1
|
Jung KT, Oh SH. Polyubiquitination of p62/SQSTM1 is a prerequisite for Fas/CD95 aggregation to promote caspase-dependent apoptosis in cadmium-exposed mouse monocyte RAW264.7 cells. Sci Rep 2019; 9:12240. [PMID: 31439879 PMCID: PMC6706394 DOI: 10.1038/s41598-019-48684-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
Cadmium(Cd) induces cytotoxicity via autophagy-induced apoptosis in non-activated mouse monocytes; however, the molecular mechanism remains unclear. Here, we show that autophagy induces Fas (CD95/APO-1)-mediated apoptosis by promoting accumulation of p62/SQSTM1 in response to Cd. Cd produced tumor necrosis factor (TNF)-α, peaking at 6 h, and exhibiting a concentration-dependent increase. Immunoblot analysis revealed polyubiquitinated (polyUb) full-length Fas (antibody clone G-9) and reduced cytosolic Fas (antibody clone M-20) in Cd-exposed RAW264.7 cells. The accumulation of polyUb-Fas was transient and positively correlated with polyUb-p62 and polyUb-proteins. Autophagy inhibition via chemical and genetic modulation suppressed Cd-induced polyUb-p62, polyUb-Fas, and polyUb-protein levels, whereas the level of cytosolic Fas recovered to that of the control. Immunofluorescence (IF) staining for full-length Fas, p62, and ubiquitin revealed an aggregated pattern in Cd-induced apoptotic cells, which was inhibited by blocking autophagy. Fas colocalized with microtubule-associated protein 1 light chain (LC)-3B. IF staining and immunoprecipitation assays revealed colocalization and interaction among p62, Ub, and Fas. Knockdown of p62 reduced the binding of Ub and Fas. Together, these data suggest that polyUb-p62 targets Fas and recruits it to autophagosomes, where Fas transiently aggregates to promote apoptosis and is degraded with polyUb-p62. In conclusion, autophagy regulates C-terminal cytosolic Fas aggregation via p62 polyubiquitination, which is required for apoptosis and may play a critical role in the production of select cytokines.
Collapse
Affiliation(s)
- Ki-Tae Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 501-759, Korea.
| |
Collapse
|
2
|
Sawada L, Nagano Y, Hasegawa A, Kanai H, Nogami K, Ito S, Sato T, Yamano Y, Tanaka Y, Masuda T, Kannagi M. IL-10-mediated signals act as a switch for lymphoproliferation in Human T-cell leukemia virus type-1 infection by activating the STAT3 and IRF4 pathways. PLoS Pathog 2017; 13:e1006597. [PMID: 28910419 PMCID: PMC5614654 DOI: 10.1371/journal.ppat.1006597] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/26/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes two distinct diseases, adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Since there are no disease-specific differences among HTLV-1 strains, the etiological mechanisms separating these respective lymphoproliferative and inflammatory diseases are not well understood. In this study, by using IL-2-dependent HTLV-1-infected T-cell lines (ILTs) established from patients with ATL and HAM/TSP, we demonstrate that the anti-inflammatory cytokine IL-10 and its downstream signals potentially act as a switch for proliferation in HTLV-1-infected cells. Among six ILTs used, ILTs derived from all three ATL patients grew much faster than those from three HAM/TSP patients. Although most of the ILTs tested produced IFN-γ and IL-6, the production of IL-10 was preferentially observed in the rapid-growing ILTs. Interestingly, treatment with exogenous IL-10 markedly enhanced proliferation of the slow-growing HAM/TSP-derived ILTs. The IL-10-mediated proliferation of these ILTs was associated with phosphorylation of STAT3 and induction of survivin and IRF4, all of which are characteristics of ATL cells. Knockdown of STAT3 reduced expression of IL-10, implying a positive-feedback regulation between STAT3 and IL-10. STAT3 knockdown also reduced survivin and IRF4 in the IL-10- producing or IL-10- treated ILTs. IRF4 knockdown further suppressed survivin expression and the cell growth in these ILTs. These findings indicate that the IL-10-mediated signals promote cell proliferation in HTLV-1-infected cells through the STAT3 and IRF4 pathways. Our results imply that, although HTLV-1 infection alone may not be sufficient for cell proliferation, IL-10 and its signaling pathways within the infected cell itself and/or its surrounding microenvironment may play a critical role in pushing HTLV-1-infected cells towards proliferation at the early stages of HTLV-1 leukemogenesis. This study provides useful information for understanding of disease mechanisms and disease-prophylactic strategies in HTLV-1 infection.
Collapse
Affiliation(s)
- Leila Sawada
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Hikari Kanai
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Kai Nogami
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Sayaka Ito
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Ota-ku, Tokyo, Japan
| | - Tomoo Sato
- Department of Rare Disease Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yoshihisa Yamano
- Department of Rare Disease Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate school of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Takao Masuda
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| | - Mari Kannagi
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Wang W, Wang J, Li M, Ying J, Jing H. 5-Azacitidine induces demethylation of PTPL1 and inhibits growth in non-Hodgkin lymphoma. Int J Mol Med 2015; 36:698-704. [PMID: 26133246 PMCID: PMC4533776 DOI: 10.3892/ijmm.2015.2269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/25/2015] [Indexed: 12/31/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) consists of various lymphoid malignancies with a diverse clinical pathology and biological characteristics. Methylation of cytosine residues by DNA methyltransferases at CpG dinucleotides in the promoter region of the genes is a major epigenetic modification in mammalian genomes that can have profound effects on gene expression. The PTPL1 methylation pattern was screened by methylation‑specific polymerase chain reaction (MSP) in 7 lymphoma‑derived cell lines and in 47 samples of diffuse large B cell lymphoma (DLBCL). The PTPL1 gene was hypermethylated in the CA46, Raji, Jurkat and DB cell lines; however, it was unmethylated in the Hut78, Maver and Z138 cell lines. The expression of PTPL1 mRNA was re‑inducible by 5‑azacytidine (5‑Aza), an agent of DNA demethylation. The methylations were detected in 59.6% of DLBCL versus 6.3% in reactive lymph node proliferation. Therefore, the present data showed that PTPL1 was epigenetically regulated in NHL suggesting an involvement of the PTPL1 tumor‑suppressor genes in NHL, and highlights 5-Aza as a potential therapeutic candidate for NHL.
Collapse
Affiliation(s)
- Wenming Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Min Li
- Department of Pathology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
5
|
Rowan AG, Suemori K, Fujiwara H, Yasukawa M, Tanaka Y, Taylor GP, Bangham CRM. Cytotoxic T lymphocyte lysis of HTLV-1 infected cells is limited by weak HBZ protein expression, but non-specifically enhanced on induction of Tax expression. Retrovirology 2014; 11:116. [PMID: 25499803 PMCID: PMC4282740 DOI: 10.1186/s12977-014-0116-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Immunogenetic evidence indicates that cytotoxic T lymphocytes (CTLs) specific for the weak CTL antigen HBZ limit HTLV-1 proviral load in vivo, whereas there is no clear relationship between the proviral load and the frequency of CTLs specific for the immunodominant antigen Tax. In vivo, circulating HTLV-1-infected cells express HBZ mRNA in contrast, Tax expression is typically low or undetectable. To elucidate the virus-suppressing potential of CTLs targeting HBZ, we compared the ability of HBZ- and Tax-specific CTLs to lyse naturally-infected cells, by co-incubating HBZ- and Tax-specific CTL clones with primary CD4(+) T cells from HLA-matched HTLV-1-infected donors. We quantified lysis of infected cells, and tested whether specific virus-induced host cell surface molecules determine the susceptibility of infected cells to CTL-mediated lysis. RESULTS Primary infected cells upregulated HLA-A*02, ICAM-1, Fas and TRAIL-R1/2 in concert with Tax expression, forming efficient targets for both HTLV-1-specific CTLs and CTLs specific for an unrelated virus. We detected expression of HBZ mRNA (spliced isoform) in both Tax-expressing and non-expressing infected cells, and the HBZ26-34 epitope was processed and presented by cells transfected with an HBZ expression plasmid. However, when coincubated with primary cells, a high-avidity HBZ-specific CTL clone killed significantly fewer infected cells than were killed by a Tax-specific CTL clone. Finally, incubation with Tax- or HBZ-specific CTLs resulted in a significant decrease in the frequency of cells expressing high levels of HLA-A*02. CONCLUSIONS HTLV-1 gene expression in primary CD4(+) T cells non-specifically increases susceptibility to CTL lysis. Despite the presence of HBZ spliced-isoform mRNA, HBZ epitope presentation by primary cells is significantly less efficient than that of Tax.
Collapse
Affiliation(s)
- Aileen G Rowan
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| | - Koichiro Suemori
- Department of Bioregulatory Medicine, Graduate School of Medicine, Ehime University, and Ehime University Proteomedicine Research Center, Toh-on city, Ehime, Japan.
| | - Hiroshi Fujiwara
- Department of Bioregulatory Medicine, Graduate School of Medicine, Ehime University, and Ehime University Proteomedicine Research Center, Toh-on city, Ehime, Japan.
| | - Masaki Yasukawa
- Department of Bioregulatory Medicine, Graduate School of Medicine, Ehime University, and Ehime University Proteomedicine Research Center, Toh-on city, Ehime, Japan.
| | - Yuetsu Tanaka
- Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Graham P Taylor
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| | - Charles R M Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
6
|
Zane L, Jeang KT. HTLV-1 and leukemogenesis: virus-cell interactions in the development of adult T-cell leukemia. Recent Results Cancer Res 2014; 193:191-210. [PMID: 24008300 DOI: 10.1007/978-3-642-38965-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) was originally discovered in the early 1980s. It is the first retrovirus to be unambiguously linked causally to a human cancer. HTLV-1 currently infects approximately 20 million people worldwide. In this chapter, we review progress made over the last 30 years in our understanding of HTLV-1 infection, replication, gene expression, and cellular transformation.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, The National Institutes of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, 20892-0460, USA
| | | |
Collapse
|
7
|
Zane L, Sibon D, Legras C, Lachuer J, Wierinckx A, Mehlen P, Delfau-Larue MH, Gessain A, Gout O, Pinatel C, Lançon A, Mortreux F, Wattel E. Clonal expansion of HTLV-1 positive CD8+ cells relies on cIAP-2 but not on c-FLIP expression. Virology 2010; 407:341-51. [DOI: 10.1016/j.virol.2010.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/11/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
8
|
Taylor JM, Nicot C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 2008; 13:733-47. [PMID: 18421579 DOI: 10.1007/s10495-008-0208-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A universal cellular defense mechanism against viral invasion is the elimination of infected cells through apoptotic cell death. To counteract host defenses many viruses have evolved complex apoptosis evasion strategies. The oncogenic human retrovirus HTLV-1 is the etiological agent of adult-T-cell leukemia/lymphoma (ATLL) and the neurodegenerative disease known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The poor prognosis in HTLV-1-induced ATLL is linked to the resistance of neoplastic T cells against conventional therapies and the immuno-compromised state of patients. Nevertheless, several studies have shown that the apoptotic pathway is largely intact and can be reactivated in ATLL tumor cells to induce specific killing. A better understanding of the molecular mechanisms employed by HTLV-1 to counteract cellular death pathways remains an important challenge for future therapies and the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- John M Taylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kansas Medical Center, 3025 Wahl Hall West, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | |
Collapse
|
9
|
Gloire G, Charlier E, Piette J. Regulation of CD95/APO-1/Fas-induced apoptosis by protein phosphatases. Biochem Pharmacol 2008; 76:1451-8. [PMID: 18656456 DOI: 10.1016/j.bcp.2008.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 01/15/2023]
Abstract
Triggering the CD95/APO-1/Fas receptor by CD95-L induces the assembly of the death-inducing signaling complex (DISC), which permits initiator caspases activation and progression of a signaling cascade that culminates in cellular apoptosis. Despite the CD95 receptor does not exhibit any kinase activity by itself, phosphorylation/dephosphorylation events seem important to regulate many aspects of CD95-mediated apoptosis. Here, we try to highlight particularly the importance of protein phosphatases in the modulation of the CD95 system.
Collapse
Affiliation(s)
- Geoffrey Gloire
- GIGA-Research, Unit of Signal Transduction, Laboratory of Virology and Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
10
|
Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. Blood 2007; 111:1610-6. [PMID: 17993614 DOI: 10.1182/blood-2007-06-093823] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clonal T-cell expansion in patients with T-large-granular lymphocyte (LGL) leukemia occurs by an undefined mechanism that may be related to Fas apoptosis resistance. Here, we demonstrate polarized expansion of CD8(+) terminal-memory differentiation in such patients, as demonstrated by CD45RA expression and absence of CD62L expression, suggesting repeated stimulation by antigen in vivo. Elimination of antigen-stimulated T cells normally occurs through Fas-mediated apoptosis. We show that cells from LGL leukemia patients express increased levels of c-FLIP and display resistance to Fas-mediated apoptosis and abridged recruitment of proteins that comprise the death-inducing signaling complex (DISC), including the Fas-associated protein with death-domain (FADD) and caspase-8. Exposure to interleukin-2 (IL-2) for only 24 hours sensitized leukemic LGL to Fas-mediated apoptosis with enhanced formation of the DISC, and increased caspase-8 and caspase-3 activities. We observed dysregulation of c-FLIP by IL-2 in leukemic LGL, suggesting a role in Fas resistance. Our results demonstrate that expanded T cells in patients with LGL leukemia display both functional and phenotypic characteristics of prior antigen activation in vivo and display reduced capacity for Fas-mediated DISC formation.
Collapse
|
11
|
IL-2 withdrawal induces HTLV-1 expression through p38 activation in ATL cell lines. FEBS Lett 2007; 581:5207-12. [PMID: 17950728 DOI: 10.1016/j.febslet.2007.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/24/2007] [Accepted: 10/05/2007] [Indexed: 11/22/2022]
Abstract
Expression of human T-cell leukemia virus type-1 (HTLV-1) in adult T-cell leukemia (ATL) cells is known to be marginal in vivo and inducible in short-term culture. In this study, we demonstrated that withdrawal of interleukin (IL)-2 from IL-2-dependent ATL cell lines resulted in induction of HTLV-1 mRNA and protein expression, and that viral induction was associated with phosphorylation of the stress kinase p38 and its downstream CREB. Pharmacological inhibitors of the p38 pathway suppressed viral expression induced by IL-2 depletion. These results indicate that the stress-induced p38 pathway might up-regulate HTLV-1 gene expression through at least CREB activation.
Collapse
|
12
|
Wieckowski E, Atarashi Y, Stanson J, Sato TA, Whiteside TL. FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis. J Cell Biochem 2007; 100:16-28. [PMID: 16888780 DOI: 10.1002/jcb.20922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular mechanisms responsible for tumor resistance to apoptosis often involve the Fas/FasL pathway. While squamous cell carcinomas of the head and neck (SCCHN) express both Fas and FasL, their resistance to self-induced apoptosis or apoptosis mediated by Fas agonistic antibody (CH-11Ab) was independent of the level of Fas surface expression or the presence of soluble Fas in supernatants of primary or metastatic SCCHN cell lines. By in vitro immunoselection, using PCI-15A cell line treated with successive cycles of CH-11 Ab, Fas-resistant sublines with the parental genotype were selected. Such sublines failed to cleave caspase-8 upon Fas engagement and were resistant to CH-11 Ab, although they remained sensitive to VP-16 or staurosporin. In the presence of cycloheximide, the selected SCCHN sublines become susceptible to CH-11 Ab, and showed cleavage of caspase-8, suggesting that apoptosis resistance was mediated by an inhibitory protein(s) acting upstream of caspase-8. Overexpression of Fas-associated phosphatase 1 (FAP-1), but not cellular FLICE-inhibitory protein (cFLIP) in SCCHN sublines was documented by Western blots and RT-PCR analyses. The FAP-1+ selected sublines also downregulated cell surface Fas. A high phosphorylation level of IkappaB kappa, NFkappaB activation and upregulation of Bcl-2 expression were observed in the FAP-1+ sublines. Treatment with the phosphatase inhibitor, orthovanadate, or silencing of FAP-1 with siRNA abolished their resistance to apoptosis, suggesting that FAP-1 phosphatase activity could be responsible for NF-kappaB activation and resistance of SCCHN cells to Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Eva Wieckowski
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
13
|
Kawakami H, Tomita M, Matsuda T, Ohta T, Tanaka Y, Fujii M, Hatano M, Tokuhisa T, Mori N. Transcriptional activation of survivin through the NF-kappaB pathway by human T-cell leukemia virus type I tax. Int J Cancer 2005; 115:967-74. [PMID: 15729715 DOI: 10.1002/ijc.20954] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Survivin, a unique member of the inhibitor of apoptosis protein family, is overexpressed in many cancers and considered to play an important role in oncogenesis. We previously reported the survivin expression profile in ATL, a CD4-positive T-cell malignancy caused by HTLV-I. HTLV-I Tax is thought to play an important role in immortalization of T cells. We have shown also that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by deprivation of IL-2 and converted its growth from being IL-2 dependent to being IL-2 independent through the NF-kappaB pathway. In our study, we demonstrate that constitutive expression of survivin was associated with resistance to apoptosis after IL-2 deprivation in Tax-expressing CTLL-2 cells. Transient transfection assays showed that survivin promoter was transactivated by Tax, via the activation of NF-kappaB. Pharmacological NF-kappaB inhibition resulted in suppression of survivin expression and caused apoptosis of Tax-expressing CTLL-2 cells. Our findings suggest that activated NF-kappaB signaling contributes directly to malignant progression of ATL by preventing apoptosis, acting through the prosurvival protein survivin.
Collapse
Affiliation(s)
- Hirochika Kawakami
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kurihara K, Harashima N, Hanabuchi S, Masuda M, Utsunomiya A, Tanosaki R, Tomonaga M, Ohashi T, Hasegawa A, Masuda T, Okamura J, Tanaka Y, Kannagi M. Potential immunogenicity of adult T cell leukemia cells in vivo. Int J Cancer 2005; 114:257-67. [PMID: 15551352 DOI: 10.1002/ijc.20737] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental vaccines targeting human T cell leukemia virus type-I (HTLV-I) Tax have been demonstrated in a rat model of HTLV-I-induced lymphomas. However, the scarcity of HTLV-I-expression and the presence of defective HTLV-I-proviruses in adult T cell leukemia (ATL) cells have raised controversy about the therapeutic potential of HTLV-I-targeted immunotherapy in humans. We investigated the expression of HTLV-I antigens in fresh ATL cells by using both in vitro and in vivo assays. In flow cytometric analysis, we found that 3 of 5 acute-type and six of fifteen chronic-type ATL patients tested showed significant induction of HTLV-I Tax and Gag in their ATL cells in a 1-day culture. Concomitantly with HTLV-I-expression, these ATL cells expressed co-stimulatory molecules such as CD80, CD86 and OX40, and showed elevated levels of antigenicity against allogeneic T cells and HTLV-I Tax-specific cytotoxic T-lymphocytes (CTL). Representative CTL epitopes restricted by HLA-A2 or A24 were conserved in 4 of 5 acute-type ATL patients tested. Furthermore, spleen T cells from rats, which had been subcutaneously inoculated with formalin-fixed uncultured ATL cells, exhibited a strong interferon gamma-producing helper T cell responses specific for HTLV-I Tax-expressing cells. Our study indicated that ATL cells from about half the patients tested readily express HTLV-I antigens including Tax in vitro, and that ATL cells express sufficient amounts of Tax or Tax-induced antigens to evoke specific T cell responses in vivo.
Collapse
Affiliation(s)
- Kiyoshi Kurihara
- Department of Immunotherapeutics, Medical Research Division, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sakamoto N, Mukae H, Fujii T, Kakugawa T, Kaida H, Kadota JI, Kohno S. Soluble form of Fas and Fas ligand in serum and bronchoalveolar lavage fluid of individuals infected with human T-lymphotropic virus type 1. Respir Med 2004; 98:213-9. [PMID: 15002756 DOI: 10.1016/j.rmed.2003.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) carriers are known to develop pulmonary complications characterized by T-lymphocytic alveolitis. The aim of this study was to determine the profile and role of soluble Fas (sFas) and sFas ligand (sFasL) in the lung of asymptomatic HTLV-1 carriers. We measured sFas and sFasL levels in serum and bronchoalveolar lavage fluid (BALF) of 16 seropositive asymptomatic HTLV-1 carriers and 32 healthy subjects. The serum levels of both sFas and sFasL were significantly higher in HTLV-1 carriers than in the control. In BALF, the percentage of lymphocytes and CD4 positive T-cells, and the levels of sFasL were also significantly higher in asymptomatic carriers than the control, but there were no significant differences in sFas levels between the two groups. There was a significant correlation between BALF sFasL levels and serum sFasL levels and percentage of CD4 positive T-cells in BALF. Our results suggest that the increased levels of sFasL in the lung of asymptomatic HTLV-1 carriers are associated with accumulation of CD4 positive T-cells, and that resistance to apoptosis in HTLV-1 infected T-cells and overproduction of sFasL could contribute to T-lymphocytic alveolitis by down-regulating Fas-FasL mediated apoptosis.
Collapse
Affiliation(s)
- Noriho Sakamoto
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto 1-7-1, Nagasaki 852-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Nomura M, Ohashi T, Nishikawa K, Nishitsuji H, Kurihara K, Hasegawa A, Furuta RA, Fujisawa JI, Tanaka Y, Hanabuchi S, Harashima N, Masuda T, Kannagi M. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model. J Virol 2004; 78:3827-36. [PMID: 15047798 PMCID: PMC374260 DOI: 10.1128/jvi.78.8.3827-3836.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- DNA, Viral/genetics
- Female
- Gene Products, tax/genetics
- Gene Products, tax/physiology
- Genes, pX
- Histocompatibility Antigens Class II/metabolism
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/etiology
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Mice
- RNA, Small Interfering/genetics
- Rats
- Rats, Inbred F344
- Rats, Mutant Strains
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Machiko Nomura
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takashi Ohashi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
- Corresponding author. Mailing address: Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Phone: 81(3)5803-5798. Fax: 81(3)5803-0235. E-mail:
| | - Keiko Nishikawa
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hironori Nishitsuji
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Kiyoshi Kurihara
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Rika A. Furuta
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Jun-ichi Fujisawa
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yuetsu Tanaka
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Shino Hanabuchi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Nanae Harashima
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takao Masuda
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo 113-8519, Department of Microbiology and Transplantation Center, Kansai Medical University, Osaka 570-8506, Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
17
|
Abstract
The protein tyrosine phosphatase PTP-Basophil (PTP-Bas) and its mouse homologue, PTP-Basophil-like (PTP-BL), are high molecular mass protein phosphatases consisting of a number of diverse protein-protein interaction modules. Several splicing variants of these phosphatases are known to exist thus demonstrating the complexity of these molecules. PTP-Bas/BL serves as a central scaffolding protein facilitating the assembly of a multiplicity of different proteins mainly via five different PDZ domains. Many of these interacting proteins are implicated in the regulation of the actin cytoskeleton. However, some proteins demonstrate a nuclear function of this protein tyrosine phosphatase. PTP-Bas is involved in the regulation of cell surface expression of the cell death receptor, Fas. Moreover, it is a negative regulator of ephrinB phosphorylation, a receptor playing an important role during development. The phosphorylation status of other proteins such as RIL, IkappaBalpha and beta-catenin can also be regulated by this phosphatase. Finally, PTP-BL has been shown to be involved in the regulation of cytokinesis, the last step in cell division. Although the precise molecular function of PTP-Bas/BL is still elusive, current data suggest clearly that PTP-Bas/BL belongs to the family of PDZ domain containing proteins involved in the regulation of the cytoskeleton and of intracellular vesicular transport processes.
Collapse
Affiliation(s)
- Kai S Erdmann
- Department of Molecular Neurobiochemistry, Ruhr-University Bochum, Germany.
| |
Collapse
|
18
|
Franchini G, Fukumoto R, Fullen JR. T-Cell Control by Human T-Cell Leukemia/Lymphoma Virus Type 1. Int J Hematol 2003; 78:280-96. [PMID: 14686485 DOI: 10.1007/bf02983552] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Collective evidence from in vitro studies indicates that several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function, such as antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation may therefore be of importance, as also suggested by epidemiological data. Thus genetic and environmental factors together with the virus contribute to disease development. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells. The relevance of these laboratory findings is related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
19
|
Arai M, Amano S, Ryo A, Hada A, Wakatsuki T, Shuda M, Kondoh N, Yamamoto M. Identification of epilepsy-related genes by gene expression profiling in the hippocampus of genetically epileptic rat. ACTA ACUST UNITED AC 2003; 118:147-51. [PMID: 14559364 DOI: 10.1016/s0169-328x(03)00329-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ihara epileptic rat (IER) is an animal model of temporal lobe epilepsy (TLE) with genetically programmed microdysgenesis in the hippocampal formation. The neuronal microdysgenesis is thought to be a cause for recurrent spontaneous seizures. To identify differentially expressed genes in the hippocampus of IER in comparison to control Wistar rat, we performed serial analysis of gene expression (SAGE). As many as 21 differentially expressed genes were identified.
Collapse
Affiliation(s)
- Masaaki Arai
- Department of Biochemistry II, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-0042, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ivanov VN, Lopez Bergami P, Maulit G, Sato TA, Sassoon D, Ronai Z. FAP-1 association with Fas (Apo-1) inhibits Fas expression on the cell surface. Mol Cell Biol 2003; 23:3623-35. [PMID: 12724420 PMCID: PMC164761 DOI: 10.1128/mcb.23.10.3623-3635.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As revealed by intracellular pools of nonactive Fas (Apo-1), export of Fas to the cell surface is often impaired in human tumors, thereby inactivating Fas ligand-mediated apoptosis. Here, we demonstrate that association with Fas-associated phosphatase 1 (FAP-1) attenuates Fas export to the cell surface. Forced expression of FAP-1 reduces cell surface Fas levels and increases the intracellular pool of Fas within the cytoskeleton network. Conversely, expression of dominant-negative forms of FAP-1, or inhibition of FAP-1 expression by short interfering RNA, efficiently up-regulates surface expression of Fas. Inhibition of Fas surface expression by FAP-1 depends on its association with the C terminus of Fas. Mutation within amino acid 275 results in decreased association with FAP-1 and greater export of Fas to the cell surface in melanomas, normal fibroblasts, or Fas null cells. Identifying the role of FAP-1 in binding to, and consequently inhibition of, Fas export to the cell surface provides novel insight into the mechanism underlying the regulation of Fas trafficking, which is commonly impaired in advanced tumors with FAP-1 overexpression.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Ruttenberg Cancer Center, Department of Molecular and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
21
|
Franchini G, Nicot C, Johnson JM. Seizing of T Cells by Human T-Cell Leukemia⧸Lymphoma Virus Type 1. Adv Cancer Res 2003; 89:69-132. [PMID: 14587871 DOI: 10.1016/s0065-230x(03)01003-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) causes neoplastic transformation of human T-cells in a small number of infected individuals several years from infection. Several viral proteins act in concert to increase the responsiveness of T-cells to extracellular stimulation, modulate proapoptotic and antiapoptotic gene signals, enhance T-cell survival, and avoid immune recognition of the infected T-cells. The virus promotes T-cell proliferation by usurping several signaling pathways central to immune T-cell function. Viral proteins modulate the downstream effects of antigen stimulation and receptor-ligand interaction, suggesting that extracellular signals are important for HTLV-1 oncogenesis. Environmental factors such as chronic antigen stimulation are therefore important, as also suggested by epidemiological data. The ability of a given individual to respond to specific antigens is determined genetically. Thus, genetic and environmental factors, together with the virus, contribute to disease development. As in the case of other virus-associated cancers, HTLV-1-induced leukemia/lymphoma can be prevented by avoiding viral infection or by intervention during the asymptomatic phase with approaches able to interrupt the vicious cycle of virus-induced proliferation of a subset of T-cells. This review focuses on current knowledge of the mechanisms regulating HTLV-1 replication and the T-cell pathways that are usurped by viral proteins to induce and maintain clonal proliferation of infected T-cells in vitro. The relevance of these laboratory findings will be related to clonal T-cell proliferation and adult T-cell leukemia/lymphoma development in vivo.
Collapse
Affiliation(s)
- Genoveffa Franchini
- National Cancer Institute, Basic Research Laboratory, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
22
|
Ohashi T, Hanabuchi S, Suzuki R, Kato H, Masuda T, Kannagi M. Correlation of major histocompatibility complex class I downregulation with resistance of human T-cell leukemia virus type 1-infected T cells to cytotoxic T-lymphocyte killing in a rat model. J Virol 2002; 76:7010-9. [PMID: 12072501 PMCID: PMC136333 DOI: 10.1128/jvi.76.14.7010-7019.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) in infected individuals after a long incubation period. Despite the apparent transforming ability of HTLV-1 under experimental conditions, most HTLV-1 carriers are asymptomatic. These facts suggest that HTLV-1 is controlled by host immunity in most carriers. To understand the interplay between host immunity and HTLV-1-infected cells, in this study, we isolated several HTLV-1 Tax-specific cytotoxic T-lymphocyte (CTL) lines from rats inoculated with Tax-coding DNA and investigated the long-term effects of the CTL on syngeneic HTLV-1-infected T cells. Our results demonstrated that long-term mixed culture of these CTL and the virus-infected T cells led to the emergence of CTL-resistant HTLV-1-infected cells. Although the Tax expression level in these resistant cells was equivalent to that in the parental cells, expression of surface major histocompatibility complex class I (MHC-I) was significantly downregulated in the resistant cells. Downregulation of MHC-I was more apparent in RT1.A(l), which presents a Tax epitope recognized by the CTL established in this study. Moreover, peptide pulsing resulted in killing of the resistant cells by CTL, indicating that resistance was caused by a decreased epitope density on the infected cell surface. This may be one of the mechanisms for persistence of HTLV-1-infected cells that evade CTL lysis and potentially develop ATL.
Collapse
Affiliation(s)
- Takashi Ohashi
- Department of Immunotherapeutics, Tokyo Medical and Dental University, Medical and Dental Research Division, Tokyo 113-8519, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Kongphanich A, Hieda M, Kurokawa K, Murata T, Kobayashi N. Overcoming the blockade at the upstream of caspase cascade in Fas-resistant HTLV-I-infected T cells by cycloheximide. Biochem Biophys Res Commun 2002; 294:714-8. [PMID: 12056829 DOI: 10.1016/s0006-291x(02)00531-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In spite of carrying large amount of Fas death receptor on the cell surface, Human T cell lymphotropic virus type-I (HTLV-I)-infected T cell lines are resistant to Fas-mediated cytotoxicity. We investigated the mechanism(s) of HTLV-I-induced Fas resistance. Western blotting and enzymatic activity analyses revealed that the Fas-elicited apoptotic signal in HTLV-I-infected T cells was intervened at the level(s) prior to the activation of caspase-8. Upon stimulation, the clustering of Fas receptors scarcely occurred in HTLV-I-infected cells. Cycloheximide treatment converted the resistant cells to sensitive cells; the presence of short-lived anti-apoptotic molecule(s) that can block the caspase-8 activation within HTLV-I-infected T cells is suggested.
Collapse
Affiliation(s)
- Aurus Kongphanich
- Laboratory of Molecular Biology of Diseases, School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bnkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
24
|
Saggioro D, Barp S, Chieco-Bianchi L. Block of a mitochondrial-mediated apoptotic pathway in Tax-expressing murine fibroblasts. Exp Cell Res 2001; 269:245-55. [PMID: 11570817 DOI: 10.1006/excr.2001.5310] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the viral transactivator Tax has been established as an essential effector of HTLV-I-mediated oncogenesis, its exact role(s) in the pathogenesis of HTLV-I-associated diseases, which include both a neurodegenerative pathology and leukemia/lymphoma, remains to be clarified. It was recently advanced that dysregulation of the apoptotic process can lead to pathophysiological changes which result in either degenerative diseases or cancer. As the apoptotic potential of Tax is still debated, we addressed this question by testing the susceptibility of Tax(+) and Tax(-) murine fibroblasts to apoptosis under conditions of growth factor withdrawal or treatment with TNFalpha, which trigger apoptosis through different pathways, i.e., mitochondrial and receptor-mediated pathways, respectively. Results showed that Tax-expressing cells are protected from apoptotic death induced by serum deprivation but are sensitive to TNFalpha-mediated apoptosis, suggesting that Tax expression has different effects on cell death, depending on the apoptotic stimulus used. Analysis of the mechanism(s) involved in the resistance to serum depletion-induced apoptosis indicated that Tax(+) cells do not undergo release of cytochrome c from the mitochondrial intermembrane space or redistribution of Bax from the cytosol to mitochondria, two phenomena critical to the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- D Saggioro
- Department of Oncology and Surgical Sciences-Oncology Section, IST, Viral and Molecular Oncology Section, University of Padova, Via Gattamelata 64, Padua, 35128, Italy.
| | | | | |
Collapse
|
25
|
Ungefroren H, Kruse ML, Trauzold A, Roeschmann S, Roeder C, Arlt A, Henne-Bruns D, Kalthoff H. FAP-1 in pancreatic cancer cells. J Cell Sci 2001; 114:2735-46. [PMID: 11683408 DOI: 10.1242/jcs.114.15.2735] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this study we investigated the functional role of FAP-1 as a potential inhibitor of CD95 (Fas, APO-1)-mediated apoptosis in pancreatic cancer cells. Stable transfection of the CD95-sensitive, FAP-1-negative cell line Capan-1 with an FAP-1 cDNA resulted in a strongly decreased sensitivity to CD95-induced apoptosis, as measured by DNA fragmentation and caspase-3 activity. Inhibition of cellular protein tyrosine phosphatases with orthovanadate dose-dependently increased CD95-induced apoptosis in CD95-resistant FAP-1-positive Panc89 and Capan-1-FAP-1 cells almost to the level seen in wild-type Capan-1 cells. Blocking the CD95/FAP-1 interaction in Panc89 cells by cytoplasmic microinjection of a synthetic tripeptide mimicking the C terminus of CD95 resulted in a mean 5.5-fold increase in apoptosis compared to cells that received a control peptide. Using confocal laser scanning microscopy we show that in Panc89 cells FAP-1 is mainly associated with the Golgi complex and with peripheral vesicles. FAP-1 displayed enhanced colocalization with CD95 upon CD95 stimulation in the Golgi complex but not in surface-associated vesicles. This correlated with a decrease in plasma membrane staining for CD95 as determined by FACS analysis. Inhibition of Golgi anterograde transport by brefeldin A abolished the anti-CD95-induced colocalization of FAP-1 and CD95 as well as the decrease in cell-surface-associated CD95. Finally, we demonstrate by immunohistochemistry that FAP-1 is strongly expressed in tumor cells from pancreatic carcinoma tissues. Taken together, these results show that FAP-1 can protect pancreatic carcinoma cells from CD95-mediated apoptosis, probably by preventing anti-CD95-induced translocation of CD95 from intracellular stores to the cell surface.
Collapse
Affiliation(s)
- H Ungefroren
- Clinic for General Surgery and Thoracic Surgery, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hamasaki S, Nakamura T, Furuya T, Kawakami A, Ichinose K, Nakashima T, Nishiura Y, Shirabe S, Eguchi K. Resistance of CD4-positive T lymphocytes to etoposide-induced apoptosis mediated by upregulation of Bcl-xL expression in patients with HTLV-I-associated myelopathy. J Neuroimmunol 2001; 117:143-8. [PMID: 11431014 DOI: 10.1016/s0165-5728(01)00332-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human T-lymphotropic virus type I (HTLV-I)-associated myelopathy (HAM) is characterized by chronic inflammation of the spinal cord. The exact mechanisms that enhance the development of chronic myelopathy remain to be determined. One such mechanism could be an altered response of peripheral blood CD4(+) T lymphocytes to apoptotic stimuli. We examined the sensitivity of these cells to apoptosis in HAM patients and control. Apoptosis was induced by etoposide, which induces mitochondria-dependent apoptosis through the release of cytochrome c from the mitochondria. The percentage of apoptotic cells that expressed hypodiploid DNA among etoposide-treated CD4(+) T lymphocytes was significantly lower in HAM patients than in the control. Western blot analysis of cell lysates derived from CD4(+) T lymphocytes demonstrated that the expression level of Bcl-xL protein was significantly higher in HAM patients than in the control. Our results indicate that peripheral blood CD4(+) T lymphocytes of HAM patients are resistant to apoptosis triggered through mitochondrial death pathway through upregulation of expression of anti-apoptotic protein, Bcl-xL. This phenomenon might contribute to the prolongation and perpetuation of the chronic inflammatory process in the spinal cord of HAM patients.
Collapse
Affiliation(s)
- S Hamasaki
- First Department of Internal Medicine, Nagasaki University School of Medicine, 1-7-1 Sakamoto, 852-8501, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meinhold-Heerlein I, Stenner-Liewen F, Liewen H, Kitada S, Krajewska M, Krajewski S, Zapata JM, Monks A, Scudiero DA, Bauknecht T, Reed JC. Expression and potential role of Fas-associated phosphatase-1 in ovarian cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1335-44. [PMID: 11290551 PMCID: PMC1891890 DOI: 10.1016/s0002-9440(10)64084-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fas-associated phosphatase-1 (FAP-1) is a protein-tyrosine phosphatase that binds the cytosolic tail of Fas (Apo1, CD95), presumably regulating Fas-induced apoptosis. Elevations of FAP-1 protein levels in some tumor cell lines have been correlated with resistance to Fas-induced apoptosis. To explore the expression of FAP-1 in ovarian cancer cell lines and archival tumor specimens, mouse monoclonal and rabbit polyclonal antibodies were generated against a FAP-1 peptide and recombinant FAP-1 protein. These antibodies were used for immunoblotting, immunohistochemistry, and flow-cytometry analysis of FAP-1 expression in the Fas-sensitive ovarian cancer lines HEY and BG-1, and in the Fas-resistant lines OVCAR-3 FR and SK-OV-3. All methods demonstrated high levels of FAP-1 in the resistant lines OVCAR-3 FR and SK-OV-3, but not in the Fas-sensitive lines HEY and BG-1. Furthermore, levels of FAP-1 protein also correlated with the amounts of FAP-1 mRNA, as determined by reverse transcriptase-polymerase chain reaction analysis. FAP-1 protein levels were investigated by immunoblotting in the National Cancer Institute's panel of 60 human tumor cell lines. Although FAP-1 failed to correlate with Fas-resistance across the entire tumor panel, Fas-resistance correlated significantly with FAP-1 expression (P: < or = 0.05) and a low Fas/FAP-1 ratio (P: < or = 0.028) in ovarian cancer cell lines. FAP-1 expression was also evaluated in 95 archival ovarian cancer specimens using tissue-microarray technology. FAP-1 was expressed in nearly all tumors, regardless of histological type or grade, stage, patient age, response to chemotherapy, or patient survival. We conclude that FAP-1 correlates significantly with Fas resistance in ovarian cancer cell lines and is commonly expressed in ovarian cancers.
Collapse
Affiliation(s)
- I Meinhold-Heerlein
- Program on Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kibler KV, Jeang KT. CREB/ATF-dependent repression of cyclin a by human T-cell leukemia virus type 1 Tax protein. J Virol 2001; 75:2161-73. [PMID: 11160720 PMCID: PMC114800 DOI: 10.1128/jvi.75.5.2161-2173.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of the human T-cell leukemia virus type 1 (HTLV-1) oncoprotein Tax is correlated with cellular transformation contributing to the development of adult T-cell leukemia. Tax has been shown to modulate the activities of several cellular promoters. Existing evidence suggests that Tax need not directly bind to DNA to accomplish these effects but rather that it can act through binding to cellular factors, including members of the CREB/ATF family. Exact mechanisms of HTLV-1 transformation of cells have yet to be fully defined, but the process is likely to include both activation of cellular-growth-promoting factors and repression of cellular tumor-suppressing functions. While transcriptional activation has been well studied, transcriptional repression by Tax, reported recently from several studies, remains less well understood. Here, we show that Tax represses the TATA-less cyclin A promoter. Repression of the cyclin A promoter was seen in both ts13 adherent cells and Jurkat T lymphocytes. Two other TATA-less promoters, cyclin D3 and DNA polymerase alpha, were also found to be repressed by Tax. Interestingly, all three promoters share a common feature of at least one conserved upstream CREB/ATF binding site. In electrophoretic mobility shift assays, we observed that Tax altered the formation of a complex(es) at the cyclin A promoter-derived ATF site. Functionally, we correlated removal of the CREB/ATF site from the promoter with loss of repression by Tax. Furthermore, since a Tax mutant protein which binds CREB repressed the cyclin A promoter while another mutant protein which does not bind CREB did not, we propose that this Tax repression occurs through protein-protein contact with CREB/ATF.
Collapse
Affiliation(s)
- K V Kibler
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
29
|
Zehender G, Varchetta S, De Maddalena C, Colasante C, Riva A, Meroni L, Moroni M, Galli M. Resistance to Fas-mediated apoptosis of human T-cell lines expressing human T-lymphotropic virus type-2 (HTLV-2) Tax protein. Virology 2001; 281:43-50. [PMID: 11222094 DOI: 10.1006/viro.2000.0765] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The susceptibility to Fas-mediated apoptosis was evaluated in seven T-cell lines (two infected with HTLV-2, one with HTLV-1, and four HTLV-free) as well as in Jurkat cells transfected with a Tax-2 expressing vector. Fas-mediated apoptosis was significantly reduced in the HTLV-1- and HTLV-2-infected lines in comparison with the HTLV-free lines regardless of the surface expression of Fas antigen (which was no different in the infected and uninfected cells). Fas-mediated apoptosis was also significantly inhibited in Jurkat cells transfected with the Tax-2 expressing vector without any modification in Fas expression. There was significantly more antiapoptotic Bcl-x(L) mRNA and protein in the transfected than in the untransfected Jurkat T cells. In conclusion, our results suggest that HTLV-2 is capable of inhibiting Fas-mediated apoptosis by means of a mechanism involving the tax-2 gene and probably the expression of bcl-x(L) messenger and protein.
Collapse
Affiliation(s)
- G Zehender
- Istituto di Malattie Infettive e Tropicali, Università degli Studi di Milano, 20100 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li Y, Kanki H, Hachiya T, Ohyama T, Irie S, Tang G, Mukai J, Sato T. Negative regulation of Fas-mediated apoptosis by FAP-1 in human cancer cells. Int J Cancer 2000; 87:473-9. [PMID: 10918185 DOI: 10.1002/1097-0215(20000815)87:4<473::aid-ijc3>3.0.co;2-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
FAP-1 (Fas-associated phosphatase-1) was previously identified as a protein that associates with a negative regulatory domain (C-terminal 15 amino acids) of Fas using the yeast 2-hybrid system. Functional analysis indicated that FAP-1 expression correlates with resistance to Fas-induced apoptosis in human cancer cells. We first generated anti-FAP-1 polyclonal antibody and confirmed the interaction of FAP-1 and Fas in vivo. FAP-1 interacted with wild-type, but not mutant, Fas (tPLV) in 293T cells after transfecting FAP-1 and Fas or its mutant. To investigate the functional role of FAP-1 in Fas-mediated signal transduction, we established stable transfectants of FAP-1 in 3 human cancer cell lines. Apoptosis assays demonstrated that cancer cells over-expressing FAP-1 increased the resistance to Fas-induced apoptosis by the anti-Fas antibody CH-11 in contrast with the wild types or the vector-transfected cells. In addition, FAP-1 regulated the activity of both caspases 3 and 8. Our data indicate a functional role for FAP-1 as a negative regulator of Fas-mediated apoptosis in human cancer cells and suggest that an additional signal-transducing molecule may be required for complete suppression of Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Y Li
- Department of Otolaryngology/Head and Neck Surgery, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
O'Connell J, Bennett MW, Nally K, Houston A, O'Sullivan GC, Shanahan F. Altered mechanisms of apoptosis in colon cancer: Fas resistance and counterattack in the tumor-immune conflict. Ann N Y Acad Sci 2000; 910:178-92; discussion 193-5. [PMID: 10911913 DOI: 10.1111/j.1749-6632.2000.tb06708.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fas (CD95/APO-1) is a cell surface "death receptor" that mediates apoptosis upon engagement by its ligand, FasL. Fas-mediated apoptosis of lymphocytes normally serves immunoregulatory roles, including tolerance acquisition, immune response termination, and maintenance of immune privilege in certain organs. Colon tumors can exploit this lymphocyte death program by expressing FasL. This may enable colon tumors to mount a "Fas counterattack" against antitumor lymphocytes, impairing antitumor immune responses. FasL-expressing colon tumor-derived cell lines can trigger Fas-mediated apoptosis of cocultured T cells in vitro. FasL expressed in esophageal cancer has been significantly associated with apoptosis and depletion of tumor-infiltrating lymphocytes (TIL) in vivo. FasL may also facilitate metastatic colonization of Fas-sensitive organs such as the liver, by inducing apoptosis of target organ cells. Normal colonic epithelial cells express Fas and are relatively sensitive to Fas-mediated apoptosis. By contrast, colon tumor-derived cell lines are usually resistant to induction of Fas-mediated apoptosis, and colon cancer cells frequently coexpress Fas and FasL. The mechanisms allowing resistance to Fas-mediated apoptosis are complex, and defects have been identified at several levels of Fas signal transduction. The "Bcl-2 rheostat" may be pitched against apoptosis in colon cancer, inasmuch as overexpression of Bcl-2, downregulation of Bak, and mutation of Bax are common defects in colon tumors. Caspase-1 is also downregulated in colon cancer. The high frequency of p53 mutations in late-stage cancers may also inhibit Fas signaling. Fundamental defects in apoptosis signaling may contribute to both immuno- and chemoresistance in colon cancer and allow expression of FasL to counterattack antitumor lymphocytes.
Collapse
Affiliation(s)
- J O'Connell
- Department of Medicine, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
32
|
Yamada Y, Sugahara K, Tsuruda K, Nohda K, Hata T, Maeda T, Honda M, Tawara M, Hayashibara T, Joh T, Tomonaga M, Miyazaki Y, Kamihira S. Fas-resistance in ATL cell lines not associated with HTLV-I or FAP-1 production. Cancer Lett 1999; 147:215-9. [PMID: 10660109 DOI: 10.1016/s0304-3835(99)00313-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A preventive role for human T-cell leukemia virus type-I (HTLV-I) and Fas-associated phosphatase-1 (FAP-1) in Fas-mediated apoptosis has been reported in HTLV-I-infected cells. In the present study, we examined whether these molecules increased during the acquisition of Fas-resistance in adult T-cell leukemia (ATL) cell lines. SO4, ST1 and KK1 are Fas-sensitive ATL cell lines, and produce small amounts of HTLV-I in vitro. Although their subclones RSO4 and RST1 are completely Fas-resistant, they produced an equivalent amount of HTLV-I to SO4 and ST1. Moreover, FAP-1 mRNA was not detected in these cell lines irrespective of Fas sensitivity. Thus, Fas resistance in ATL cells was not directly associated with the increased production of HTLV-I or FAP-1.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Blotting, Southern
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Clone Cells
- DNA Fragmentation/drug effects
- DNA, Complementary/biosynthesis
- Drug Resistance, Neoplasm
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/isolation & purification
- Humans
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/metabolism
- Leukemia, T-Cell/pathology
- Leukemia, T-Cell/virology
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 13
- Protein Tyrosine Phosphatases/biosynthesis
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/immunology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Virus Integration/genetics
- fas Receptor/immunology
- fas Receptor/pharmacology
Collapse
Affiliation(s)
- Y Yamada
- Department of Laboratory Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wakamatsu SI, Makino M, Tei C, Baba M. Monocyte-Driven Activation-Induced Apoptotic Cell Death of Human T-Lymphotropic Virus Type I-Infected T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.7.3914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
We attempted apoptotic cell death induction of T cells infected with human T lymphotropic virus type I (HTLV-I) which induces HTLV-I-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. T cells acutely infected and expressing HTLV-Igag Ags were killed by cross-linking their TCR with anti-CD3 mAb. Cells in apoptotic process were found by staining with annexin V. The apoptosis was not affected by costimulation through CD28 molecules and was resistant to ligation of Fas molecules. Whereas the virus-infected T cells expressed higher levels of HLA-DR, CD25, CD80, and CD86 Ags than apoptosis-resistant PHA-blasts, the T cell apoptosis was enhanced by addition of exogenous IL-2. Furthermore, in this apoptosis, monocytes played an important role because T cells infected in the absence of monocytes were resistant to the death signals. The apoptosis-sensitive T cells responded to TCR signaling more strongly by proliferating than those apoptosis-resistant cells. Monocytes weakly affected the expression levels of viral Ags on T cells. However, HTLV-I-infected monocytes primed T cells to die by subsequent TCR signaling. T cells primed with the monocytes, subsequently infected in the absence of monocytes, were killed by TCR signaling. These observations suggest that primed and infected T cells could be killed by activation-induced cell death.
Collapse
Affiliation(s)
- Shin-ichi Wakamatsu
- *Division of Human Retroviruses, Center for Chronic Viral Diseases, and
- †First Internal Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Masahiko Makino
- *Division of Human Retroviruses, Center for Chronic Viral Diseases, and
| | - Chuuwa Tei
- †First Internal Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Masanori Baba
- *Division of Human Retroviruses, Center for Chronic Viral Diseases, and
| |
Collapse
|
34
|
Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G, Iwanaga Y, Yamamoto N, Ohtani K, Nakamura M, Fujii M. Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 1999; 73:7981-7. [PMID: 10482545 PMCID: PMC112812 DOI: 10.1128/jvi.73.10.7981-7987.1999] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Tax is thought to play a pivotal role in immortalization of T cells. We have recently shown that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by interleukin-2 (IL-2) deprivation and converted its growth from being IL-2 dependent to being IL-2 independent. In this study, we demonstrate that constitutive expression of bcl-xl but not bcl-2, bcl-xs, bak, bad, or bax was associated with apoptosis resistance after IL-2 deprivation in CTLL-2 cells that expressed Tax. Transient-transfection assays showed that bcl-x promoter was transactivated by wild-type Tax. Similar effects were observed in mutant Tax retaining transactivating ability through NF-kappaB. Deletion or substitution of a putative NF-kappaB binding site identified in the bcl-x promoter significantly decreased Tax-induced transactivation. This NF-kappaB-like element was able to form a complex with NF-kappaB family proteins in vitro. Furthermore, Tax-induced transactivation of the bcl-x promoter was also diminished by the mutant IkappaBalpha, which specifically inhibits NF-kappaB activity. Our findings suggest that constitutive expression of Bcl-x(L) induced by Tax through the NF-kappaB pathway contributes to the inhibition of apoptosis in CTLL-2 cells after IL-2 deprivation.
Collapse
Affiliation(s)
- T Tsukahara
- Department of Immunotherapeutics, Medical Research Division, Tokyo Medical and Dental University, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Harhaj EW, Good L, Xiao G, Sun SC. Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene 1999; 18:1341-9. [PMID: 10022816 DOI: 10.1038/sj.onc.1202405] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T-cell leukemia, an acute and often fatal T-cell malignancy. A key step in HTLV-I-induced leukemigenesis is induction of abnormal T-cell growth and survival. Unlike antigen-stimulated T cells, which cease proliferation after a finite number of cell division, HTLV-I-infected T cells proliferate indefinitely (immortalized), thus facilitating occurrence of secondary genetic changes leading to malignant transformation. To explore the molecular basis of HTLV-I-induced abnormal T-cell survival, we compared the gene expression profiles of normal and HTLV-I-immortalized T cells using 'gene array'. These studies revealed a strikingly altered expression pattern of a large number of genes along with HTLV-I-mediated T-cell immortalization. Interestingly, many of these deregulated genes are involved in the control of programmed cell death or apoptosis. These findings indicate that disruption of the cellular apoptosis-regulatory network may play a role in the HTLV-I-mediated oncogenesis.
Collapse
Affiliation(s)
- E W Harhaj
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
36
|
Dequiedt F, Cantor GH, Hamilton VT, Pritchard SM, Davis WC, Kerkhofs P, Burny A, Kettmann R, Willems L. Bovine leukemia virus-induced persistent lymphocytosis in cattle does not correlate with increased ex vivo survival of B lymphocytes. J Virol 1999; 73:1127-37. [PMID: 9882314 PMCID: PMC103933 DOI: 10.1128/jvi.73.2.1127-1137.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) is an oncogenic retrovirus associated with B-cell lymphocytosis, leukemia, and lymphosarcoma in the ovine and bovine species. We have recently reported that in sheep, BLV protects the total population of peripheral blood mononuclear cells (PBMCs) from ex vivo spontaneous apoptosis. This global decrease in the apoptosis rates resulted from both direct and indirect mechanisms which allow extension of cell survival. Although sheep are not natural hosts for BLV, these animals are prone to develop virus-induced leukemia at very high frequencies. Most infected cattle, however, remain clinically healthy. This difference in the susceptibilities to development of leukemia in these two species might be related to alterations of the apoptotic processes. Therefore, we designed this study to unravel the mechanisms of programmed cell death in cattle. We have observed that PBMCs from persistently lymphocytotic BLV-infected cows were more susceptible to spontaneous ex vivo apoptosis than cells from uninfected or aleukemic animals. These higher apoptosis rates were the consequence of an increased proportion of B cells exhibiting lower survival abilities. About one-third of the BLV-expressing cells did not survive the ex vivo culture conditions, demonstrating that viral expression is not strictly associated with cell survival in cattle. Surprisingly, culture supernatants from persistently lymphocytotic cows exhibited efficient antiapoptotic properties on both uninfected bovine and uninfected ovine cells. It thus appears that indirect inhibition of cell death can occur even in the presence of high apoptosis rates. Together, these results demonstrate that the protection against spontaneous apoptosis associated with BLV is different in cattle and in sheep. The higher levels of ex vivo apoptosis occurring in cattle might indicate a decreased susceptibility to development of leukemia in vivo.
Collapse
Affiliation(s)
- F Dequiedt
- Department of Applied Biochemistry and Biology, Molecular Biology and Animal Physiology Unit, Faculty of Agronomy, B5030 Gembloux, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Iwanaga Y, Tsukahara T, Ohashi T, Tanaka Y, Arai M, Nakamura M, Ohtani K, Koya Y, Kannagi M, Yamamoto N, Fujii M. Human T-cell leukemia virus type 1 tax protein abrogates interleukin-2 dependence in a mouse T-cell line. J Virol 1999; 73:1271-7. [PMID: 9882331 PMCID: PMC103950 DOI: 10.1128/jvi.73.2.1271-1277.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia. Tax, the viral protein, is thought to be crucial in the development of the disease, since it transforms healthy T cells in vitro and induces tumors in transgenic animals. We examined the effect of Tax activity on the growth of the interleukin-2 (IL-2)-dependent T-cell line CTLL-2. Stable expression of Tax in CTLL-2 transformed cell growth from being IL-2 dependent to IL-2 independent. Tax stimulated transcription through NF-kappaB and the cyclic AMP-responsive element-like sequence in the HTLV-1 promoter. The finding of Tax mutants segregating these two pathways suggested that the NF-kappaB pathway was essential for IL-2-independent growth of CTLL-2 cells while the CRE pathway was unnecessary. However, both pathways were necessary for another transformation-related activity (colony formation in soft agar) of CTLL-2/Tax. Our results show that Tax has at least two distinct activities on T cells, and suggest that Tax plays a crucial role in IL-2-independent T-cell transformation induced by HTLV-1, in addition to its well-known IL-2-dependent cell transformation.
Collapse
Affiliation(s)
- Y Iwanaga
- Department of Microbiology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
O'Connell J, Bennett MW, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: cancer as a site of immune privilege. IMMUNOLOGY TODAY 1999; 20:46-52. [PMID: 10081230 DOI: 10.1016/s0167-5699(98)01382-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J O'Connell
- Dept of Medicine, Cork University Hospital, Ireland.
| | | | | | | | | |
Collapse
|