1
|
Yang W, Liu W, Wen C, Hu B, Jian S, Gang Y. A superoxide dismutase (MnSOD) with identification and functional characterization from the freshwater mussel Cristaria plicata. FISH & SHELLFISH IMMUNOLOGY 2019; 91:180-187. [PMID: 31078645 DOI: 10.1016/j.fsi.2019.04.307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a sort of important metalloenzyme that can catalyze ROS in the organisms. In this study, MnSOD cDNA of C. plicata, designated as CpMnSOD (accession no. MK465057), was cloned from hemocytes. The full-length cDNA of MnSOD was 1096 bp with a 672 bp open reading frame encoding 223 amino acids. The deduced amino acid sequence contained a mitochondrial-targeting sequence (MTS) of 18 amino acids in the N-terminus, and four conserved amino acids for manganese binding (H49, H97, D182, H186). CpMnSOD showed a high level (65-73%) of sequence similarity to MnSODs from other species. The results of Real-time quantitative PCR revealed that CpMnSOD mRNA constitutively expressed in tissues. The highest expression level was in hepatopancreas, followed by muscle, mantle and gill, and the lowest expression level was in hemocytes. After microcystin challenge, the expression levels of CpMnSOD mRNA were up-regulated in hemocytes and hepatopancreas. The cDNA of CpMnSOD was cloned into the plasmid pColdI-ZZ, and the recombinant protein was expressed in Escherichia coli BL21 (DE3). The enzyme stability assay showed that the purified CpMnSOD protein maintained more than 80% enzyme activity at temperature up to 70 °C, at pH 2.0-10.0, and resistant to 8 mol/L urea or 8% SDS.
Collapse
Affiliation(s)
- Wanying Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Wenxiu Liu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Yang Gang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
2
|
Di Biase S, Shim HS, Kim KH, Vinciguerra M, Rappa F, Wei M, Brandhorst S, Cappello F, Mirzaei H, Lee C, Longo VD. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol 2017; 15:e2001951. [PMID: 28358805 PMCID: PMC5373519 DOI: 10.1371/journal.pbio.2001951] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 01/17/2023] Open
Abstract
Fasting reduces glucose levels and protects mice against chemotoxicity, yet drugs that promote hyperglycemia are widely used in cancer treatment. Here, we show that dexamethasone (Dexa) and rapamycin (Rapa), commonly administered to cancer patients, elevate glucose and sensitize cardiomyocytes and mice to the cancer drug doxorubicin (DXR). Such toxicity can be reversed by reducing circulating glucose levels by fasting or insulin. Furthermore, glucose injections alone reversed the fasting-dependent protection against DXR in mice, indicating that elevated glucose mediates, at least in part, the sensitizing effects of rapamycin and dexamethasone. In yeast, glucose activates protein kinase A (PKA) to accelerate aging by inhibiting transcription factors Msn2/4. Here, we show that fasting or glucose restriction (GR) regulate PKA and AMP-activated protein kinase (AMPK) to protect against DXR in part by activating the mammalian Msn2/4 ortholog early growth response protein 1 (EGR1). Increased expression of the EGR1-regulated cardioprotective peptides atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in heart tissue may also contribute to DXR resistance. Our findings suggest the existence of a glucose-PKA pathway that inactivates conserved zinc finger stress-resistance transcription factors to sensitize cells to toxins conserved from yeast to mammals. Our findings also describe a toxic role for drugs widely used in cancer treatment that promote hyperglycemia and identify dietary interventions that reverse these effects.
Collapse
Affiliation(s)
- Stefano Di Biase
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hong Seok Shim
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Kyung Hwa Kim
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Manlio Vinciguerra
- Institute for Liver and Digestive Health, Royal Free Hospital, University College London (UCL), London, United Kingdom
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno, Czech Republic
- Centro Studi Fegato (CSF)-Liver Research Center, Fondazione Italiana Fegato, Trieste, Italy
| | - Francesca Rappa
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Min Wei
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Sebastian Brandhorst
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Hamed Mirzaei
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Changhan Lee
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Valter D. Longo
- Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy
| |
Collapse
|
3
|
Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S. Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 2014; 77:139-51. [PMID: 25224035 DOI: 10.1016/j.freeradbiomed.2014.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
Breast cancer is one of the most common malignancies of all cancers in women worldwide. Many difficulties reside in the prediction of tumor metastatic progression because of the lack of sufficiently reliable predictive biological markers, and this is a permanent preoccupation for clinicians. Manganese superoxide dismutase (MnSOD) may represent a rational candidate as a predictive biomarker of breast tumor metastatic progression, because its gene expression is profoundly altered between early and advanced breast cancer, in contrast to expression in the normal mammary gland. In this review, we report the characterization of some gene polymorphisms and molecular mechanisms of SOD2 gene regulation, which allows a better understanding of how MnSOD is decreased in early breast cancer and increased in advanced breast cancer. Several studies display the biological significance of MnSOD level in proliferation as well as in invasive and angiogenic abilities of breast tumor cells by controlling superoxide anion radical (O2(•-)) and hydrogen peroxide (H2O2). Particularly, they report how these reactive oxygen species may activate some signaling pathways involved in breast tumor growth. Emerging understanding of these findings provides an interesting framework for guiding translational research and suggests a way to define precisely the clinical interest of MnSOD as a prognostic and/or predicting marker in breast cancer, by associating with some regulators involved in SOD2 gene regulation and other well-known biomarkers, in addition to the typical clinical parameters.
Collapse
Affiliation(s)
- Philippe Becuwe
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | - Marie Ennen
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Rémi Klotz
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Claire Barbieux
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphanie Grandemange
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
4
|
Dhar SK, Zhang J, Gal J, Xu Y, Miao L, Lynn BC, Zhu H, Kasarskis EJ, St Clair DK. FUsed in sarcoma is a novel regulator of manganese superoxide dismutase gene transcription. Antioxid Redox Signal 2014; 20:1550-66. [PMID: 23834335 PMCID: PMC3942683 DOI: 10.1089/ars.2012.4984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS FUsed in sarcoma (FUS) is a multifunctional DNA/RNA-binding protein that possesses diverse roles, such as RNA splicing, RNA transport, DNA repair, translation, and transcription. The network of enzymes and processes regulated by FUS is far from being fully described. In this study, we have focused on the mechanisms of FUS-regulated manganese superoxide dismutase (MnSOD) gene transcription. RESULTS Here we demonstrate that FUS is a component of the transcription complex that regulates the expression of MnSOD. Overexpression of FUS increased MnSOD expression in a dose-dependent manner and knockdown of FUS by siRNA led to the inhibition of MnSOD gene transcription. Reporter analyses, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, affinity chromatography, and surface plasmon resonance analyses revealed the far upstream region of MnSOD promoter as an important target of FUS-mediated MnSOD transcription and confirmed that FUS binds to the MnSOD promoter and interacts with specificity protein 1 (Sp1). Importantly, overexpression of familial amyotropic lateral sclerosis (fALS)-linked R521G mutant FUS resulted in a significantly reduced level of MnSOD expression and activity, which is consistent with the decline in MnSOD activity observed in fibroblasts from fALS patients with the R521G mutation. R521G-mutant FUS abrogates MnSOD promoter-binding activity and interaction with Sp1. INNOVATION AND CONCLUSION This study identifies FUS as playing a critical role in MnSOD gene transcription and reveals a previously unrecognized relationship between MnSOD and mutant FUS in fALS.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang D, Cui S, Guo H, Jiang S. Genomic structure, characterization and expression analysis of a manganese superoxide dismutase from pearl oyster Pinctada fucata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:484-490. [PMID: 23880235 DOI: 10.1016/j.dci.2013.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/13/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a major component of the cellular defense mechanisms against oxidative damage. We cloned and analyzed the expression pattern and genomic structure of the MnSOD gene of pearl oyster Pinctada fucata, hereafter designated as PoMnSOD. The full-length PoMnSOD cDNA was 1080 bp in length and consisted of a 5'-untranslated region (UTR) of 222 bp, a 3'-UTR of 318 bp with a polyadenylation signal (AATAAA) at 15 nucleotides upstream of the poly (A) tail, and an open reading frame (ORF) of 540 bp encoding a polypeptide of 180 amino acids with an estimated molecular mass of 20.4 kDa and a predicted pI of 6.72. Sequence analysis showed that PoMnSOD contained MnSOD family signatures F(44)NGGGHLNH(52), I(97)QGSGWGWLA(106) and D(138)VWEHAYY(145), four conserved residues for manganese metal binding (H(4), H(52), D(138) and H(142)), and two potential N-glycosylation sites (N(33) and N(51)). Homology analysis revealed that PoMnSOD shared 47.6-55.9% identity and 57.4-65.6% similarity to the other known PoMnSOD amino acid sequences. PoMnSOD genomic DNA was 5040 bp in length and contained three exons and two introns, which was a tripartite organization and coincided with the consensus GT-AG splicing rule. PoMnSOD promoter contained the various transcription factors associated with the immune modulation and stress responses. Quantitative RT-PCR analysis demonstrated that PoMnSOD was constitutively expressed in all detected tissues, and PoMnSOD mRNA expression was significantly up-regulated in intestine, mantle, gills, digestive gland and haemocytes after Vibrio alginolyticus injection. These results suggested that PoMoSOD was an acute-response protein involved in the innate immune responses of pearl oyster, and provided general information about the mechanisms of innate immune defense against bacterial infection in pearl oyster.
Collapse
Affiliation(s)
- Dianchang Zhang
- Division of Aquaculture and Biotechnology, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | | | | | | |
Collapse
|
6
|
Umasuthan N, Revathy KS, Bathige SDNK, Lim BS, Park MA, Whang I, Lee J. A manganese superoxide dismutase with potent antioxidant activity identified from Oplegnathus fasciatus: genomic structure and transcriptional characterization. FISH & SHELLFISH IMMUNOLOGY 2013; 34:23-37. [PMID: 23022055 DOI: 10.1016/j.fsi.2012.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
In this study, we describe the identification and characterization of manganese superoxide dismutase, an important antioxidant enzyme acting as the chief reactive oxygen species (ROS) scavenger, from rock bream Oplegnathus fasciatus (Of-mMnSOD) at genomic- and transcriptional-levels as well as the biological activity of recombinant protein. The Of-mMnSOD protein portrayed distinct MnSOD family features including signature motifs, metal association sites and the typical active site topology. It was also predicted to be localized in mitochondrial matrix. The Of-mMnSOD had a quinquepartite genome organization encompassing five exons interrupted by four introns. Comparison of its sequence and gene structure with that of other lineages emphasized its strong conservation among different vertebrates. The Of-mMnSOD was ubiquitously transcribed in different rock bream tissues with higher levels in blood cells and metabolically active tissues. Transcription of Of-mMnSOD was kinetically modulated in response to investigational challenges using mitogens (lipopolysaccharide and poly I:C) and live-pathogens (Edwardsiella tarda and rock bream irido virus) in blood cells and liver tissue. The purified recombinant Of-mMnSOD possessed potential antioxidant capacity and actively survived over a range of pH (7.5-11) and temperature (15-40 °C) conditions. Collectively, findings of this study suggest that Of-mMnSOD combats against oxidative stress and cellular damages induced by mitogen/pathogen-mediated inflammation, by detoxifying harmful ROS (O(2)(●-)) in rock bream.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Dhar SK, St Clair DK. Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 2012; 52:2209-22. [PMID: 22561706 DOI: 10.1016/j.freeradbiomed.2012.03.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 01/03/2023]
Abstract
Mitochondria are the power plants of the eukaryotic cell and the integrators of many metabolic activities and signaling pathways important for the life and death of a cell. Normal aerobic cells use oxidative phosphorylation to generate ATP, which supplies energy for metabolism. To drive ATP production, electrons are passed along the electron transport chain, with some leaking as superoxide during the process. It is estimated that, during normal respiration, intramitochondrial superoxide concentrations can reach 10⁻¹² M. This extremely high level of endogenous superoxide production dictates that mitochondria are equipped with antioxidant systems that prevent consequential oxidative injury to mitochondria and maintain normal mitochondrial functions. The major antioxidant enzyme that scavenges superoxide anion radical in mitochondria is manganese superoxide dismutase (MnSOD). Extensive studies on MnSOD have demonstrated that MnSOD plays a critical role in the development and progression of cancer. Many human cancer cells harbor low levels of MnSOD proteins and enzymatic activity, whereas some cancer cells possess high levels of MnSOD expression and activity. This apparent variation in MnSOD level among cancer cells suggests that differential regulation of MnSOD exists in cancer cells and that this regulation may be linked to the type and stage of cancer development. This review summarizes current knowledge of the relationship between MnSOD levels and cancer with a focus on the mechanisms regulating MnSOD expression.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
8
|
Holley AK, Dhar SK, Xu Y, St. Clair DK. Manganese superoxide dismutase: beyond life and death. Amino Acids 2012; 42:139-58. [PMID: 20454814 PMCID: PMC2975048 DOI: 10.1007/s00726-010-0600-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP(5+)). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP(5+) following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP(5+) prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention.
Collapse
Affiliation(s)
| | | | - Yong Xu
- University of Kentucky, Lexington, USA
| | | |
Collapse
|
9
|
Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res 2011; 71:6684-95. [PMID: 22009531 DOI: 10.1158/0008-5472.can-11-1233] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manganese superoxide dismutase (MnSOD) plays a critical role in the survival of aerobic life, and its aberrant expression has been implicated in carcinogenesis and tumor resistance to therapy. However, despite extensive studies in MnSOD regulation and its role in cancer, when and how the alteration of MnSOD expression occurs during the process of tumor development in vivo are unknown. Here, we generated transgenic mice expressing a luciferase reporter gene under the control of human MnSOD promoter-enhancer elements and investigated the changes of MnSOD transcription using the 7,12-dimethylbenz(α)anthracene (DMBA)/12-O-tetradecanoylphorbol-l3-acetate (TPA) multistage skin carcinogenesis model. The results show that MnSOD expression was suppressed at a very early stage but increased at late stages of skin carcinogenesis. The suppression and subsequent restoration of MnSOD expression were mediated by two transcription-factors, Sp1 and p53. Exposure to DMBA and TPA activated p53 and decreased MnSOD expression via p53-mediated suppression of Sp1 binding to the MnSOD promoter in normal-appearing skin and benign papillomas. In squamous cell carcinomas, Sp1 binding increased because of the loss of functional p53. We used chromatin immunoprecipitation, electrophoretic mobility shift assay, and both knockdown and overexpression of Sp1 and p53 to verify their roles in the expression of MnSOD at each stage of cancer development. The results identify MnSOD as a p53-regulated gene that switches between early and advanced stages of cancer. These findings also provide strong support for the development of means to reactivate p53 for the prevention of tumor progression.
Collapse
Affiliation(s)
- Sanjit K Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
10
|
Chung YW, Kim HK, Kim IY, Yim MB, Chock PB. Dual function of protein kinase C (PKC) in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced manganese superoxide dismutase (MnSOD) expression: activation of CREB and FOXO3a by PKC-alpha phosphorylation and by PKC-mediated inactivation of Akt, respectively. J Biol Chem 2011; 286:29681-90. [PMID: 21705328 DOI: 10.1074/jbc.m111.264945] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
12-O-tetradecanoylphorbol-13-acetate (TPA) has been shown to induce transcriptional activation of human manganese superoxide dismutase (MnSOD) mRNA in human lung carcinoma cells, A549, mediated by a protein kinase C (PKC)-dependent activation of cAMP-responsive element-binding protein (CREB)-1/ATF-1-like factors. In this study, we showed that MnSOD protein expression was elevated in response to TPA or TNF-α, but not to hydrogen peroxide treatment. TPA-induced generation of reactive oxygen species (ROS) was blocked by pretreatment of the PKC inhibitor BIM and NADPH oxidase inhibitor DPI. Small interfering RNA (siRNA) experiments indicated that knocking down the NADPH oxidase components e.g. Rac1, p22(phox), p67(phox), and NOXO1 in A549 cells impaired TPA-induced MnSOD expression. To identify the PKC isozyme involved, we used a sod2 gene response reporter plasmid, pSODLUC-3340-I2E-C, capable of sensing the effect of TNF-α and TPA, to monitor the effects of PKC isozyme-specific inhibitors and siRNA-induced knockdown of specific PKC isozyme. Our data indicate that TPA-induced MnSOD expression was independent of p53 and most likely mediated by PKC-α-, and -ε-dependent signaling pathways. Furthermore, siRNA-induced knock-down of CREB and Forkhead box class O (FOXO) 3a led to a reduction in TPA-induced MnSOD gene expression. Together, our results revealed that TPA up-regulates, in part, two PKC-dependent transcriptional pathways to induce MnSOD expression. One pathway involves PKC-α catalyzed phosphorylation of CREB and the other involves a PKC-mediated the PP2A catalyzed dephosphorylation of Akt at Ser(473) which in turn leads to FOXO3a Ser(253) dephosphorylation and its activation.
Collapse
Affiliation(s)
- Youn Wook Chung
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-8012, USA
| | | | | | | | | |
Collapse
|
11
|
Boutten A, Goven D, Boczkowski J, Bonay M. Oxidative stress targets in pulmonary emphysema: focus on the Nrf2 pathway. Expert Opin Ther Targets 2010; 14:329-46. [PMID: 20148719 DOI: 10.1517/14728221003629750] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE OF THE FIELD Oxidative stress has been implicated in the pathogenesis of pulmonary emphysema. Nuclear factor erythroid-2-related factor 2 (Nrf2) a major antioxidant transcription factor could play a protective role in pulmonary emphysema. AREAS COVERED IN THIS REVIEW Nrf2 is ubiquitously expressed throughout the lung, but is predominantly found in epithelium and alveolar macrophages. Evidence suggests that Nrf2 and several Nrf2 downstream genes have an essential protective role in the lung against oxidative stress from environmental pollutants and toxicants such as cigarette smoke, a major causative factor for the development and progression of pulmonary emphysema. Application of Nrf2-deficient mice identified an extensive range of protective roles for Nrf2 against the pathogenesis of pulmonary emphysema. Therefore, Nrf2 promises to be an attractive therapeutic target for intervention and prevention strategies. WHAT THE READER WILL GAIN In this review, we discuss recent findings on the association of oxidative stress with pulmonary emphysema. We also address the mechanisms of Nrf2 lung protection against oxidative stress based on emerging evidence from experimental oxidative disease models and human studie. TAKE HOME MESSAGE The current literature suggests that among oxidative stress targets, Nrf2 is a valuable therapeutic target in pulmonary emphysema.
Collapse
Affiliation(s)
- A Boutten
- Inserm, U700, Université Paris 7, Faculté de Médecine Denis Diderot-site Bichat, BP416, 75870 Paris Cedex 18, France
| | | | | | | |
Collapse
|
12
|
Teng H, Ballim RD, Mowla S, Prince S. Phosphorylation of histone H3 by protein kinase C signaling plays a critical role in the regulation of the developmentally important TBX2 gene. J Biol Chem 2009; 284:26368-76. [PMID: 19633291 DOI: 10.1074/jbc.m109.021360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanism(s) regulating the expression of the TBX2 gene, a key regulator of development, is poorly understood and thus limits an understanding of its function(s). Here we demonstrate that 12-O-tetradecanoylphorbol-13-acetate (TPA) induces TBX2 expression in normal human fibroblasts in a protein kinase C (PKC)-dependent and MAPK-independent manner. Our data further reveal that TPA activates transcription of TBX2 through activating MSK1, which leads to an increase in phosphorylated histone H3 and the recruitment of Sp1 to the TBX2 gene. In addition, TPA was shown to activate MSK1 in a PKC-dependent and MAPK-independent manner. This study is the first to provide evidence that phosphorylation of histone H3 leads to the transcriptional activation of the TBX2 gene and to link MSK1 to PKC.
Collapse
Affiliation(s)
- Huajian Teng
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | | | | | | |
Collapse
|
13
|
de Vries HE, Witte M, Hondius D, Rozemuller AJM, Drukarch B, Hoozemans J, van Horssen J. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 2008; 45:1375-83. [PMID: 18824091 DOI: 10.1016/j.freeradbiomed.2008.09.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 01/17/2023]
Abstract
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids, proteins, and DNA. Hence, enhanced ROS production and oxidative injury play a cardinal role in the onset and progression of neurodegenerative disorders. To maintain a proper redox balance, the central nervous system is endowed with an antioxidant defense mechanism consisting of endogenous antioxidant enzymes. Expression of most antioxidant enzymes is tightly controlled by the antioxidant response element (ARE) and is activated by nuclear factor E2-related factor 2 (Nrf2). In past years reports have highlighted the protective effects of Nrf2 activation in reducing oxidative stress in both in vitro and in vivo models of neurodegenerative disorders. Here we provide an overview of the involvement of ROS-induced oxidative damage in Alzheimer's disease, Parkinson's disease, and Huntington's disease and we discuss the potential therapeutic effects of antioxidant enzymes and compounds that activate the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Helga E de Vries
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Murley JS, Nantajit D, Baker KL, Kataoka Y, Li JJ, Grdina DJ. Maintenance of manganese superoxide dismutase (SOD2)-mediated delayed radioprotection induced by repeated administration of the free thiol form of amifostine. Radiat Res 2008; 169:495-505. [PMID: 18439041 DOI: 10.1667/rr1194.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 01/30/2008] [Indexed: 01/21/2023]
Abstract
Thiol-containing drugs such as WR1065, the free thiol form of amifostine, have been shown to induce a delayed radioprotective effect in both malignant and non-malignant cells. In mammalian cells exposed to a dose as low as 40 microM WR1065, the redox-sensitive nuclear transcription factor kappaB (NFkappaB) is activated, leading to an elevation in the expression of the antioxidant gene manganese superoxide dismutase (SOD2) and a concomitant increase in active SOD2 enzyme levels that peaks 24 to 32 h later. Exposure of cells to ionizing radiation during the period of elevated SOD2 enzymatic activity results in an enhanced radiation resistance. This is seen as an increase in surviving fraction as determined by standard colony formation assays. To determine whether this delayed radioprotection can be maintained over a prolonged period in cells of either malignant or non-malignant origin, both human microvascular endothelial cells (HMEC) and SA-NH mouse sarcoma cells were grown to confluence and exposed to 40 muM WR1065 using three administration protocols: (1) daily drug exposure for 10 days followed each day by irradiation with 2 Gy; (2) drug exposure once every 48 h followed by irradiation with 2 Gy 48 h later for 14 days; and (3) drug exposure every 72 h followed by irradiation with 2 Gy 72 h later for 12 days. As a function of each experimental condition, cell numbers and associated SOD2 enzymatic activities were measured at the time of each irradiation. None of the treatment conditions were toxic to either HMEC or SA-NH cells. SOD2 activity was elevated 5.3- and 1.8-fold over background on average for HMEC exposed to 40 microM WR1065 every 24 or 48 h, respectively. Likewise, SOD2 activity was elevated in SA-NH mouse sarcoma cells 7.8- and 4.9-fold after daily exposure to WR1065 or exposure to WR1065 once every 48 h, respectively. Both HMEC and SA-NH cells exhibited enhanced radiation resistance that correlated with the increase in SOD2 activity. The average respective increases in cell survival were 1.33 +/- 0.01 (SEM), 1.23 +/- 0.01 and 1.04 +/- 0.01 for HMEC exposed to WR1065 every 24, 48 and 72 h, respectively, and 1.27 +/- 0.01, 1.18 +/- 0.02 and 1.02 +/- 0.02 for SA-NH cells exposed to WR1065 every 24, 48 and 72 h, respectively. Both the elevation in WR1065-induced SOD2 enzymatic activity and the corresponding increase in radiation resistance were completely inhibited in HMEC and SA-NH cells transfected with human or mouse SOD2 siRNA oligomers and irradiated 24 h later. These data demonstrate that a delayed radioprotective effect can be induced and maintained over a prolonged period in both non-malignant and malignant cells exposed to thiol-containing drugs such as WR1065. For non-malignant cells this represents a novel paradigm for radiation protection. The ability of WR1065 to induce a persistent elevated radiation resistance in malignant cells, however, suggests a new potential concern regarding the issue of tumor protection in patients exposed to thiol-containing drugs.
Collapse
Affiliation(s)
- Jeffrey S Murley
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
15
|
Traore K, Sharma R, Thimmulappa RK, Watson WH, Biswal S, Trush MA. Redox-regulation of Erk1/2-directed phosphatase by reactive oxygen species: role in signaling TPA-induced growth arrest in ML-1 cells. J Cell Physiol 2008; 216:276-85. [PMID: 18270969 DOI: 10.1002/jcp.21403] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Extracellular signal-regulated kinase (Erk)1/2 activity signals myeloid cell differentiation induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Previously, we reported that Erk1/2 activation (phosphorylation) induced by TPA required reactive oxygen species (ROS) as a second messenger. Here, we hypothesized that ROS generated in response to TPA inhibit Erk1/2-directed phosphatase activity, which leads to an increase phosphorylation of Erk1/2 to signal p21(WAF1/Cip1)-mediated growth arrest in ML-1 cells. Incubation of ML-1 cells with TPA resulted in a marked accumulation of phosphorylated Erk1/2, and is subsequent to H2O2 generation. Interestingly, post-TPA-treatment with N-acetylcysteine (NAC) stimulated a marked and a rapid dephosphorylation of Erk1/2, suggesting a regeneration of Erk1/2-directed phospahatase activity by NAC. ROS generation in ML-1 cells induced by TPA was suggested to occur in the mitochondrial electron transport chain (METC) based on the following observations: (i) undifferentiated ML-1 cells not only lack p67-phox and but also express a low level of p47-phox key components required for NADPH oxidase enzymatic activity, (ii) pretreatment with DPI, an inhibitor of NADH- and NADPH-dependent enzymes, or rhein, an inhibitor of complex I, blocked the ROS generation, and (iii) examination of the microarray analysis data and Western blot analysis data revealed an induction of MnSOD expression at both mRNA and protein levels in response to TPA. MnSOD is a key member of the mitochondrial defense system against mitochondrial-derived superoxide. Together, this study suggested that TPA stimulated ROS generation as a second messenger to activate Erk1/2 via a redox-mediated inhibition of Erk1/2-directed phosphatase in ML-1 cells.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Environmental Health Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Kunwar A, Narang H, Priyadarsini KI, Krishna M, Pandey R, Sainis KB. Delayed activation of PKCdelta and NFkappaB and higher radioprotection in splenic lymphocytes by copper (II)-Curcumin (1:1) complex as compared to curcumin. J Cell Biochem 2008; 102:1214-24. [PMID: 17471506 DOI: 10.1002/jcb.21348] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A mononuclear 1:1 copper complex of curcumin had been found to be superior to curcumin in its anti-oxidant properties. This paper describes the radio-protective effects of the complex in splenic lymphocytes from swiss mice. The complex was found to be very effective in protecting the cells against radiation-induced suppression of glutathione peroxidase, catalase and superoxide dismutase (SOD) activities. Both curcumin and the complex protected radiation-induced protein carbonylation and lipid peroxidation in lymphocytes with the complex showing better protection than curcumin. It also showed better overall protection by decreasing the radiation-induced apoptosis. The kinetics of activation of PKCdelta and NFkappaB after irradiation in presence or absence of these compounds was looked at to identify the molecular mechanism involved. The modulation of irradiation-induced activation of PKCdelta and NFkappaB by curcumin and the complex was found different at later time periods although the initial response was similar. The early responses could be mere stress responses and the activation of crucial signaling factors at later time periods may be the determinants of the fate of the cell. In this study this delayed effect was observed in case of complex but not in case of curcumin. The delayed effect of the complex along with the fact that it is a better free radical scavenger must be the reason for its better efficacy. The complex was also found to be less cytotoxic then curcumin at similar concentration.
Collapse
Affiliation(s)
- Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | | | |
Collapse
|
17
|
Dhar SK, Xu Y, Noel T, Clair DK. Chronic exposure to 12-O-tetradecanoylphorbol-13-acetate represses sod2 induction in vivo: the negative role of p50. Carcinogenesis 2007; 28:2605-13. [PMID: 17652337 PMCID: PMC2656647 DOI: 10.1093/carcin/bgm163] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well documented that the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) can activate manganese superoxide dismutase (MnSOD) expression. However, it is unclear how repeated exposure to TPA following a single application of tumor initiator 7,12-dimethylbenz-(a)-anthracene causes tumor development. We generated transgenic mice expressing human MnSOD promoter- and enhancer-driven luciferase reporter gene and used a non-invasive imaging system to investigate the effects of TPA on MnSOD expression in vivo. Our data indicate that TPA initially activates MnSOD expression, but this positive effect declines after repeated applications. Changes in MnSOD expression in vivo were verified by measuring MnSOD mRNA and protein levels. Using chromatin immunoprecipitation coupled to Western analysis of the transcription factors known to be essential for the constitutive and TPA-induced transcription of MnSOD, we found that TPA treatment leads to both activation and inactivation of MnSOD gene transcription. During the activation phase, the levels of p50, p65, specificity protein 1 (Sp1) and nucleophosmin (NPM) increase after TPA treatments. Sustained treatments with TPA lead to further increase of p50 but not p65, Sp1 or NPM, suggesting that excess p50 may have inhibitory effects leading to the suppression of MnSOD. Alteration of p50 levels by expressing p50 cDNA or p50 small interfering RNA in mouse epithelial (JB6) cells confirms that p50 is inhibitory to MnSOD transcription. These findings identify p50 as having a negative effect on MnSOD induction upon repeated applications of TPA and provide an insight into a cause for the reduction of MnSOD expression during early stages of skin carcinogenesis.
Collapse
Affiliation(s)
| | | | | | - Daret K.St Clair
- To whom correspondence should be addressed. Tel: +1 859 257 3956; Fax: +1 859 323 1059;
| |
Collapse
|
18
|
Xu Y, Fang F, Dhar SK, St Clair WH, Kasarskis EJ, St Clair DK. The role of a single-stranded nucleotide loop in transcriptional regulation of the human sod2 gene. J Biol Chem 2007; 282:15981-94. [PMID: 17426024 PMCID: PMC2654256 DOI: 10.1074/jbc.m608979200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant enzyme, is necessary for survival of aerobic life. Previously, we demonstrated that a Sp1-based promoter is essential for constitutive transcription and a NF-kappaB-based intronic enhancer is responsible for cytokine-mediated induction. Here we show that nucleophosmin (NPM), a RNA-binding protein, binds to an 11G single-stranded loop in the promoter region and serves to integrate the Sp1 and NF-kappaB responses. Disruption of the loop structure causes a reduction of both constitutive and inductive transcription due to loss of the binding motif for NPM. Interaction of NF-kappaB.NPM.Sp1 facilitated by binding of NPM to the loop structure in the promoter region appears to comprise the basic complex for the transcriptional stimulation. These results suggest a novel molecular mechanism for communication between the enhancer and the GC-rich promoter.
Collapse
Affiliation(s)
- Yong Xu
- Graduate Center for Toxicology, Department of Radiation Medicine, University of Kentucky, Lexington 40536-0305, USA
| | | | | | | | | | | |
Collapse
|
19
|
Cai Y, Liu Y, Zhang X. Induction of transcription factor Egr-1 gene expression in astrocytoma cells by Murine coronavirus infection. Virology 2006; 355:152-63. [PMID: 16908043 PMCID: PMC1851928 DOI: 10.1016/j.virol.2006.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/19/2006] [Accepted: 07/10/2006] [Indexed: 11/22/2022]
Abstract
Mouse hepatitis virus (MHV) causes encephalitis and demyelination in the central nervous system (CNS) of susceptible rodents. Astrocytes are one of the major targets for MHV infection in the CNS, and respond to MHV infection by expressing diverse molecules that may contribute to CNS pathogenesis. Here we characterized the activation of an immediate-early transcription factor Egr-1 by MHV infection in an astrocytoma cell line. We found that the expression of Egr-1 was dramatically increased following virus infection. Using various inhibitors of mitogen-activated protein kinases, we identified that the extracellular signal-regulated kinases 1/2 were involved in the activation of Egr-1 transcription by MHV infection. Experiments with ultraviolet light-inactivated virus revealed that the induction of Egr-1 did not require virus replication and was likely mediated during cell entry. We further found that over-expression of Egr-1 suppressed the expression of BNip3, a pro-apoptotic member of the Bcl-2 family. This finding may provide an explanation for our previously observed down-regulation of BNip3 by MHV infection in astrocytoma cells (Cai, Liu, Yu, and Zhang, Virology 316:104-115, 2003). Furthermore, knockdown of Egr-1 by an siRNA inhibited MHV propagation, suggesting the biological relevance of Egr-1 induction to virus replication. In addition, the persistence/demylinating-positive strains (JHM and A59) induced Egr-1 expression, whereas the persistence/demylinating-negative strain (MHV-2) did not. These results indicate a correlation between the ability of MHVs to induce Egr-1 expression and their ability to cause demyelination in the CNS, which may suggest a potential role for the induction of Egr-1 in viral pathogenesis.
Collapse
Affiliation(s)
| | | | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| |
Collapse
|
20
|
Dhar SK, Xu Y, Chen Y, St Clair DK. Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression. J Biol Chem 2006; 281:21698-21709. [PMID: 16740634 PMCID: PMC2640468 DOI: 10.1074/jbc.m601083200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD) is a primary antioxidant enzyme necessary for the survival of aerobic life. Previously, we demonstrated that specificity protein 1 (Sp1) is essential for the basal transcription of the MnSOD gene. We also identified nucleophosmin (NPM), an RNA-binding protein, as an important co-activator of NF-kappaB in the induction of MnSOD by cytokine and tumor promoter. Here, using chromatin immunoprecipitation (ChIP) analysis, we demonstrate that Sp1 and NPM interact in vivo to enhance NF-kappaB-mediated MnSOD induction. Interaction between NPM and Sp1 or NF-kappaB at the promoter and enhancer of the MnSOD gene in vivo were verified by the presence of the PCR products from the promoter and enhancer elements in the ChIP assay. Unexpectedly, we also found p53, another transcription factor, to be a component of the complex detected by ChIP assay. The presence of p53 in this transcription complex was verified by immunoprecipitation of p53 proteins with antibody to Sp1 in nuclear extracts. Using a vector expressing full-length p53 cDNA, we demonstrated that p53 overexpression suppresses MnSOD mRNA and protein levels. Consistent with the negative role of p53 in the expression of the MnSOD gene, expression of small interfering RNA for p53 leads to an increase of MnSOD mRNA and protein levels. Using ChIP assays and immunoprecipitation, we further demonstrated that p53 interacts with Sp1 to suppress both the constitutive and 12-O-tetradecanoylphorbol-13-acetate-stimulated expression of the MnSOD gene. Inhibition of the MnSOD gene by p53 was abolished when Sp1 sites on the MnSOD promoter were mutated or when the Sp1 protein was reduced by siRNA approaches. Because expression of MnSOD protects against cell death, our findings reveal a previously unrecognized mechanism of p53-mediated cell death and demonstrate an intricate relationship between the positive and negative control of MnSOD expression.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536
| | - Yong Xu
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536
| | - Yumin Chen
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536
| | - Daret K St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
21
|
Murley JS, Kataoka Y, Weydert CJ, Oberley LW, Grdina DJ. Delayed radioprotection by nuclear transcription factor kappaB -mediated induction of manganese superoxide dismutase in human microvascular endothelial cells after exposure to the free radical scavenger WR1065. Free Radic Biol Med 2006; 40:1004-16. [PMID: 16540396 PMCID: PMC1405236 DOI: 10.1016/j.freeradbiomed.2005.10.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/07/2005] [Accepted: 10/20/2005] [Indexed: 11/21/2022]
Abstract
The free radical scavenger WR1065 (SH) is the active thiol form of the clinically approved cytoprotector amifostine. At doses of 40 microM and 4 mM it can activate the redox-sensitive nuclear transcription factor kappaB (NFkappaB) and elevate the expression of the antioxidant gene manganese superoxide dismutase (MnSOD) in human microvascular endothelial cells (HMEC). MnSOD contains binding motifs for a number of transcription factors other than NFkappaB and codes for a potent antioxidant enzyme localized in the mitochondria that is known to confer enhanced radiation resistance to cells. The purpose of this study was to determine the effect of WR1065 exposure on the various transcription factors known to affect MnSOD expression along with the subsequent kinetics of intracellular elevation of MnSOD protein levels and associated change in sensitivity to ionizing radiation in HMEC. Cells were grown to confluence and exposed to WR1065 for 30 min. Affects on the transcription factors AP1, AP2, CREB, NFkappaB, and Sp1 were monitored as a function of time ranging from 30 min to 4 h after drug exposure using a gel-shift assay. Only NFkappaB exhibited a marked activation and that occurred 30 min following the cessation of drug exposure. MnSOD protein levels, as determined by Western blot analysis, increased up to 16-fold over background control levels by 16 h following drug treatment, and remained at 10-fold or higher levels for an additional 32 h. MnSOD activity was evaluated using a gel-based assay and was found to be active throughout this time period. HMEC were irradiated with X-rays either in the presence of 40 microM or 4 mM WR1065 or 24 h after its removal when MnSOD levels were most elevated. No protection was observed for cells irradiated in the presence of 40 microM WR1065. In contrast, a 4 mM dose of WR1065 afforded an increase in cell survival by a factor of 2. A "delayed radioprotective" effect was, however, observed when cells were irradiated 24 h later, regardless of the concentration of WR1065 used. This effect is characterized as an increase in survival at the 2 Gy dose point, i.e., a 40% increase in survival, and an increase in the initial slope of the survival curve by a factor of 2. The anti-inflammatory sesquiterpene lactone, Helenalin, is an effective inhibitor of NFkappaB activation. HMEC were exposed to Helenalin for 2 h at a nontoxic concentration of 5 microM prior to exposure to WR1065. This treatment not only inhibited activation of NFkappaB by WR1065, but also inhibited the subsequent elevation of MnSOD and the delayed radioprotective effect. A persistent marked elevation of MnSOD in cells following their exposure to a thiol-containing reducing agent such as WR1065 can result in an elevated resistance to the cytotoxic effects of ionizing radiation and represents a novel radioprotection paradigm.
Collapse
Key Words
- wr1065
- nonprotein thiols
- nuclear transcription factor κb
- manganese superoxide dismutase
- radiation protection
- free radicals
- npt, nonprotein thiols
- nac, n-acetyl-l-cysteine
- mnsod, manganese superoxide dismutase
- ros, reactive oxygen species
- nfκb, nuclear transcription factor κb
- ap1 and 2, activator proteins 1 and 2
- sp1, specificity protein 1
- creb, adenosine 3′,5′-cyclic monophosphate-regulator element-binding factor
- hmec, human microvascular endothelial cells
- pbs, phosphate-buffered saline
- dtt, dithiotrethiol
- pmsf, phenylmethysulfonyl fluoride
- emsa, electrophoretic mobility-shift assays
- dmso, dimethyl sulfoxide
- sds, sodium dodecyl sulfate
- nbt, nitroblue tetrazolium
- tnfα, tumor necrosis factor-α
- αper, α-protection enhancement ratio
Collapse
Affiliation(s)
- Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
22
|
Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD, St Clair DK. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 2005; 65:3745-50. [PMID: 15867370 DOI: 10.1158/0008-5472.can-04-3835] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene p53 is activated by reactive oxygen species-generating agents. After activation, p53 migrates to mitochondria and nucleus, a response that eventually leads to apoptosis, but how the two events are related is unknown. Herein, we show that p53 translocation to mitochondria precedes its translocation to nucleus in JB6 skin epidermal cells treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Translocation of p53 to mitochondria occurs within 10 minutes after TPA application. In the mitochondria, p53 interacts with the primary antioxidant enzyme, manganese superoxide dismutase (MnSOD), consistent with the reduction of its superoxide scavenging activity, and a subsequent decrease of mitochondrial membrane potential. In contrast to the immediate action on mitochondria, p53 transcriptional activity in the nucleus increases at 1 hour following TPA application, accompanied by an increase in the levels of its target gene bax at 15 hours following TPA treatment. Activation of p53 transcriptional activity is preventable by application of a SOD mimetic (MnTE-2-PyP5+). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explains the observed mitochondrial dysfunction, which leads to transcription-dependent mechanisms of p53-induced apoptosis.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Porntadavity S, Nath A, Prachayasittikul V, Cota-Gomez A, Flores SC, St Clair DK. Different roles of Sp family members in HIV-1 Tat-mediated manganese superoxide dismutase suppression in hepatocellular carcinoma cells. DNA Cell Biol 2005; 24:299-310. [PMID: 15869407 DOI: 10.1089/dna.2005.24.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The expression of manganese superoxide dismutase (MnSOD) is regulated by agents associated with cancer development. It has been shown that infection with the human immunodeficiency virus type 1 (HIV-1) is associated with the development of liver cancer and that the transactivating transcriptional factor (Tat) of human HIV-1 reduces the expression of MnSOD in several cell types. However, the role of Tat in the expression of MnSOD in hepatocellular carcinoma is unknown. Furthermore, the precise mechanisms whereby Tat suppresses MnSOD expression in hepatocellular carcinoma cells remain unclear. In this report, we build on our original observations that Tat changes the distribution of Sp family members on the MnSOD promoter, which accounts for Tat-dependent changes in basal expression. In hepatic cells, Tat expression upregulates Sp1/Sp3, which play different roles in regulating MnSOD transcription. While overexpression of Sp1 stimulates, overexpression of Sp3 represses transcriptional activity. The transcription repression effect of Sp3 is not due to Sp3 competing for the binding site with Sp1 because only the full-length Sp3 but not the truncated Sp3 suppresses MnSOD promoter activity. These findings suggest a novel mechanism by which Tat modulates the repression of the MnSOD gene and establish a link between HIV infection and liver cancer.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Hepatocellular
- Cell Line, Transformed
- Cell Line, Tumor
- Gene Expression Regulation, Enzymologic
- Gene Products, tat/genetics
- Genes, Reporter
- HIV-1/genetics
- Humans
- Liver Neoplasms
- Luciferases/analysis
- Luciferases/metabolism
- Plasmids
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Transcription, Genetic
- Transfection
- beta-Galactosidase/metabolism
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Sureerut Porntadavity
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
24
|
Amantana A, Vorachek WR, Butler JA, Ream W, Whanger PD. Identification of putative transcription factor binding sites in rodent selenoprotein W promoter. J Inorg Biochem 2004; 98:1513-20. [PMID: 15337603 DOI: 10.1016/j.jinorgbio.2004.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 06/02/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
To understand transcriptional regulation of the selenoprotein W (SeW) gene, we used in vitro binding assays to identify transcription factors that may be involved in the transcriptional regulation of the SeW gene. Using protein from rat C6 (glial) cell nuclear extracts, oligonucleotides containing putative regulatory elements in the SeW promoter and antibodies, we observed that specificity protein 1(Sp1) transcription factor binds to the Sp1 consensus sequence in the SeW promoter as well as to the metal response element (MRE). Although competition analysis showed specific binding at the TFII-1 site, super-shift analysis using anti-TFII-1 antibody did not yield any super-shifted band. Therefore, the SeW gene may be a target for Sp1 whose binding to various regulatory sequences of the SeW promoter may activate or repress the transcription of SeW. The MRE, GRE, AP-1 and LF-A1 sites were also tested but no evidence was obtained for specific binding as indicated by lack of competition with unlabeled probes.
Collapse
Affiliation(s)
- A Amantana
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
25
|
Dhar SK, Lynn BC, Daosukho C, St Clair DK. Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene. J Biol Chem 2004; 279:28209-19. [PMID: 15087454 PMCID: PMC2651640 DOI: 10.1074/jbc.m403553200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme essential for the survival of life. We have reported that NF-kappaB is essential but not sufficient for the synergistic induction of MnSOD by phorbol 12-myristate 13-acetate and cytokines. To further identify transcription factors and co-activators that participate in the induction of MnSOD, we used NF-kappaB affinity chromatography to isolate potential NF-kappaB interacting proteins. Proteins eluted from the NF-kappaB affinity column were subjected to proteomic analysis and verified by Western analysis. Nucleophosmin (NPM), a nucleolar phosphoprotein, is the most abundant single protein identified. Co-immunoprecipitation studies suggest a physical interaction between NPM and NF-kappaB proteins. To verify the role of NPM on MnSOD gene transcription, cells were transfected with constructs expressing NPM in sense or antisense orientation as well as interference RNA. The results indicate that an increase NPM expression leads to increased MnSOD gene transcription in a dose-dependent manner. Consistent with this, expression of small interfering RNA for NPM leads to inhibition of MnSOD gene transcription but does not have any effect on the expression of interleukin-8, suggesting that the effect of NPM is selective. These results identify NPM as a partner of the NF-kappaB transcription complex in the induction of MnSOD by phorbol 12-myristate 13-acetate and cytokines.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatography, Affinity
- Cytokines/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Exons
- Humans
- Interleukin-8/biosynthesis
- Introns
- Luciferases/metabolism
- Mass Spectrometry
- Models, Genetic
- Mutagenesis, Site-Directed
- NF-kappa B/metabolism
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Nucleophosmin
- Oligonucleotides, Antisense/pharmacology
- Peptides/chemistry
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- RNA/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Silver Staining
- Superoxide Dismutase/biosynthesis
- Tetradecanoylphorbol Acetate/metabolism
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Sanjit K Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
26
|
Otsu K, Ikeda Y, Fujii J. Accumulation of manganese superoxide dismutase under metal-depleted conditions: proposed role for zinc ions in cellular redox balance. Biochem J 2004; 377:241-8. [PMID: 14531733 PMCID: PMC1223854 DOI: 10.1042/bj20030935] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/06/2003] [Accepted: 10/07/2003] [Indexed: 11/17/2022]
Abstract
A diet low in copper results in increased levels of MnSOD (manganese superoxide dismutase), a critical antioxidative enzyme conferring protection against oxidative stress, in rat liver mitochondria. The mechanism for this was investigated using cultured HepG2 cells, a human hepatocellular carcinoma-derived line. MnSOD activity increased 5-7-fold during incubation in a medium supplemented with metal-depleted fetal bovine serum, with a corresponding elevation of its mRNA levels. Metal depletion also decreased CuZnSOD and glutathione peroxidase levels to approx. 70-80% of baseline. When zinc ions were added to the medium at micromolar levels, MnSOD accumulation was suppressed; however, copper ions had essentially no effect on MnSOD expression. Since the intracellular redox status was shifted to a more oxidized state by metal depletion, we examined the DNA-binding activity of NF-kappaB (nuclear factor-kappaB), an oxidative stress-sensitive transactivating factor that plays a primary role in MnSOD induction. A gel shift assay indicated that the DNA-binding activity of NF-kappaB was increased in cells maintained in metal-depleted culture, suggesting the involvement of the transactivating function of NF-kappaB in this induction. This was further supported by the observation that curcumin suppressed both the DNA-binding activity of NF-kappaB and the induction of MnSOD mRNA in cells cultivated under metal-depleted conditions. These results suggest that the level of zinc, rather than copper, is a critical regulatory factor in MnSOD expression. It is possible that a deficiency of zinc in the low-copper diet may be primarily involved in MnSOD induction.
Collapse
Affiliation(s)
- Kaoru Otsu
- Department of Biochemistry, Yamagata University School of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | | | | |
Collapse
|
27
|
Zhang X, Liu Y. Suppression of HGF receptor gene expression by oxidative stress is mediated through the interplay between Sp1 and Egr-1. Am J Physiol Renal Physiol 2003; 284:F1216-F1225. [PMID: 12569082 DOI: 10.1152/ajprenal.00426.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatocyte growth factor (HGF) receptor, the product of the c-met protooncogene, is transcriptionally regulated by a wide variety of cytokines as well as extracellular environmental cues. In this report, we demonstrate that c-met expression was significantly suppressed by oxidative stress. Treatment of mouse renal inner medullary collecting duct epithelial cells with 0.5 mM H(2)O(2) inhibited c-met mRNA and protein expression, which was concomitant with induction of Egr-1 transcription factor. Ectopic expression of Egr-1 in renal epithelial cells markedly inhibited endogenous c-met expression in a dose-dependent fashion, suggesting a causative effect of Egr-1 in mediating c-met suppression. The cis-acting element responsible for H(2)O(2)-induced c-met inhibition was localized at nucleotide position -223 to -68 of c-met promoter, in which reside an imperfect Egr-1 and three Sp1-binding sites. Egr-1 markedly suppressed c-met promoter activity but did not directly bind to its cis-acting element in the c-met gene. Induction of Egr-1 by oxidative stress attenuated the binding of Sp1 to its cognate sites, but it did not affect Sp1 abundance in renal epithelial cells. Immunoprecipitation uncovered that Egr-1 physically interacted with Sp1 by forming the Sp1/Egr-1 complex, which presumably resulted in a decreased availability of unbound Sp1 as a transcriptional activator for the c-met gene. Thus it appears that inhibition of c-met expression by oxidative stress is mediated by the interplay between Sp1 and Egr-1 transcription factors. Our findings reveal a novel transcriptional regulatory mechanism by which Egr-1 sequesters Sp1 as a transcriptional activator of c-met via physical interaction.
Collapse
Affiliation(s)
- Xianghong Zhang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
28
|
Bek MJ, Reinhardt HC, Fischer KG, Hirsch JR, Hupfer C, Dayal E, Pavenstädt H. Up-regulation of early growth response gene-1 via the CXCR3 receptor induces reactive oxygen species and inhibits Na+/K+-ATPase activity in an immortalized human proximal tubule cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:931-40. [PMID: 12517959 DOI: 10.4049/jimmunol.170.2.931] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The CXCR3 chemokine receptor, a member of the CXCR family, has been linked to a pathological role in autoimmune disease, inflammatory disease, allograft rejection, and ischemia. In the kidney, expression of the CXCR3 receptor and its ligands is up-regulated in states of glomerulonephritis and in allograft rejection, but little is known about the expression and functional role the CXCR3 receptor might play. Here, we study the function of the CXCR3 chemokine receptor in an immortalized human proximal tubular cell line (IHKE-1). Stimulation of the CXCR3 receptor by its selective agonist monokine induced by IFN-gamma leads via a Ca(2+)-dependent mechanism to an up-regulation of early growth response gene (EGR)-1. Overexpression of EGR-1 induces down-regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase and stimulates the generation of reactive oxygen species (ROS) via the NADH/NADPH-oxidase system. EGR-1 overexpression or treatment with monokine induced by IFN-gamma resulted in a ROS-dependent inhibition of basolateral Na(+)/K(+)-ATPase activity, compromising sodium transport in these cells. Thus, activation of the CXCR3 receptor in proximal tubular cells might disturb natriuresis during inflammatory and ischemic kidney disease via EGR-1-mediated imbalance of ROS.
Collapse
MESH Headings
- Calcium/metabolism
- Calcium/physiology
- Cell Line, Transformed/enzymology
- Cell Line, Transformed/immunology
- Cell Line, Transformed/metabolism
- Chemokine CXCL9
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Cytosol/metabolism
- Cytosol/physiology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation
- Early Growth Response Protein 1
- Enzyme Activation/immunology
- Enzyme Activation/physiology
- Enzyme Inhibitors/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/immunology
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Intercellular Signaling Peptides and Proteins
- Interferon-gamma/physiology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/immunology
- Kidney Tubules, Proximal/metabolism
- Multienzyme Complexes/metabolism
- NADH, NADPH Oxidoreductases/metabolism
- Reactive Oxygen Species/metabolism
- Reactive Oxygen Species/pharmacology
- Receptors, CXCR3
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/physiology
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
- Superoxide Dismutase/antagonists & inhibitors
- Superoxide Dismutase/biosynthesis
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Martin J Bek
- Department of Medicine, Division of Nephrology and General Medicine, University of Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Lee YW, Son KW, Flora G, Hennig B, Nath A, Toborek M. Methamphetamine activates DNA binding of specific redox-responsive transcription factors in mouse brain. J Neurosci Res 2002; 70:82-9. [PMID: 12237866 DOI: 10.1002/jnr.10370] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cellular oxidative stress and alterations in redox status can be implicated in methamphetamine (METH)-induced neurotoxicity. To elucidate the molecular signaling pathways of METH-induced neurotoxicity, we investigated the effects of a single intraperitoneal injection of METH (1.0, 10, or 20 mg/kg) on DNA-binding activity of specific redox-sensitive transcription factors in mouse brain. Transcription factors studied included activator protein-1 (AP-1), nuclear factor-kappaB (NF-kappaB), cAMP-responsive element-binding protein (CREB), SP-1, and signal transducers and activators of transcription (STAT1 and STAT3). Significant and dose-dependent inductions of AP-1 and CREB DNA-binding activities were observed in four different regions (striatum, frontal cortex, hippocampus, and cerebellum) isolated from the brains of mice injected with METH. However, injections with METH did not affect DNA binding activities of NF-kappaB, SP-1, STAT1, and STAT3. These results suggest that METH-induced oxidative stress may trigger the molecular signaling pathways via specific and selective activation of AP-1 and CREB.
Collapse
Affiliation(s)
- Yong Woo Lee
- Division of Neurosurgery, Department of Surgery, University of Kentucky Medical Center, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|