1
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
2
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
3
|
Puckette M, Barrera J, Schwarz M, Rasmussen M. Method for quantification of porcine type I interferon activity using luminescence, by direct and indirect means. BMC Biotechnol 2022; 22:13. [PMID: 35351081 PMCID: PMC8966355 DOI: 10.1186/s12896-022-00743-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I interferons are widely used in research applications and as biotherapeutics. Current assays used to measure interferon concentrations, such as plaque reduction assays and ELISA, are expensive, technically challenging, and may take days to provide results. We sought to develop a robust and rapid assay to determine interferon concentrations produced from transiently transfected cell cultures. METHOD Indirect quantification of recombinant interferon was evaluated using a novel bi-cistronic construct encoding the Foot-and-mouth disease virus 2A translational interrupter sequence to yield equimolar expression of Gaussia princeps luciferase and porcine interferon α. Direct quantification was evaluated by expression of a novel fusion protein comprised of Gaussia princeps luciferase and porcine type I interferon. Plasmids encoding constructs are transiently transfected into cell cultures and supernatant harvested for testing of luminescence, ELISA determined concentration, and anti-viral activity against vesicular stomatitis virus. RESULTS Bi-cistronic constructs, utilized for indirect quantification, demonstrate both luciferase activity and anti-viral activity. Fusion proteins, utilized for direct quantification, retained secretion and luminescence however only the interferon α fusion protein had antiviral activity comparable to wildtype porcine interferon α. A strong linear correlation was observed between dilution and luminescence for all compounds over a dynamic range of concentrations. CONCLUSION The correlation of antiviral and luciferase activities demonstrated the utility of this approach, both direct and indirect, to rapidly determine recombinant interferon concentrations. Concentration can be determined over a more dynamic concentration range than available ELISA based assays using this methodology.
Collapse
Affiliation(s)
- Michael Puckette
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, P.O. Box 848, Greenport, NY, 11944, USA.
| | - J Barrera
- Plum Island Animal Disease Center, Leidos, Inc., P.O. Box 848, Greenport, NY, 11944, USA
| | - M Schwarz
- Oak Ridge Institute for Science and Education, Plum Island Animal Disease Center Research Participation Program, P.O. Box 848, Greenport, NY, 11944, USA
| | - M Rasmussen
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology Directorate, P.O. Box 848, Greenport, NY, 11944, USA
| |
Collapse
|
4
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
5
|
Staudacher AH, Li Y, Liapis V, Hou JJC, Chin D, Dolezal O, Adams TE, van Berkel PH, Brown MP. APOMAB Antibody–Drug Conjugates Targeting Dead Tumor Cells are Effective In Vivo. Mol Cancer Ther 2018; 18:335-345. [DOI: 10.1158/1535-7163.mct-18-0842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
|
6
|
Yin L, Fang Z, Shen NJ, Qiu YH, Li AJ, Zhang YJ. Downregulation of A20 increases the cytotoxicity of IFN-γ in hepatocellular carcinoma cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:2841-2850. [PMID: 29033545 PMCID: PMC5628674 DOI: 10.2147/dddt.s135993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal disease mandating development of novel, effective therapeutic strategy. Interferon-gamma (IFN-γ) is a pleiotropic cytokine with immunomodulatory, antiviral, and antitumor effects. Although IFN-γ is a promising antitumor agent, its application is limited by resistance in tumor cells. A20 is a zinc-finger protein that was initially identified as a gene product induced by tumor necrosis factor α in human umbilical vein endothelial cells. In this study, we found that silencing of A20 combined with IFN-γ significantly represses cell viability, and induces apoptosis and cell-cycle arrest in HCC cells. By investigating mechanisms implicated in A20 and IFN-γ-mediated signaling pathways, we revealed that the phosphoinositide 3-kinase/Akt signaling pathway and antiapoptotic B-cell lymphoma 2 proteins were repressed. Moreover, we also found that phosphorylation of STAT1 and STAT3 was significantly enhanced after the downregulation of A20 in combination with treatment of IFN-γ. Inhibitor of STAT1 but not STAT3 could block the antitumor effect of IFN-γ. Therefore, targeting A20 enhances the cytotoxicity of IFN-γ against HCC cells and may present a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Lei Yin
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zheng Fang
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ning-Jia Shen
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ying-He Qiu
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ai-Jun Li
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong-Jie Zhang
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
7
|
Urgard E, Reigo A, Reinmaa E, Rebane A, Metspalu A. Human basonuclin 2 up-regulates a cascade set of interferon-stimulated genes with anti-cancerous properties in a lung cancer model. Cancer Cell Int 2017; 17:18. [PMID: 28184177 PMCID: PMC5294813 DOI: 10.1186/s12935-017-0394-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human basonuclin 2 (BNC2) acts as a tumor suppressor in multiple cancers in an as yet unidentified manner. The role and expression of the BNC2 gene in lung cancer has not yet been investigated. METHODS BNC2 expression was studied in the A549 and BEAS-2B cell lines, as well as in lung cancer tissue. Illumina array analysis and a viability assay were used to study the effects of transient transfection of BNC2 in A549 cells. Ingenuity pathway analysis and g:Profiler were applied to identify affected pathways and networks. RT-qPCR was used to validate the array results. RESULTS We showed the reduced mRNA expression of BNC2 in non-small cell lung cancer tissue and lung cancer cell line A549 compared to non-cancerous lung tissue and BEAS-2B cells, respectively. Further array analysis demonstrated that the transfection of BNC2 into A549 cells resulted in the increased expression of 139 genes and the down-regulation of 13 genes. Pathway analysis revealed that half of the up-regulated genes were from the interferon/signal transducer and activator of transcription signaling pathways. The differential expression of selected sets of genes, including interferon-stimulated and tumor suppressor genes of the XAF1 and OAS families, was confirmed by RT-qPCR. In addition, we showed that the over-expression of BNC2 inhibited the proliferation of A549 cells. CONCLUSION Our data suggest that human BNC2 is an activator of a subset of IFN-regulated genes and might thereby act as a tumor suppressor.
Collapse
Affiliation(s)
- Egon Urgard
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anu Reigo
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Eva Reinmaa
- Department of Immunoanalysis, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Estonian Genome Center, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Jang JK, Khawli LA, Canter DC, Hu P, Zhu TH, Wu BW, Angell TE, Li Z, Epstein AL. Systemic delivery of chTNT-3/CpG immunoconjugates for immunotherapy in murine solid tumor models. Cancer Immunol Immunother 2016; 65:511-23. [PMID: 26960932 DOI: 10.1007/s00262-016-1813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
CpG oligodeoxynucleotides (CpG) potently activate the immune system by mimicking microbial DNA. Conjugation of CpG to chTNT-3, an antibody targeting the necrotic centers of tumors, enabled CpG to accumulate in tumors after systemic delivery, where it can activate the immune system in the presence of tumor antigens. CpG chemically conjugated to chTNT-3 (chTNT-3/CpG) were compared to free CpG in their ability to stimulate the immune system in vitro and reduce tumor burden in vivo. In subcutaneous Colon 26 adenocarcinoma and B16-F10 melanoma models in BALB/c and C57BL/6 mice, respectively, chTNT-3/CpG, free CpG, or several different control constructs were administered systemically. Intraperitoneal injections of chTNT-3/CpG delayed tumor growth and improved survival and were comparable to intratumorally administered CpG. Compared to saline-treated mice, chTNT-3/CpG-treated mice had smaller average tumor volumes by as much as 72% in Colon 26-bearing mice and 79% in B16-bearing mice. Systemically delivered free CpG and CpG conjugated to an isotype control antibody did not reduce tumor burden or improve survival. In this study, chTNT-3/CpG retained immunostimulatory activity of the CpG moiety and enabled delivery to tumors. Because systemically administered CpG rapidly clear the body and do not accumulate into tumors, chTNT-3/CpG provide a solution to the limitations observed in preclinical and clinical trials.
Collapse
Affiliation(s)
- Julie K Jang
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Leslie A Khawli
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - David C Canter
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Tian H Zhu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Brian W Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA
| | - Trevor E Angell
- Department of Endocrinology, Metabolism, and Hypertension, Thyroid Section, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongjun Li
- Department of Blood Transfusion, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 205, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Kiefer JD, Neri D. Immunocytokines and bispecific antibodies: two complementary strategies for the selective activation of immune cells at the tumor site. Immunol Rev 2016; 270:178-92. [PMID: 26864112 PMCID: PMC5154379 DOI: 10.1111/imr.12391] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of the immune system for a selective removal of tumor cells represents an attractive strategy for the treatment of metastatic malignancies, which cannot be cured by existing methodologies. In this review, we examine the design and therapeutic potential of immunocytokines and bispecific antibodies, two classes of bifunctional products which can selectively activate the immune system at the tumor site. Certain protein engineering aspects, such as the choice of the antibody format, are common to both classes of therapeutic agents and can have a profound impact on tumor homing performance in vivo of individual products. However, immunocytokines and bispecific antibodies display different mechanisms of action. Future research activities will reveal whether an additive of even synergistic benefit can be obtained from the judicious combination of these two types of biopharmaceutical agents.
Collapse
Affiliation(s)
- Jonathan D Kiefer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
10
|
Jang JK, Chretin J, Bruyette D, Hu P, Epstein AL. Phase 1 Dose-Escalation Study with LEC/chTNT-3 and Toceranib Phosphate (Palladia ®) in Dogs with Spontaneous Malignancies. ACTA ACUST UNITED AC 2015; 7:167-174. [PMID: 26635918 DOI: 10.4172/1948-5956.1000343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES LEC chemokine promotes TH1 responses and recruits immune cells to inflammatory sites. By linking LEC to an antibody targeting tumor necrosis, LEC/chTNT-3 can be used for the immunotherapeutic treatment of tumors. The primary objective of this study was to determine the safety profile of LEC/chTNT-3 and toceranib phosphate (Palladia®) combination therapy in dogs with spontaneous malignancies. Secondary purpose was to determine objective responses to treatment. METHODS Twenty-three dogs with cancer were enrolled, covering nine different malignancies. In this dose escalation study, dogs received LEC/chTNT-3 for five days, and toceranib every 48 hours for the remainder of the study. Dogs received physical exams, chemistry panel, urinalysis, and complete blood counts on days 0, 10, 28 of the study, and every 6-8 weeks thereafter. RESULTS Lethargy was noted in 13% dogs. There were no statistical differences in the prevalence of anorexia, diarrhea, thrombocytopenia, renal toxicity, or hepatic toxicity before or during the study. There were trends in increases in the prevalence of vomiting, lymphopenia, and neutropenia (all grade 2 or lower, p=0.07) over the initial 28 days of the study. By day 28, 10% of dogs had partial responses, 58% had stable disease, and 32% had progressive disease. CONCLUSIONS LEC/chTNT-3 and toceranib were well tolerated. This combination therapy showed some biological activity against a variety of cancers at a low dose and short duration of LEC/chTNT-3 administration.
Collapse
Affiliation(s)
- Julie K Jang
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Chretin
- Veterinary Centers of America West Los Angeles Animal Hospital, Los Angeles, CA, USA
| | - David Bruyette
- Veterinary Centers of America West Los Angeles Animal Hospital, Los Angeles, CA, USA
| | - Peisheng Hu
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Alan L Epstein
- Department of Pathology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Chen J, Zhao J, Chen L, Dong N, Ying Z, Cai Z, Ji D, Zhang Y, Dong L, Li Y, Jiang L, Holtzman MJ, Chen C. STAT1 modification improves therapeutic effects of interferons on lung cancer cells. J Transl Med 2015; 13:293. [PMID: 26351076 PMCID: PMC4562290 DOI: 10.1186/s12967-015-0656-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Interferons (IFNs) have potent anti-proliferative, pro-apoptotic, and immunomodulatory activities against cancer. However, the clinical utility of IFNs is limited by toxicity and pharmacokinetics making it difficult to achieve sustained therapeutic levels especially in solid tumors. METHODS Signal Transducer and Activator of Transcription 1 (STAT1) or a modified STAT1 (designated STAT1-CC) that is hyper-responsive to IFN were overexpressed in lung cancer SPC-A-1 and H1299 cells using lentiviral vectors. Transduction efficiency was monitored using enhanced green fluorescent protein (EGFP) expression. After transduction, cells were treated with interferon-gamma (IFN-γ) or interferon-beta (IFN-β) and monitored for cell proliferation, migration, and invasiveness using Cell Counting Kit-8 and transwell chamber assays and for apoptosis using Annexin V detection by flow cytometry. In addition, levels of STAT1, STAT1 Tyr-701 phosphorylation (pSTAT1), fibronectin, and β-catenin were determined using western blotting. In the case of IFN-γ stimulation, levels of S100A4, proliferating cell nuclear antigen (PCNA), and c-fos expression were also determined. RESULTS We found that expression of STAT1 or STAT1-CC enhanced the effect of IFN-γ and, IFN-β on inhibition of human lung cancer cell proliferation, migration and invasiveness. Moreover, STAT1 and STAT1-CC expression caused increases in pSTAT1 and decreases in fibronectin and β-catenin levels. STAT1-CC showed increased effects compared to STAT1 on IFN-γ induced pSTAT1 and down-regulation of S100A4, PCNA, and c-fos levels. CONCLUSION The results show that STAT1-CC exhibited more strength in improving the antitumor response of IFNs in lung cancer cells. Results from this study suggest that combined treatment of IFNs and STAT1-CC might be a feasible approach for the clinical management of lung cancer in the future.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jialu Zhao
- Department of Pulmonary Medicine, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui, Zhejiang, China.
| | - Lefu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Nian Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhaojian Ying
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhenzhen Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Dongxiang Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yong Zhang
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Li Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yuping Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Michael J Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO, USA.
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
12
|
Angell TE, Lechner MG, Jang JK, LoPresti JS, Epstein AL. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res 2014; 20:6034-44. [PMID: 25294906 DOI: 10.1158/1078-0432.ccr-14-0879] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE To evaluate MHC class I expression on papillary thyroid cancer (PTC) and analyze changes in MHC expression and associated immune activation with current and experimental treatments for thyroid cancer using in vitro PTC cell lines. EXPERIMENTAL DESIGN MHC class I expression and assessment of tumor-infiltrating leukocyte populations were evaluated by immunohistochemistry. PTC cell lines were analyzed for HLA-ABC expression by flow cytometry following tyrosine kinase inhibitor, IFNα or IFNγ, or radiation treatment. Functional changes in antigenicity were assessed by coculture of allogeneic donor peripheral blood leukocytes (PBL) with pretreated or untreated PTC cell lines and measurement of T-cell activation and cytokine production. RESULTS Both MHC class I and β2-microglobulin expression was reduced or absent in 76% of PTC specimens and was associated with reduced tumor-infiltrating immune cells, including effector (CD3(+), CD8(+), CD16(+)) and suppressor (FoxP3(+)) populations. Treatment of PTC cell lines with the MEK1/2 inhibitor selumetinib or IFN increased HLA-ABC expression. This phenotypic change was associated with increased T-cell activation (%CD25(+) of CD3(+)) and IL2 production by PBL cocultured with treated PTC cell lines. Additive effects were seen with combination selumetinib and IFN treatment. CONCLUSIONS MHC class I expression loss is frequent in human PTC specimens and represents a significant mechanism of immune escape. Increased antigenicity following selumetinib and IFN treatment warrants further study for immunotherapy of progressive PTC.
Collapse
Affiliation(s)
- Trevor E Angell
- Division of Endocrinology and Diabetes, Keck Medical Center, University of Southern California, Los Angeles, California. Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California. Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Melissa G Lechner
- Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California. Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Julie K Jang
- Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California
| | - Jonathan S LoPresti
- Division of Endocrinology and Diabetes, Keck Medical Center, University of Southern California, Los Angeles, California
| | - Alan L Epstein
- Department of Pathology, Keck Medical Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
13
|
Hemmerle T, Neri D. The dose-dependent tumor targeting of antibody-IFNγ fusion proteins reveals an unexpected receptor-trapping mechanism in vivo. Cancer Immunol Res 2014; 2:559-67. [PMID: 24795141 DOI: 10.1158/2326-6066.cir-13-0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytokines often display substantial toxicities at low concentrations, preventing their escalation for therapeutic treatment of cancer. Fusion proteins comprising cytokines and recombinant antibodies may improve the anticancer activity of proinflammatory cytokines. Murine IFNγ was appended in the diabody format at the C-terminus of the F8 antibody, generating the F8-IFNγ fusion protein. The F8 antibody is specific for the extra-domain A (EDA) of fibronectin, a tumor-associated antigen that is expressed in the vasculature and stroma of almost all tumor types. Tumor-targeting properties were measured in vivo using a radioiodinated preparation of the fusion protein. Therapy experiments were performed in three syngeneic murine models of cancer [F9 teratocarcinoma, WEHI-164 fibrosarcoma, and Lewis lung carcinoma (LLC)]. F8-IFNγ retained the biologic activity of both the antibody and the cytokine moiety in vitro, but, unlike the parental F8 antibody, it did not preferentially localize to the tumors in vivo. However, when unlabeled F8-IFNγ was administered before radioiodinated F8-IFNγ, a selective accumulation at the tumor site was observed. F8-IFNγ showed dose-dependent anticancer activity with a clear superiority over untargeted recombinant IFNγ. The anticancer activity was potentiated by combining with F8-IL4 without additional toxicities, whereas combination of F8-IFNγ with F8-TNF was lethal in all mice. Unlike other antibody-cytokine fusions, the use of IFNγ as payload for anticancer therapy is associated with a receptor-trapping mechanism, which can be overcome by the administration of a sufficiently large amount of the fusion protein without any detectable toxicity at the doses used.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antibodies, Neoplasm/pharmacology
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Biological Availability
- Biomarkers, Tumor/metabolism
- Cricetinae
- Dose-Response Relationship, Immunologic
- Female
- Fibronectins/metabolism
- Interferon-gamma/immunology
- Male
- Mice, Inbred C57BL
- Neoplasms/metabolism
- Neoplasms/therapy
- Receptors, Interferon/immunology
- Recombinant Fusion Proteins/pharmacokinetics
- Recombinant Fusion Proteins/pharmacology
- Tumor Cells, Cultured
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Teresa Hemmerle
- Authors' Affiliation: Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Authors' Affiliation: Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
14
|
Evaluation of antibody–chemokine fusion proteins for tumor-targeting applications. Exp Biol Med (Maywood) 2014; 239:842-852. [DOI: 10.1177/1535370214536667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is an increasing biotechnological interest in the ‘arming’ of therapeutic antibodies with bioactive payloads. While many antibody–cytokine fusion proteins have been extensively investigated in preclinical and clinical studies, there are only few reports related to antibody–chemokine fusion proteins (‘immunochemokines’). Here, we describe the cloning, expression, and characterization of 10 immunochemokines based on the monoclonal antibody F8, specific to the alternatively spliced extra domain A (EDA) of fibronectin, a marker of angiogenesis. Among the 10 murine chemokines tested in our study, only CCL19, CCL20, CCL21, and CXCL10 could be expressed and isolated at acceptable purity levels as F8-based fusion proteins. The immunochemokines retained the binding characteristics of the parental antibody, but could not be characterized by gel-filtration analysis, an analytical limitation which had previously been observed in our laboratory for the unconjugated chemokines. When radioiodinated preparations of CCL19-F8, CCL20-F8, CCL21-F8, and CXCL10-F8 were tested in quantitative biodistribution studies in tumor-bearing mice, the four fusion proteins failed to preferentially accumulate at the tumor site, while the unconjugated parental antibody displayed a tumor:blood ratio >20:1, 24 h after intravenous (i.v.) administration. The tumor-targeting ability of CCL19-F8 could be rescued only in part by preadministration of unlabeled CCL19-F8, indicating that a chemokine trapping mechanism may hinder pharmacodelivery strategies. While this article highlights expression, analytical, and biodistribution challenges associated with the antibody-based in vivo delivery of chemokines at sites of disease, it provides the first comprehensive report in this field and may facilitate future studies with immunochemokines.
Collapse
|
15
|
Balachandran S, Adams GP. Interferon-γ-induced necrosis: an antitumor biotherapeutic perspective. J Interferon Cytokine Res 2013; 33:171-80. [PMID: 23570383 DOI: 10.1089/jir.2012.0087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon (IFN)-γ-like the well-known antitumor biotherapeutic IFN-α-is a powerful antiproliferative and immune modulatory cytokine, but mixed results from clinical trials, together with issues of systemic toxicity, have dampened enthusiasm for its use in the treatment of cancer. We suggest that at least 2 factors reduce the antitumor efficacy of IFN-γ: (1) poorly understood survival mechanisms that protect most tumor cells from IFN-γ-induced direct cytotoxicity, and (2) the short half-life of IFN-γ in serum. In this review, we outline avenues to overcome both these limitations. First, we have identified the transcription factor nuclear factor-kappa B (NF-κB) as a protective mechanism against IFN-γ-induced necrosis, and disabling NF-κB allows IFN-γ to trigger RIP1 kinase-dependent programmed necrosis (or necroptosis) in otherwise resistant cells. Second, we propose that fusing IFN-γ to tumor-specific antibodies will stabilize IFN-γ in serum and target this cytokine to tumor cells. We expect that such IFN-γ-antibody chimeras (called immunocytokines), when combined with agents that neutralize tumor-intrinsic survival signals such as NF-κB, will exert potent tumoricidal activity with minimized systemic side effects. Although this review will focus on exploiting IFN-γ-induced necrosis for treatment of renal cell carcinoma, these approaches are also directly applicable to several human cancers in which IFNs have shown therapeutic potential.
Collapse
Affiliation(s)
- Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center , Philadelphia, PA 19111, USA.
| | | |
Collapse
|
16
|
Chen P, Nogusa S, Thapa RJ, Shaller C, Simmons H, Peri S, Adams GP, Balachandran S. Anti-CD70 immunocytokines for exploitation of interferon-γ-induced RIP1-dependent necrosis in renal cell carcinoma. PLoS One 2013; 8:e61446. [PMID: 23613854 PMCID: PMC3629199 DOI: 10.1371/journal.pone.0061446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/09/2013] [Indexed: 01/19/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) is an incurable disease in clear need of new therapeutic interventions. In early-phase clinical trials, the cytokine IFN-γ showed promise as a biotherapeutic for advanced RCC, but subsequent trials were less promising. These trials, however, focused on the indirect immunomodulatory properties of IFN-γ, and its direct anti-tumor effects, including its ability to kill tumor cells, remains mostly unexploited. We have previously shown that IFN-γ induces RIP1 kinase-dependent necrosis in cells lacking NF-κB survival signaling. RCC cells display basally-elevated NF-κB activity, and inhibiting NF-κB in these cells, for example by using the small-molecule proteasome blocker bortezomib, sensitizes them to RIP1-dependent necrotic death following exposure to IFN-γ. While these observations suggest that IFN-γ-mediated direct tumoricidal activity will have therapeutic benefit in RCC, they cannot be effectively exploited unless IFN-γ is targeted to tumor cells in vivo. Here, we describe the generation and characterization of two novel ‘immunocytokine’ chimeric proteins, in which either human or murine IFN-γ is fused to an antibody targeting the putative metastatic RCC biomarker CD70. These immunocytokines display high levels of species-specific IFN-γ activity and selective binding to CD70 on human RCC cells. Importantly, the IFN-γ immunocytokines function as well as native IFN-γ in inducing RIP1-dependent necrosis in RCC cells, when deployed in the presence of bortezomib. These results provide a foundation for the in vivo exploitation of IFN-γ-driven tumoricidal activity in RCC.
Collapse
Affiliation(s)
- Peirong Chen
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Shoko Nogusa
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Roshan J. Thapa
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Calvin Shaller
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Heidi Simmons
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Suraj Peri
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Gregory P. Adams
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Khawli LA, Hu P, Epstein AL. Targeted and Untargeted Fusion Proteins: Current Approaches to Cancer Immunotherapy. FUSION PROTEIN TECHNOLOGIES FOR BIOPHARMACEUTICALS 2013:295-314. [DOI: 10.1002/9781118354599.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Immunocytokines: a novel class of potent armed antibodies. Drug Discov Today 2012; 17:583-90. [PMID: 22289353 DOI: 10.1016/j.drudis.2012.01.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/14/2011] [Accepted: 01/16/2012] [Indexed: 11/20/2022]
Abstract
Several cytokines have been investigated in clinical trials, based on their potent therapeutic activity observed in animal models of cancer and other diseases. However, substantial toxicities are often reported at low doses, thus preventing escalation to therapeutically active regimens. The use of recombinant antibodies or antibody fragments as delivery vehicles promises to enhance greatly the therapeutic index of pro-inflammatory and anti-inflammatory cytokines. This review surveys preclinical and clinical data published in the field of antibody-cytokine fusions (immunocytokines). Molecular determinants (such as molecular format, valence, target antigen), which crucially contribute to immunocytokine performance in vivo, are discussed in the article, as well as recent trends for the combined use of this novel class of biopharmaceuticals with other therapeutic agents.
Collapse
|
19
|
Abstract
Interferons, IFNs, are among the most widely studied and clinically used biopharmaceuticals. Despite their invaluable therapeutic roles, the widespread use of IFNs suffers from some inherent limitations, mainly their relatively short circulation lifespan and their unwanted effects on some non-target tissues. Therefore, both these constraints have become the central focus points for the research efforts on the development of a variety of novel delivery systems for these therapeutic agents with the ultimate goal of improving their therapeutic end-points. Generally, the delivery systems currently under investigation for IFNs can be classified as particulate delivery systems, including micro- and nano-particles, liposomes, minipellets, cellular carriers, and non-particulate delivery systems, including PEGylated IFNs, other chemically conjugated IFNs, immunoconjugated IFNs, and genetically conjugated IFNs. All these strategies and techniques have their own possibilities and limitations, which should be taken into account when considering their clinical application. In this article, currently studied delivery systems/techniques for IFN delivery have been reviewed extensively, with the main focus on the pharmacokinetic consequences of each procedure.
Collapse
Affiliation(s)
- Mehrdad Hamidi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | |
Collapse
|
20
|
Khawli LA, Hu P, Epstein AL. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors. Handb Exp Pharmacol 2008:291-328. [PMID: 18071951 DOI: 10.1007/978-3-540-73259-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This chapter describes the generation of novel reagents for the treatment of cancer using fusion proteins constructed with natural ligands of the immune system. Immunotherapy is a powerful therapeutic modality that has not been fully harnessed for the treatment of cancer. We and others have hypothesized that if the proper immunoregulatory ligands can be targeted to the tumor, an effective immune response can be mounted to treat both established primary tumors and distant metastatic lesions. Though it is generally believed that immunotherapy has the potential to treat only residual disease, we offer evidence that this approach can, by itself, destroy large tumor masses and produce lasting remissions of experimental solid tumors. From these studies, three major classes of immune activators, namely, cytokines, chemokines, and costimulatory molecules, have been shown to generate antitumor responses in animal models. In addition, the reversal of immune tolerance by the deletion of T regulatory (Treg) cells has been shown to be equally important for effective immunotherapy. In an attempt to identify reagents that can provide an enhanced immune stimulation and treatment of cancer, our laboratory has developed a novel monoclonal antibody targeting approach, designated Tumor Necrosis Therapy (TNT), which utilizes stable intracellular antigens present in all cell types but which are only accessible in dead and/or dying cells. Since tumors contain necrotic and degenerating regions that account for 30-80% of the tumor mass, this targeting approach can be used to deliver therapeutic reagents to the core of tumors, a site abundant in tumor antigens. In our first set of reagents, a panel of cytokine fusion proteins was genetically engineered using monoclonal antibody chimeric TNT-3 (chTNT-3) directed against necrotic regions of tumors (single-stranded DNA) fused with IL-2, or GM-CSF, or TNFalphaa, or IFNgamma. Tested against different solid tumors, these reagents were found to mount an effective although transient immune response to tumor especially when used in combination. To improve upon these results, additional chTNT-3 fusion proteins using the liver-expression chemokine (LEC) and the costimulatory molecule B7.1 were constructed. Both of these reagents were found to work significantly better than the above cytokine fusion proteins due to their ability to stimulate multiple arms of the immune system deemed useful for cancer immunotherapy. Finally, the Tumor Necrosis Factor Superfamily (TNFSF) gene DC137L was used to generate chTNT-3 antibody (targeted) and soluble Fc (untargeted) fusion proteins. When used alone, both forms of costimulatory fusion proteins were found to produce in a s dose-dependent manner, complete regression of murine solid tumors. Evidence is presented to show that Treg cells play an important role in suppressing antitumor immunity since the deletion of these cells, when used in combination with LEC or costimulatory fusion proteins, produced profound and effective treatment with sustained memory. It is hoped that these data will further the preclinical development of soluble Fc and antibody based fusion proteins fro the immunotherapy of cancer.
Collapse
Affiliation(s)
- L A Khawli
- Department of Pathology, Keck School of Medicine at the University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
21
|
Zhang N, Sadun RE, Arias RS, Flanagan ML, Sachsman SM, Nien YC, Khawli LA, Hu P, Epstein AL. Targeted and untargeted CD137L fusion proteins for the immunotherapy of experimental solid tumors. Clin Cancer Res 2007; 13:2758-67. [PMID: 17460060 DOI: 10.1158/1078-0432.ccr-06-2343] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION CD137L is a member of the tumor necrosis factor superfamily that provides a costimulatory signal to T cells. In this study, two novel CD137L fusion proteins were produced and compared with the CD137 agonist antibody 2A. MATERIALS AND METHODS Murine CD137L was linked to the COOH terminus of either the Fc fragment of immunoglobulin (untargeted version) or TNT-3 (targeted version), an antibody that binds to necrotic regions of tumors. Groups of mice bearing established Colon 26 tumors were then treated daily x 5 with each fusion protein or 2A to determine their immunotherapeutic potential. RESULTS Both fusion proteins retained CD137L activity in vitro and TNT-3/CD137L showed tumor-binding activity by biodistribution analysis in tumor-bearing mice. The fusion proteins also produced similar responses in vivo at the 1 nmol per dose range and showed a 60% (TNT-3/CD137L) or 40% (Fc/CD137L) survival of treated mice at 150 days after tumor implantation, similar to the effects of 2A. Morphologic and immunohistochemical analyses showed massive central necrosis and infiltration of granzyme B-positive cells in necrotic areas and viable peripheral regions of treated tumors. Finally, cell depletion studies showed that CD137L-mediated tumor regression was CD8(+) T cell dependent. CONCLUSIONS From these studies, it was determined that both targeted and untargeted CD137L fusion proteins showed effective antitumor activity, but that the targeted version was more potent. Therefore, the use of the natural CD137 ligand is a promising approach to the treatment of solid tumors by virtue of its ability to produce physiologic costimulation within the tumor, limiting side effects often seen with agonist antibody therapies.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Flanagan ML, Khawli LA, Hu P, Epstein AL. H60/TNT-3 fusion protein activates NK cells in vitro and improves immunotherapeutic outcome in murine syngeneic tumor models. J Immunother 2006; 29:274-83. [PMID: 16699370 DOI: 10.1097/01.cji.0000199194.90222.1a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
H60 is a murine minor histocompatibility antigen that binds to NKG2D and activates an effector phenotype in NK and T cells. In the present study, H60 was genetically fused to the tumor-targeting murine MAb TNT-3. The resultant fusion protein, named H60/TNT-3, was produced in NS0 cells and determined by ELISA to possess an H60 epitope. The Ka of H60/TNT-3 (2.43 x 10(9) M(-1)) was nearly identical to that of the parental Ab (2.22 x 10(9) M(-1)), demonstrating that addition of the H60 moiety to the N-terminus of TNT-3 heavy chain did not affect antigen affinity. In vitro, H60/TNT-3 bound and activated murine NK cells, eliciting IFN-gamma production in a higher percentage of cells than the activating NKG2D Ab A10. In vivo, H60/TNT-3 possessed a half-life of approximately 12 hours and effectively targeted tumor tissue versus control organs, with nearly 2% injected dose per gram of tumor retained after 48 hours. Finally, H60/TNT-3 was tested for antitumor efficacy in BALB/c and C57BL/6 mice bearing subcutaneous syngeneic carcinomas. Tumor volume reduction was observed in both CT26 and Lewis Lung models (53% and 52%, respectively) relative to untreated control mice. Further, Lewis Lung carcinoma-bearing mice treated with H60/TNT-3 experienced a statistically significant survival advantage. Taken together, these data characterize a new immunotherapeutic MAb with antitumor efficacy that prolonged overall survival in a resistant solid tumor model.
Collapse
Affiliation(s)
- Meg L Flanagan
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
23
|
Khawli LA, Hu P, Epstein AL. Multiple uses of tumor necrosis therapy (TNT) for the treatment and imaging of solid tumors: Preclinical considerations and progress. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.uct.2006.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Yoon JH, Park MH, Cho MH, Jaegal YJ, Park CS. Expression of Interferon Regulatory Factors in Breast Cancer Tissue. J Breast Cancer 2006. [DOI: 10.4048/jbc.2006.9.2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jung Han Yoon
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Mun Hyeong Cho
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Young Jong Jaegal
- Department of Surgery, Chonnam National University Medical School, Gwangju, Korea
| | - Chang Soo Park
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
25
|
Ebbinghaus C, Ronca R, Kaspar M, Grabulovski D, Berndt A, Kosmehl H, Zardi L, Neri D. Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int J Cancer 2005; 116:304-13. [PMID: 15800913 DOI: 10.1002/ijc.20952] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A number of cytokines are either approved drugs or are in advanced clinical trials, yet these biopharmaceuticals do not typically localize efficiently in solid tumors and manifest their therapeutic potential at the expense of severe side effects. The targeted delivery of cytokines to solid tumors is a promising avenue for increasing the therapeutic index of these biopharmaceuticals. We engineered a fusion protein between scFv(L19), a human antibody fragment specific to the EDB domain of fibronectin, and a cysteine-free mutant of murine interferon-gamma. The resulting fusion protein was capable of targeting new blood vessels in solid tumors, and the targeting efficiency was strikingly increased in tumor-bearing knockout mice lacking the interferon-gamma receptor. ScFv(L19)-interferon-gamma displayed a strong antitumor effect in both subcutaneous and metastatic murine F9 teratocarcinomas, but was not efficacious as single agent when used to treat C51 and CT26 tumors. The potency of this fusion protein could be substantially enhanced by combination with doxorubicin and other immunocytokines. These findings are of clinical relevance, as the EDB domain is a marker of angiogenesis, with identical sequence in mouse and man, which is abundantly expressed in a variety of aggressive solid tumors but is undetectable in most normal tissues.
Collapse
Affiliation(s)
- Christina Ebbinghaus
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sengupta S, Lohse CM, Leibovich BC, Frank I, Thompson RH, Webster WS, Zincke H, Blute ML, Cheville JC, Kwon ED. Histologic coagulative tumor necrosis as a prognostic indicator of renal cell carcinoma aggressiveness. Cancer 2005; 104:511-20. [PMID: 15973740 DOI: 10.1002/cncr.21206] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prognostic markers for renal cell carcinoma (RCC), such as patient symptoms, tumor stage, tumor size, and tumor grade, are useful for determining appropriate follow-up and selecting patients for adjuvant therapy. Histologic coagulative tumor necrosis, also reported to be a prognostic marker for RCC, has not previously been extensively described or investigated. Hence, the objective of the current study was to characterize tumor necrosis as a prognostic feature of RCC. METHODS The authors of the current study identified 3009 patients treated surgically for RCC between 1970 and 2002 from the Mayo Clinic Nephrectomy Registry (Rochester, MN). Associations of tumor necrosis with clinical, laboratory, and pathologic features were examined with chi-square, Fisher exact test, and Wilcoxon rank-sum tests. Cancer-specific survival was estimated with the Kaplan-Meier method, and associations with outcome were assessed with Cox proportional hazard models. RESULTS Tumor necrosis was present in 690 of 2445 (28%) clear cell, 196 of 421 (47%) papillary, and 28 of 143 (20%) chromophobe RCCs. The risk ratio for death from RCC in patients with necrotic compared with non-necrotic tumors was 5.27 (95% confidence interval [CI]: 4.56-6.09; P < 0.001) for clear cell, 4.20 (CI: 1.65-10.68; P < 0.001) for chromophobe, and 1.49 (CI: 0.81-2.74; P = 0.199) for papillary RCC. The survival difference for clear cell RCC persisted even after multivariate adjustment for tumor stage, size, and grade (risk ratio 1.90; P < 0.001). CONCLUSIONS Histologic coagulative tumor necrosis is an independent predictor of outcome for clear cell and chromophobe RCC, and it should be routinely reported and used in clinical assessment.
Collapse
Affiliation(s)
- Shomik Sengupta
- Department of Urology, Mayo Medical School and Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|