1
|
Qi B, Miao Z, Tan J, Wang Y, Wang J. Profiling of Biofluid Metabolites with a Kinetically Differentiated Binary Biosensing Platform. Anal Chem 2025; 97:5943-5952. [PMID: 40009397 DOI: 10.1021/acs.analchem.4c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Biofluid metabolites have a crucial linkage with the health of the human body, and developing a universal method for metabolite monitoring is imperative for disease diagnosis and health management. Herein, we report a kinetically differentiated binary biosensing platform that is specifically responsive to NAD(P)H for profiling diverse biofluid metabolites. The kinetically differentiated binary biosensing platform comprises a cyanine derivative dye with fast reaction kinetics and a quinolinium derivative dye with slow reaction kinetics. Compared to the traditional unitary strategy for NAD(P)H detection, the linear range of the binary biosensing platform is widened by up to 20 times. NAD(P)H are ubiquitous cofactors in living systems, and metabolite production generally involves the consumption or generation of NAD(P)H. Thus, biofluid metabolites can be easily quantified by measuring the variation of NAD(P)H concentration during biochemical reactions with the binary biosensing platform. In this study, serum sorbitol, 2-hydroxybutyric acid (2HB), and α-ketoglutarate (AKG) were all quantified by the binary biosensing platform with accuracies higher than 93%. The kinetically differentiated binary biosensing platform can be extended to the analysis of any molecule that can react directly or indirectly with NAD(P)H. In addition, we constructed a paper-based assay with the binary biosensing platform, and the test papers showed good promise in the point-of-care (POC) profiling of biofluid metabolites. This study proposes a simple strategy to expand the calibration range of traditional unitary detection systems and further provides a universal paradigm for high throughput profiling of disease-associated biomolecules, which offers good promise in disease diagnosis and health management.
Collapse
Affiliation(s)
- Bing Qi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Ziyun Miao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jiahui Tan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Yingqian Wang
- Institute of Biomedical Precision Testing and Instrumentation, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Abate MCMDO, Aroucha PMT, da Nóbrega DVM, Rocha IPM, Soares SD, Reis AA, Paliares IC, Giuffrida FDMA, Dib SA, Reis AF, de Sa JR. Cutaneous manifestations of diabetes mellitus: a narrative review. EINSTEIN-SAO PAULO 2025; 23:eRW1193. [PMID: 40105573 PMCID: PMC11908747 DOI: 10.31744/einstein_journal/2025rw1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/20/2024] [Indexed: 03/20/2025] Open
Abstract
Diabetes mellitus is a highly prevalent human endocrine disorder. Skin lesions are reported in approximately one-third of all diabetes mellitus patients. The clinical presentation and frequency vary according to the subtype of diabetes mellitus, metabolic control, and clinical course, with certain skin diseases occurring before diagnosing hyperglycemia. In this regard, the correct definition of cutaneous manifestations associated with diabetes mellitus can help define the etiology of hyperglycemia as well as the need to optimize glycemic control. In this narrative review, the most common cutaneous diseases observed in diabetes mellitus are discussed, including pruritus, acanthosis nigricans, necrobiosis lipoidica, bullosis diabeticorum, scleroderma diabeticorum, granuloma annulare, diabetic dermopathy, skin reactions due to device use, diabetic foot ulcers, recurrent cutaneous infections in diabetes mellitus and other dermatoses associated with hyperglycemia. The epidemiology, pathophysiology, differential diagnosis, and treatment of this disease are discussed. Therefore, knowledge and recognition of the most common dermatological lesions in patients with diabetes mellitus are essential for both endocrinologists and primary care physicians.
Collapse
Affiliation(s)
- Maria Carolina Mendes de Oliveira Abate
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Priscila Maria Teixeira Aroucha
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Diego Vanderlei Medeiros da Nóbrega
- Department of DermatologyEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Department of Dermatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Iara Patrícia Moura Rocha
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Sofia Duarte Soares
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Anita Andrade Reis
- Division of Endocrinology and Metabolic DiseaseCentro Universitário FMABCSanto AndréSPBrazil Division of Endocrinology and Metabolic Disease, Centro Universitário FMABC, Santo André, SP, Brazil.
| | - Isabella Cristina Paliares
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Fernando de Mello Almada Giuffrida
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
- Department of Life SciencesUniversidade do Estado da BahiaSalvadorBABrazil Department of Life Sciences, Universidade do Estado da Bahia, Salvador, BA, Brazil.
| | - Sergio Atala Dib
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - André Fernandes Reis
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Joao Roberto de Sa
- Centro de Endocrinologia e DiabetesEscola Paulista de MedicinaUniversidade Federal de São PauloSão PauloSPBrazil Division of Endocrinology, Centro de Endocrinologia e Diabetes, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
- Division of Endocrinology and Metabolic DiseaseCentro Universitário FMABCSanto AndréSPBrazil Division of Endocrinology and Metabolic Disease, Centro Universitário FMABC, Santo André, SP, Brazil.
| |
Collapse
|
3
|
Sierra-Silvestre E, Smith RE, Andrade RJ, Kennedy B, Coppieters MW. Microstructural changes in the median and ulnar nerve in people with and without diabetic neuropathy in their hands: A cross-sectional diffusion MRI study. Eur J Radiol 2024; 181:111721. [PMID: 39260209 DOI: 10.1016/j.ejrad.2024.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Diffusion weighted imaging (DWI) has revealed microstructural changes in lower limb nerves in people with diabetic neuropathy. Microstructural changes in upper limb nerves using DWI in people with diabetes have not yet been explored. METHODS This cross-sectional study aimed to quantify and compare the microstructure of the median and ulnar nerve in people without diabetes (n = 10), people with diabetes without distal symmetrical polyneuropathy (DSPN; n = 10), people with DSPN in the lower limbs only (DSPN FEET ONLY; n = 12), and people with DSPN in the upper and lower limbs (DSPN HANDS & FEET; n = 9). DSPN diagnosis included electrodiagnosis and corneal confocal microscopy. Tensor metrics, such as fractional anisotropy, radial diffusivity and axial diffusivity, and constrained spherical deconvolution metrics, such as dispersion and complexity, were calculated. Linear mixed-models were used to quantify DWI metrics from multiple models in median and ulnar nerves across the groups, and to evaluate potential differences in metrics at the wrist and elbow based on the principle of a distal-to-proximal disease progression. RESULTS Tensor metrics revealed microstructural abnormalities in the median and ulnar nerve in people with DSPN HANDS & FEET, and also already in DSPN FEET ONLY. There were significant negative correlations between electrodiagnostic parameters and tensor metrics. A distal-to-proximal pattern was more pronounced in the median nerve. Non-tensor metrics showed early microstructural changes in people with diabetes without DSPN. CONCLUSION Compared to people without diabetes, microstructural changes in upper limb nerves can be identified in people with diabetes with and without DSPN, even before symptoms occur.
Collapse
Affiliation(s)
- Eva Sierra-Silvestre
- School of Health Sciences and Social Work, Griffith University, Brisbane, Australia; Amsterdam Movement Sciences - Program Musculoskeletal Health, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK. https://twitter.com/esiesil
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Ricardo J Andrade
- School of Health Sciences and Social Work, Griffith University, Brisbane, Australia; Movement - Interactions - Performance (MIP), Nantes University, Nantes, France. https://twitter.com/jacobofhume
| | - Ben Kennedy
- Mermaid Beach Radiology, Gold Coast, Australia
| | - Michel W Coppieters
- School of Health Sciences and Social Work, Griffith University, Brisbane, Australia; Amsterdam Movement Sciences - Program Musculoskeletal Health, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. https://twitter.com/michelcoppie
| |
Collapse
|
4
|
Daehn IS, Ekperikpe US, Stadler K. Redox regulation in diabetic kidney disease. Am J Physiol Renal Physiol 2023; 325:F135-F149. [PMID: 37262088 PMCID: PMC10393330 DOI: 10.1152/ajprenal.00047.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most devastating complications of diabetes mellitus, where currently there is no cure available. Several important mechanisms contribute to the pathogenesis of this complication, with oxidative stress being one of the key factors. The past decades have seen a large number of publications with various aspects of this topic; however, the specific details of redox regulation in DKD are still unclear. This is partly because redox biology is very complex, coupled with a complex and heterogeneous organ with numerous cell types. Furthermore, often times terms such as "oxidative stress" or reactive oxygen species are used as a general term to cover a wide and rich variety of reactive species and their differing reactions. However, no reactive species are the same, and not all of them are capable of biologically relevant reactions or "redox signaling." The goal of this review is to provide a biochemical background for an array of specific reactive oxygen species types with varying reactivity and specificity in the kidney as well as highlight some of the advances in redox biology that are paving the way to a better understanding of DKD development and risk.
Collapse
Affiliation(s)
- Ilse S Daehn
- Division of Nephrology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Ubong S Ekperikpe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
5
|
Tsai MJ, Li CH, Wu HT, Kuo HY, Wang CT, Pai HL, Chang CJ, Ou HY. Long-Term Consumption of Sucralose Induces Hepatic Insulin Resistance through an Extracellular Signal-Regulated Kinase 1/2-Dependent Pathway. Nutrients 2023; 15:2814. [PMID: 37375718 DOI: 10.3390/nu15122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Sugar substitutes have been recommended to be used for weight and glycemic control. However, numerous studies indicate that consumption of artificial sweeteners exerts adverse effects on glycemic homeostasis. Although sucralose is among the most extensively utilized sweeteners in food products, the effects and detailed mechanisms of sucralose on insulin sensitivity remain ambiguous. In this study, we found that bolus administration of sucralose by oral gavage enhanced insulin secretion to decrease plasma glucose levels in mice. In addition, mice were randomly allocated into three groups, chow diet, high-fat diet (HFD), and HFD supplemented with sucralose (HFSUC), to investigate the effects of long-term consumption of sucralose on glucose homeostasis. In contrast to the effects of sucralose with bolus administration, the supplement of sucralose augmented HFD-induced insulin resistance and glucose intolerance, determined by glucose and insulin tolerance tests. In addition, we found that administration of extracellular signal-regulated kinase (ERK)-1/2 inhibitor reversed the effects of sucralose on glucose intolerance and insulin resistance in mice. Moreover, blockade of taste receptor type 1 member 3 (T1R3) by lactisole or pretreatment of endoplasmic reticulum stress inhibitors diminished sucralose-induced insulin resistance in HepG2 cells. Taken together, sucralose augmented HFD-induced insulin resistance in mice, and interrupted insulin signals through a T1R3-ERK1/2-dependent pathway in the liver.
Collapse
Affiliation(s)
- Meng-Jie Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan 70965, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin-Yu Kuo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Teng Wang
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiu-Ling Pai
- Graduated Institute of Metabolism and Obesity Science, College of Nutrition, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
6
|
van Vliet S, Blair AD, Hite LM, Cloward J, Ward RE, Kruse C, van Wietmarchsen HA, van Eekeren N, Kronberg SL, Provenza FD. Pasture-finishing of bison improves animal metabolic health and potential health-promoting compounds in meat. J Anim Sci Biotechnol 2023; 14:49. [PMID: 37004100 PMCID: PMC10067211 DOI: 10.1186/s40104-023-00843-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND With rising concerns regarding the effects of red meat on human and environmental health, a growing number of livestock producers are exploring ways to improve production systems. A promising avenue includes agro-ecological practices such as rotational grazing of locally adapted ruminants. Additionally, growing consumer interest in pasture-finished meat (i.e., grass-fed) has raised questions about its nutritional composition. Thus, the goal of this study was to determine the impact of two common finishing systems in North American bison-pasture-finished or pen-finished on concentrates for 146 d-on metabolomic, lipidomic, and fatty acid profiles of striploins (M. longissimus lumborum). RESULTS Six hundred and seventy-one (671) out of 1570 profiled compounds (43%) differed between pasture- and pen-finished conditions (n = 20 animals per group) (all, P < 0.05). Relative to pasture-finished animals, the muscle of pen-finished animals displayed elevated glucose metabolites (~ 1.6-fold), triglycerides (~ 2-fold), markers of oxidative stress (~ 1.5-fold), and proteolysis (~ 1.2-fold). In contrast, pasture-finished animals displayed improved mitochondrial (~ 1.3-fold higher levels of various Krebs cycle metabolites) and carnitine metabolism (~ 3-fold higher levels of long-chain acyl carnitines) (all P < 0.05). Pasture-finishing also concentrated higher levels of phenolics (~ 2.3-fold), alpha-tocopherol (~ 5.8-fold), carotene (~ 2.0-fold), and very long-chain fatty acids (~ 1.3-fold) in their meat, while having lower levels of a common advanced lipoxidation (4-hydroxy-nonenal-glutathione; ~ 2-fold) and glycation end-product (N6-carboxymethyllysine; ~ 1.7-fold) (all P < 0.05). In contrast, vitamins B5, B6, and C, gamma/beta-tocopherol, and three phenolics commonly found in alfalfa were ~ 2.5-fold higher in pen-finished animals (all P < 0.05); suggesting some concentrate feeding, or grazing plants rich in those compounds, may be beneficial. CONCLUSIONS Pasture-finishing (i.e., grass-fed) broadly improves bison metabolic health and accumulates additional potential health-promoting compounds in their meat compared to concentrate finishing in confinement (i.e., pen-finished). Our data, however, does not indicate that meat from pen-finished bison is therefore unhealthy. The studied bison meat-irrespective of finishing practice-contained favorable omega 6:3 ratios (< 3.2), and amino acid and vitamin profiles. Our study represents one of the deepest meat profiling studies to date (> 1500 unique compounds), having revealed previously unrecognized differences in animal metabolic health and nutritional composition because of finishing mode. Whether observed nutritional differences have an appreciable effect on human health remains to be determined.
Collapse
Affiliation(s)
- Stephan van Vliet
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA.
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA.
| | - Amanda D Blair
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Lydia M Hite
- Department of Animal Science, South Dakota State University, Brookings, SD, 57707, USA
| | - Jennifer Cloward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Robert E Ward
- Center for Human Nutrition Studies, Department of Nutrition, Dietetics, and Food Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, 84322, USA
| | - Carter Kruse
- Turner Institute of Ecoagriculture, Bozeman, MT, 59718, USA
| | | | | | - Scott L Kronberg
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| | - Frederick D Provenza
- Department of Wildland Resources, Utah State University, Logan, UT, 84332, USA
- Northern Great Plains Research Laboratory, USDA-Agricultural Research Service, Mandan, ND, 58554, USA
| |
Collapse
|
7
|
Wu Y, Zou H. Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:2250. [PMID: 36421435 PMCID: PMC9686704 DOI: 10.3390/antiox11112250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 09/07/2023] Open
Abstract
Diabetic Retinopathy (DR) is one of the most important microvascular complications of diabetes mellitus, which can lead to blindness in severe cases. Mitochondria are energy-producing organelles in eukaryotic cells, which participate in metabolism and signal transduction, and regulate cell growth, differentiation, aging, and death. Metabolic changes of retinal cells and epigenetic changes of mitochondria-related genes under high glucose can lead to mitochondrial dysfunction and induce mitochondrial pathway apoptosis. In addition, mitophagy and mitochondrial dynamics also change adaptively. These mechanisms may be related to the occurrence and progression of DR, and also provide valuable clues for the prevention and treatment of DR. This article reviews the mechanism of DR induced by mitochondrial dysfunction, and the prospects for related treatment.
Collapse
Affiliation(s)
- Yiwei Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
8
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Song QX, Sun Y, Deng K, Mei JY, Chermansky CJ, Damaser MS. Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction. Nat Rev Urol 2022; 19:581-596. [PMID: 35974244 DOI: 10.1038/s41585-022-00621-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease, posing a considerable threat to global public health. Treating systemic comorbidities has been one of the greatest clinical challenges in the management of diabetes. Diabetic bladder dysfunction, characterized by detrusor overactivity during the early stage of the disease and detrusor underactivity during the late stage, is a common urological complication of diabetes. Oxidative stress is thought to trigger hyperglycaemia-dependent tissue damage in multiple organs; thus, a growing body of literature has suggested a possible link between functional changes in urothelium, muscle and the corresponding innervations. Improved understanding of the mechanisms of oxidative stress could lead to the development of novel therapeutics to restore the redox equilibrium and scavenge excessive free radicals to normalize bladder function in patients with diabetes.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kangli Deng
- Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Yi Mei
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | | | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. .,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Glickman Urology and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
10
|
Lower Extremity Nerve Decompression for Diabetic Peripheral Neuropathy: A Systematic Review and Meta-analysis. Plast Reconstr Surg Glob Open 2022; 10:e4478. [PMID: 35999882 PMCID: PMC9390809 DOI: 10.1097/gox.0000000000004478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Background: Diabetic peripheral neuropathy (DPN) is a leading cause of morbidity. This systematic review and meta-analysis evaluate the efficacy of lower extremity nerve decompression in reducing DPN symptoms and complications. Methods: A database search was performed using Medline, Embase, Google Scholar, and Cochrane Central Register of Controlled Trials. Articles addressing surgical decompression of lower limb peripheral nerves in patients with diabetes were screened for inclusion. Two independent reviewers undertook the assessment. Methodological quality measures were the Cochrane risk of bias and Newcastle-Ottawa scale. Results: The pooled sample size from 21 studies was 2169 patients. Meta-analysis of 16 observational studies showed significant improvement in the visual analog scale (VAS) (P < 0.00001) and two-point discrimination (P = 0.003), with strong reliability. Decompression of the tarsal tunnel region had the highest improvement in VAS [MD, 6.50 (95% CI, 3.56–9.44)]. A significant low-risk ratio (RR) of ulcer development and lower limb amputation was detected (P < 0.00001). Lowest RR of ulcer development was detected with tarsal tunnel release [RR, 0.04 (95% CI, 0.00–0.48)]. Improvements in VAS, two-point discrimination, and nerve conduction velocity were nonsignificant in the meta-analysis of five randomized controlled trials (RCTs). The RCT analysis was limited to only two studies for each outcome. Conclusions: Meta-analysis of observational studies highlights the efficacy of lower extremity nerve decompression in reducing DPN symptoms, ulcerations, and amputations. Releasing the tibial nerve in the tarsal tunnel region was the most effective observed procedure. Nevertheless, high-quality RCTs are required to support the utility of this intervention in DPN.
Collapse
|
11
|
El Okle OS, Tohamy HG, Althobaiti SA, Soliman MM, Ghamry HI, Farrag F, Shukry M. Ornipural® Mitigates Malathion-Induced Hepato-Renal Damage in Rats via Amelioration of Oxidative Stress Biomarkers, Restoration of Antioxidant Activity, and Attenuation of Inflammatory Response. Antioxidants (Basel) 2022; 11:antiox11040757. [PMID: 35453442 PMCID: PMC9031224 DOI: 10.3390/antiox11040757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
The current study was instigated by investigating the ameliorative potential of Ornipural® solution against the hepato-renal toxicity of malathion. A total number of 35 male Wistar albino rats were divided equally into five groups. Group 1 served as control and received normal saline intraperitoneally. Group 2, the sham group, were administered only corn oil (vehicle of malathion) orally. Group 3 was orally intoxicated by malathion in corn oil at a dose of 135 mg/kg BW via intra-gastric gavage. Group 4 received malathion orally concomitantly with Ornipural® intraperitoneally. Group 5 was given Ornipural® solution in saline via intraperitoneal injection at a dose of (1 mL/kg BW). Animals received the treatment regime for 30 days. Histopathological examination revealed the harmful effect of malathion on hepatic and renal tissue. The results showed that malathion induced a significant decrease in body weight and marked elevation in the activity of liver enzymes, LDH, and ACP. In contrast, the activity of AchE and Paraoxonase was markedly decreased. Moreover, there was a significant increase in the serum content of bilirubin, cholesterol, and kidney injury markers. A significant elevation in malondialdehyde, nitric oxide (nitrite), and 8-hydroxy-2-deoxyguanosine was observed, along with a substantial reduction in antioxidant activity. Furthermore, malathion increased tumor necrosis factor-alpha, the upregulation of IL-1B, BAX, and IFN-β genes, and the downregulation of Nrf2, Bcl2, and HO-1 genes. Concurrent administration of Ornipural® with malathion attenuated the detrimental impact of malathion through ameliorating metabolic biomarkers, restoring antioxidant activity, reducing the inflammatory response, and improving pathologic microscopic alterations. It could be concluded that Ornipural® solution demonstrates hepatorenal defensive impacts against malathion toxicity at biochemical, antioxidants, molecular, and cellular levels.
Collapse
Affiliation(s)
- Osama S. El Okle
- Departement of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Hossam G. Tohamy
- Departement of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt;
| | - Saed A. Althobaiti
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence:
| |
Collapse
|
12
|
Srivastava B, Sen S, Bhakta S, Sen K. Effect of caffeine on the possible amelioration of diabetic neuropathy: A spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120322. [PMID: 34509062 DOI: 10.1016/j.saa.2021.120322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
IMPORTANCE One of the consequential and alarming complications of diabetes mellitus is diabetic neuropathy (DN). DN is assured to be caused chiefly by excess sorbitol levels in the body. The harmful consequences of DN alike peripheral nerve damage with extremity ulcers may be dodged with timely detection and treatment. The therapeutic methods for DN are scarce and expensive. Therefore economic and user friendly methodologies to prevent acquiring the disease need proper attention. OBJECTIVE The present research has been conducted (1) to analyse the levels of sorbitol in diabetic blood samples and compare them with non-diabetic ones and (2) to study the reduction in sorbitol levels upon addition of an important biochemical compounds caffeine in both sample groups. RESEARCH DESIGN, SETTING, PARTICIPANTS AND METHOD Sorbitol-caffeine interaction analysis of blood samples of 16 patients with type 2 diabetes from KPC Medical College, Kolkata, India was made. The spectroscopic analysis and their interpretations were compared with 16 healthy subjects. MAIN OUTCOMES AND MEASURES Present work describes that caffeine can be helpful in reducing the sorbitol level in diabetics, so the chances of development and progression of diabetic neuropathy can be controlled with the introduction of caffeine. RESULTS A total number of 32 blood samples of patients (aged 35-70 years); mean age ranges were 52.06 ± 2.68 and 53.50 ± 2.66 years for non-diabetic and diabetic ones respectively, glucose and sorbitol screening examination were done by enzymatic methodologies where concentrations were assessed by means of either absorption or fluorescence spectroscopy. The calibration range was 18.2-1119.3 mg/dL (Linear regression analysis r2 = 0.996). The sensitivity of this screening program in detecting DN with the healthy adults has been inquired and found efficient. Results of fasting insulin analyses have also been analysed for HOMA-IR (homeostasis model assessment - insulin resistance) and HOMA-B (homeostasis model assessment - pancreatic β cell function) values. Statistical significance of the results in non-diabetic and diabetic groups were performed and found to be statistically significant. CONCLUSIONS We have defined the relationship between blood glucose level, insulin level, sorbitol and caffeine in human body and utilized them in the plausible remediation of DN.
Collapse
Affiliation(s)
- Bhavya Srivastava
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Souvik Sen
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata 700032, India
| | - Santanu Bhakta
- KPC Medical College and Hospital, 1F, Raja Subodh Chandra Mullick Road, Jadavpur, Kolkata 700032, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Given the epidemiology and demographic trends of diabetes mellitus and cataracts, ophthalmologists are likely to encounter patients with both comorbidities at an increasing frequency. Patients with diabetes represent a higher risk population than healthy patients for cataract surgery. In this review, we discuss key risks and risk-mitigation practices when performing cataract surgery on these patients. RECENT FINDINGS Patients with diabetes continue to represent a high-risk surgical population: Nagar et al. suggest a dose-dependent relationship may exist between number of intravitreal injections and likelihood of posterior capsular rupture. However, novel treatments are improving outcomes for patients with diabetes. Several studies have reported intracameral phenylephrine/ketorolac may reduce the incidence of post-operative cystoid macular edema while others have discussed the efficacy of pre-treatment and post-treatment with intravitreal bevacizumab on improving cataract surgery outcomes in patients with diabetic retinopathy. Pre-operatively, ophthalmologists should perform an enhanced evaluation, consider timing and lens selection decisions, and complete any appropriate pre-operative treatment. Peri-operatively, surgeons should be aware of pupillary dilation adjustments, combination surgery options, and potential complications. Post-operatively, clinicians should address pseudophakic cystoid macular edema, diabetic macular edema, diabetic retinopathy, and posterior capsular opacification.
Collapse
Affiliation(s)
| | - Christina A Mamalis
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, 1977 Butler Blvd, Houston, TX, 77030, USA
| | - Sumitra S Khandelwal
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, 1977 Butler Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Liu X, He J, Yilihamu M, Duan X, Fan D. Clinical and Genetic Features of Biallelic Mutations in SORD in a Series of Chinese Patients With Charcot-Marie-Tooth and Distal Hereditary Motor Neuropathy. Front Neurol 2021; 12:733926. [PMID: 34819907 PMCID: PMC8607551 DOI: 10.3389/fneur.2021.733926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have recently been found to be one of the most frequent causes of autosomal recessive axonal Charcot-Marie-Tooth (CMT2) and distal hereditary motor neuropathy (dHMN). This study was performed to explore the frequency of SORD mutations and correlations of the phenotypic-genetic spectrum in a relatively large Chinese cohort. In this study, we screened a cohort of 485 unrelated Chinese patients with hereditary neuropathy by using Sanger sequencing, next generation sequencing, or whole exome sequencing after PMP22 duplication was initially excluded. SORD mutation was identified in five out of 78 undiagnosed patients. Two individuals carried the previously reported homozygous c.757 delG (p.A253Qfs*27) variant, and three individuals carried the heterozygous c.757delG (p.A253Qfs*27) variant together with a second novel likely pathogenic variant, including c.731 C>T (p.P244L), c.776 C>T (p.A259V), or c.851T>C (p.L284P). The frequency of SORD variants was calculated to be 6.4% (5/78) in unclarified CMT2 and dHMN patients. All patients presented with distal weakness and atrophy in the lower limb, two of whom had minor clinical sensory abnormalities and small fiber neuropathy. Our study provides further information on the genotype and phenotype of patients with SORD mutations.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Mubalake Yilihamu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | | | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
15
|
Antioxidant Mechanisms of the Oligopeptides (FWKVV and FMPLH) from Muscle Hydrolysate of Miiuy Croaker against Oxidative Damage of HUVECs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9987844. [PMID: 34471471 PMCID: PMC8405337 DOI: 10.1155/2021/9987844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
In this work, the antioxidant mechanisms of bioactive oligopeptides (FWKVV and FMPLH) from protein hydrolysate of miiuy croaker muscle against H2O2-damaged human umbilical vein endothelial cells (HUVECs) were researched systemically. The finding demonstrated that the HUVEC viability treated with ten antioxidant peptides (M1 to M10) at 100.0 μM for 24 h was not significantly affected compared with that of the normal group (P < 0.05). Furthermore, FWKVV and FMPLH at 100.0 μM could very significantly enhance the viabilities (75.89 ± 1.79% and 70.03 ± 4.37%) of oxidative-damaged HUVECs by H2O2 compared with those of the model group (51.66 ± 2.48%) (P < 0.001). The results indicated that FWKVV and FMPLH played their protective functions through increasing the levels of antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) in oxidative-damaged HUVECs in a dose-dependent manner. In addition, the comet assay revealed that FWKVV and FMPLH could dose-dependently protect deoxyribonucleic acid (DNA) from oxidative damage in the HUVEC model. These results suggested that antioxidant pentapeptides (FWKVV and FMPLH) could serve as potential antioxidant additives applied in the food products, pharmaceuticals, and health supplements.
Collapse
|
16
|
Soldatova YV, Areshidze DA, Zhilenkov AV, Kraevaya OA, Peregudov AS, Poletaeva DA, Faingold II, Troshin PA, Kotelnikova RA. Water-soluble fullerene derivatives: the inhibition effect on polyol pathway enzymes and antidiabetic potential on high-fat diet/low-dose streptozotocin-induced diabetes in rats. JOURNAL OF NANOPARTICLE RESEARCH 2021; 23:202. [DOI: 10.1007/s11051-021-05313-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2025]
|
17
|
Kolahdouz M, Jafari F, Falanji F, Nazemi S, Mohammadzadeh M, Molavi M, Amin B. Clavulanic Acid Attenuating Effect on the Diabetic Neuropathic Pain in Rats. Neurochem Res 2021; 46:1759-1770. [PMID: 33846883 DOI: 10.1007/s11064-021-03308-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/24/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Diabetic neuropathy is one of the most common complications of diabetes mellitus. Excess glutamate release and oxidative stress are hypothesized to be involved in the pathophysiology of diabetes-induced neuropathy. This study was designed to investigate the effect of clavulanic acid (CLAV), a competitive beta-lactamase inhibitor, on the streptozocin (STZ)-induced neuropathic pain and possible mechanisms in the spinal cord of rats. Male Wistar rats were divided into naive group; control group which got a single dose of STZ (50 mg/kg, i.p.), as a model of diabetic neuropathic pain; prophylactic groups: animals received CLAV (10, 20 and 40 mg/kg, i.p.) 1 week after STZ for 10 days; and therapeutic group: animals received 20 mg/kg CLAV, 21 days after STZ for 10 days. Study of pain behaviors was started on days 0, 7, 14, 21, 28, 35 and 42 after STZ. The expression of the glutamate transport 1 (GLT1), genes of oxidative stress including inducible nitric oxide synthase (iNOS), proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), as well as genes involved in the apoptosis including bcl2, bcl2-associated x (bax) were measured in the spinal cord tissue by Real Time PCR, on day 42. On day 21 post injection of STZ, diabetic animals showed significant mechanical allodynia, cold allodynia and thermal hyperalgesia. CLAV in all doses of 10, 20 and 40 mg/kg reduced symptoms of allodynia and hyperalgesia, in both prophylactic and therapeutic regimens. While iNOS, TNF-α, bax/bcl2 were found significantly overexpressed in spinal cord of diabetic animals, their expression in animals received CLAV had been reduced. In contrast, GLT1 that had decreased in the spinal cord of diabetic animals, significantly increased in those received CLAV. CLAV was found a promising candidate for reliving neuropathic pain in diabetes mellitus. Such beneficial effect of CLAV could be, in part, attributed to the increased expression of GLT 1, inhibition of nitrosative stress, anti-inflammation, and inhibition of some apoptotic mediators followed by administration into diabetic animals.
Collapse
Affiliation(s)
- Mahnoush Kolahdouz
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Faranak Jafari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Farahnaz Falanji
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Mohammadzadeh
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mehdi Molavi
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
18
|
Silva M, Peng T, Zhao X, Li S, Farhan M, Zheng W. Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev 2021; 173:439-460. [PMID: 33857553 DOI: 10.1016/j.addr.2021.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is a frequent microvascular complication of diabetes and a major cause of visual impairment. In advanced stages, the abnormal neovascularization can lead to fibrosis and subsequent tractional retinal detachment and blindness. The low bioavailability of the drugs at the target site imposed by the anatomic and physiologic barriers within the eye, requires long term treatments with frequent injections that often compromise patient's compliance and increase the risk of developing more complications. In recent years, much effort has been put towards the development of new drug delivery platforms aiming to enhance their permeation, to prolong their retention time at the target site and to provide a sustained release with reduced toxicity and improved efficacy. This review provides an overview of the etiology and pathophysiology of diabetic retinopathy and current treatments. It addresses the specific challenges associated to the different ocular delivery routes and provides a critical review of the most recent developments made in the drug delivery field.
Collapse
Affiliation(s)
- Marta Silva
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Tangming Peng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Xia Zhao
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Shuai Li
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Mohd Farhan
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Wenhua Zheng
- Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau.
| |
Collapse
|
19
|
Bacha MM, Nadeem H, Zaib S, Sarwar S, Imran A, Rahman SU, Ali HS, Arif M, Iqbal J. Rhodanine-3-acetamide derivatives as aldose and aldehyde reductase inhibitors to treat diabetic complications: synthesis, biological evaluation, molecular docking and simulation studies. BMC Chem 2021; 15:28. [PMID: 33906691 PMCID: PMC8080350 DOI: 10.1186/s13065-021-00756-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
In diabetes, increased accumulation of sorbitol has been associated with diabetic complications through polyol pathway. Aldose reductase (AR) is one of the key factors involved in reduction of glucose to sorbitol, thereby its inhibition is important for the management of diabetic complications. In the present study, a series of seven 4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetamide derivatives 3(a–g) were synthesized by the reaction of 5-(4-hydroxy-3-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2a) and 5-(4-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2b) with different amines. The synthesized compounds 3(a–g) were investigated for their in vitro aldehyde reductase (ALR1) and aldose reductase (ALR2) enzyme inhibitory potential. Compound 3c, 3d, 3e, and 3f showed ALR1 inhibition at lower micromolar concentration whereas all the compounds were more active than the standard inhibitor valproic acid. Most of the compounds were active against ALR2 but compound 3a and 3f showed higher inhibition than the standard drug sulindac. Overall, the most potent compound against aldose reductase was 3f with an inhibitory concentration of 0.12 ± 0.01 µM. In vitro results showed that vanillin derivatives exhibited better activity against both aldehyde reductase and aldose reductase. The molecular docking studies were carried out to investigate the binding affinities of synthesized derivatives with both ALR1 and ALR2. The binding site analysis of potent compounds revealed similar interactions as were found by cognate ligands within the active sites of enzymes.
Collapse
Affiliation(s)
- Mohsinul Mulk Bacha
- Department of Pharmaceutical Chemistry, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan.
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| | - Sadia Sarwar
- Department of Pharmacognosy, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
| | - Aqeel Imran
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Shafiq Ur Rahman
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Hafiz Saqib Ali
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Muazzam Arif
- Department of Pharmaceutical Chemistry, RIPHAH Institute of Pharmaceutical Sciences G-7/4, Islamabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
20
|
Proteomic Analysis of the Protective Effect of Early Heat Exposure against Chronic Heat Stress in Broilers. Animals (Basel) 2020; 10:ani10122365. [PMID: 33321873 PMCID: PMC7764366 DOI: 10.3390/ani10122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Heat stress affects the livestock industry, especially in poultry. Screening for metabolic changes after early and chronic heat exposure in poultry would be beneficial in resolving the production issues. In this study, we identified differentially expressed proteins that affected early heat exposure during chronic heat stress. Chronic heat stress affected 277 proteins, of which 95 differed in expression by early heat exposure. Differentially expressed proteins were related to actin metabolism and also involved in carbohydrate and carbon metabolism. According to our results, early heat exposed liver of broilers activates the different physiological mechanisms for protection from later heat stress. Abstract The increasing trend of global warming has affected the livestock industry through the heat stress, especially in poultry. Therefore, a better understanding of the mechanisms of heat stress in poultry would be helpful for maintaining the poultry production. Three groups were designed to determine early heat stress effects during chronic heat stress: CC, raised at a comfortable temperature; CH, chronic heat exposure at 35 °C for 21–35 days continuously; and HH, early heat exposure at 40 °C for 24 h at 5 days old with 35 °C temperature for 21–35 days continuously. In this study, proteome analysis was carried out to identify differentially expressed proteins in the liver tissue of broilers under chronic and early heat exposure. There were eight differentially expressed proteins from early heat stress during chronic heat exposure, which were related to actin metabolism. According to KEGG (Kyoto encyclopedia of genes and genomes) analysis, the proteins involved in carbohydrate metabolism were expressed to promote the metabolism of carbohydrates under chronic heat stress. Early heat reduced the heat stress-induced expression changes of select proteins. Our study has shown that early heat exposure suggests that the liver of broilers has various physiological mechanisms for regulating homeostasis to aid heat resistance.
Collapse
|
21
|
Abstract
The interest in fructose metabolism is based on the observation that an increased dietary fructose consumption leads to an increased risk of obesity and metabolic syndrome. In particular, obesity is a known risk factor to develop many types of cancer and there is clinical and experimental evidence that an increased fructose intake promotes cancer growth. The precise mechanism, however, in which fructose induces tumor growth is still not fully understood. In this article, we present an overview of the metabolic pathways that utilize fructose and how fructose metabolism can sustain cancer cell proliferation. Although the degradation of fructose shares many of the enzymes and metabolic intermediates with glucose metabolism through glycolysis, glucose and fructose are metabolized differently. We describe the different metabolic fates of fructose carbons and how they are connected to lipogenesis and nucleotide synthesis. In addition, we discuss how the endogenous production of fructose from glucose via the polyol pathway can be beneficial for cancer cells.
Collapse
|
22
|
Kucerova-Chlupacova M, Halakova D, Majekova M, Treml J, Stefek M, Soltesova Prnova M. (4-Oxo-2-thioxothiazolidin-3-yl)acetic acids as potent and selective aldose reductase inhibitors. Chem Biol Interact 2020; 332:109286. [DOI: 10.1016/j.cbi.2020.109286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
|
23
|
Sever B, Altıntop MD, Demir Y, Akalın Çiftçi G, Beydemir Ş, Özdemir A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg Chem 2020; 102:104110. [PMID: 32739480 DOI: 10.1016/j.bioorg.2020.104110] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Aldose reductase (AR) catalyzes the NADPH-dependent reduction of glucose to sorbitol in the polyol pathway, which plays an important role in the development of diabetic complications including cataract, retinopathy, nephropathy, and neuropathy. AR has been considered as an important target to heal these long-term diabetic complications and for this reason the development of new AR inhibitors is an important approach in modern medicinal chemistry. In the current study, new 4-aryl-2-[2-((3,4-dihydro-2H-1,5-benzodioxepine-7-yl)methylene)hydrazinyl]thiazole derivatives (1-12) were synthesized and screened for their inhibitory effects on AR which was purified by diverse chromatographic methods with a yield of 1.40% and a specific activity of 2.00 EU/mg. All compounds were determined as promising AR inhibitors with the Ki values in the range of 0.018 ± 0.005 μM-3.746 ± 1.321 μM compared to the quercetin (Ki = 7.025 ± 1.780 μM). In particular, 4-(4-cyanophenyl)-2-[2-((3,4-dihydro-2H-1,5-benzodioxepin-7-yl)methylene)hydrazinyl]thiazole (3) was detected as the most potential AR inhibitor in this series with the Ki value of 0.018 ± 0.005 µM and the compound showed competitive AR inhibition. The cytotoxic effects of compounds 1-12 were investigated on L929 mouse fibroblast (healthy) cells using MTT assay and all these compounds were defined as non-cytotoxic agents against L929 cells. Molecular docking studies, which were employed to determine the affinity of compounds 1-12 into the active site of AR, highlighted that the thiazole scaffold of all these compounds presented π-π stacking interactions with Trp20 and Phe122. According to both in vitro and in silico assays, these potential AR inhibitors may have great importance in the prevention of diabetic microvascular conditions.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, 75700 Ardahan, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey; The Rectorate of Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
24
|
Agarwal P, Sharma B, Sharma D. Tarsal tunnel release restores sensations in sole for diabetic sensorimotor polyneuropathy. J Clin Orthop Trauma 2020; 11:442-447. [PMID: 32405206 PMCID: PMC7211905 DOI: 10.1016/j.jcot.2019.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diabetic sensorimotor polyneuropathy (DSPN) is the commonest form of neuropathy. Loss of sensations in sole leads to diabetic foot ulcers (DFU) and its complications. Surgical decompression has been used in the treatment of diabetic peripheral neuropathy, however; its effectiveness has been questioned.Purpose of this study was to evaluate the sensory recovery in sole after tarsal tunnel decompression (TTD) in patients having DSPN. METHODS Thirteen patients (Age28-70 years, average 35.57 years; 7 Males, 6 Females; 20 feet) with DSPN and positive Tinel's sign over the tarsal tunnel were included in the study. Pre and post-operative sensory tests performed on the sole included tests for touch, pain, temperature, pressure, vibration perception threshold (VPT) and two-point discrimination (2-PD). Results were classified as per British Medical Research Council (MRC) scoring system. RESULTS -Sixteen feet were followed-up for 6 months. In all feet perception of touch, pain and pressure recovered. Temperature perception recovered in 75% feet. VPT came to normal range (16.81V) from 40.37 V and 2-PD came down to average of 6.0 mm from preoperative average of11.2 mm.MRC scale improved from S0 in 5 feet and S2 in 15 feet to S3+ in all 16 feet.There were no ulcers or amputation in operated limbs during follow up period of 6 months. CONCLUSIONS TTD improves plantar sensations in diabetic neuropathy and prevents ulcers and its related complications.
Collapse
Affiliation(s)
- Pawan Agarwal
- Charge Plastic Surgery Unit, Department of Surgery, NSCB Government Medical College, Jabalpur, MP, 482003, India
| | - Bashudev Sharma
- Resident Department of Surgery, NSCB Government Medical College, Jabalpur, MP, 482003, India
| | - Dhananjaya Sharma
- Department of Surgery, NSCB Government Medical College, Jabalpur, MP, 482003, India
| |
Collapse
|
25
|
Cortese A, Zhu Y, Rebelo AP, Negri S, Courel S, Abreu L, Bacon CJ, Bai Y, Bis-Brewer DM, Bugiardini E, Buglo E, Danzi MC, Feely SME, Athanasiou-Fragkouli A, Haridy NA, Isasi R, Khan A, Laurà M, Magri S, Pipis M, Pisciotta C, Powell E, Rossor AM, Saveri P, Sowden JE, Tozza S, Vandrovcova J, Dallman J, Grignani E, Marchioni E, Scherer SS, Tang B, Lin Z, Al-Ajmi A, Schüle R, Synofzik M, Maisonobe T, Stojkovic T, Auer-Grumbach M, Abdelhamed MA, Hamed SA, Zhang R, Manganelli F, Santoro L, Taroni F, Pareyson D, Houlden H, Herrmann DN, Reilly MM, Shy ME, Zhai RG, Zuchner S. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet 2020; 52:473-481. [PMID: 32367058 PMCID: PMC8353599 DOI: 10.1038/s41588-020-0615-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
Here we report biallelic mutations in the sorbitol dehydrogenase gene (SORD) as the most frequent recessive form of hereditary neuropathy. We identified 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state. SORD is an enzyme that converts sorbitol into fructose in the two-step polyol pathway previously implicated in diabetic neuropathy. In patient-derived fibroblasts, we found a complete loss of SORD protein and increased intracellular sorbitol. Furthermore, the serum fasting sorbitol levels in patients were dramatically increased. In Drosophila, loss of SORD orthologs caused synaptic degeneration and progressive motor impairment. Reducing the polyol influx by treatment with aldose reductase inhibitors normalized intracellular sorbitol levels in patient-derived fibroblasts and in Drosophila, and also dramatically ameliorated motor and eye phenotypes. Together, these findings establish a novel and potentially treatable cause of neuropathy and may contribute to a better understanding of the pathophysiology of diabetes.
Collapse
Affiliation(s)
- Andrea Cortese
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK.
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sara Negri
- Istituiti Clinici Scientifici Maugeri IRCCS, Environmental Research Center, Pavia, Italy
| | - Steve Courel
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lisa Abreu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chelsea J Bacon
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Yunhong Bai
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Dana M Bis-Brewer
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrico Bugiardini
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Elena Buglo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shawna M E Feely
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Alkyoni Athanasiou-Fragkouli
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Nourelhoda A Haridy
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Rosario Isasi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alaa Khan
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
- Molecular Diagnostic Unit, Clinical Laboratory Department, King Abdullah Medical City in Makkah, Mecca, Saudi Arabia
| | - Matilde Laurà
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Menelaos Pipis
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eric Powell
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexander M Rossor
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Paola Saveri
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Janet E Sowden
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Stefano Tozza
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Jana Vandrovcova
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Julia Dallman
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Elena Grignani
- Istituiti Clinici Scientifici Maugeri IRCCS, Environmental Research Center, Pavia, Italy
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Abdullah Al-Ajmi
- Division of Neurology, Department of Medicine, Al-Jahra Hospital, Al-Jahra, Kuwait
| | - Rebecca Schüle
- Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research, and Center for Neurology, University of Tübingen, Tübingen, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Thierry Maisonobe
- Department of Neurophysiology, AP-HP, Sorbonne Université, Hôpital Pitié Salpêtrière, Paris, France
| | - Tanya Stojkovic
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, AP-HP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Michaela Auer-Grumbach
- Department of Orthopaedics and Traumatology, Medical University of Vienna, Vienna, Austria
| | - Mohamed A Abdelhamed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Sherifa A Hamed
- Department of Neurology and Psychiatry, Faculty of Medicine, Assiut University Hospital, Assiut, Egypt
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Lucio Santoro
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Mary M Reilly
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and The National Hospital for Neurology, London, UK
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
26
|
Neuroprotective Effect of Salvianolic Acid A against Diabetic Peripheral Neuropathy through Modulation of Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6431459. [PMID: 32184918 PMCID: PMC7063195 DOI: 10.1155/2020/6431459] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
Oxidative stress has been recognized as the contributor to diabetic peripheral neuropathy (DPN). Antioxidant strategies have been most widely explored; nevertheless, whether antioxidants alone prevent DPN still remains inconclusive. In the present study, we established an in vitro DPN cell model for drug screening using Schwann RSC96 cells under high glucose (HG) stimulation, and we found that salvianolic acid A (SalA) mitigated HG-induced injury evidenced by cell viability and myelination. Mechanistically, SalA exhibited strong antioxidative effects by inhibiting 1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing reactive oxygen species (ROS), malondialdehyde (MDA), and oxidized glutathione (GSSG) content, as well as upregulating antioxidative enzyme mRNA expression. In addition, SalA significantly extenuated neuroinflammation with downregulated inflammatory factor mRNA expression. Furthermore, SalA improved the mitochondrial function of HG-injured Schwann cells by scavenging mitochondrial ROS, decreasing mitochondrial membrane potential (MMP), and enhancing ATP production, as well as upregulating oxidative phosphorylation gene expression. More importantly, we identified nuclear factor-E2-related factor 2 (Nrf2) as the upstream regulator which mediated protective effects of SalA on DPN. SalA directly bound to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) and thus disrupted the interaction of Nrf2 and Keap1 predicted by LibDock of Discovery Studio. Additionally, SalA significantly inhibited Nrf2 promoter activity and downregulated Nrf2 mRNA expression but without affecting Nrf2 protein expression. Interestingly, SalA upregulated the nuclear Nrf2 expression and promoted Nrf2 nuclear translocation by high content screening assay, which was confirmed to be involved in its antiglucotoxicity effect by the knockdown of Nrf2 in RSC96 cells. In KK-Ay mice, we demonstrated that SalA could effectively improve the abnormal glucose and lipid metabolism and significantly protect against DPN by increasing the mechanical withdrawal threshold and sciatic nerve conduction velocity and restoring the ultrastructural impairment of the injured sciatic nerve induced by diabetes. Hence, SalA protected against DPN by antioxidative stress, attenuating neuroinflammation, and improving mitochondrial function via Nrf2. SalA may be prospective therapeutics for treating DPN.
Collapse
|
27
|
Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Sci Rep 2020; 10:1908. [PMID: 32024865 PMCID: PMC7002415 DOI: 10.1038/s41598-020-58213-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023] Open
Abstract
Perturbations in skeletal muscle metabolism have been reported for a variety of neuromuscular diseases. However, the role of metabolism after constriction injury to a nerve and the associated muscle atrophy is unclear. We have analyzed rat tibialis anterior (TA) four weeks after unilateral constriction injury to the sciatic nerve (DMG) and in the contralateral control leg (CTRL) (n = 7) to investigate changes of the metabolome, immunohistochemistry and protein levels. Untargeted metabolomics identified 79 polar metabolites, 27 of which were significantly altered in DMG compared to CTRL. Glucose concentrations were increased 2.6-fold in DMG, while glucose 6-phosphate (G6-P) was unchanged. Intermediates of the polyol pathway were increased in DMG, particularly fructose (1.7-fold). GLUT4 localization was scattered as opposed to clearly at the sarcolemma. Despite the altered localization, we found GLUT4 protein levels to be increased 7.8-fold while GLUT1 was decreased 1.7-fold in nerve damaged TA. PFK1 and GS levels were both decreased 2.1-fold, indicating an inability of glycolysis and glycogen synthesis to process glucose at sufficient rates. In conclusion, chronic nerve constriction causes increased GLUT4 levels in conjunction with decreased glycolytic activity and glycogen storage in skeletal muscle, resulting in accumulation of intramuscular glucose and polyol pathway intermediates.
Collapse
|
28
|
Vieira WF, de Magalhães SF, Farias FH, de Thomaz AA, Parada CA. Raman spectroscopy of dorsal root ganglia from streptozotocin-induced diabetic neuropathic rats submitted to photobiomodulation therapy. JOURNAL OF BIOPHOTONICS 2019; 12:e201900135. [PMID: 31265175 DOI: 10.1002/jbio.201900135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
In this study, we used Raman spectroscopy as a new tool to investigate pathological conditions at the level of chemical bond alterations in biological tissues. Currently, there have been no reports on the spectroscopic alterations caused by diabetic neuropathy in the dorsal root ganglia (DRG). DRG are a target for the treatment of neuropathic pain, and the need for more effective therapies is increasing. Photobiomodulation therapy (PBMT) through infrared low-level laser irradiation (904 nm) has shown analgesic effects on the treatment of neuropathy. Thus, the aim of this study was to use Raman spectroscopy to characterize the spectral DRG identities of streptozotocin (STZ)-induced diabetic neuropathic (hyperalgesic) rats and to study the influence of PBMT over such spectra. Characteristic DRG peaks were identified at 2704, 2850, 2885, 2940, 3061 and 3160 cm-1 , whose assignments are CH2 /CH3 symmetric/asymmetric stretches, and C─H vibrations of lipids and proteins. DRG from hyperalgesic rats showed an increased normalized intensity of 2704, 2850, 2885 and 3160 cm-1 . These same peaks had their normalized intensity reduced after PBMT treatment, accompanied by an anti-hyperalgesic effect. Raman spectroscopy was able to diagnose spectral alterations in DRG of hyperalgesic rats and the PBMT reduced the intensity of hyperalgesia and the altered Raman spectra.
Collapse
Affiliation(s)
- Willians F Vieira
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Silviane F de Magalhães
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Felipe H Farias
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - André A de Thomaz
- Department of Quantum Electronics, Institute of Physics Gleb Wataghin, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos A Parada
- Laboratory for Pain Studies, Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
29
|
Ginsenoside Rb1 Attenuates High Glucose-Induced Oxidative Injury via the NAD-PARP-SIRT Axis in Rat Retinal Capillary Endothelial Cells. Int J Mol Sci 2019; 20:ijms20194936. [PMID: 31590397 PMCID: PMC6801419 DOI: 10.3390/ijms20194936] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Aims: The present study aimed to observe the effects of Ginsenoside Rb1 on high glucose-induced endothelial damage in rat retinal capillary endothelial cells (RCECs) and to investigate the underlying mechanism. (2) Methods: Cultured RCECs were treated with normal glucose (5.5 mM), high glucose (30 mM glucose), or high glucose plus Rb1 (20 μM). Cell viability, lactate dehydrogenase (LDH) levels, the mitochondrial DNA copy number, and the intracellular ROS content were measured to evaluate the cytotoxicity. Superoxide dismutase (SOD), catalase (CAT), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), poly(ADP-ribose) polymerase (PARP), and sirtuin (SIRT) activity was studied in cell extracts. Nicotinamide adenine dinucleotide (NAD+)/NADH, NADPH/NADP+, and glutathione (GSH)/GSSG levels were measured to evaluate the redox state. The expression of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), SIRT1, and SIRT3 was also evaluated after Rb1 treatment. (3) Results: Treatment with Rb1 significantly increased the cell viability and mtDNA copy number, and inhibited ROS generation. Rb1 treatment increased the activity of SOD and CAT and reduced the activity of NOX and PARP. Moreover, Rb1 enhanced both SIRT activity and SIRT1/SIRT3 expression. Additionally, Rb1 was able to re-establish the cellular redox balance in RCECs. However, Rb1 showed no effect on NMNAT1 expression in RCECs exposed to high glucose. (4) Conclusion: Under high glucose conditions, decreases in the reducing power may be linked to DNA oxidative damage and apoptosis via activation of the NMNAT-NAD-PARP-SIRT axis. Rb1 provides an advantage during high glucose-induced cell damage by targeting the NAD-PARP-SIRT signaling pathway and modulating the redox state in RCECs.
Collapse
|
30
|
Tsang JKW, Liu J, Lo ACY. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. Int J Mol Sci 2019; 20:E4321. [PMID: 31484463 PMCID: PMC6747312 DOI: 10.3390/ijms20174321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological events occur when babies return to room air, leading to ROP with neuronal degeneration and vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore, increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for effective and safe therapies in these developing infants. Therefore, it is essential to identify potential therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions. This review gives an overview of various agents in their efficacy in reducing retinal damages in cell culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective pathways in the developing retina are also reviewed.
Collapse
Affiliation(s)
- Jessica K W Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Sarode GV, Kim K, Kieffer DA, Shibata NM, Litwin T, Czlonkowska A, Medici V. Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019; 15:43. [PMID: 30868361 PMCID: PMC6568258 DOI: 10.1007/s11306-019-1505-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Wilson disease (WD) is characterized by excessive intracellular copper accumulation in liver and brain due to defective copper biliary excretion. With highly varied phenotypes and a lack of biomarkers for the different clinical manifestations, diagnosis and treatment can be difficult. OBJECTIVE The aim of the present study was to analyze serum metabolomics profiles of patients with Wilson disease compared to healthy subjects, with the goal of identifying differentially abundant metabolites as potential biomarkers for this condition. METHODS Hydrophilic interaction liquid chromatography-quadrupole time of flight mass spectrometry was used to evaluate the untargeted serum metabolome of 61 patients with WD (26 hepatic and 25 neurologic subtypes, 10 preclinical) compared to 15 healthy subjects. We conducted analysis of covariance with potential confounders (body mass index, age, sex) as covariates and partial least-squares analysis. RESULTS After adjusting for clinical covariates and multiple testing, we identified 99 significantly different metabolites (FDR < 0.05) between WD and healthy subjects. Subtype comparisons also revealed significantly different metabolites compared to healthy subjects: WD hepatic subtype (67), WD neurologic subtype (57), WD hepatic-neurologic combined (77), and preclinical (36). Pathway analysis revealed these metabolites are involved in amino acid metabolism, the tricarboxylic acid cycle, choline metabolism, and oxidative stress. CONCLUSIONS Patients with WD are characterized by a distinct metabolomics profile providing new insights into WD pathogenesis and identifying new potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Gaurav V Sarode
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Dorothy A Kieffer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Noreene M Shibata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Tomas Litwin
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Czlonkowska
- Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 4150 V Street, Suite 3500, Sacramento, CA, 95817, USA.
| |
Collapse
|
32
|
Abstract
INTRODUCTION Aldose reductase (ALR2) is both the key enzyme of the polyol pathway, whose activation under hyperglycemic conditions leads to the development of chronic diabetic complications, and the crucial promoter of inflammatory and cytotoxic conditions, even under a normoglycemic status. Accordingly, it represents an excellent drug target and a huge effort is being done to disclose novel compounds able to inhibit it. AREAS COVERED This literature survey summarizes patents and patent applications published over the last 5 years and filed for natural, semi-synthetic and synthetic ALR2 inhibitors. Compounds described have been discussed and analyzed from both chemical and functional angles. EXPERT OPINION Several ALR2 inhibitors with a promising pre-clinical ability to address diabetic complications and inflammatory diseases are being developed during the observed timeframe. Natural compounds and plant extracts are the prevalent ones, thus confirming the use of phytopharmaceuticals as an increasingly pursued therapeutic trend also in the ALR2 inhibitors field. Intriguing hints may be taken from synthetic derivatives, the most significant ones being represented by the differential inhibitors ARDIs. Differently from classical ARIs, these compounds should fire up the therapeutic efficacy of the class while minimizing its side effects, thus overcoming the existing limits of this kind of inhibitors.
Collapse
Affiliation(s)
- Luca Quattrini
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| | | |
Collapse
|
33
|
Wang H, Lu J, Kulkarni S, Zhang W, Gorka JE, Mandel JA, Goetzman ES, Prochownik EV. Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts. J Biol Chem 2019; 294:5466-5486. [PMID: 30755479 DOI: 10.1074/jbc.ra118.005200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/05/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.
Collapse
Affiliation(s)
- Huabo Wang
- From the Section of Hematology/Oncology and
| | - Jie Lu
- From the Section of Hematology/Oncology and
| | | | | | | | | | - Eric S Goetzman
- Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Edward V Prochownik
- From the Section of Hematology/Oncology and .,the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and.,the The Hillman Cancer Center of UPMC, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
34
|
Hu J, Tu Y, Ding Z, Chen Z, Dellon AL, Lineaweaver WC, Zhang F. Alteration of Sciatic Nerve Histology and Electrical Function After Compression and After Neurolysis in a Diabetic Rat Model. Ann Plast Surg 2018; 81:682-687. [PMID: 30285992 DOI: 10.1097/sap.0000000000001646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Diabetic rats are more sensitive to nerve entrapment. This study was conducted to evaluate nerve function and histological changes in diabetic rats after nerve compression and subsequent decompression. METHODS A total of 35 Wistar rats were included. The experimental group was divided into diabetic sciatic nerve compression group (DSNC, n = 5) and diabetic sciatic nerve decompression group (DSND, n = 20). The DSNC model was created by wrapping a silicone tube circumferentially around the nerve for 4 weeks, and then the DSND group accepted nerve decompression and was followed up to 12 weeks. The DSND group was equally divided into DSND 3 weeks (DSND3), 6 weeks (DSND6), 9 weeks (DSND9), and 12 weeks (DSND12) groups. Five rats were taken as normoglycemic control group (CR, n = 5), and another 5 rats as diabetic control group (DM, n = 5). The mechanical hyperalgesia of rats was detected by Semmes-Weinstein nylon monofilaments (SWMs) and by motor nerve conduction velocity (MNCV). These 2 physiological indicators and histology of sciatic nerves were compared among different groups. RESULTS The SWM measurements improved toward normal values after decompression. The SWM value was significantly lower (more normal) in the DSNC groups than in the DSND group (P < 0.05). The MNCV was 53.7 ± 0.8 m/s in the CR group, whereas it was 28.4 ± 1.0 m/s in the DSNC group (P < 0.001). Six weeks after decompression, the MNCV was significantly faster than that in the DSNC group (P < 0.001). Histological examination demonstrated chronic nerve compression, which responded toward normal after decompression, but with degree of myelination never recovering to normal. CONCLUSIONS Chronic compression of the diabetic sciatic nerve has measureable negative effects on sciatic nerve motor nerve function, associated with a decline of touch/pressure threshold and degeneration of myelin sheath and axon. Nerve decompression surgery can reverse these effects and partially restore nerve function.
Collapse
Affiliation(s)
- Junda Hu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiji Tu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuoyou Ding
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zenggan Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - A Lee Dellon
- Department of Plastic Surgery, Johns Hopkins University, Baltimore, MD
| | | | - Feng Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
- The Joseph M. Still Burn and Reconstructive Center, Jackson, MS
| |
Collapse
|
35
|
Yuan C, Hu J, Parathath S, Grauer L, Cassella CB, Bagdasarov S, Goldberg IJ, Ramasamy R, Fisher EA. Human Aldose Reductase Expression Prevents Atherosclerosis Regression in Diabetic Mice. Diabetes 2018; 67:1880-1891. [PMID: 29891593 PMCID: PMC6110315 DOI: 10.2337/db18-0156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022]
Abstract
Guidelines to reduce cardiovascular risk in diabetes include aggressive LDL lowering, but benefits are attenuated compared with those in patients without diabetes. Consistent with this, we have reported in mice that hyperglycemia impaired atherosclerosis regression. Aldose reductase (AR) is thought to contribute to clinical complications of diabetes by directing glucose into pathways producing inflammatory metabolites. Mice have low levels of AR, thus raising them to human levels would be a more clinically relevant model to study changes in diabetes under atherosclerosis regression conditions. Donor aortae from Western diet-fed Ldlr-/- mice were transplanted into normolipidemic wild-type, Ins2Akita (Akita+/- , insulin deficient), human AR (hAR) transgenic, or Akita+/- /hAR mice. Akita+/- mice had impaired plaque regression as measured by changes in plaque size and the contents of CD68+ cells (macrophages), lipids, and collagen. Supporting synergy between hyperglycemia and hAR were the even more pronounced changes in these parameters in Akita+/- /hAR mice, which had atherosclerosis progression in spite of normolipidemia. Plaque CD68+ cells from the Akita+/- /hAR mice had increased oxidant stress and expression of inflammation-associated genes but decreased expression of anti-inflammatory genes. In summary, hAR expression amplifies impaired atherosclerosis regression in diabetic mice, likely by interfering with the expected reduction in plaque macrophage inflammation.
Collapse
MESH Headings
- Aldehyde Reductase/genetics
- Aldehyde Reductase/metabolism
- Animals
- Aorta/physiopathology
- Aorta/transplantation
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/blood
- Biomarkers/metabolism
- Crosses, Genetic
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diet, Western/adverse effects
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation
- Humans
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidative Stress
- Plaque, Atherosclerotic/immunology
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/physiopathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Chujun Yuan
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY
| | - Saj Parathath
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Lisa Grauer
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Courtney Blachford Cassella
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| | - Svetlana Bagdasarov
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Ira J Goldberg
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Ravichandran Ramasamy
- Department of Medicine, New York University School of Medicine, New York, NY
- Diabetes Research Center, Division of Endocrinology, New York University School of Medicine, New York, NY
| | - Edward A Fisher
- Marc and Ruti Bell Vascular Biology Program, Leon Charney Division of Cardiology, New York University School of Medicine, New York, NY
- Department of Medicine, New York University School of Medicine, New York, NY
| |
Collapse
|
36
|
Šušaníková I, Balleková J, Štefek M, Hošek J, Mučaji P. Artichoke leaf extract, as AKR1B1 inhibitor, decreases sorbitol level in the rat eye lenses under high glucose conditions ex vivo. Phytother Res 2018; 32:2389-2395. [PMID: 30109747 DOI: 10.1002/ptr.6174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/08/2022]
Abstract
In the previous study, the artichoke leaf extract showed effective inhibition of AKR1B1, the first enzyme of polyol pathway, which reduces high level of glucose to osmotically active sorbitol, important for development of chronic diabetic complications. In the present study, the effect of artichoke leaf extract and of several participating phenols (caffeic acid, chlorogenic acid, quinic acid, and luteolin) was tested on sorbitol level in rat lenses exposed to high glucose ex vivo, on cytotoxicity as well as on oxidative stress in C2C12 muscle cell line induced by high glucose in vitro. The concentration of sorbitol was determined by enzymatic analysis, the cytotoxicity was provided by WST-1 test and intracellular content of reactive oxygen species was determined by fluorescence of 2'-7'-dichlorofluorescein probe. The extract and the compounds tested showed significant protection against toxic effects of high concentration of glucose in both models. On balance, the artichoke leaf extract thus represents a prospective preventive agent of development of chronic diabetic complications, probably due to phenols content, concerning preclinical and clinical studies.
Collapse
Affiliation(s)
- Ivana Šušaníková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Jana Balleková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Štefek
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
37
|
Samira M, Mounira T, Kamel K, Yacoubi MT, Ben Rhouma K, Sakly M, Tebourbi O. Hepatotoxicity of vanadyl sulfate in nondiabetic and streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2018; 96:1076-1083. [PMID: 30075092 DOI: 10.1139/cjpp-2018-0255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study examined the effects of vanadyl sulfate (VOSO4) on the livers of nondiabetic and streptozotocin-induced diabetic rats. Rats were divided into 6 groups. Groups 1, 2, and 3 consisted of nondiabetic rats that were, respectively, control animals or those receiving an intraperitoneal (i.p.) injection of either 5 or 10 mg·kg-1 (i.p.) VOSO4 for 30 days. Groups 4, 5, and 6 consisted of diabetic animals that were, respectively, control animals or those treated with 5 or 10 mg·kg-1 (i.p.) VOSO4 for 30 days. Results showed that VOSO4 reduced body mass in nondiabetic rats, whereas it increased body mass in diabetic groups. Plasma transaminases (aspartate aminotransferase, alanine aminotransferase), lactate dehydrogenase, and alkaline phosphatase activities and malondialdehyde levels were increased, while liver catalase and superoxide dismutase activities were profoundly decreased in diabetic animals in comparison with enzyme activities in the nondiabetic group. Rats in the diabetic group also showed notable oxidative damage to the liver. Treatment of diabetic rats with VOSO4 decreased the hepatotoxic markers, significantly restored the activities of antioxidant enzymes, and attenuated histopathological changes in liver tissue. In nondiabetic rats, VOSO4 treatment increased most of the hepatotoxic markers, reduced antioxidant enzyme activities, and induced pronounced oxidative damage in liver tissue. These data suggest that treatment with VOSO4 exerts toxic effects in healthy animals and significantly prevents liver oxidative damage in streptozotocin-induced diabetic rats, but without total safety. Further studies are needed to clarify its mechanism of action.
Collapse
Affiliation(s)
- Missaoui Samira
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Tlili Mounira
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Kacem Kamel
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Mohamed Tahar Yacoubi
- b Department of Pathological Anatomy, Farhat Hached University Hospital, 4002 Sousse, Tunisia
| | - Khemais Ben Rhouma
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Mohsen Sakly
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| | - Olfa Tebourbi
- a Laboratory of Integrated Physiology, Faculty of Sciences of Bizerte, University of Carthage, 7021 Jarzouna, Tunisia
| |
Collapse
|
38
|
Evangelista AF, Vannier-Santos MA, de Assis Silva GS, Silva DN, Juiz PJL, Nonaka CKV, Dos Santos RR, Soares MBP, Villarreal CF. Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. J Neuroinflammation 2018; 15:189. [PMID: 29933760 PMCID: PMC6015468 DOI: 10.1186/s12974-018-1224-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is a frequent and debilitating manifestation of diabetes mellitus, to which there are no effective therapeutic approaches. Mesenchymal stem/stromal cells (MSC) have a great potential for the treatment of this syndrome, possibly through regenerative actions on peripheral nerves. Here, we evaluated the therapeutic effects of MSC on spinal neuroinflammation, as well as on ultrastructural aspects of the peripheral nerve in DN-associated sensorial dysfunction. METHODS C57Bl/6 mice were treated with bone marrow-derived MSC (1 × 106), conditioned medium from MSC cultures (CM-MSC) or vehicle by endovenous route following the onset of streptozotocin (STZ)-induced diabetes. Paw mechanical and thermal nociceptive thresholds were evaluated by using von Frey filaments and Hargreaves test, respectively. Morphological and morphometric analysis of the sciatic nerve was performed by light microscopy and transmission electron microscopy. Mediators and markers of neuroinflammation in the spinal cord were measured by radioimmunoassay, real-time PCR, and immunofluorescence analyses. RESULTS Diabetic mice presented behavioral signs of sensory neuropathy, mechanical allodynia, and heat hypoalgesia, which were completely reversed by a single administration of MSC or CM-MSC. The ultrastructural analysis of the sciatic nerve showed that diabetic mice exhibited morphological and morphometric alterations, considered hallmarks of DN, such as degenerative changes in axons and myelin sheath, and reduced area and density of unmyelinated fibers. In MSC-treated mice, these structural alterations were markedly less commonly observed and/or less pronounced. Moreover, MSC transplantation inhibited multiple parameters of spinal neuroinflammation found in diabetic mice, causing the reduction of activated astrocytes and microglia, oxidative stress signals, galectin-3, IL-1β, and TNF-α production. Conversely, MSC increased the levels of anti-inflammatory cytokines, IL-10, and TGF-β. CONCLUSIONS The present study described the modulatory effects of MSC on spinal cord neuroinflammation in diabetic mice, suggesting new mechanisms by which MSC can improve DN.
Collapse
Affiliation(s)
| | | | | | - Daniela Nascimento Silva
- Center of Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, CEP 41253-190, Brazil
| | - Paulo José Lima Juiz
- Federal University of Recôncavo of Bahia, Feira de Santana, BA, CEP 44042-280, Brazil
| | | | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation-FIOCRUZ, Salvador, BA, CEP 40296-710, Brazil.,Center of Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, BA, CEP 41253-190, Brazil
| | - Cristiane Flora Villarreal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation-FIOCRUZ, Salvador, BA, CEP 40296-710, Brazil. .,Pharmacy College, Federal University of Bahia, Salvador, BA, CEP 40170-290, Brazil.
| |
Collapse
|
39
|
Šimunović M, Paradžik M, Škrabić R, Unić I, Bućan K, Škrabić V. Cataract as Early Ocular Complication in Children and Adolescents with Type 1 Diabetes Mellitus. Int J Endocrinol 2018; 2018:6763586. [PMID: 29755521 PMCID: PMC5883981 DOI: 10.1155/2018/6763586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
Cataract is a rare manifestation of ocular complication at an early phase of T1DM in the pediatric population. The pathophysiological mechanism of early diabetic cataract has not been fully understood; however, there are many theories about the possible etiology including osmotic damage, polyol pathway, and oxidative stress. The prevalence of early diabetic cataract in the population varies between 0.7 and 3.4% of children and adolescents with T1DM. The occurrence of diabetic cataract in most pediatric patients is the first sign of T1DM or occurs within 6 months of diagnosis of T1DM. Today, there are many experimental therapies for the treatment of diabetic cataract, but cataract surgery continues to be a gold standard in the treatment of diabetic cataract. Since the cataract is the leading cause of visual impairment in patients with T1DM, diabetic cataract requires an initial screening as well as continuous surveillance as a measure of prevention and this should be included in the guidelines of pediatric diabetes societies.
Collapse
Affiliation(s)
- Marko Šimunović
- Department of Pediatrics, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia
| | - Martina Paradžik
- Department of Ophthalmology, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia
| | - Roko Škrabić
- School of Medicine, University of Split, Šoltanska 2, Split, Croatia
| | - Ivana Unić
- Department of Pediatrics, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia
| | - Kajo Bućan
- Department of Ophthalmology, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia
| | - Veselin Škrabić
- Department of Pediatrics, University Hospital Centre Split, Spinčićeva 1, 21000 Split, Croatia
| |
Collapse
|
40
|
Cardoso SM, Correia SC, Carvalho C, Moreira PI. Mitochondria in Alzheimer's Disease and Diabetes-Associated Neurodegeneration: License to Heal! Handb Exp Pharmacol 2017; 240:281-308. [PMID: 28251365 DOI: 10.1007/164_2017_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a difficult puzzle to solve, in part because the etiology of this devastating neurodegenerative disorder remains murky. However, diabetes has been pinpointed as a major risk factor for the sporadic forms of AD. Several overlapping neurodegenerative mechanisms have been identified between AD and diabetes, including mitochondrial malfunction. This is not surprising taking into account that neurons are cells with a complex morphology, long lifespan, and high energetic requirements which make them particularly reliant on a properly organized and dynamic mitochondrial network to sustain neuronal function and integrity. In this sense, this chapter provides an overview on the role of mitochondrial bioenergetics and dynamics to the neurodegenerative events that occur in AD and diabetes, and how these organelles may represent a mechanistic link between these two pathologies. From a therapeutic perspective, it will be discussed how mitochondria can be targeted in order to efficaciously counteract neurodegeneration associated with AD and diabetes.
Collapse
Affiliation(s)
- Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, 3000-548, Portugal.
| |
Collapse
|
41
|
Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: Breaking the barrier. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:229-241. [PMID: 28732591 PMCID: PMC5711541 DOI: 10.1016/j.pathophys.2017.07.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Alaa M Z Aldalati
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
42
|
Abstract
Diabetes is a chronic systemic disease that affects nearly one in eight adults worldwide. Ocular complications, such as cataract, can lead to significant visual impairment. Among the worldwide population, cataract is the leading cause of blindness, and patients with diabetes have an increased incidence of cataracts which mature earlier compared to the rest of the population. Cataract surgery is a common and safe procedure, but can be associated with vision-threatening complications in the diabetic population, such as diabetic macular edema, postoperative macular edema, diabetic retinopathy progression, and posterior capsular opacification. This article is a brief review of diabetic cataract and complications associated with cataract extraction in this population of patients.
Collapse
Affiliation(s)
- Scott R Peterson
- a Joslin Diabetes Center , Beetham Eye Institute , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Paolo A Silva
- a Joslin Diabetes Center , Beetham Eye Institute , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Timothy J Murtha
- a Joslin Diabetes Center , Beetham Eye Institute , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| | - Jennifer K Sun
- a Joslin Diabetes Center , Beetham Eye Institute , Boston , MA , USA.,b Department of Ophthalmology , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
43
|
Yan X, Wu L, Lin Q, Dai X, Hu H, Wang K, Zhang C, Shao M, Cai L, Tan Y. From the Cover: Alcohol Inhibition of the Enzymatic Activity of Glyceraldehyde 3-Phosphate Dehydrogenase Impairs Cardiac Glucose Utilization, Contributing to Alcoholic Cardiomyopathy. Toxicol Sci 2017; 159:392-401. [PMID: 28962519 DOI: 10.1093/toxsci/kfx140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Heavy consumption of alcohol induces cardiomyopathy and is associated with metabolic changes in the heart. The role of altered metabolism in the development of alcoholic cardiomyopathy remains largely unknown but is examined in the present study. The effect of chronic alcohol consumption on cardiac damage was examined in mice fed an alcohol or isocaloric control diet for 2 months. Signaling pathways of alcohol-induced metabolic alteration and pathologic changes were examined in both animal hearts and H9c2 cell cultures. Compared with controls, the hearts from the alcohol-fed mice exhibited cardiac oxidative stress, cell death, a fibrotic response, hypertrophic remodeling, and the eventual development of cardiac dysfunction. All these detrimental effects could be ameliorated by superoxide dismutase mimic Mn (111) tetrakis 1-methyl 4-pyridylporphyrin pentachloride (MnTMPyP) therapy. A mechanistic study showed that chronic alcohol exposure enhanced the expression of proteins regulating fatty acid uptake but impaired the expression of proteins involved in mitochondrial fatty acid oxidation, which compensatively geared the heart to the suboptimal energy source, glucose. However, chronic alcohol exposure also impaired the glycolytic energy production step regulated by glyceraldehyde-3-phosphate dehydrogenase, which further feeds back to enhance glucose uptake signaling and the accumulation of glycolytic intermediate product fructose, resulting in aggravation of alcohol-induced cardiac oxidative stress, cell death, and remodeling. All these dysmetabolic alterations could be normalized by MnTMPyP treatment, along with significant improvement in cardiac cell death and remodeling. These results demonstrate that alcohol-induced oxidative stress and altered glucose metabolism are causal factors for the development of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Lin
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| | - Xiaozhen Dai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Haiqi Hu
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Kai Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Minglong Shao
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications & School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, Zhejiang, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, Kentucky
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
44
|
Abstract
Diabetes mellitus is a widespread endocrine disease with severe impact on health systems worldwide. Increased serum glucose causes damage to a wide range of cell types, including endothelial cells, neurons, and renal cells, but also keratinocytes and fibroblasts. Skin disorders can be found in about one third of all people with diabetes and frequently occur before the diagnosis, thus playing an important role in the initial recognition of underlying disease. Noninfectious as well as infectious diseases have been described as dermatologic manifestations of diabetes mellitus. Moreover, diabetic neuropathy and angiopathy may also affect the skin. Pruritus, necrobiosis lipoidica, scleredema adultorum of Buschke, and granuloma annulare are examples of frequent noninfectious skin diseases. Bacterial and fungal skin infections are more frequent in people with diabetes. Diabetic neuropathy and angiopathy are responsible for diabetic foot syndrome and diabetic dermopathy. Furthermore, antidiabetic therapies may provoke dermatologic adverse events. Treatment with insulin may evoke local reactions like lipohypertrophy, lipoatrophy and both instant and delayed type allergy. Erythema multiforme, leukocytoclastic vasculitis, drug eruptions, and photosensitivity have been described as adverse reactions to oral antidiabetics. The identification of lesions may be crucial for the first diagnosis and for proper therapy of diabetes.
Collapse
|
45
|
Zhao JX, Yuan YW, Cai CF, Shen DY, Chen ML, Ye F, Mi YJ, Luo QC, Cai WY, Zhang W, Long Y, Zeng Y, Ye GD, Yang SY. Aldose reductase interacts with AKT1 to augment hepatic AKT/mTOR signaling and promote hepatocarcinogenesis. Oncotarget 2017; 8:66987-67000. [PMID: 28978011 PMCID: PMC5620151 DOI: 10.18632/oncotarget.17791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/25/2017] [Indexed: 02/07/2023] Open
Abstract
Marked up-regulation of aldose reductase (AR) is reportedly associated with the development of hepatocellular carcinoma (HCC). We investigated how aberrantly overexpressed AR might promote oncogenic transformation in liver cells and tissues. We found that overexpressed AR interacted with the kinase domain of AKT1 to increase AKT/mTOR signaling. In both cultured liver cancer cells and liver tissues in DEN-induced transgenic HCC model mice, we observed that AR overexpression-induced AKT/mTOR signaling tended to enhance lactate formation and hepatic inflammation to enhance hepatocarcinogenesis. Conversely, AR knockdown suppressed lactate formation and inflammation. Using cultured liver cancer cells, we also demonstrated that AKT1 was essential for AR-induced dysregulation of AKT/mTOR signaling, metabolic reprogramming, antioxidant defense, and inflammatory responses. These findings suggest that aberrantly overexpressed/over-activated hepatic AR promotes HCC development at least in part by interacting with oncogenic AKT1 to augment AKT/mTOR signaling. Inhibition of AR and/or AKT1 might serve as an effective strategy for the prevention and therapy of liver cancer.
Collapse
Affiliation(s)
- Jia-Xing Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361002, China
| | - Ya-Wei Yuan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361002, China
| | - Cheng-Fu Cai
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Dong-Yan Shen
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Mao-Li Chen
- School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361003, China
| | - Feng Ye
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Yan-Jun Mi
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Qi-Cong Luo
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Wang-Yu Cai
- Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Wei Zhang
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Guo-Dong Ye
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| | - Shu-Yu Yang
- The First Affiliated Hospital, Medical College, Xiamen University, Xiamen, Fujian, 361003, China
| |
Collapse
|
46
|
Luo J, Huang L, Chen Z, Zeng Z, Miyamoto T, Wu H, Zhang Z, Pan Z, Fujita N, Hikata T, Iwanami A, Tsuji T, Ishii K, Nakamura M, Matsumoto M, Watanabe K, Cao K. Increased sorbitol levels in the hypertrophic ligamentum flavum of diabetic patients with lumbar spinal canal stenosis. J Orthop Res 2017; 35:1058-1066. [PMID: 27208686 DOI: 10.1002/jor.23302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
The pathomechanism of the ligamentum flavum (LF) hypertrophy in diabetic patients with lumbar spinal canal stenosis (LSCS) remains unclear. A cross-sectional study was undertaken to investigate the mechanism of LF hypertrophy in these patients. Twenty-four diabetic and 20 normoglycemic patients with LSCS were enrolled in the study. The structure of the LF in the study subjects was evaluated using histological and immunohistochemical methods, and the levels of sorbitol, pro-inflammatory cytokines, and the fibrogenic factor, TGF-β1, in the LF were analyzed. In vitro experiments were performed using NIH3T3 fibroblasts to evaluate the effect of high-glucose conditions and an aldose reductase inhibitor on the cellular production of sorbitol, pro-inflammatory factors, and TGF-β1. We found that the LF of diabetic patients exhibited significantly higher levels of sorbitol and pro-inflammatory cytokines, TGF-β1 and of CD68-positive staining than that of the normoglycemic subjects. The diabetic LF was significantly thicker than that of the controls, and showed evidence of degeneration. The high glucose-cultured fibroblasts exhibited significantly higher levels of sorbitol, pro-inflammatory factors, and TGF-β1 compared to the low glucose-cultured cells, and these levels were dose-dependently reduced by treatment with the aldose reductase inhibitor. Taken together, our data suggests that increased sorbitol levels in the LF of diabetic patients results in increased production of pro-inflammatory and fibrogenic factor, which contribute to LF hypertrophy, and could increase the susceptibility of diabetic patients to LSCS. Furthermore, aldose reductase inhibition effectively reduced the levels of sorbitol and sorbitol-induced pro-inflammatory factor expression in high glucose-cultured fibroblasts. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1058-1066, 2017.
Collapse
Affiliation(s)
- Jiaquan Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, 17, Yongwai Street, East Lake District, Nanchang, #330006, China
| | - Lu Huang
- Department of Healthcare, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Zhuo Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, 17, Yongwai Street, East Lake District, Nanchang, #330006, China
| | - Zhaoxun Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, 17, Yongwai Street, East Lake District, Nanchang, #330006, China
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Hao Wu
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Zhongzu Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, 17, Yongwai Street, East Lake District, Nanchang, #330006, China
| | - Zhimin Pan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, 17, Yongwai Street, East Lake District, Nanchang, #330006, China
| | - Nobuyuki Fujita
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Tomohiro Hikata
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Akio Iwanami
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Takashi Tsuji
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Ken Ishii
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| | - Kai Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, 17, Yongwai Street, East Lake District, Nanchang, #330006, China
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku, Tokyo, #160-8582, Japan
| |
Collapse
|
47
|
Wu J, Jin Z, Yan LJ. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol 2017; 11:51-59. [PMID: 27888691 PMCID: PMC5124358 DOI: 10.1016/j.redox.2016.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Although the lung is one of the least studied organs in diabetes, increasing evidence indicates that it is an inevitable target of diabetic complications. Nevertheless, the underlying biochemical mechanisms of lung injury in diabetes remain largely unexplored. Given that redox imbalance, oxidative stress, and mitochondrial dysfunction have been implicated in diabetic tissue injury, we set out to investigate mechanisms of lung injury in diabetes. The objective of this study was to evaluate NADH/NAD+ redox status, oxidative stress, and mitochondrial abnormalities in the diabetic lung. Using STZ induced diabetes in rat as a model, we measured redox-imbalance related parameters including aldose reductase activity, level of poly ADP ribose polymerase (PAPR-1), NAD+ content, NADPH content, reduced form of glutathione (GSH), and glucose 6-phophate dehydrogenase (G6PD) activity. For assessment of mitochondrial abnormalities in the diabetic lung, we measured the activities of mitochondrial electron transport chain complexes I to IV and complex V as well as dihydrolipoamide dehydrogenase (DLDH) content and activity. We also measured the protein content of NAD+ dependent enzymes such as sirtuin3 (sirt3) and NAD(P)H: quinone oxidoreductase 1 (NQO1). Our results demonstrate that NADH/NAD+ redox imbalance occurs in the diabetic lung. This redox imbalance upregulates the activities of complexes I to IV, but not complex V; and this upregulation is likely the source of increased mitochondrial ROS production, oxidative stress, and cell death in the diabetic lung. These results, together with the findings that the protein contents of DLDH, sirt3, and NQO1 all are decreased in the diabetic lung, demonstrate that redox imbalance, mitochondrial abnormality, and oxidative stress contribute to lung injury in diabetes.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
48
|
Gugliucci A. Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases. Adv Nutr 2017; 8:54-62. [PMID: 28096127 PMCID: PMC5227984 DOI: 10.3945/an.116.013912] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fructose is associated with the biochemical alterations that promote the development of metabolic syndrome (MetS), nonalcoholic fatty liver disease, and type 2 diabetes. Its consumption has increased in parallel with MetS. It is metabolized by the liver, where it stimulates de novo lipogenesis. The triglycerides synthesized lead to hepatic insulin resistance and dyslipidemia. Fructose-derived advanced glycation end products (AGEs) may be involved via the Maillard reaction. Fructose has not been a main focus of glycation research because of the difficulty in measuring its adducts, and, more importantly, because although it is 10 times more reactive than glucose, its plasma concentration is only 1% of that of glucose. In this focused review, I summarize exogenous and endogenous fructose metabolism, fructose glycation, and in vitro, animal, and human data. Fructose is elevated in several tissues of diabetic patients where the polyol pathway is active, reaching the same order of magnitude as glucose. It is plausible that the high reactivity of fructose, directly or via its metabolites, may contribute to the formation of intracellular AGEs and to vascular complications. The evidence, however, is still unconvincing. Two areas that have been overlooked so far and should be actively explored include the following: 1) enteral formation of fructose AGEs, generating an inflammatory response to the receptor for AGEs (which may explain the strong association between fructose consumption and asthma, chronic bronchitis, and arthritis); and 2) inactivation of hepatic AMP-activated protein kinase by a fructose-mediated increase in methylglyoxal flux (perpetuating lipogenesis, fatty liver, and insulin resistance). If proven correct, these mechanisms would put the fructose-mediated Maillard reaction in the limelight again as a contributing factor in chronic inflammatory diseases and MetS.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation, and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University California, Vallejo, CA
| |
Collapse
|
49
|
Shu S, Xu C, Xia C, Xiao X, Wang G, Fan Z, Cao Y, Wang Y, Zhang H. Identification of novel pathways in pathogenesis of ketosis in dairy cows via iTRAQ/MS. J Vet Res 2016. [DOI: 10.1515/jvetres-2016-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Introduction: To identify novel pathways involved in the pathogenesis of ketosis, an isobaric tag for relative and absolute quantitation/mass spectrometry was used to define differences in protein expression profiles between healthy dairy cows and those with clinical or subclinical ketosis.
Material and Methods: To define the novel pathways of ketosis in cattle, the differences in protein expression were analysed by bioinformatics. Go Ontology and Pathway analysis were carried out for enrich the role and pathway of the different expression proteins between healthy dairy cows and those with clinical or subclinical ketosis.
Results: Differences were identified in 19 proteins, 16 of which were relatively up-regulated while the remaining 3 were relatively down-regulated. Sorbitol dehydrogenase (SORD) and glyceraldehyde-3-phosphate dehydrogenase (G3PD) were up-regulated in cattle with ketosis. SORD and G3PD promoted glycolysis. These mechanisms lead to pyruvic acid production increase and ketone body accumulation.
Conclusion: The novel pathways of glycolysis provided new evidence for the research of ketosis.
Collapse
Affiliation(s)
- Shi Shu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Chuchu Xu
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Cheng Xia
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
- Department of Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xinhuan Xiao
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Gang Wang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Ziling Fan
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Yu Cao
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Yanhui Wang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| | - Hongyou Zhang
- Department of College of Animal Science and Veterinary Medicine, Heilongjiang BaYi Agriculture University, Daqing 163319, China
| |
Collapse
|
50
|
Carrillo JA, He Y, Li Y, Liu J, Erdman RA, Sonstegard TS, Song J. Integrated metabolomic and transcriptome analyses reveal finishing forage affects metabolic pathways related to beef quality and animal welfare. Sci Rep 2016. [PMID: 27185157 DOI: 10.1038/srep] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Beef represents a major dietary component and source of protein in many countries. With an increasing demand for beef, the industry is currently undergoing changes towards naturally produced beef. However, the true differences between the feeding systems, especially the biochemical and nutritional aspects, are still unclear. Using transcriptome and metabolome profiles, we identified biological pathways related to the differences between grass- and grain-fed Angus steers. In the latissimus dorsi muscle, we have recognized 241 differentially expressed genes (FDR < 0.1). The metabolome examinations of muscle and blood revealed 163 and 179 altered compounds in each tissue (P < 0.05), respectively. Accordingly, alterations in glucose metabolism, divergences in free fatty acids and carnitine conjugated lipid levels, and altered β-oxidation have been observed. The anti-inflammatory n3 polyunsaturated fatty acids are enriched in grass finished beef, while higher levels of n6 PUFAs in grain finished animals may promote inflammation and oxidative stress. Furthermore, grass-fed animals produce tender beef with lower total fat and a higher omega3/omega6 ratio than grain-fed ones, which could potentially benefit consumer health. Most importantly, blood cortisol levels strongly indicate that grass-fed animals may experience less stress than the grain-fed individuals. These results will provide deeper insights into the merits and mechanisms of muscle development.
Collapse
Affiliation(s)
- José A Carrillo
- Department of Animal &Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yanghua He
- Department of Animal &Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yaokun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China, 712100
| | - Jianan Liu
- Department of Animal &Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Richard A Erdman
- Department of Animal &Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Tad S Sonstegard
- Recombinetics Inc., 1246 University Ave. W, St. Paul, MN 55104, USA
| | - Jiuzhou Song
- Department of Animal &Avian Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|