1
|
Zhou X, Zhu S, Shen K, Wang Q, Lu C, Gao H, Zhu D. Shear Wave Optical Coherence Elastography Imaging by Deep Learning. JOURNAL OF BIOPHOTONICS 2025:e70027. [PMID: 40210208 DOI: 10.1002/jbio.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/12/2025]
Abstract
Quantifying ocular tissue mechanical properties is pivotal for elucidating eye disease etiology and progression. Optical coherence elastography (OCE), leveraging high-resolution optical coherence tomography, promises tissue stiffness assessment. Traditional OCE relies on data processing of the time-of-flight method and encounters challenges like low repeatability. Our study presents an optimized data processing workflow integrating OCE with deep learning to predict ocular tissue biomechanical properties. The concentration prediction network (CPN), a 3D convolutional neural network, predicts sample's concentrations and calculates the Young's modulus based on the relationship between agar concentration and Young's modulus from mechanical testing. The CPN showed high accuracy, with a mean absolute error of 0.028 ± 0.036 for training and 0.036 ± 0.024 for testing data of agar phantoms. In situ porcine corneas with various intraocular pressures was measured, yielding corneal biomechanical distribution via deep learning method. This approach enhances the efficiency of OCE and underscores potential clinical applications in ophthalmology.
Collapse
Affiliation(s)
- Xingyu Zhou
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Shenju Zhu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Kexin Shen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Qingying Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Cheng Lu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Hebei Gao
- Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, China
| | - Dexi Zhu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Detrez N, Burhan S, Rewerts K, Kren J, Buschschluter S, Theisen-Kunde D, Bonsanto MM, Huber R, Brinkmann R. Flow-Controlled Air-Jet for In Vivo Quasi Steady-State and Dynamic Elastography With MHz Optical Coherence Tomography. IEEE Trans Biomed Eng 2025; 72:1008-1020. [PMID: 39437292 DOI: 10.1109/tbme.2024.3484676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Optical coherence elastography (OCE) has been introduced for several medical applications to determine tissue mechanical parameters. However, in order to measure sensitive healthy tissue like brain in vivo, the excitation force needs to be carefully controlled and as low as possible (under 100 µN). Preferably, the excitation should be applied in a non-contact manner. METHODS In this work, an air-jet excitation source for this specific purpose has been developed and characterized. The design focus was set on the exact measurement and control of the generated excitation force to better comply with in vivo medical safety requirements during surgery. RESULTS Therefore, an excitation force control and measurement system based on the applied gas flow was developed. CONCLUSION This system can generate short, high dynamic air-puffs lasting fewer than 5 ms, as well as quasi-static excitation forces lasting 700 ms. The force range covers 1µN to 40 mN with a force error margin between 0.1% and 16% in the relevant range. The excitation source, in conjunction with a 3.2 MHz optical coherence system, enables phase-based, dynamic, and quasi steady-state elastography, as well as robust non-contact classical indentation measurements. SIGNIFICANCE The presented system is a preliminary prototype intended for further development into a clinical version to be used in situ during brain tumor surgery.
Collapse
|
3
|
Chawla HS, Chen Y, Wu M, Nikitin P, Gutierrez J, Mohan C, Singh M, Aglyamov SR, Assassi S, Larin KV. Assessment of skin fibrosis in a murine model of systemic sclerosis with multifunctional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036007. [PMID: 40151216 PMCID: PMC11949416 DOI: 10.1117/1.jbo.30.3.036007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Significance Systemic sclerosis (SSc) is a chronic idiopathic disease that causes immune dysregulation, vasculopathy, and organ fibrosis that affects more than 3 million people in the US alone. The modified Rodnan skin score (mRSS) is the current gold standard for diagnosing and staging skin fibrosis in SSc. However, mRSS is subjective, requires extensive training, and has high observer variability. Aim We aim to provide a quantitative method for the assessment of fibrosis. Approach We utilized optical coherence tomography (OCT), its extensions, optical coherence elastography (OCE), and OCT angiography (OCTA) to evaluate SSc-like fibrosis and therapy response in a mouse model. Results We showed stiffness differences between fibrotic and normal mouse skin by week 4 ( p = 0.02 ) during the longitudinal study. In the treatment response study, OCE recorded higher elastic wave velocity in untreated fibrotic skin ( p = 0.04 ). Treated fibrotic skin stiffness was between normal and fibrotic levels. OCTA indicated significantly dilated microvasculature in fibrotic skin versus control ( p ≪ 0.01 ), with more dilation in the treatment group ( p ≪ 0.01 ) than in normal skin. Conclusions Our results indicate that OCT and its extensions effectively analyze dermal fibrosis. OCE revealed increased stiffness in fibrotic skin, OCTA showed vessel dilation, and OCT noted morphological changes in fibrosis tissue.
Collapse
Affiliation(s)
| | - Yanping Chen
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Minghua Wu
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
| | - Pavel Nikitin
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Jessica Gutierrez
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Chandra Mohan
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Biomedical Engineering, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Shervin Assassi
- University of Houston, Mechanical and Aerospace Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Texas Health Science Center at Houston (UTHealth Houston), Division of Rheumatology, Department of Medicine, Houston, Texas, United States
- Baylor College of Medicine, Integrative Physiology, Houston, Texas, United States
| |
Collapse
|
4
|
Chavez L, Gao S, Pandey V, Yuan N, Ragab S, Li J, Hepburn MS, Smith P, Edelheit C, Corr DT, Kennedy BF, Intes X. Design and characterization of an optical phantom for mesoscopic multimodal fluorescence lifetime imaging and optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2025; 16:1006-1024. [PMID: 40109538 PMCID: PMC11919344 DOI: 10.1364/boe.549695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 03/22/2025]
Abstract
We developed a novel methodology for manufacturing multimodal, tissue-mimicking phantoms that exhibit both molecular and biomechanical contrast. This methodology leverages the immiscibility of silicone and hydrogels to create solid mesoscale phantoms with localized regions of precisely controlled fluorescence, including fluorescence lifetime properties, and adjustable stiffness, without requiring physical barriers. Mechanical, fluorescent, and optical characterization confirmed the tunability of the phantoms across a range of values relevant to biomedical applications. A macroscale 3D phantom was fabricated, and its properties were validated through fluorescence lifetime imaging (FLI) and optical coherence elastography (OCE). Validation demonstrated the successful tuning of both mechanical and fluorescence lifetime contrasts within a 3D structure, highlighting the feasibility of multimodal FLI-OCE. This new phantom manufacturing process is expected to support the development and validation of new multimodal imaging approaches to study molecular and biomechanical properties of the tumor microenvironment (TME), as well as their impact on therapeutic efficacy, and to enhance targeted therapies.
Collapse
Affiliation(s)
- Luis Chavez
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Shan Gao
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Vikas Pandey
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Nanxue Yuan
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Saif Ragab
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Matt S Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Percy Smith
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Caroline Edelheit
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - David T Corr
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, 5 Grudziądzka St., 87-100 Toruń, Poland
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging for Medicine, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
5
|
Iriarte-Valdez CA, Wenzel J, Baron E, Claus AY, Kalies S, Sperlich K, Stachs O, Torres-Mapa ML, Heisterkamp A. Assessing UVA and Laser-Induced Crosslinking via Brillouin Microscopy. JOURNAL OF BIOPHOTONICS 2025:e202400401. [PMID: 39956631 DOI: 10.1002/jbio.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/18/2025]
Abstract
Keratoconus and other corneal ectatic disorders involve the degradation of collagen fibers, which compromises the corneal biomechanical properties. Ultraviolet-A (UVA) crosslinking has emerged as the primary treatment to slow down collagen degradation. This treatment is limited in both penetration depth and spatial precision, potentially leading to unwanted side effects. This study compares the changes in biomechanical properties of corneas crosslinked with UVA irradiation and a near-infrared femtosecond laser, using Brillouin microscopy. The biomechanical properties of the crosslinked regions were mapped in terms of Brillouin frequency shift in three dimensions. UVA crosslinking showed an average increase in Brillouin frequency shift of ~100 MHz. We demonstrate targeted spatial and axial corneal femtosecond crosslinking, with similar Brillouin frequency shift values to UVA in crosslinked regions.
Collapse
Affiliation(s)
- Christian A Iriarte-Valdez
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Johannes Wenzel
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Emilie Baron
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexandra Y Claus
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Karsten Sperlich
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
- Department of Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
- Department of Life, Light & Matter, University of Rostock, Rostock, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
6
|
Binner P, Starshynov I, Tejeda G, McFall A, Molloy C, Ciccone G, Walker M, Vassalli M, Tobin AB, Faccio D. Optical, contact-free assessment of brain tissue stiffness and neurodegeneration. BIOMEDICAL OPTICS EXPRESS 2025; 16:447-459. [PMID: 39958854 PMCID: PMC11828460 DOI: 10.1364/boe.545580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/18/2025]
Abstract
Dementia affects a large proportion of the world's population. Approaches that allow for early disease detection and non-invasive monitoring of disease progression are desperately needed. Current approaches are centred on costly imaging technologies such as positron emission tomography and magnetic resonance imaging. We propose an alternative approach to assess neurodegeneration based on diffuse correlation spectroscopy (DCS), a remote and optical sensing technique. We employ this approach to assess neurodegeneration in mouse brains from healthy animals and those with prion disease. We find a statistically significant difference in the optical speckle decorrelation times between prion-diseased and healthy animals. We directly calibrated our DCS technique using hydrogel samples of varying Young's modulus, indicating that we can optically measure changes in the brain tissue stiffness in the order of 60 Pa (corresponding to a 1 s change in speckle decorrelation time). DCS holds promise for contact-free assessment of tissue stiffness alteration due to neurodegeneration, with a similar sensitivity to contact-based (e.g. nanoindentation) approaches.
Collapse
Affiliation(s)
- Philip Binner
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Ilya Starshynov
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo Tejeda
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Aisling McFall
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Colin Molloy
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Giuseppe Ciccone
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology (BIST) Barcelona, Spain
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Walker
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Asemani H, Rolland JP, Parker KJ. Integrated Difference Autocorrelation: A Novel Approach to Estimate Shear Wave Speed in the Presence of Compression Waves. IEEE Trans Biomed Eng 2025; 72:586-594. [PMID: 39302787 PMCID: PMC11875998 DOI: 10.1109/tbme.2024.3464104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
OBJECTIVE In shear wave elastography (SWE), the aim is to measure the velocity of shear waves, however unwanted compression waves and bulk tissue motion pose challenges in evaluating tissue stiffness. Conventional approaches often struggle to discriminate between shear and compression waves, leading to inaccurate shear wave speed (SWS) estimation. In this study, we propose a novel approach known as the integrated difference autocorrelation (IDA) estimator to accurately estimate reverberant SWS in the presence of compression waves and noise. METHODS The IDA estimator, unlike conventional techniques, computes the subtraction of velocity between neighboring particles, effectively minimizing the impact of long wavelength compression waves and other wide-area movements such as those caused by respiration. We evaluated the effectiveness of IDA by: (1) using k-Wave simulations of a branching cylinder in a soft background, (2) using ultrasound elastography on a breast phantom, (3) using ultrasound elastography in the human liver-kidney region, and (4) using magnetic resonance elastography (MRE) on a brain phantom. RESULTS By applying IDA to unfiltered contaminated wave fields of simulation and elastography experiments, the estimated SWSs are in good agreement with the ground truth values (i.e., less than 2% error for the simulation, 9% error for ultrasound elastography of the breast phantom and 19% error for MRE). CONCLUSION Our results demonstrate that IDA accurately estimates SWS, revealing the existence of a lesion, even in the presence of strong compression waves. SIGNIFICANCE IDA exhibits consistency in SWS estimation across different modalities and excitation scenarios, highlighting its robustness and potential clinical utility.
Collapse
Affiliation(s)
- Hamidreza Asemani
- Institute of Optics and the Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jannick P. Rolland
- Institute of Optics and the Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Kevin J. Parker
- Department of Electrical and Computer Engineering and the Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
8
|
Duvvuri C, Singh M, Lan G, Aglyamov SR, Larin KV, Twa MD. Determinants of Human Corneal Mechanical Wave Dispersion for In Vivo Optical Coherence Elastography. Transl Vis Sci Technol 2025; 14:26. [PMID: 39854195 PMCID: PMC11760281 DOI: 10.1167/tvst.14.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Purpose To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea. Methods Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation. The effects of stimulation angle and sample geometry on the dispersion were evaluated in corneal phantoms. Corneal wave speed dispersion was measured in 36 healthy human eyes in vivo. Results Air-pulse-induced dispersion was comparable to ultrasound-induced dispersion between 0.7 and 5 kHz (mean-difference ± 1.96 × SD: 0.006 ± 0.5 m/s) in ex vivo rabbit corneas. Stimulation 0° relative to the surface normal generated A0 Lamb waves in corneal tissue phantoms, while oblique stimulation (35° and 65°) generated S0 waves. Stimulating normal to the human corneal apex in vivo (0°) induced A0 waves, plateauing at 10.87 to 13.63 m/s at 4 kHz, and when obliquely stimulated at the periphery (65°), produced S0 waves, plateauing at 13.10 to 15.98 m/s at 4 kHz. Conclusions Air-pulse OCE can be used to measure human corneal Lamb wave dispersion of A0 and S0 propagation modes in vivo. These modes are selectively excited by changing the stimulation angle. Accounting for wave speed dispersion enables reliable estimation of corneal elastic modulus in vivo. Translational Relevance This work demonstrates the feasibility of air-pulse stimulation for robust OCE measurements of corneal stiffness in vivo for disease detection and therapy evaluation.
Collapse
Affiliation(s)
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong, China
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
9
|
Zevallos-Delgado C, Mekonnen TT, Duvvuri C, Rohman L, Schumacher J, Singh M, Aglyamov SR, Twa MD, Parel JM, Scarcelli G, Manns F, Larin KV. Acoustic Radiation Force Optical Coherence Elastography of the Crystalline Lens: Safety. Transl Vis Sci Technol 2024; 13:36. [PMID: 39786396 PMCID: PMC11684484 DOI: 10.1167/tvst.13.12.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ. Methods Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens. Preamplified signals at 50, 100, 250, 500, 750, 1000, and 1250 mV peak amplitude were tested on ex vivo porcine eyes (n = 21). Three-dimensional optical coherence tomography (OCT) and confocal microscopy images were acquired before and after ARF exposure to each signal amplitude to determine damage. Results The acoustic intensity of the ultrasound transducer at 100-mV preamplified peak amplitude input demonstrated a signal-to-noise ratio high enough for tracking elastic wave propagation in the lens and spatial-peak pulse-average (SPPA) intensity of 24.1 W/cm² and mechanical index (MI) of 0.46. The SPPA intensity was lower than the U.S. Food and Drug Administration (FDA) safety limit (28 W/cm2), but the MI was twice the safety limit (0.23). OCT structural and confocal microscopy images showed damage only at levels exceeding 1150 W/cm2 and 3.2 for SPPA intensity and MI, respectively. Conclusions OCT and confocal microscopy showed that, even when the intensity exceeded FDA recommendations (>100 mV), no noticeable damage was observed. Although a further reduction in acoustic intensity is necessary to meet FDA safety limits, ARF-based elastography shows promise for safe clinical translation in quantitatively characterizing lenticular biomechanical properties. Translational Relevance This work assessed the safety standards for acoustic radiation force to be used in human lens elastography according to the FDA safety limits.
Collapse
Affiliation(s)
| | - Taye Tolu Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | | | - Leana Rohman
- Ophtalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Miami, FL, USA
| | - Justin Schumacher
- Fischell Department of Bioengineering Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, USA
| | - Jean-Marie Parel
- Ophtalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Miami, FL, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | - Fabrice Manns
- Ophtalmic Biophysics Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami College of Engineering, Miami, FL, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
10
|
Zhang Y, Wang Y, Han X, Luo J, Lin C, Zhang Q, He X. Characterization of Limbus Biomechanical Properties Using Optical Coherence Elastography. JOURNAL OF BIOPHOTONICS 2024; 17:e202400275. [PMID: 39225054 DOI: 10.1002/jbio.202400275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The elasticity of the limbus is crucial for ocular health, yet it remains inadequately explored. This study employs acoustic radiation force optical coherence elastography (ARF-OCE) to evaluate the biomechanical properties of the limbus under varying intraocular pressures. The method was validated using a heterogeneous phantom and subsequently applied to ex vivo porcine limbus samples. Elastic wave velocity at specific locations within the limbus was calculated, and the corresponding Young's modulus values were obtained. Spatial elasticity distribution maps were generated by correlating Young's modulus values with their respective locations in the two-dimensional structural images. The results indicate that ARF-OCE enhances the understanding of limbus biomechanical behavior and holds potential for diagnosing regional variations caused by ocular diseases.
Collapse
Affiliation(s)
- Yubao Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Yue Wang
- Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, People's Republic of China
- Jiangxi Xinjian No.2 Secondary School, Nanchang, People's Republic of China
| | - Xiao Han
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Jiahui Luo
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Chuanqi Lin
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Qin Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Xingdao He
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| |
Collapse
|
11
|
Shi G, Zhang Y, Ai S, Wang Y, Li Y, He X, Zheng X. In Vivo Imaging and Evaluation of Corneal Biomechanics After Corneal Transplantation by Optical Coherence Elastography. JOURNAL OF BIOPHOTONICS 2024:e202400207. [PMID: 39428441 DOI: 10.1002/jbio.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024]
Abstract
Postoperative corneal biomechanical evaluation is of great significance in clinical monitoring and management since corneal transplantation is one of the main methods to improve visual function. In this paper, we propose an OCE system based on a small ultrasound transducer to realize the in vivo detection of postoperative corneal elasticity in different directions. It was first validated and analyzed by different agar, and then the elasticity changes in normal cornea and post-transplant corneal implants and implant beds were further investigated. Compared with normal corneas, the shear wave velocity of the postoperative cornea decreased from 7.42 ± 1.71 m/s to 4.95 ± 0.35 m/s. Meanwhile, the shear wave velocity of the corneal implant bed was lower than that of the implanted sheet. Therefore, this study reports the first biomechanical measurement of corneal grafts based on the OCE technique, which might provide a potential tool for the postoperative evaluation of clinical patients.
Collapse
Affiliation(s)
- Gang Shi
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yubao Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Sizhu Ai
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yidi Wang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Yingji Li
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Xingdao He
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, P. R. China
| | - Xinhe Zheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
12
|
Shi G, Zhang Y, Wang Y, Ai S, Zhang C, He X, Zheng X. Quantitative Evaluation of Human Lens and Lens Capsule Elasticity by Optical Coherence Elastography Based on a Rayleigh Wave Model. JOURNAL OF BIOPHOTONICS 2024:e202400322. [PMID: 39420238 DOI: 10.1002/jbio.202400322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Evaluating the biomechanical properties of the lens and lens capsule is important for the clinical diagnosis and treatment of age-related cataracts and presbyopia. In this study, we developed an optical coherent elastography technique to assess the elasticity of the lens and lens capsule in the human eye. With age, the mean Young's modulus of the lens increased from 12.28 ± 0.87 kPa to 18.59 ± 1.45 kPa, and the lens capsule increased from 6.33 ± 0.36 kPa to 13.33 ± 0.74 kPa. The results showed that the Young's modulus of the lens capsule and lens increased with age, with the Young's modulus of the lens significantly higher than that of the lens capsule. This study reports the assessment of the elasticity of the human lens and lens capsule by the OCE technique, indicating that it may provide a potential clinical tool for advancing research on diseases affecting the lens.
Collapse
Affiliation(s)
- Gang Shi
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Yubao Zhang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Yidi Wang
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Sizhu Ai
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Chaozhong Zhang
- Affiliated Eye Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xingdao He
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Nanchang Hangkong University, Nanchang, People's Republic of China
| | - Xinhe Zheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
13
|
Zhang Y, Liao J, Feng Z, Yang W, Perelli A, Wang Z, Li C, Huang Z. VP-net: an end-to-end deep learning network for elastic wave velocity prediction in human skin in vivo using optical coherence elastography. Front Bioeng Biotechnol 2024; 12:1465823. [PMID: 39469517 PMCID: PMC11513296 DOI: 10.3389/fbioe.2024.1465823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Acne vulgaris, one of the most common skin conditions, affects up to 85% of late adolescents, currently no universally accepted assessment system. The biomechanical properties of skin provide valuable information for the assessment and management of skin conditions. Wave-based optical coherence elastography (OCE) quantitatively assesses these properties of tissues by analyzing induced elastic wave velocities. However, velocity estimation methods require significant expertise and lengthy image processing times, limiting the clinical translation of OCE technology. Recent advances in machine learning offer promising solutions to simplify velocity estimation process. Methods In this study, we proposed a novel end-to-end deep-learning model, named velocity prediction network (VP-Net), aiming to accurately predict elastic wave velocity from raw OCE data of in vivo healthy and abnormal human skin. A total of 16,424 raw phase slices from 1% to 5% agar-based tissue-mimicking phantoms, 28,270 slices from in vivo human skin sites including the palm, forearm, back of the hand from 16 participants, and 580 slices of facial closed comedones were acquired to train, validate, and test VP-Net. Results VP-Net demonstrated highly accurate velocity prediction performance compared to other deep-learning-based methods, as evidenced by small evaluation metrics. Furthermore, VP-Net exhibited low model complexity and parameter requirements, enabling end-to-end velocity prediction from a single raw phase slice in 1.32 ms, enhancing processing speed by a factor of ∼100 compared to a conventional wave velocity estimation method. Additionally, we employed gradient-weighted class activation maps to showcase VP-Net's proficiency in discerning wave propagation patterns from raw phase slices. VP-Net predicted wave velocities that were consistent with the ground truth velocities in agar phantom, two age groups (20s and 30s) of multiple human skin sites and closed comedones datasets. Discussion This study indicates that VP-Net could rapidly and accurately predict elastic wave velocities related to biomechanical properties of in vivo healthy and abnormal skin, offering potential clinical applications in characterizing skin aging, as well as assessing and managing the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Yilong Zhang
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Jinpeng Liao
- School of Physics and Engineering Technology, University of York, York, United Kingdom
| | - Zhengshuyi Feng
- School of Physics and Engineering Technology, University of York, York, United Kingdom
| | - Wenyue Yang
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Alessandro Perelli
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Zhiqiong Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chunhui Li
- Centre of Medical Engineering and Technology, University of Dundee, Dundee, United Kingdom
| | - Zhihong Huang
- School of Physics and Engineering Technology, University of York, York, United Kingdom
| |
Collapse
|
14
|
Song C, He W, Song P, Feng J, Huang Y, Xu J, An L, Qin J, Gao K, Twa MD, Lan G. Chirp excitation for natural frequency optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2024; 15:5856-5871. [PMID: 39421777 PMCID: PMC11482180 DOI: 10.1364/boe.536685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the in vivo human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an ex vivo porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0-840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%-4.0% agar: 239-782 Hz, 198 Hz/%; porcine cornea: 68-414 Hz, 18 Hz/mmHg, IOP: 5-25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%-7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0-5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%-7.5% agar: 253-1429 Hz, 181 Hz/%; porcine cornea: 76-1240 Hz, 32 Hz/mmHg, IOP: 5-40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.
Collapse
Affiliation(s)
- Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Pengfei Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Kai Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong 510060, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
15
|
Schmidt G, Bouma BE, Uribe-Patarroyo N. Asynchronous, semi-reverberant elastography. OPTICA 2024; 11:1285-1294. [PMID: 40109673 PMCID: PMC11922557 DOI: 10.1364/optica.528507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/12/2024] [Indexed: 03/22/2025]
Abstract
Optical coherence elastography measures elasticity-a property correlated with pathologies such as tumors due to fibrosis, atherosclerosis due to heterogeneous plaque composition, and ocular diseases such as keratoconus and glaucoma. Wave-based elastography, including reverberant elastography, leverages the properties of shear waves traveling through tissue primarily to infer shear modulus. These methods have already seen significant development over the past decade. However, existing implementations in OCT require robust synchronization of shear wave excitation with imaging, complicating widespread clinical adoption. We present a method for complete recovery of the harmonic shear wave field in an asynchronous, conventional frame-rate, raster-scanning OCT system by modeling raster-scanning as an amplitude modulation of the displacement field. This technique recovers the entire spatially and temporally coherent complex valued shear wave field from just two B-scans, while reducing the time scale for sensitivity to motion from minutes to tens of milliseconds. To the best of our knowledge, this work represents the first successful demonstration of reverberant elastography on a human subject in vivo with a conventional frame-rate, raster-scanning OCT system, greatly expanding opportunity for widespread translation.
Collapse
Affiliation(s)
- Ginger Schmidt
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 77 Massachusetts Avenue, Massachusetts 02139, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
16
|
Mekonnen TT, Ambekar YS, Zevallos-Delgado C, Nair A, Zvietcovich F, Zarkoob H, Singh M, Lim YW, Ferrer M, Aglyamov SR, Scarcelli G, Song MJ, Larin KV. Dual optical elastography detects TGF - β -induced alterations in the biomechanical properties of skin scaffolds. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:095002. [PMID: 39295639 PMCID: PMC11409821 DOI: 10.1117/1.jbo.29.9.095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Significance The skin's mechanical properties are tightly regulated. Various pathologies can affect skin stiffness, and understanding these changes is a focus in tissue engineering. Ex vivo skin scaffolds are a robust platform for evaluating the effects of various genetic and molecular interactions on the skin. Transforming growth factor-beta ( TGF - β ) is a critical signaling molecule in the skin that can regulate the amount of collagen and elastin in the skin and, consequently, its mechanical properties. Aim This study investigates the biomechanical properties of bio-engineered skin scaffolds, focusing on the influence of TGF - β , a signaling molecule with diverse cellular functions. Approach The TGF - β receptor I inhibitor, galunisertib, was employed to assess the mechanical changes resulting from dysregulation of TGF - β . Skin scaffold samples, grouped into three categories (control, TGF - β -treated, and TGF - β + galunisertib-treated), were prepared in two distinct culture media-one with aprotinin (AP) and another without. Two optical elastography techniques, namely wave-based optical coherence elastography (OCE) and Brillouin microscopy, were utilized to quantify the biomechanical properties of the tissues. Results Results showed significantly higher wave speed (with AP, p < 0.001 ; without AP, p < 0.001 ) and Brillouin frequency shift (with AP, p < 0.001 ; without AP, p = 0.01 ) in TGF - β -treated group compared with the control group. The difference in wave speed between the control and TGF - β + galunisertib with ( p = 0.10 ) and without AP ( p = 0.36 ) was not significant. Moreover, the TGF - β + galunisertib-treated group exhibited lower wave speed without and with AP and reduced Brillouin frequency shift than the TGF - β -treated group without AP, further strengthening the potential role of TGF - β in regulating the mechanical properties of the samples. Conclusions These findings offer valuable insights into TGF - β -induced biomechanical alterations in bio-engineered skin scaffolds, highlighting the potential of OCE and Brillouin microscopy in the development of targeted therapies in conditions involving abnormal tissue remodeling and fibrosis.
Collapse
Affiliation(s)
- Taye T. Mekonnen
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- University of Sydney, Department of Mechanical Engineering, Sydney, New South Wales, Australia
| | - Yogeshwari S. Ambekar
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | | | - Achuth Nair
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Fernando Zvietcovich
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Pontificia Universidad Catolica del Peru, Department of Engineering, Lima, Peru
| | - Hoda Zarkoob
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Yi Wei Lim
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Marc Ferrer
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Min Jae Song
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| |
Collapse
|
17
|
Ge GR, Song W, Giannetto MJ, Rolland JP, Nedergaard M, Parker KJ. Mouse brain elastography changes with sleep/wake cycles, aging, and Alzheimer's disease. Neuroimage 2024; 295:120662. [PMID: 38823503 PMCID: PMC11409907 DOI: 10.1016/j.neuroimage.2024.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-β or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.
Collapse
Affiliation(s)
- Gary R Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jannick P Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA; Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200-N, Denmark.
| | - Kevin J Parker
- Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, NY 14627, USA; Department of Imaging Sciences (Radiology), University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
Alexandrovskaya YM, Kasianenko EM, Sovetsky AA, Matveyev AL, Atyakshin DA, Patsap OI, Ignatiuk MA, Volodkin AV, Zaitsev VY. Optical coherence elastography with osmotically induced strains: Preliminary demonstration for express detection of cartilage degradation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400016. [PMID: 38702959 DOI: 10.1002/jbio.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Optical coherence elastography (OCE) demonstrated impressive abilities for diagnosing tissue types/states using differences in their biomechanics. Usually, OCE visualizes tissue deformation induced by some additional stimulus (e.g., contact compression or auxiliary elastic-wave excitation). We propose a new variant of OCE with osmotically induced straining (OIS-OCE) and demonstrate its application to assess various stages of proteoglycan content degradation in cartilage. The information-bearing signatures in OIS-OCE are the magnitude and rate of strains caused by the application of osmotically active solutions onto the sample surface. OCE examination of the induced strains does not require special tissue preparation, the osmotic stimulation is highly reproducible, and strains are observed in noncontact mode. Several minutes suffice to obtain a conclusion. These features are promising for intraoperative method usage when express assessment of tissue state is required during surgical operations. The "waterfall" images demonstrate the development of cumulative osmotic strains in control and degraded cartilage samples.
Collapse
Affiliation(s)
| | - Ekaterina M Kasianenko
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
- National Research Center Kurchatov Institute, Moscow, Russia
| | - Alexander A Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry A Atyakshin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Olga I Patsap
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Mikhail A Ignatiuk
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Artem V Volodkin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Vladimir Y Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
19
|
Zheng Z, Meng Sua Y, Zhu S, Rehain P, Huang YP. Non-contact elasticity contrast imaging using photon counting. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076003. [PMID: 38989529 PMCID: PMC11234449 DOI: 10.1117/1.jbo.29.7.076003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024]
Abstract
Significance Tissues' biomechanical properties, such as elasticity, are related to tissue health. Optical coherence elastography produces images of tissues based on their elasticity, but its performance is constrained by the laser power used, working distance, and excitation methods. Aim We develop a new method to reconstruct the elasticity contrast image over a long working distance, with only low-intensity illumination, and by non-contact acoustic wave excitation. Approach We combine single-photon vibrometry and quantum parametric mode sorting (QPMS) to measure the oscillating backscattered signals at a single-photon level and derive the phantoms' relative elasticity. Results We test our system on tissue-mimicking phantoms consisting of contrast sections with different concentrations and thus stiffness. Our results show that as the driving acoustic frequency is swept, the phantoms' vibrational responses are mapped onto the photon-counting histograms from which their mechanical properties-including elasticity-can be derived. Through lateral and longitudinal laser scanning at a fixed frequency, a contrast image based on samples' elasticity can be reliably reconstructed upon photon level signals. Conclusions We demonstrated the reliability of QPMS-based elasticity contrast imaging of agar phantoms in a long working distance, low-intensity environment. This technique has the potential for in-depth images of real biological tissue and provides a new approach to elastography research and applications.
Collapse
Affiliation(s)
- Zipei Zheng
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Yong Meng Sua
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Shenyu Zhu
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Patrick Rehain
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| | - Yu-Ping Huang
- Stevens Institute of Technology, Center for Quantum Science and Engineering, Department of Physics, Hoboken, New Jersey, United States
| |
Collapse
|
20
|
Farsheed AC, Zevallos-Delgado C, Yu LT, Saeidifard S, Swain JWR, Makhoul JT, Thomas AJ, Cole CC, Garcia Huitron E, Grande-Allen KJ, Singh M, Larin KV, Hartgerink JD. Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers. ACS NANO 2024; 18:12477-12488. [PMID: 38699877 PMCID: PMC11285723 DOI: 10.1021/acsnano.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.
Collapse
Affiliation(s)
- Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Le Tracy Yu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sajede Saeidifard
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jonathan T Makhoul
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam J Thomas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Carson C Cole
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Eric Garcia Huitron
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Li GY, Feng X, Yun SH. In Vivo Optical Coherence Elastography Unveils Spatial Variation of Human Corneal Stiffness. IEEE Trans Biomed Eng 2024; 71:1418-1429. [PMID: 38032780 PMCID: PMC11086014 DOI: 10.1109/tbme.2023.3338086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
OBJECTIVE The mechanical properties of corneal tissues play a crucial role in determining corneal shape and have significant implications in vision care. This study aimed to address the challenge of obtaining accurate in vivo data for the human cornea. METHODS We have developed a high-frequency optical coherence elastography (OCE) technique using shear-like antisymmetric (A0)-mode Lamb waves at frequencies above 10 kHz. RESULTS By incorporating an anisotropic, nonlinear constitutive model and utilizing the acoustoelastic theory, we gained quantitative insights into the influence of corneal tension on wave speeds and elastic moduli. Our study revealed significant spatial variations in the shear modulus of the corneal stroma on healthy subjects for the first time. Over an age span from 21 to 34 (N = 6), the central corneas exhibited a mean shear modulus of 87 kPa, while the corneal periphery showed a significant decrease to 44 kPa. The central cornea's shear modulus decreases with age with a slope of -19 +/- 8 kPa per decade, whereas the periphery showed non-significant age dependence. The limbus demonstrated an increased shear modulus exceeding 100 kPa. We obtained wave displacement profiles that are consistent with highly anisotropic corneal tissues. CONCLUSION Our approach enabled precise measurement of corneal tissue elastic moduli in situ with high precision (<7%) and high spatial resolution (<1 mm). Our results revealed significant stiffness variation from the central to peripheral corneas. SIGNIFICANCE The high-frequency OCE technique holds promise for biomechanical evaluation in clinical settings, providing valuable information for refractive surgeries, degenerative disorder diagnoses, and intraocular pressure assessments.
Collapse
|
22
|
Song C, He W, Feng J, Twa MD, Huang Y, Xu J, Qin J, An L, Wei X, Lan G. Dual-channel air-pulse optical coherence elastography for frequency-response analysis. BIOMEDICAL OPTICS EXPRESS 2024; 15:3301-3316. [PMID: 38855682 PMCID: PMC11161337 DOI: 10.1364/boe.520551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
Microliter air-pulse optical coherence elastography (OCE) has recently been proposed for the characterization of soft-tissue biomechanics using transient, sub-nanometer to micrometer-scale natural frequency oscillations. However, previous studies have not been able to provide real-time air-pulse monitoring during OCE natural frequency measurement, which could lead to inaccurate measurement results due to the unknown excitation spectrum. To address this issue, we introduce a dual-channel air-pulse OCE method, with one channel stimulating the sample and the other being simultaneously measured with a pressure sensor. This allows for more accurate natural frequency characterization using the frequency response function, as proven by a comprehensive comparison under different conditions with a diverse range of excitation spectra (from broad to narrow, clean to noisy) as well as a diverse set of sample response spectra. We also demonstrate the capability of the frequency-response analysis in distinguishing samples with different stiffness levels: the dominant natural frequencies increased with agar concentrations (181-359 Hz, concentrations: 1-2%, and maximum displacements: 0.12-0.47 µm) and intraocular pressures (IOPs) for the silicone cornea (333-412 Hz, IOP: 5-40 mmHg, and maximum displacements: 0.41-0.52 µm) under a 200 Pa stimulation pressure. These frequencies remained consistent across different air-pulse durations (3 ms to 35 ms). The dual-channel OCE approach that uses transient, low-pressure stimulation and high-resolution imaging holds the potential to advance our understanding of sample frequency responses, especially when investigating delicate tissues such as the human cornea in vivo.
Collapse
Affiliation(s)
- Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research, Peking University, Beijing 100142, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
- International Cancer Institute, Peking University, Beijing 100191, China
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| |
Collapse
|
23
|
Zhao Y, Zhu Y, Yan Y, Yang H, Liu J, Lu Y, Li Y, Huang G. In Vivo Evaluation of Corneal Biomechanics Following Cross-Linking Surgeries Using Optical Coherence Elastography in a Rabbit Model of Keratoconus. Transl Vis Sci Technol 2024; 13:15. [PMID: 38376862 PMCID: PMC10883337 DOI: 10.1167/tvst.13.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/30/2023] [Indexed: 02/21/2024] Open
Abstract
Purpose Validation of the feasibility of novel acoustic radiation force optical coherence elastography (ARF-OCE) for the evaluation of biomechanical enhancement of the in vivo model of keratoconus by clinical cross-linking (CXL) surgery. Methods Twelve in vivo rabbit corneas were randomly divided into two groups. Both groups were treated with collagenase type II, and a keratoconus model was obtained. Then, the two groups were treated with CXL procedures with different irradiation energy of 15 J and 30 J (CXL-15 J and CXL-30 J, respectively). An ARF-OCE probe with an ultrasmall ultrasound transducer was used to detect the biomechanical properties of cornea. An antisymmetric Lamb wave model was combined with the frequency dispersion relationship to achieve depth-resolved elastography. Results Compared with the phase velocity of the Lamb wave in healthy corneas (approximately 3.96 ± 0.27 m/s), the phase velocity of the Lamb wave was lower in the keratoconus region (P < 0.05), with an average value of 3.12 ± 0.12 m/s. Moreover, the corneal stiffness increased after CXL treatment (P < 0.05), and the average phase velocity of the Lamb wave was 4.3 ± 0.19 m/s and 4.54 ± 0.13 m/s after CXL-15 J and CXL-30 J treatment. Conclusions The Young's moduli of the keratoconus regions were significantly lower than the healthy corneas. Moreover, the Young's modulus of the keratoconus regions was significantly higher after CXL-30 J treatment than after CXL-15 J treatment. We demonstrated that the ARF-OCE technique has great potential in screening keratoconus and guiding clinical CXL treatment. Translational Relevance This work accelerates the clinical translation of OCE systems using ultrasmall ultrasound transducers and is used to guide CXL procedures.
Collapse
Affiliation(s)
- Yanzhi Zhao
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yirui Zhu
- School of Physics, University of Nanjing, Nanjing, Jiangsu, China
- School of Testing and Opto-electronic Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, China
| | - Yange Yan
- Yujiang District People's Hospital, Jiangxi, China
| | - Hongwei Yang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jingchao Liu
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yongan Lu
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Yingjie Li
- Department of Ophthalmology, Nanchang First Hospital, Nanchang, Jiangxi, China
| | - Guofu Huang
- Eye Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Parmar A, Singh K. Motion-artifact-free single shot two-beam optical coherence elastography system. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:025003. [PMID: 38390309 PMCID: PMC10883076 DOI: 10.1117/1.jbo.29.2.025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Significance The assessment of the biomechanical properties of the skin using various imaging techniques has been used as a diagnostic tool in dermatology. Optical coherence elastography (OCE) is one of the techniques that allows for the measurement of elastic properties. OCE relies on measuring tissue displacements induced by external sources. Measuring the tissue's mechanical properties in vivo using OCE is often challenging due to bulk tissue movement. Aim This study aimed to develop an OCE system that allows for minimizing the effects of bulk tissue movements. To achieve this, we designed a two-beam OCE system that simultaneously measures the tissue displacement at two locations on the sample. This allows for cancelling the effect of the tissue bulk movement, which is common to both measurement points. Approach We used a piezoelectric transducer to generate surface acoustic waves (SAW) in the sample. The velocity of the excited waves, which is proportional to the rigidity of the sample, was measured by calculating the phase delay of the SAW at two locations on the sample. Simultaneous measurement at two locations was achieved by dividing a single light beam into two by focusing on the sample at two different locations. The two beams travel different optical path lengths, and the reflected signals were depth encoded in a single optical coherence tomography scan using a single reference beam. Results The system was characterized using different tissue-mimicking phantoms and the skin of healthy volunteers at the wrist and the palm. We achieved an approximately 50-fold increase in phase sensitivity measurement. Conclusions We designed a simple two-beam OCE system that effectively minimizes the effect of tissue movement. We believe that the presented system will find immediate applications in the clinic to monitor the progression of systemic sclerosis disease.
Collapse
Affiliation(s)
- Asha Parmar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Experimental Physics, Erlangen, Germany
| | - Kanwarpal Singh
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Experimental Physics, Erlangen, Germany
- McMaster University, Department of Electrical and Computer Engineering, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Nair A, Zvietcovich F, Singh M, Weikert MP, Aglyamov SR, Larin KV. Optical coherence elastography measures the biomechanical properties of the ex vivo porcine cornea after LASIK. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:016002. [PMID: 38223300 PMCID: PMC10787573 DOI: 10.1117/1.jbo.29.1.016002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Significance The biomechanical impact of refractive surgery has long been an area of investigation. Changes to the cornea structure cause alterations to its mechanical integrity, but few studies have examined its specific mechanical impact. Aim To quantify how the biomechanical properties of the cornea are altered by laser assisted in situ keratomileusis (LASIK) using optical coherence elastography (OCE) in ex vivo porcine corneas. Approach Three OCE techniques, wave-based air-coupled ultrasound (ACUS) OCE, heartbeat (Hb) OCE, and compression OCE were used to measure the mechanical properties of paired porcine corneas, where one eye of the pair was left untreated, and the fellow eye underwent LASIK. Changes in stiffness as a function of intraocular pressure (IOP) before and after LASIK were measured using each technique. Results ACUS-OCE showed that corneal stiffness changed as a function of IOP for both the untreated and the treated groups. The elastic wave speed after LASIK was lower than before LASIK. Hb-OCE and compression OCE showed regional changes in corneal strain after LASIK, where the absolute strain difference between the cornea anterior and posterior increased after LASIK. Conclusions The results of this study suggest that LASIK may soften the cornea and that these changes are largely localized to the region where the surgery was performed.
Collapse
Affiliation(s)
- Achuth Nair
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | | | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Mitchell P. Weikert
- Baylor College of Medicine, Cullen Eye Institute, Houston, Texas, United States
| | - Salavat R. Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, Texas, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Baylor College of Medicine, Department of Physiology and Biophysics, Houston, Texas, United States
| |
Collapse
|
26
|
Desai R, Chawla H, Larin K, Assassi S. Methods for objective assessment of skin involvement in systemic sclerosis. Curr Opin Rheumatol 2023; 35:301-308. [PMID: 37605869 PMCID: PMC11015902 DOI: 10.1097/bor.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PURPOSE OF REVIEW Skin fibrosis is the most prominent disease manifestation of systemic sclerosis (SSc). Although the treatment for other SSc manifestations has expanded over the years, there is limited progress in identifying effective treatment options for SSc skin involvement. This is in part due to limitations in the utilized outcome measures for assessment of skin fibrosis. This review focuses on different emerging assessment tools for SSc skin involvement and their potential use for clinical care and multicenter trials. RECENT FINDINGS Durometer and other device-based methodologies requiring application of direct pressure to the affected skin have been studied in SSc. However, there are concerns that the required application of pressure might be a source of variability. Ultrasound-based methods have been compared with modified Rodnan Skin Score in several studies, indicating acceptable construct validity. However, few studies have examined their criterion validity by providing comparisons to skin histology. Optical coherence-based methods show promising preliminary results for simultaneous assessment of skin fibrosis and vasculopathy. Further standardization and validation (including comparison to skin histology) of these promising novel assessment tools in large, longitudinal SSc cohort studies are needed to establish them as clinically useful outcome measures with acceptable sensitivity to change. SUMMARY Recent advances in imaging techniques provide a promising opportunity for development of a valid and reliable assessment tool for quantification of SSc skin fibrosis, which can pave the way for approval of effective treatment options for this high burden disease manifestation.
Collapse
Affiliation(s)
- Ruhani Desai
- Division of Rheumatology, The University of Texas Health Science Center at Houston, TX, USA
| | - Harshdeep Chawla
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kirill Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
27
|
Latus S, Grube S, Eixmann T, Neidhardt M, Gerlach S, Mieling R, Huttmann G, Lutz M, Schlaefer A. A Miniature Dual-Fiber Probe for Quantitative Optical Coherence Elastography. IEEE Trans Biomed Eng 2023; 70:3064-3072. [PMID: 37167045 DOI: 10.1109/tbme.2023.3275539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Optical coherence elastography (OCE) allows for high resolution analysis of elastic tissue properties. However, due to the limited penetration of light into tissue, miniature probes are required to reach structures inside the body, e.g., vessel walls. Shear wave elastography relates shear wave velocities to quantitative estimates of elasticity. Generally, this is achieved by measuring the runtime of waves between two or multiple points. For miniature probes, optical fibers have been integrated and the runtime between the point of excitation and a single measurement point has been considered. This approach requires precise temporal synchronization and spatial calibration between excitation and imaging. METHODS We present a miniaturized dual-fiber OCE probe of 1 mm diameter allowing for robust shear wave elastography. Shear wave velocity is estimated between two optics and hence independent of wave propagation between excitation and imaging. We quantify the wave propagation by evaluating either a single or two measurement points. Particularly, we compare both approaches to ultrasound elastography. RESULTS Our experimental results demonstrate that quantification of local tissue elasticities is feasible. For homogeneous soft tissue phantoms, we obtain mean deviations of 0.15 ms-1 and 0.02 ms-1 for single-fiber and dual-fiber OCE, respectively. In inhomogeneous phantoms, we measure mean deviations of up to 0.54 ms-1 and 0.03 ms-1 for single-fiber and dual-fiber OCE, respectively. CONCLUSION We present a dual-fiber OCE approach that is much more robust in inhomogeneous tissues. Moreover, we demonstrate the feasibility of elasticity quantification in ex-vivo coronary arteries. SIGNIFICANCE This study introduces an approach for robust elasticity quantification from within the tissue.
Collapse
|
28
|
Hatami M, Nevozhay D, Singh M, Schill A, Boerner P, Aglyamov S, Sokolov K, Larin KV. Nanobomb optical coherence elastography in multilayered phantoms. BIOMEDICAL OPTICS EXPRESS 2023; 14:5670-5681. [PMID: 38021113 PMCID: PMC10659790 DOI: 10.1364/boe.502576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
Many tissues are composed of layered structures, and a better understanding of the changes in the layered tissue biomechanics can enable advanced guidance and monitoring of therapy. The advent of elastography using longitudinally propagating shear waves (LSWs) has created the prospect of a high-resolution assessment of depth-dependent tissue elasticity. Laser activation of liquid-to-gas phase transition of dye-loaded perfluorocarbon (PFC) nanodroplets (a.k.a., nanobombs) can produce highly localized LSWs. This study aims to leverage the potential of photoactivation of nanobombs to incudce LSWs with very high-frequency content in wave-based optical coherence elastography (OCE) to estimate the elasticity gradient with high resolution. In this work, we used multilayered tissue-mimicking phantoms to demonstrate that highly localized nanobomb (NB)-induced LSWs can discriminate depth-wise tissue elasticity gradients. The results show that the NB-induced LSWs rapidly change speed when transitioning between layers with different mechanical properties, resulting in an elasticity resolution of ∼65 µm. These results show promise for characterizing the elasticity of multilayer tissue with a fine resolution.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Alexander Schill
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Paul Boerner
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
29
|
Zhu Y, Shi J, Alvarez-Arenas TEG, Li C, Wang H, Zhang D, He X, Wu X. Noncontact longitudinal shear wave imaging for the evaluation of heterogeneous porcine brain biomechanical properties using optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2023; 14:5113-5126. [PMID: 37854580 PMCID: PMC10581781 DOI: 10.1364/boe.497801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023]
Abstract
High-resolution quantification of heterogeneous brain biomechanical properties has long been an important topic. Longitudinal shear waves (LSWs) can be used to assess the longitudinal Young's modulus, but contact excitation methods have been used in most previous studies. We propose an air-coupled ultrasound transducer-based optical coherence elastography (AcUT-OCE) technique for noncontact excitation and detection of LSWs in samples and assessment of the nonuniformity of the brain's biomechanical properties. The air-coupled ultrasonic transducer (AcUT) for noncontact excitation of LSWs in the sample has a center frequency of 250 kHz. Phase-resolved Doppler optical coherence tomography (OCT) was used to image and reconstruct the propagation behavior of LSWs and surface ultrasound waves at high resolution. An agar phantom model was used to verify the feasibility of the experimental protocol, and experiments with ex vivo porcine brain samples were used to assess the nonuniformity of the brain biomechanical properties. LSWs with velocities of 0.83 ± 0.11 m/s were successfully excited in the agar phantom model. The perivascular elastography results in the prefrontal cortex (PFC) of the ex vivo porcine brains showed that the Young's modulus was significantly higher in the longitudinal and transverse directions on the left side of the cerebral vessels than on the right side and that the Young's modulus of the PFC decreased with increasing depth. The AcUT-OCE technique, as a new scheme for LSW applications in in vivo elastography, can be used for noncontact excitation of LSWs in brain tissue and high-resolution detection of heterogeneous brain biomechanical properties.
Collapse
Affiliation(s)
- Yirui Zhu
- School of Physics, Nanjing University, Nanjing, 210093, China
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Jiulin Shi
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Tomas E Gomez Alvarez-Arenas
- Ultrasonic and Sensors Technologies Department, Information and Physical Technologies Institute, Spanish National Research Council, Serrano 144, 28006, Madrid, Spain
| | - Chenxi Li
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Haohao Wang
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Dong Zhang
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xingdao He
- School of Testing and Opto-electric Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Xiao Wu
- School of Physics, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
30
|
Feng X, Li GY, Yun SH. Ultra-wideband optical coherence elastography from acoustic to ultrasonic frequencies. Nat Commun 2023; 14:4949. [PMID: 37587178 PMCID: PMC10432526 DOI: 10.1038/s41467-023-40625-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Visualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz. Our system can measure the stiffness of hard materials including bones and extract viscoelastic shear moduli for polymers and hydrogels in conventionally inaccessible ranges between 100 Hz and 1 MHz. The dispersion of Rayleigh surface waves across the ultrawide band allowed us to profile depth-dependent shear modulus in cartilages ex vivo and human skin in vivo with sub-mm anatomical resolution. This technique holds immense potential as a noninvasive measurement tool for material sciences, tissue engineering, and medical diagnostics.
Collapse
Affiliation(s)
- Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA.
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Ma G, Cai J, Zhong R, He W, Ye H, Duvvuri C, Song C, Feng J, An L, Qin J, Huang Y, Xu J, Twa MD, Lan G. Corneal Surface Wave Propagation Associated with Intraocular Pressures: OCT Elastography Assessment in a Simplified Eye Model. Bioengineering (Basel) 2023; 10:754. [PMID: 37508781 PMCID: PMC10376591 DOI: 10.3390/bioengineering10070754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Assessing corneal biomechanics in vivo has long been a challenge in the field of ophthalmology. Despite recent advances in optical coherence tomography (OCT)-based elastography (OCE) methods, controversy remains regarding the effect of intraocular pressure (IOP) on mechanical wave propagation speed in the cornea. This could be attributed to the complexity of corneal biomechanics and the difficulties associated with conducting in vivo corneal shear-wave OCE measurements. We constructed a simplified artificial eye model with a silicone cornea and controllable IOPs and performed surface wave OCE measurements in radial directions (54-324°) of the silicone cornea at different IOP levels (10-40 mmHg). The results demonstrated increases in wave propagation speeds (mean ± STD) from 6.55 ± 0.09 m/s (10 mmHg) to 9.82 ± 0.19 m/s (40 mmHg), leading to an estimate of Young's modulus, which increased from 145.23 ± 4.43 kPa to 326.44 ± 13.30 kPa. Our implementation of an artificial eye model highlighted that the impact of IOP on Young's modulus (ΔE = 165.59 kPa, IOP: 10-40 mmHg) was more significant than the effect of stretching of the silicone cornea (ΔE = 15.79 kPa, relative elongation: 0.98-6.49%). Our study sheds light on the potential advantages of using an artificial eye model to represent the response of the human cornea during OCE measurement and provides valuable insights into the impact of IOP on wave-based OCE measurement for future in vivo corneal biomechanics studies.
Collapse
Affiliation(s)
- Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China
| | - Jing Cai
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Rijian Zhong
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Weichao He
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Haoxi Ye
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | | | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Weiren Meditech Co., Ltd., Foshan 528000, China
| |
Collapse
|
32
|
Ghosh B, Agarwal K. Viewing life without labels under optical microscopes. Commun Biol 2023; 6:559. [PMID: 37231084 PMCID: PMC10212946 DOI: 10.1038/s42003-023-04934-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Optical microscopes today have pushed the limits of speed, quality, and observable space in biological specimens revolutionizing how we view life today. Further, specific labeling of samples for imaging has provided insight into how life functions. This enabled label-based microscopy to percolate and integrate into mainstream life science research. However, the use of labelfree microscopy has been mostly limited, resulting in testing for bio-application but not bio-integration. To enable bio-integration, such microscopes need to be evaluated for their timeliness to answer biological questions uniquely and establish a long-term growth prospect. The article presents key label-free optical microscopes and discusses their integrative potential in life science research for the unperturbed analysis of biological samples.
Collapse
|
33
|
Zhu Y, Zhao Y, Shi J, Gomez Alvarez-Arenas TE, Yang H, Cai H, Zhang D, He X, Wu X. Novel acoustic radiation force optical coherence elastography based on ultrasmall ultrasound transducer for biomechanics evaluation of in vivo cornea. JOURNAL OF BIOPHOTONICS 2023:e202300074. [PMID: 37101410 DOI: 10.1002/jbio.202300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
We developed a novel acoustic radiation force optical coherence elastography (ARF-OCE) based on an ultrasmall ultrasound transducer for quantitative biomechanics evaluations of in vivo cornea. A custom single-sided meta-ultrasonic transducer with an outer diameter of 1.8 mm, focal spot diameter of 1.6 mm, central frequency of 930 kHz, and focal length of 0.8 mm was applied to excite the sample. The sample arm of the ARF-OCE system employed a three-dimensional printed holder that allowed for ultrasound excitation and ARF-OCE detection. The phase-resolved algorithm was combined with a Lamb wave model to depth-resolved evaluate corneal biomechanics after keratoconus and cross-linking treatments (CXL). The results showed that, compare to the healthy cornea, the Lamb wave velocity was significantly reduced in the keratoconus, increased in the cornea after CXL, and increased with cross-linked irradiation energy in the cornea. These results indicated the good clinical translation potential of the proposed novel ARF-OCE.
Collapse
Affiliation(s)
- Yirui Zhu
- School of Physics, Nanjing University, Nanjing, China
- School of Testing and Opto-Electric Engineering, Nanchang Hangkong University, Nanchang, China
| | - Yanzhi Zhao
- School of Medicine, Nanchang University, Nanchang, China
| | - Jiulin Shi
- School of Testing and Opto-Electric Engineering, Nanchang Hangkong University, Nanchang, China
| | - Tomas E Gomez Alvarez-Arenas
- Ultrasonic and Sensors Technologies Department, Information and Physical Technologies Institute, Spanish National Research Council, Madrid, Spain
| | - Hongwei Yang
- School of Medicine, Nanchang University, Nanchang, China
| | - Hongling Cai
- School of Physics, Nanjing University, Nanjing, China
| | - Dong Zhang
- School of Physics, Nanjing University, Nanjing, China
| | - Xingdao He
- School of Testing and Opto-Electric Engineering, Nanchang Hangkong University, Nanchang, China
| | - Xiaoshan Wu
- School of Physics, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Batista A, Serranho P, Santos MJ, Correia C, Domingues JP, Loureiro C, Cardoso J, Barbeiro S, Morgado M, Bernardes R. Phase-Resolved Optical Coherence Elastography: An Insight into Tissue Displacement Estimation. SENSORS (BASEL, SWITZERLAND) 2023; 23:3974. [PMID: 37112314 PMCID: PMC10142248 DOI: 10.3390/s23083974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Robust methods to compute tissue displacements in optical coherence elastography (OCE) data are paramount, as they play a significant role in the accuracy of tissue elastic properties estimation. In this study, the accuracy of different phase estimators was evaluated on simulated OCE data, where the displacements can be accurately set, and on real data. Displacement (∆d) estimates were computed from (i) the original interferogram data (Δφori) and two phase-invariant mathematical manipulations of the interferogram: (ii) its first-order derivative (Δφd) and (iii) its integral (Δφint). We observed a dependence of the phase difference estimation accuracy on the initial depth location of the scatterer and the magnitude of the tissue displacement. However, by combining the three phase-difference estimates (Δdav), the error in phase difference estimation could be minimized. By using Δdav, the median root-mean-square error associated with displacement prediction in simulated OCE data was reduced by 85% and 70% in data with and without noise, respectively, in relation to the traditional estimate. Furthermore, a modest improvement in the minimum detectable displacement in real OCE data was also observed, particularly in data with low signal-to-noise ratios. The feasibility of using Δdav to estimate agarose phantoms' Young's modulus is illustrated.
Collapse
Affiliation(s)
- Ana Batista
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Pedro Serranho
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Science and Technology, Mathematics Section, Aberta University, 1250-100 Lisbon, Portugal
| | - Mário J. Santos
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Carlos Correia
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - José P. Domingues
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Custódio Loureiro
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - João Cardoso
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Sílvia Barbeiro
- Department of Mathematics, CMUC, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Miguel Morgado
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Physics, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Rui Bernardes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine (FMUC), Clinical Academic Center of Coimbra (CACC), University of Coimbra, 3000-143 Coimbra, Portugal
| |
Collapse
|
35
|
Lan G, Twa MD, Song C, Feng J, Huang Y, Xu J, Qin J, An L, Wei X. In vivo corneal elastography: A topical review of challenges and opportunities. Comput Struct Biotechnol J 2023; 21:2664-2687. [PMID: 37181662 PMCID: PMC10173410 DOI: 10.1016/j.csbj.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Clinical measurement of corneal biomechanics can aid in the early diagnosis, progression tracking, and treatment evaluation of ocular diseases. Over the past two decades, interdisciplinary collaborations between investigators in optical engineering, analytical biomechanical modeling, and clinical research has expanded our knowledge of corneal biomechanics. These advances have led to innovations in testing methods (ex vivo, and recently, in vivo) across multiple spatial and strain scales. However, in vivo measurement of corneal biomechanics remains a long-standing challenge and is currently an active area of research. Here, we review the existing and emerging approaches for in vivo corneal biomechanics evaluation, which include corneal applanation methods, such as ocular response analyzer (ORA) and corneal visualization Scheimpflug technology (Corvis ST), Brillouin microscopy, and elastography methods, and the emerging field of optical coherence elastography (OCE). We describe the fundamental concepts, analytical methods, and current clinical status for each of these methods. Finally, we discuss open questions for the current state of in vivo biomechanics assessment techniques and requirements for wider use that will further broaden our understanding of corneal biomechanics for the detection and management of ocular diseases, and improve the safety and efficacy of future clinical practice.
Collapse
Affiliation(s)
- Gongpu Lan
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX 77204, United States
| | - Chengjin Song
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - JinPing Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yanping Huang
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jingjiang Xu
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Jia Qin
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Lin An
- Weiren Meditech Co., Ltd., Foshan, Guangdong 528000, China
| | - Xunbin Wei
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- International Cancer Institute, Peking University, Beijing 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
36
|
Mekonnen T, Zevallos-Delgado C, Zhang H, Singh M, Aglyamov SR, Larin KV. The lens capsule significantly affects the viscoelastic properties of the lens as quantified by optical coherence elastography. Front Bioeng Biotechnol 2023; 11:1134086. [PMID: 36970614 PMCID: PMC10034121 DOI: 10.3389/fbioe.2023.1134086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
The crystalline lens is a transparent, biconvex structure that has its curvature and refractive power modulated to focus light onto the retina. This intrinsic morphological adjustment of the lens to fulfill changing visual demands is achieved by the coordinated interaction between the lens and its suspension system, which includes the lens capsule. Thus, characterizing the influence of the lens capsule on the whole lens’s biomechanical properties is important for understanding the physiological process of accommodation and early diagnosis and treatment of lenticular diseases. In this study, we assessed the viscoelastic properties of the lens using phase-sensitive optical coherence elastography (PhS-OCE) coupled with acoustic radiation force (ARF) excitation. The elastic wave propagation induced by ARF excitation, which was focused on the surface of the lens, was tracked with phase-sensitive optical coherence tomography. Experiments were conducted on eight freshly excised porcine lenses before and after the capsular bag was dissected away. Results showed that the group velocity of the surface elastic wave, V, in the lens with the capsule intact (V=2.55±0.23 m/s) was significantly higher (p < 0.001) than after the capsule was removed (V=1.19±0.25 m/s). Similarly, the viscoelastic assessment using a model that utilizes the dispersion of a surface wave showed that both Young’s modulus, E, and shear viscosity coefficient, η, of the encapsulated lens (E=8.14±1.10 kPa,η=0.89±0.093 Pa∙s) were significantly higher than that of the decapsulated lens (E=3.10±0.43 kPa,η=0.28±0.021 Pa∙s). These findings, together with the geometrical change upon removal of the capsule, indicate that the capsule plays a critical role in determining the viscoelastic properties of the crystalline lens.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Hongqiu Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Kirill V. Larin,
| |
Collapse
|
37
|
Nguyen KD, Bonner BP, Foster AN, Sadighi M, Nguyen CT. Asynchronous magnetic resonance elastography: Shear wave speed reconstruction using noise correlation of incoherent waves. Magn Reson Med 2023; 89:990-1001. [PMID: 36300861 PMCID: PMC9792433 DOI: 10.1002/mrm.29502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE The noninvasive measurement of biological tissue elasticity is an evolving technology that enables the robust characterization of soft tissue mechanics for a wide array of biomedical engineering and clinical applications. We propose, design, and implement here a new MRI technique termed asynchronous magnetic resonance elastography (aMRE) that pushes the measurement technology toward a driverless implementation. This technique can be added to clinical MRI scanners without any additional specialized hardware. THEORY Asynchronous MRE is founded on the theory of diffuse wavefields and noise correlation previously developed in ultrasound to reconstruct shear wave speeds using seemingly incoherent wavefields. Unlike conventional elastography methods that solve an inverse problem, aMRE directly reconstructs a pixel-wise mapping of wave speed using the spatial-temporal statistics of the measured wavefield. METHODS Incoherent finger tapping served as the wave-generating source for all aMRE measurements. Asynchronous MRE was performed on a phantom using a Siemens Prismafit as an experimental validation of the theory. It was further performed on thigh muscles as a proof-of-concept implementation of in vivo imaging using a Siemens Skyra scanner. RESULTS Numerical and phantom experiments show an accurate reconstruction of wave speeds from seemingly noisy wavefields. The proof-of-concept thigh experiments also show that the aMRE protocol can reconstruct a pixel-wise mapping of wave speeds. CONCLUSION Asynchronous MRE is shown to accurately reconstruct shear wave speeds in phantom experiments and remains at the proof-of-concept stage for in vivo imaging. After further validation and improvements, it has the potential to lower both the technical and monetary barriers of entry to measuring tissue elasticity.
Collapse
Affiliation(s)
- Khoi D. Nguyen
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Benjamin P. Bonner
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Anna N. Foster
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Mehdi Sadighi
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Christopher T. Nguyen
- Cardiovascular Innovation Research Center, Heart Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,Department of Diagnostic Radiology Imaging, Imaging Institute, Cleveland Clinic, Cleveland, OH,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH,Corresponding author.
| |
Collapse
|
38
|
Zaitsev VY, Sovetsky AA, Matveyev AL, Matveev LA, Shabanov D, Salamatova VY, Karavaikin PA, Vassilevski YV. Application of compression optical coherence elastography for characterization of human pericardium: A pilot study. JOURNAL OF BIOPHOTONICS 2023; 16:e202200253. [PMID: 36397665 DOI: 10.1002/jbio.202200253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The recent impressive progress in Compression Optical Coherence Elastography (C-OCE) demonstrated diverse biomedical applications, comprising ophthalmology, oncology, etc. High resolution of C-OCE enables spatially resolved characterization of elasticity of rather thin (thickness < 1 mm) samples, which previously was impossible. Besides Young's modulus, C-OCE enables obtaining of nonlinear stress-strain dependences for various tissues. Here, we report the first application of C-OCE to nondestructively characterize biomechanics of human pericardium, for which data of conventional tensile tests are very limited and controversial. C-OCE revealed pronounced differences among differently prepared pericardium samples. Ample understanding of the influence of chemo-mechanical treatment on pericardium biomechanics is very important because of rapidly growing usage of own patients' pericardium for replacement of aortic valve leaflets in cardio-surgery. The figure demonstrates differences in the tangent Young's modulus after glutaraldehyde-induced cross-linking for two pericardium samples. One sample was over-stretched during the preparation, which caused some damage to the tissue.
Collapse
Affiliation(s)
- Vladimir Y Zaitsev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander A Sovetsky
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Lev A Matveev
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry Shabanov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Victoria Y Salamatova
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | | | - Yuri V Vassilevski
- Sechenov University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
40
|
Chen Y, Ye S, Wang Q, Shen M, Lu F, Qu J, Zhu D. In situ assessment of lens elasticity with noncontact optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:6671-6681. [PMID: 36589560 PMCID: PMC9774883 DOI: 10.1364/boe.475306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Lens biomechanics has great potential for application in clinical diagnostics and treatment monitoring of presbyopia and cataracts. However, current approaches to lens elastography do not meet the desired safety or sensitivity for clinical application. In this regard, we propose a noncontact optical coherence elastography (OCE) method to facilitate quantitative in situ imaging of lens elasticity. Elastic waves induced by air-pulse stimulation on the limbus propagate to the lens and are then imaged using custom-built swept-source optical coherence tomography to obtain the elastic wave velocity and Young's modulus. The proposed OCE method was first validated by comparing the results of in situ and in vitro measurements of porcine lenses. The results demonstrate that the Young's modulus measured in situ was highly consistent with that measured in vitro and had an intraclass correlation coefficient of 0.988. We further investigated the elastic changes induced by cold storage and microwave heating. During 36-hour cold storage, the mean Young's modulus gradually increased (from 5.62 ± 1.24 kPa to 11.40 ± 2.68 kPa, P < 0.0001, n = 9) along with the formation of nuclear opacities. 15-second microwave heating caused a greater increase in the mean Young's modulus (from 6.86 ± 1.21 kPa to 25.96 ± 8.64 kPa, P < 0.0025, n = 6) without apparent cataract formation. Accordingly, this study reports the first air-pulse OCE measurements of in situ lenses, which quantified the loss of lens elasticity during simulated cataract development with good repeatability and sensitivity, thus enhancing the potential for adoption of lens biomechanics in the clinic.
Collapse
Affiliation(s)
- Yulei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Shuling Ye
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Qingying Wang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Meixiao Shen
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Dexi Zhu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, China
| |
Collapse
|
41
|
McAuley R, Nolan A, Curatolo A, Alexandrov S, Zvietcovich F, Varea Bejar A, Marcos S, Leahy M, Birkenfeld JS. Co-axial acoustic-based optical coherence vibrometry probe for the quantification of resonance frequency modes in ocular tissue. Sci Rep 2022; 12:18834. [PMID: 36336702 PMCID: PMC9637745 DOI: 10.1038/s41598-022-21978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
Abstract
We present a co-axial acoustic-based optical coherence vibrometry probe (CoA-OCV) for vibro-acoustic resonance quantification in biological tissues. Sample vibrations were stimulated via a loudspeaker, and pre-compensation was used to calibrate the acoustic spectrum. Sample vibrations were measured via phase-sensitive swept-source optical coherence tomography (OCT). Resonance frequencies of corneal phantoms were measured at varying intraocular pressures (IOP), and dependencies on Young´s Modulus (E), phantom thickness and IOP were observed. Cycling IOP revealed hysteresis. For E = 0.3 MPa, resonance frequencies increased with IOP at a rate of 3.9, 3.7 and 3.5 Hz/mmHg for varied thicknesses and 1.7, 2.5 and 2.8 Hz/mmHg for E = 0.16 MPa. Resonance frequencies increased with thickness at a rate of 0.25 Hz/µm for E = 0.3 MPa, and 0.40 Hz/µm for E = 0.16 MPa. E showed the most predominant impact in the shift of the resonance frequencies. Full width at half maximum (FWHM) of the resonance modes increased with increasing thickness and decreased with increasing E. Only thickness and E contributed to the variance of FWHM. In rabbit corneas, resonance frequencies of 360-460 Hz were observed. The results of the current study demonstrate the feasibility of CoA-OCV for use in future OCT-V studies.
Collapse
Affiliation(s)
- Ryan McAuley
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland.
| | - A Nolan
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland
| | - A Curatolo
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- International Centre for Translational Eye Research, Warsaw, Poland
| | - S Alexandrov
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland
| | - F Zvietcovich
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - A Varea Bejar
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - S Marcos
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- Center for Visual Science, The Institute of Optics, Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| | - M Leahy
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland
| | - J S Birkenfeld
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain.
| |
Collapse
|
42
|
Nair A, Ambekar YS, Zevallos-Delgado C, Mekonnen T, Sun M, Zvietcovich F, Singh M, Aglyamov S, Koch M, Scarcelli G, Espana EM, Larin KV. Multiple Optical Elastography Techniques Reveal the Regulation of Corneal Stiffness by Collagen XII. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 36383352 PMCID: PMC9680591 DOI: 10.1167/iovs.63.12.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Collagen XII plays a role in regulating the structure and mechanical properties of the cornea. In this work, several optical elastography techniques were used to investigate the effect of collagen XII deficiency on the stiffness of the murine cornea. Methods A three-prong optical elastography approach was used to investigate the mechanical properties of the cornea. Brillouin microscopy, air-coupled ultrasonic optical coherence elastography (OCE) and heartbeat OCE were used to assess the mechanical properties of wild type (WT) and collagen XII-deficient (Col12a1-/-) murine corneas. The Brillouin frequency shift, elastic wave speed, and compressive strain were all measured as a function of intraocular pressure (IOP). Results All three optical elastography modalities measured a significantly decreased stiffness in the Col12a1-/- compared to the WT (P < 0.01 for all three modalities). The optical coherence elastography techniques showed that mean stiffness increased as a function of IOP; however, Brillouin microscopy showed no discernable trend in Brillouin frequency shift as a function of IOP. Conclusions Our approach suggests that the absence of collagen XII significantly softens the cornea. Although both optical coherence elastography techniques showed an expected increase in corneal stiffness as a function of IOP, Brillouin microscopy did not show such a relationship, suggesting that the Brillouin longitudinal modulus may not be affected by changes in IOP. Future work will focus on multimodal biomechanical models, evaluating the effects of other collagen types on corneal stiffness, and in vivo measurements.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Yogeshwari S. Ambekar
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | | - Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Fernando Zvietcovich
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima, Peru
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, United States
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Molecular Medicine Cologne, and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
43
|
Vinas-Pena M, Feng X, Li GY, Yun SH. In situ measurement of the stiffness increase in the posterior sclera after UV-riboflavin crosslinking by optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5434-5446. [PMID: 36425630 PMCID: PMC9664890 DOI: 10.1364/boe.463600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Scleral crosslinking may provide a way to prevent or treat myopia by stiffening scleral tissues. The ability to measure the stiffness of scleral tissues in situ pre and post scleral crosslinking would be useful but has not been established. Here, we tested the feasibility of optical coherence elastography (OCE) to measure shear modulus of scleral tissues and evaluate the impact of crosslinking on different posterior scleral regions using ex vivo porcine eyes as a model. From measured elastic wave speeds at 6 - 16 kHz, we obtained out-of-plane shear modulus value of 0.71 ± 0.12 MPa (n = 20) for normal porcine scleral tissues. After riboflavin-assisted UV crosslinking, the shear modulus increased to 1.50 ± 0.39 MPa (n = 20). This 2-fold change was consistent with the increase of static Young's modulus from 5.5 ± 1.1 MPa to 9.3 ± 1.9 MPa after crosslinking, which we measured using conventional uniaxial extensometry on tissue stripes. OCE revealed regional stiffness differences across the temporal, nasal, and deeper posterior sclera. Our results show the potential of OCE as a noninvasive tool to evaluate the effect of scleral crosslinking.
Collapse
Affiliation(s)
- Maria Vinas-Pena
- Wellman Center for Photomedicine and Harvard
Medical School, Massachusetts General Hospital, 50
Blossom St., Boston, MA, USA
| | - Xu Feng
- Wellman Center for Photomedicine and Harvard
Medical School, Massachusetts General Hospital, 50
Blossom St., Boston, MA, USA
| | - Guo-yang Li
- Wellman Center for Photomedicine and Harvard
Medical School, Massachusetts General Hospital, 50
Blossom St., Boston, MA, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine and Harvard
Medical School, Massachusetts General Hospital, 50
Blossom St., Boston, MA, USA
| |
Collapse
|
44
|
Regnault G, Kirby MA, Kuriakose M, Shen T, Wang RK, O’Donnell M, Pelivanov I. Spatial resolution in optical coherence elastography of bounded media. BIOMEDICAL OPTICS EXPRESS 2022; 13:4851-4869. [PMID: 36187272 PMCID: PMC9484430 DOI: 10.1364/boe.469019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 05/11/2023]
Abstract
Dynamic optical coherence elastography (OCE) tracks mechanical wave propagation in the subsurface region of tissue to image its shear modulus. For bulk shear waves, the lateral resolution of the reconstructed modulus map (i.e., elastographic resolution) can approach that of optical coherence tomography (OCT), typically a few tens of microns. Here we perform comprehensive numerical simulations and acoustic micro-tapping OCE experiments to show that for the typical situation of guided wave propagation in bounded media, such as cornea, the elastographic resolution cannot reach the OCT resolution and is mainly defined by the thickness of the bounded tissue layer. We considered the excitation of both broadband and quasi-harmonic guided waves in a bounded, isotropic medium. Leveraging the properties of broadband pulses, a robust method for modulus reconstruction with minimum artifacts at interfaces is demonstrated. In contrast, tissue bounding creates large instabilities in the phase of harmonic waves, leading to serious artifacts in modulus reconstructions.
Collapse
Affiliation(s)
- Gabriel Regnault
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Maju Kuriakose
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Tueng Shen
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
- University of Washington, Department of Ophthalmology, Seattle, Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
- University of Washington, Department of Ophthalmology, Seattle, Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| | - Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, 3720 15th Ave NE, Seattle, WA 98105, USA
| |
Collapse
|
45
|
Mekonnen T, Lin X, Zevallos-Delgado C, Singh M, Aglyamov SR, Coulson-Thomas V, Larin KV. Longitudinal assessment of the effect of alkali burns on corneal biomechanical properties using optical coherence elastography. JOURNAL OF BIOPHOTONICS 2022; 15:e202200022. [PMID: 35460537 PMCID: PMC11057918 DOI: 10.1002/jbio.202200022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Eye injury due to alkali burn is a severe ocular trauma that can profoundly affect corneal structure and function, including its biomechanical properties. Here, we assess the changes in the mechanical behavior of mouse corneas in response to alkali-induced injury by conducting longitudinal measurements using optical coherence elastography (OCE). A non-contact air-coupled ultrasound transducer was used to induce elastic waves in control and alkali-injured mouse corneas in vivo, which were imaged with phase-sensitive optical coherence tomography. Corneal mechanical properties were estimated using a modified Rayleigh-Lamb wave model, and results show that Young's modulus of alkali-burned corneas were significantly greater than that of their healthy counterparts on days 7 (p = 0.029) and 14 (p = 0.026) after injury. These findings, together with the changes in the shear viscosity coefficient postburn, indicate that the mechanical properties of the alkali-burned cornea are significantly modulated during the wound healing process.
Collapse
Affiliation(s)
- Taye Mekonnen
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Christian Zevallos-Delgado
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Vivien Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204‑2020, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX 77204, USA
| |
Collapse
|
46
|
Feng X, Li GY, Ramier A, Eltony AM, Yun SH. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater 2022; 146:295-305. [PMID: 35470076 PMCID: PMC11878153 DOI: 10.1016/j.actbio.2022.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/01/2022]
Abstract
Traveling-wave optical coherence elastography (OCE) is a promising technique to measure the stiffness of biological tissues. While OCE has been applied to relatively homogeneous samples, tissues with significantly varying elasticity through depth pose a challenge, requiring depth-resolved measurement with sufficient resolution and accuracy. Here, we develop a broadband Rayleigh-wave OCE technique capable of measuring the elastic moduli of the 3 major skin layers (epidermis, dermis, and hypodermis) reliably by analyzing the dispersion of leaky Rayleigh surface waves over a wide frequency range of 0.1-10 kHz. We show that a previously unexplored, high frequency range of 4-10 kHz is critical to resolve the thin epidermis, while a low frequency range of 0.2-1 kHz is adequate to probe the dermis and deeper hypodermis. We develop a dual bilayer-based inverse model to determine the elastic moduli in all 3 layers and verify its high accuracy with finite element analysis and skin-mimicking phantoms. Finally, the technique is applied to measure the forearm skin of healthy volunteers. The Young's modulus of the epidermis (including the stratum corneum) is measured to be ∼ 4 MPa at 4-10 kHz, whereas Young's moduli of the dermis and hypodermis are about 40 and 15 kPa, respectively, at 0.2-1 kHz. Besides dermatologic applications, this method may be useful for the mechanical analysis of various other layered tissues with sub-mm depth resolution. STATEMENT OF SIGNIFICANCE: To our knowledge, this is the first study that resolves the stiffness of the thin epidermis from the dermis and hypodermis, made possible by using high-frequency (4 - 10 kHz) elastic waves and optical coherence elastography. Beyond the skin, this technique may be useful for mechanical characterizations of various layered biomaterials and tissues.
Collapse
Affiliation(s)
- Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Antoine Ramier
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States
| | - Amira M Eltony
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, United States; Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, United States.
| |
Collapse
|
47
|
Zvietcovich F, Nair A, Singh M, Aglyamov SR, Twa MD, Larin KV. In vivo assessment of corneal biomechanics under a localized cross-linking treatment using confocal air-coupled optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:2644-2654. [PMID: 35774330 PMCID: PMC9203097 DOI: 10.1364/boe.456186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 05/25/2023]
Abstract
The localized application of the riboflavin/UV-A collagen cross-linking (UV-CXL) corneal treatment has been proposed to concentrate the stiffening process only in the compromised regions of the cornea by limiting the epithelium removal and irradiation area. However, current clinical screening devices dedicated to measuring corneal biomechanics cannot provide maps nor spatial-dependent changes of elasticity in corneas when treated locally with UV-CXL. In this study, we leverage our previously reported confocal air-coupled ultrasonic optical coherence elastography (ACUS-OCE) probe to study local changes of corneal elasticity in three cases: untreated, half-CXL-treated, and full-CXL-treated in vivo rabbit corneas (n = 8). We found a significant increase of the shear modulus in the half-treated (>450%) and full-treated (>650%) corneal regions when compared to the non-treated cases. Therefore, the ACUS-OCE technology possesses a great potential in detecting spatially-dependent mechanical properties of the cornea at multiple meridians and generating elastography maps that are clinically relevant for patient-specific treatment planning and monitoring of UV-CXL procedures.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Salavat R. Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, Texas 77204, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
48
|
Lan G, Shi Q, Wang Y, Ma G, Cai J, Feng J, Huang Y, Gu B, An L, Xu J, Qin J, Twa MD. Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography. Front Bioeng Biotechnol 2022; 10:851094. [PMID: 35360399 PMCID: PMC8962667 DOI: 10.3389/fbioe.2022.851094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Analysis of corneal tissue natural frequency was recently proposed as a biomarker for corneal biomechanics and has been performed using high-resolution optical coherence tomography (OCT)-based elastography (OCE). However, it remains unknown whether natural frequency analysis can resolve local variations in tissue structure. We measured heterogeneous samples to evaluate the correspondence between natural frequency distributions and regional structural variations. Sub-micrometer sample oscillations were induced point-wise by microliter air pulses (60–85 Pa, 3 ms) and detected correspondingly at each point using a 1,300 nm spectral domain common path OCT system with 0.44 nm phase detection sensitivity. The resulting oscillation frequency features were analyzed via fast Fourier transform and natural frequency was characterized using a single degree of freedom (SDOF) model. Oscillation features at each measurement point showed a complex frequency response with multiple frequency components that corresponded with global structural features; while the variation of frequency magnitude at each location reflected the local sample features. Silicone blocks (255.1 ± 11.0 Hz and 249.0 ± 4.6 Hz) embedded in an agar base (355.6 ± 0.8 Hz and 361.3 ± 5.5 Hz) were clearly distinguishable by natural frequency. In a beef shank sample, central fat and connective tissues had lower natural frequencies (91.7 ± 58.2 Hz) than muscle tissue (left side: 252.6 ± 52.3 Hz; right side: 161.5 ± 35.8 Hz). As a first step, we have shown the possibility of natural frequency OCE methods to characterize global and local features of heterogeneous samples. This method can provide additional information on corneal properties, complementary to current clinical biomechanical assessments, and could become a useful tool for clinical detection of ocular disease and evaluation of medical or surgical treatment outcomes.
Collapse
Affiliation(s)
- Gongpu Lan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| | - Qun Shi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Yicheng Wang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guoqin Ma
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Jing Cai
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jinping Feng
- Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, China
| | - Yanping Huang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Boyu Gu
- School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, China
| | - Lin An
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Jingjiang Xu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan, China
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
- Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, Foshan University, Foshan, China
| | - Jia Qin
- Innovation and Entrepreneurship Teams of Guangdong Pearl River Talents Program, Weiren Meditech Co., Ltd., Foshan, China
| | - Michael D. Twa
- College of Optometry, University of Houston, Houston, TX, United States
- *Correspondence: Gongpu Lan, ; Michael D. Twa,
| |
Collapse
|
49
|
Singh M, Zvietcovich F, Larin KV. Introduction to optical coherence elastography: tutorial. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:418-430. [PMID: 35297425 PMCID: PMC10052825 DOI: 10.1364/josaa.444808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/25/2022] [Indexed: 06/03/2023]
Abstract
Optical coherence elastography (OCE) has seen rapid growth since its introduction in 1998. The past few decades have seen tremendous advancements in the development of OCE technology and a wide range of applications, including the first clinical applications. This tutorial introduces the basics of solid mechanics, which form the foundation of all elastography methods. We then describe how OCE measurements of tissue motion can be used to quantify tissue biomechanical parameters. We also detail various types of excitation methods, imaging systems, acquisition schemes, and data processing algorithms and how various parameters associated with each step of OCE imaging can affect the final quantitation of biomechanical properties. Finally, we discuss the future of OCE, its potential, and the next steps required for OCE to become an established medical imaging technology.
Collapse
Affiliation(s)
- Manmohan Singh
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Fernando Zvietcovich
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Department of Engineering, Pontificia Universidad Catolica del Peru, San Miguel, Lima 15088, Peru
| | - Kirill V. Larin
- Biomedical Engineering, University of Houston, Houston, Texas 77204, USA
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|