabricated using 3D plotting. The fibrin gel was loaded with mesenchymal stromal cells (MSC) derived from bone marrow. Firstly, the degradation of fibrin as well as the behavior of cells in the biphasic system were evaluated in vitro. Fibrin degraded quickly in presence of MSC. Our results showed that the plotted CPC structure acted slightly stabilizing for the fibrin gel. However, with passing time and fibrin degradation, MSC migrated to the CPC surface. Thus, the fibrin gel could be identified as cell delivery system. A pilot study in vivo was conducted in artificial craniofacial defects in Lewis rats. Ongoing bone formation could be evidenced over 12 weeks but the biphasic constructs were not completely osseous integrated. Nevertheless, our results show that the combination of 3D plotted CPC constructs and fibrin as suitable cell delivery system enables the fabrication of novel regenerative implants for the treatment of alveolar bone defects.
Collapse
Affiliation(s)
- Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Winnie Pradel
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Adrian Franke
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III and Center for Healthy Aging, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany;
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstr 11, 8032 Zurich, Switzerland;
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
45
|
Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. ADDITIVE MANUFACTURING 2021; 37:101639. [DOI: 10.1016/j.addma.2020.101639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Venkatesan J, Anil S, Murugan S. 3D Bioprinted Alginate-Based Biomaterials for Bone Tissue Engineering. JOURNAL OF 3D PRINTING IN MEDICINE 2020; 4:175-179. [DOI: 10.2217/3dp-2020-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2024]
Affiliation(s)
- Jayachandran Venkatesan
- Biomaterials Research Laboratory, Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka575018, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, College of Dental Medicine, Qatar University, Doha, Qatar
| | - Sesha Subramanian Murugan
- Biomaterials Research Laboratory, Yenepoya Research Center, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka575018, India
| |
Collapse
|
47
|
Cubo-Mateo N, Podhajsky S, Knickmann D, Slenzka K, Ghidini T, Gelinsky M. Can 3D bioprinting be a key for exploratory missions and human settlements on the Moon and Mars? Biofabrication 2020; 12:043001. [PMID: 32975214 DOI: 10.1088/1758-5090/abb53a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fifty years after the first human landed on the Moon mankind has started to plan next steps for manned space exploration missions. The international space agencies have begun to investigate the requirements for both a human settlement on the Moon and manned missions to Mars. For such activities significantly improved medical treatment facilities on-board the spacecrafts or within the extraterrestrial settlements need to be provided as no fast return opportunities to Earth would exist anymore in case of severe trauma or illness. Bioprinting is believed to play a significant role as it could offer the possibilities to produce patient-specific tissue constructs in a semi-automated manner. Therefore, both the space agencies and the bioprinting community have started to study possible applications of bioprinting technologies in space. Besides utilisation of bioprinted tissue constructs for the treatment of injured astronauts bioprinting will become relevant for the fabrication of three-dimensional tissue models for basic research, e.g. concerning effects of microgravity and cosmic radiation on cells and tissues. This perspective article describes the current state of the art including medical scenarios for new far-distant space exploration missions, first approaches towards establishment of bioprinters in space and which limitations have to be resolved to use bioprinting under the specific conditions of space flight like altered gravity conditions.
Collapse
Affiliation(s)
- Nieves Cubo-Mateo
- Centre for Translational Bone, Joint and Soft Tissue Research, TU Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
48
|
GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002931. [PMID: 32734720 PMCID: PMC7754762 DOI: 10.1002/smll.202002931] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 05/15/2023]
Abstract
Three-dimensional (3D) bioprinting has recently advanced as an important tool to produce viable constructs that can be used for regenerative purposes or as tissue models. To develop biomimetic and sustainable 3D constructs, several important processing aspects need to be considered, among which crosslinking is most important for achieving desirable biomechanical stability of printed structures, which is reflected in subsequent behavior and use of these constructs. In this work, crosslinking methods used in 3D bioprinting studies are reviewed, parameters that affect bioink chemistry are discussed, and the potential toward improving crosslinking outcomes and construct performance is highlighted. Furthermore, current challenges and future prospects are discussed. Due to the direct connection between crosslinking methods and properties of 3D bioprinted structures, this Review can provide a basis for developing necessary modifications to the design and manufacturing process of advanced tissue-like constructs in future.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics, California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
| |
Collapse
|
49
|
Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, Casado JG, Macías-García A, Díaz Díez MA, Carrasco-Amador JP, Torrejón Martín D, Sánchez-Margallo FM, Pagador JB. Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Front Bioeng Biotechnol 2020; 8:776. [PMID: 32850697 PMCID: PMC7424022 DOI: 10.3389/fbioe.2020.00776] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, bioprinting is rapidly evolving and hydrogels are a key component for its success. In this sense, synthesis of hydrogels, as well as bioprinting process, and cross-linking of bioinks represent different challenges for the scientific community. A set of unified criteria and a common framework are missing, so multidisciplinary research teams might not efficiently share the advances and limitations of bioprinting. Although multiple combinations of materials and proportions have been used for several applications, it is still unclear the relationship between good printability of hydrogels and better medical/clinical behavior of bioprinted structures. For this reason, a PRISMA methodology was conducted in this review. Thus, 1,774 papers were retrieved from PUBMED, WOS, and SCOPUS databases. After selection, 118 papers were analyzed to extract information about materials, hydrogel synthesis, bioprinting process, and tests performed on bioprinted structures. The aim of this systematic review is to analyze materials used and their influence on the bioprinting parameters that ultimately generate tridimensional structures. Furthermore, a comparison of mechanical and cellular behavior of those bioprinted structures is presented. Finally, some conclusions and recommendations are exposed to improve reproducibility and facilitate a fair comparison of results.
Collapse
Affiliation(s)
- Enrique Mancha Sánchez
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - J. Carlos Gómez-Blanco
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Esther López Nieto
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Javier G. Casado
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | | | - María A. Díaz Díez
- School of Industrial Engineering, University of Extremadura, Badajoz, Spain
| | | | | | | | - J. Blas Pagador
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| |
Collapse
|
50
|
Lipoteichoic Acid Accelerates Bone Healing by Enhancing Osteoblast Differentiation and Inhibiting Osteoclast Activation in a Mouse Model of Femoral Defects. Int J Mol Sci 2020; 21:ijms21155550. [PMID: 32756396 PMCID: PMC7432397 DOI: 10.3390/ijms21155550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lipoteichoic acid (LTA) is a cell wall component of Gram-positive bacteria. Limited data suggest that LTA is beneficial for bone regeneration in vitro. Thus, we used a mouse model of femoral defects to explore the effects of LTA on bone healing in vivo. Micro-computed tomography analysis and double-fluorochrome labeling were utilized to examine whether LTA can accelerate dynamic bone formation in vivo. The effects of LTA on osteoblastogenesis and osteoclastogenesis were also studied in vitro. LTA treatment induced prompt bone bridge formation, rapid endochondral ossification, and accelerated healing of fractures in mice with femoral bone defects. In vitro, LTA directly enhanced indicators of osteogenic factor-induced MC3T3-E1 cell differentiation, including alkaline phosphatase activity, calcium deposition and osteopontin expression. LTA also inhibited osteoclast activation induced by receptor activator of nuclear factor-kappa B ligand. We identified six molecules that may be associated with LTA-accelerated bone healing: monocyte chemoattractant protein 1, chemokine (C-X-C motif) ligand 1, cystatin C, growth/differentiation factor 15, endostatin and neutrophil gelatinase-associated lipocalin. Finally, double-fluorochrome, dynamic-labeling data indicated that LTA significantly enhanced bone-formation rates in vivo. In conclusion, our findings suggest that LTA has promising bone-regeneration properties.
Collapse
|