1
|
Song CC, Liu T, Hogstrand C, Zhong CC, Zheng H, Sun LH, Luo Z. SENP1 mediates zinc-induced ZnT6 deSUMOylation at Lys-409 involved in the regulation of zinc metabolism in Golgi apparatus. Cell Mol Life Sci 2024; 81:422. [PMID: 39367979 PMCID: PMC11455790 DOI: 10.1007/s00018-024-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
Zinc (Zn) transporters contribute to the maintenance of intracellular Zn homeostasis in vertebrate, whose activity and function are modulated by post-translational modification. However, the function of small ubiquitin-like modifier (SUMOylation) in Zn metabolism remains elusive. Here, compared with low Zn group, a high-Zn diet significantly increases hepatic Zn content and upregulates the expression of metal-response element-binding transcription factor-1 (MTF-1), Zn transporter 6 (ZnT6) and deSUMOylation enzymes (SENP1, SENP2, and SENP6), but inhibits the expression of SUMO proteins and the E1, E2, and E3 enzymes. Mechanistically, Zn triggers the activation of the MTF-1/SENP1 pathway, resulting in the reduction of ZnT6 SUMOylation at Lys 409 by small ubiquitin-like modifier 1 (SUMO1), and promoting the deSUMOylation process mediated by SENP1. SUMOylation modification of ZnT6 has no influence on its localization but reduces its protein stability. Importantly, deSUMOylation of ZnT6 is crucial for controlling Zn export from the cytosols into the Golgi apparatus. In conclusion, for the first time, we elucidate a novel mechanism by which SUMO1-catalyzed SUMOylation and SENP1-mediated deSUMOylation of ZnT6 orchestrate the regulation of Zn metabolism within the Golgi apparatus.
Collapse
Affiliation(s)
- Chang-Chun Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Tao Liu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Chong-Chao Zhong
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agriculture University, Wuhan, 430070, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Zhao H, Liu D, Sun S, Yu J, Bian X, Cheng X, Yang Q, Yu Y, Xu Z. PIAS3 acts as a zinc sensor under zinc deficiency and plays an important role in myocardial ischemia/reperfusion injury. Free Radic Biol Med 2024; 221:188-202. [PMID: 38750767 DOI: 10.1016/j.freeradbiomed.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Alterations in zinc transporter expression in response to zinc loss protect cardiac cells from ischemia/reperfusion (I/R) injury. However, the underlying molecular mechanisms how cardiac cells sense zinc loss remains unclear. Here, we found that zinc deficiency induced ubiquitination and degradation of the protein inhibitor of activated STAT3 (PIAS3), which can alleviate myocardial I/R injury by activating STAT3 to promote the expression of ZIP family zinc transporter genes. The RING finger domain within PIAS3 is vital for PIAS3 degradation, as PIAS3-dRing (missing the RING domain) and PIAS3-Mut (zinc-binding site mutation) were resistant to degradation in the setting of zinc deficiency. Meanwhile, the RING finger domain within PIAS3 is critical for the inhibition of STAT3 activation. Moreover, PIAS3 knockdown increased cardiac Zn2+ levels and reduced myocardial infarction in mouse hearts subjected to I/R, whereas wild-type PIAS3 overexpression, but not PIAS3-Mut, reduced cardiac Zn2+ levels, and exacerbated myocardial infarction. These findings elucidate a unique mechanism of zinc sensing, showing that fast degradation of the zinc-binding regulatory protein PIAS3 during zinc deficiency can correct zinc dyshomeostasis and alleviate reperfusion injury.
Collapse
Affiliation(s)
- Huanhuan Zhao
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| | - Dan Liu
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Sha Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yu
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiyun Bian
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Tianjin Fifth Central Hospital, Tianjin, 300450, China
| | - Xinxin Cheng
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| | - Qing Yang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| | - Zhelong Xu
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China; Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin 300052, China; Department of Anesthesiology, General Hospital, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
3
|
Marín de Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, Hernández-Rodriguez J, Montes S, Arrieta-Cruz I, Pérez-Aguirre SG, Bonilla-Jaime H, Limón-Morales O, Arteaga-Silva M. Zinc and Its Impact on the Function of the Testicle and Epididymis. Int J Mol Sci 2024; 25:8991. [PMID: 39201677 PMCID: PMC11354358 DOI: 10.3390/ijms25168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.
Collapse
Affiliation(s)
- Sergio Marín de Jesús
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | | | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico;
| | - Joel Hernández-Rodriguez
- Cuerpo Académico de Investigación en Quiropráctica, Universidad Estatal del Valle de Ecatepec, Av. Central s/n Valle de Anáhuac, Ecatepec de Morelos 55210, Mexico;
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Aztlán, Reynosa 88740, Mexico;
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Secretaria de Salud, Ciudad de Mexico 10200, Mexico;
| | - Sonia Guadalupe Pérez-Aguirre
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| |
Collapse
|
4
|
Ahmad R, Shaju R, Atfi A, Razzaque MS. Zinc and Diabetes: A Connection between Micronutrient and Metabolism. Cells 2024; 13:1359. [PMID: 39195249 PMCID: PMC11352927 DOI: 10.3390/cells13161359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus is a global health problem and a major contributor to mortality and morbidity. The management of this condition typically involves using oral antidiabetic medication, insulin, and appropriate dietary modifications, with a focus on macronutrient intake. However, several human studies have indicated that a deficiency in micronutrients, such as zinc, can be associated with insulin resistance as well as greater glucose intolerance. Zinc serves as a chemical messenger, acts as a cofactor to increase enzyme activity, and is involved in insulin formation, release, and storage. These diverse functions make zinc an important trace element for the regulation of blood glucose levels. Adequate zinc levels have also been shown to reduce the risk of developing diabetic complications. This review article explains the role of zinc in glucose metabolism and the effects of its inadequacy on the development, progression, and complications of diabetes mellitus. Furthermore, it describes the impact of zinc supplementation on preventing diabetes mellitus. The available information suggests that zinc has beneficial effects on the management of diabetic patients. Although additional large-scale randomized clinical trials are needed to establish zinc's clinical utility further, efforts should be made to increase awareness of its potential benefits on human health and disease.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh
| | - Ronald Shaju
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mohammed S. Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX 78541, USA
| |
Collapse
|
5
|
Aktay I, Billur D, Tuncay E, Turan B. An Overexpression of SLC30A6 Gene Contributes to Cardiomyocyte Dysfunction via Affecting Mitochondria and Inducing Activations in K-Acetylation and Epigenetic Proteins. Biochem Genet 2024; 62:3198-3214. [PMID: 38091184 DOI: 10.1007/s10528-023-10602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 07/31/2024]
Abstract
Intracellular free Zn2+ ([Zn2+]i) is less than 1-nM in cardiomyocytes and its regulation is performed with Zn2+-transporters. However, the roles of Zn2+-transporters in cardiomyocytes are not defined exactly yet. Here, we aimed to examine the role of an overexpression and subcellular localization of a ZnT6 in insulin-resistance mimic H9c2 cardiomyoblasts (IR-cells; 50-μM palmitic acid for 24-h incubation). We used both IR-cells and ZnT6-overexpressed (ZnT6OE) cells in comparison to those of H9c2 cells (CON-cells). The IR-cells have higher ZnT6-protein levels than CON-cells while this level was similar to those of ZnT6OE-cells. The [Zn2+]i in IR-cells was increased significantly and mitochondrial localization of ZnT6 was demonstrated in these cells by using confocal microscopy visualization. Furthermore, electron microscopy analysis demonstrated abnormal morphological appearance in both IR-cells and ZnT6OE-cells characterized by irregular mitochondrion cristae and condensed and dilated cisterna in the sarcoplasmic reticulum. Mitochondria were similarly depolarized in both IR-cells and ZnT6OE-cells. The protein expression level of a mitofusin protein MFN2 in the IR-cells was decreased, significantly, whereas, it was found significantly upregulated in both ZnT6-OE-cells and IR-incubated ZnT6OE-cells, which demonstrates the role of ZnT6-overexpression but not IR. Additionally, the total protein level of a mitochondrial fission protein, dynamin-related protein 1, DRP1 was found to be increased over 1.5-fold in IR-cells while this increase was found to be higher in the ZnT6OE-cells than those of IR-cells, demonstrating an additional effect on IR-increase. ZnT6-overexpression induced also significant increases in K-acetylation, trimethylation of histone H3 lysine27, and mono-methylation of histone H3 lysine36, in a similar manner to those of IR-cells. Overall, our data point out an important contribution of ZnT6-overexpression to IR-induced cellular changes, such as alteration in mitochondria function and activation of epigenetic modifications.
Collapse
Affiliation(s)
- Irem Aktay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology & Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
6
|
Yousefian M, Abedimanesh S, Yadegar A, Nakhjavani M, Bathaie SZ. Co-administration of "L-Lysine, Vitamin C, and Zinc" increased the antioxidant activity, decreased insulin resistance, and improved lipid profile in streptozotocin-induced diabetic rats. Biomed Pharmacother 2024; 174:116525. [PMID: 38599057 DOI: 10.1016/j.biopha.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
PURPOSE We previously showed the beneficial effect of L-Lysine (Lys), a chemical chaperone, on reducing diabetic complications in diabetic rats and type 2 diabetic patients. Herein, we evaluated the effect of Lys co-administration with Vitamin C and Zinc (Lys+VC+Zn), in diabetic rats. METHODS The streptozotocin (50 mg/Kg) was injected into male adult Wistar rats to induce diabetes. Then, different groups of normal and diabetic rats were treated with Lys and Lys+VC+Zn for five months. So, there were 0.1 % Lys in the drinking water of both groups. The control groups received water alone. During the experiment, the body weight, and various parameters were determined in the blood, serum/plasma, and urine of the rats. RESULTS The determination of biochemical indexes confirmed diabetes induction and its complications in rats. Treatment with either Lys or Lys+VC+Zn resulted in reduced blood glucose and protein glycation (decreasing AGEs and HbA1c), increased insulin secretion, alleviated insulin resistance and HOMA-IR, improved lipid profile and HDL functionality (LCAT and PON1), enhanced antioxidant status (FRAP and AOPP), improved kidney function (decreased microalbuminuria, serum urea, and creatinine), and increased chaperone capacity (HSP70). Lys+VC+Zn showed better effects on these parameters than Lys alone. CONCLUSIONS The results of this study indicated that co-administration of Lys, a chemical chaperone, with two antioxidants (VC and Zn) potentiates its antidiabetic effects and prevent diabetic complications in rat model of diabetes.
Collapse
Affiliation(s)
- Mostafa Yousefian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Saeid Abedimanesh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, Medical Sciences University of Tehran, Tehran, Islamic Republic of Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center, Vali-Asr Hospital, Medical Sciences University of Tehran, Tehran, Islamic Republic of Iran
| | - S Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
7
|
Feng Y, Zhu S, Yang Y, Li S, Zhao Z, Wu H. Caseinophosphopeptides Overcome Calcium Phytate Inhibition on Zinc Bioavailability by Retaining Zinc from Coprecipitation as Zinc/Calcium Phytate Nanocomplexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4757-4764. [PMID: 38380599 DOI: 10.1021/acs.jafc.3c07495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Caseinophosphopeptides have shown great potential to increase zinc bioavailability from phytate-rich diets, but the mechanism of action remains unclear. Here, caseinophosphopeptides from a sodium caseinate hydrolysate dose-dependently retained zinc in solution against calcium phytate coprecipitation under physiologically relevant conditions. The 3 kDa ultrafiltration separation unveiled no added low-molecular-weight chelates of zinc and calcium by caseinophosphopeptides. Tyndall effect, dynamic light scattering measurements, transmission electron microscopy observation, electron diffraction pattern, X-ray diffraction spectrum, and energy-dispersive X-ray analysis demonstrated the caseinophosphopeptides-mediated formation of single-crystal zinc/calcium phytate nanocomplexes (Zn/CaPA-NCs) with a size and ζ-potential of 10-30 nm and -25 mV, respectively. Caseinophosphopeptides-stabilized Zn/CaPA-NCs were found to deliver bioavailable nanoparticulate zinc in mouse jejunal loop ex vivo model and polarized Caco-2 cells, and the treatments with specific inhibitors revealed that intestinal zinc absorption from Zn/CaPA-NCs invoked macropinocytosis, lysosomal release into the cytosol, and transcytosis. Overall, our study proposes a new paradigm for the benefit of caseinophosphopeptides for zinc bioaccessibility and bioavailability in phytate-rich diets.
Collapse
Affiliation(s)
- Yinong Feng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong Province 266021, China
| | - Yisheng Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Shiyang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Zifang Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
- Hainan/Haikou Research & Development Center for Biopeptide Engineering, Huayan Collagen Technology Co., Ltd., Haikou 571000, China
| | - Haohao Wu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| |
Collapse
|
8
|
Yu Y, Chen R, Li Z, Luo K, Taylor MP, Hao C, Chen Q, Zhou Y, Kuang H, Hu G, Chen X, Li H, Dong C, Dong GH. Associations of urinary zinc exposure with blood lipid profiles and dyslipidemia: Mediating effect of serum uric acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168951. [PMID: 38042193 DOI: 10.1016/j.scitotenv.2023.168951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
The relationship between zinc (Zn) exposure and abnormal blood lipids including dyslipidemia is contentious. Serum uric acid (SUA) has been reported to be correlated to both Zn exposure and dyslipidemia. The underlying mechanisms of Zn exposure associated with blood lipids and the mediating effects of SUA remain unclear. Therefore, this study analyzed the data from Chinese 2110 adults (mean age: 59.0 years old) in rural areas across China to explore the associations of Zn exposure with blood lipid profiles and dyslipidemia, and to further estimate the mediating effects of SUA in these relationships. The study data showed that urinary Zn was associated with increased levels of blood lipid components triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C). Moreover, an increased risk of dyslipidemia was observed in the study participants who had higher urinary Zn levels. Compared with the first quartile, the fourth quartile of urinary Zn concentration corresponded to the increase of TG (β = 0.20, 95 % CI: 0.12, 0.28), LDL-C (β = 0.06, 95 % CI: 0.01, 0.10) and dyslipidemia risk (OR = 2.16, 95 % CI: 1.50, 3.10), respectively. Elevated urinary Zn was also associated with higher levels of SUA and hyperuricemia risk. The SUA levels were positively related to total cholesterol (TC), TG, LDL-C levels and dyslipidemia risk. Mediation analyses revealed that SUA mediated 31.75 %, 46.16 % and 19.25 % of the associations of urinary Zn with TG, LDL-C levels and dyslipidemia risk, respectively. The subgroup and sensitivity analyses confirmed the positive associations between urinary Zn and blood lipid profiles and the mediating effect of SUA. The national population-based study further enhanced our understanding of the associations between Zn exposure and blood lipid profiles and mediating effect of SUA among generally healthy, middle-aged, and elderly individuals.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Runan Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York 10461, USA
| | - Mark Patrick Taylor
- Environment Protection Authority Victoria, Centre for Applied Sciences, Melbourne, Victoria 3085, Australia
| | - Chaojie Hao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongxuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Bakhshimoghaddam F, Razmi H, Malihi R, Mansoori A, Ahangarpour A. The association between the dietary inflammatory index and gestational diabetes mellitus: A systematic review of observational studies. Clin Nutr ESPEN 2023; 57:606-612. [PMID: 37739712 DOI: 10.1016/j.clnesp.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 08/05/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Unhealthy dietary habits contribute to low-grade chronic inflammation that is known to be associated with metabolic disorders and pregnancy complications such as gestational diabetes mellitus (GDM). The dietary inflammatory index (DII) is a scoring system for assessing the inflammatory potential of various nutrients and foods. This systematic review aims to investigate the current state of evidence on the association between DII and GDM in pregnant women. METHODS PubMed, Scopus and Web of Science electronic databases were systematically searched for relevant English-language articles published up to February 2023. This study was developed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (CRD42022382813). RESULTS This review included seven studies (98,115 participants) from five countries. In total, two case-control studies have shown a positive association between DII and GDM. In contrast, three of five cohort studies found no association between dietary inflammatory potential and the risk of developing GDM. CONCLUSION We found some controversial results due to the small number of studies, with major heterogeneity in research design and findings. Collectively, the current study does not support an association between the DII score and the risk of gestational diabetes. Further, longitudinal studies are needed to elucidate the association between dietary inflammatory potential and GDM.
Collapse
Affiliation(s)
- Farnush Bakhshimoghaddam
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamidreza Razmi
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Malihi
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Department of Physiology, School of Medicine, Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Hansen AW, Venkatachalam KV. Sulfur-Element containing metabolic pathways in human health and crosstalk with the microbiome. Biochem Biophys Rep 2023; 35:101529. [PMID: 37601447 PMCID: PMC10439400 DOI: 10.1016/j.bbrep.2023.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
In humans, methionine derived from dietary proteins is necessary for cellular homeostasis and regeneration of sulfur containing pathways, which produce inorganic sulfur species (ISS) along with essential organic sulfur compounds (OSC). In recent years, inorganic sulfur species have gained attention as key players in the crosstalk of human health and the gut microbiome. Endogenously, ISS includes hydrogen sulfide (H2S), sulfite (SO32-), thiosulfate (S2O32-), and sulfate (SO42-), which are produced by enzymes in the transsulfuration and sulfur oxidation pathways. Additionally, sulfate-reducing bacteria (SRB) in the gut lumen are notable H2S producers which can contribute to the ISS pools of the human host. In this review, we will focus on the systemic effects of sulfur in biological pathways, describe the contrasting mechanisms of sulfurylation versus phosphorylation on the hydroxyl of serine/threonine and tyrosine residues of proteins in post-translational modifications, and the role of the gut microbiome in human sulfur metabolism.
Collapse
Affiliation(s)
- Austin W. Hansen
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | | |
Collapse
|
11
|
Chi Y, Zhang X, Liang D, Wang Y, Cai X, Dong J, Li L, Chi Z. ZnT8 Exerts Anti-apoptosis of Kidney Tubular Epithelial Cell in Diabetic Kidney Disease Through TNFAIP3-NF-κB Signal Pathways. Biol Trace Elem Res 2023; 201:2442-2457. [PMID: 35871203 DOI: 10.1007/s12011-022-03361-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023]
Abstract
Apoptosis of kidney tubular epithelial cells contributes to diabetic kidney disease (DKD) pathophysiology, but the mechanisms are not fully understood. Zinc transporter protein member 8 (ZnT8, SLC30A8) is a susceptive gene in diabetes. Here, we aim to investigate whether ZnT8 has effects on pathophysiology of DKD. The animal groups include control, ZnT8KO mice, STZ-induced, and ZnT8-KO-STZ. STZ-induced DKD was performed in male C57BL/6 J mice and in ZnT8-KO mice. High glucose (HG)-induced apoptosis in a normal rat kidney tubular epithelial cell line (NRK-52E cells) was performed in vitro. Transfection of hZnT8-EGFP or TNFAIP3 siRNA was done in NRK-52E cells. Flow cytometry with Annexin V-FITC/PI double staining and TUNEL analysis was performed for the detection of apoptosis. Gene expression at mRNA and protein levels was examined with real-time RT-PCR and Western blot. Urine albumin to creatinine ratio, proinflammatory cytokines, and apoptosis were enhanced in kidneys of STZ and ZnT8-KO-STZ mice compared to control or ZnT8-KO mice. ZnT8 overexpression after hZnT8-EGFP transfection decreased HG-stimulated inflammatory activity and apoptosis in NRK-52E cells. Furthermore, treatment with ZnSO4 blunted HG-induced apoptosis and NF-κB activation. ZnSO4 increased the abundance of zinc-finger protein TNF-α-induced protein 3 (TNFAIP3). Also, ZnT8 over-expression after hZnT8-EGFP transfection significantly ameliorates HG-induced NF-κB-dependent transcriptional activity and apoptotic protein expressions in NRK-52E cells, but the inhibitory effect of ZnT8 was significantly abolished with TNFAIP3 siRNA. Our study provides evidence that ZnT8 has protective effects against apoptosis of renal tubular epithelial cells through induction of TNFAIP3 and subsequent suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Yinmao Chi
- Department of Physiology, China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China.
- Department of Nephrology, Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518000, People's Republic of China.
| | - Dan Liang
- Troops of 95988 Unit, Changchun, Jilin, 158000, People's Republic of China
| | - Yue Wang
- Department of Tissue Culture, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, 110001, People's Republic of China
| | - Xiaoyi Cai
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong Province, 515000, People's Republic of China
| | - Jiqiu Dong
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
| | - Lingzhi Li
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, 518000, People's Republic of China
| | - Zhihong Chi
- Department of Pathophysiology, China Medical University, Shenyang, Liaoning Province, 110001, People's Republic of China
| |
Collapse
|
12
|
Chen A, Gao G, Lian G, Gong J, Luo L, Liu J, Chen W, Xu C, Wang H, Xie L. Zinc promotes cell proliferation via regulating metal-regulatory transcription factor 1 expression and transcriptional activity in pulmonary arterial hypertension. Cell Cycle 2023; 22:1284-1301. [PMID: 37128643 PMCID: PMC10193901 DOI: 10.1080/15384101.2023.2205209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Metal responsive transcription factor 1 (MTF-1) is a zinc-dependent transcription factor involved in the development of pulmonary arterial hypertension (PAH), which is a life-threatening disease characterized by elevated pulmonary artery pressure and pulmonary vascular remodeling. However, little is known about the role and regulatory signaling of MTF-1 in PAH. This study aimed to investigate the effect and mechanism of MTF-1 on the proliferation of pulmonary arterial smooth muscle cells (PASMCs). Several techniques including intracellular-free zinc detected by fluorescent indicator-fluozinc-3-AM, western blot, luciferase reporter, and cell proliferation assay were conducted to perform a comprehensive analysis of MTF-1 in proliferation of PASMCs in PAH. Increased cytosolic zinc was shown in monocrotaline (MCT)-PASMCs and ZnSO₄-treated PASMCs, which led to overexpression and overactivation of MTF-1, followed by the up-regulation of placental growth factor (PlGF). Elevated MTF-1 and PlGF were observed in western blot, and high transcriptional activity of MTF-1 was confirmed by luciferase reporter in ZnSO4-treated cells. Further investigation of cell proliferation revealed a favorable impact of zinc ions on PASMCs proliferation, with the deletion of Mtf-1/Plgf attenuating ZnSO4-induced proliferation. Flow cytometry analysis showed that blockade of PKC signaling inhibited the cell cycle of MCT-PASMCs and ZnSO4-treated PASMCs. The Zinc/PKC/MTF-1/PlGF pathway is involved in the up-regulatory effect on the PASMCs proliferation in the process of PAH. This study provided novel insight into zinc homeostasis in the pathogenesis of PAHs, and the regulation of MTF-1 might be a potential target for therapeutic intervention in PAH.
Collapse
Affiliation(s)
- Ai Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Junping Liu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Changsheng Xu
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
13
|
Zhang N, Li Z, Wu Q, Huang H, Wang S, Liu Y, Chen J, Ma J. Associations of Dietary Zinc-Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999-2016. Nutrients 2023; 15:nu15020420. [PMID: 36678291 PMCID: PMC9864187 DOI: 10.3390/nu15020420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Previous studies have suggested a possible association among dietary zinc and vitamin B6 intake and CVD mortality and all-cause mortality. However, evidence on the association of dietary zinc and vitamin B6 intake and their interactions with CVD mortality and all-cause mortality remains unclear. This prospective study utilized data from the US National Health and Nutrition Examination Survey (NHANES) from 1999 to 2016. After a median follow-up of 10.4 years, 4757 deaths were recorded among 36,081 participants. Higher dietary zinc intake levels (≥9.87 mg/day) were associated with lower CVD mortality (hazard ratio (HR) = 0.85, 95% confidence interval (CI): 0.83−0.87). Vitamin B6 intake levels (≥1.73 mg/day) were associated with lower CVD mortality (HR = 0.91, 95% CI: 0.86−0.96) and all-cause mortality (HR = 0.91, 95% CI: 0.90−0.93). Higher dietary zinc intake and higher vitamin B6 intake were associated with a lower risk of CVD mortality, with an interaction between dietary zinc intake levels and vitamin B intake levels (LZLV group (HR, CI): 1.21,1.12−1.29; LZHV group (HR, CI): 1.42, 1.34−1.50; LZHV group (HR, CI): 1.28, 1.14−1.45; HZHV group (HR, CI): ref). There was also a J-type association (p for nonlinear < 0.001) between the dietary zinc−vitamin B6 ratio and CVD mortality, with a high dietary zinc−vitamin B6 ratio increasing the risk of CVD mortality (HR = 1.27, 95% CI: 1.19−1.35), whereas a moderate dietary zinc−vitamin B6 ratio appeared to be beneficial for CVD mortality. These results suggest that increasing the appropriate proportion of dietary zinc and vitamin B6 intake is associated with a lower risk of CVD mortality. Furthermore, precise and representative studies are needed to verify our findings.
Collapse
Affiliation(s)
- Naijian Zhang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhilin Li
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Qingcui Wu
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Huijie Huang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Siting Wang
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Liu
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jiageng Chen
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (J.C.); (J.M.)
| | - Jun Ma
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- Correspondence: (J.C.); (J.M.)
| |
Collapse
|
14
|
Shi Y, Zhong H, Pang L. Maternal micronutrient disturbance as risks of offspring metabolic syndrome. J Trace Elem Med Biol 2023; 75:127097. [PMID: 36272194 DOI: 10.1016/j.jtemb.2022.127097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is defined as a constellation of individual metabolic disturbances, including central obesity, hypertension, dyslipidemia, and insulin resistance. The established pathogenesis of MetS varies extensively with gender, age, ethnic background, and nutritional status. In terms of nutritional status, micronutrients are more likely to be discounted as essential components of required nutrition than macronutrients due to the small amount required. Numerous observational studies have shown that pregnant women frequently experience malnutrition, especially in developing and low-income countries, resulting in chronic MetS in the offspring due to the urgent and increasing demands for micronutrients during gestation and lactation. Over the past few decades, scientific developments have revolutionized our understanding of the association between balanced maternal micronutrients and MetS in the offspring. Examples of successful individual, dual, or multiple maternal micronutrient interventions on the offspring include iron for hypertension, selenium for type 2 diabetes, and a combination of folate and vitamin D for adiposity. In this review, we aim to elucidate the effects of maternal micronutrient intake on offspring metabolic homeostasis and discuss potential perspectives and challenges in the field of maternal micronutrient interventions.
Collapse
Affiliation(s)
- Yujie Shi
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Hong Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Lingxia Pang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
15
|
Ramirez Zegarra R, Dall’Asta A, Revelli A, Ghi T. COVID-19 and Gestational Diabetes: The Role of Nutrition and Pharmacological Intervention in Preventing Adverse Outcomes. Nutrients 2022; 14:nu14173562. [PMID: 36079820 PMCID: PMC9460671 DOI: 10.3390/nu14173562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pregnant women with GDM affected by COVID-19 seem to be at higher risk of adverse maternal and neonatal outcomes, especially those with overweight or obesity. Good glycemic control seems to be the most effective measure in reducing the risk of GDM and severe COVID-19. For such purposes, the Mediterranean diet, micronutrient supplementation, and physical activity are considered the first line of treatment. Failure to achieve glycemic control leads to the use of insulin, and this clinical scenario has been shown to be associated with an increased risk of adverse maternal and neonatal outcomes. In this review, we explore the current evidence pertaining to the pathogenesis of SARS-CoV-2 leading to the main complications caused by COVID-19 in patients with GDM. We also discuss the incidence of complications caused by COVID-19 in pregnant women with GDM according to their treatment.
Collapse
Affiliation(s)
- Ruben Ramirez Zegarra
- Obstetrics and Gynaecology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Department of Obstetrics and Gynaecology, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Andrea Dall’Asta
- Obstetrics and Gynaecology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Alberto Revelli
- Sant’Anna Hospital, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| | - Tullio Ghi
- Obstetrics and Gynaecology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
16
|
Huo Y, Li L. Long-Term Inhalation of Ultrafine Zinc Particles Deteriorated Cardiac and Cardiovascular Functions in Rats of Myocardial Infarction. Front Physiol 2022; 13:921764. [PMID: 35910581 PMCID: PMC9325963 DOI: 10.3389/fphys.2022.921764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Substantial ultrafine zinc particles exist in air pollutions. The level of Zn concentrations in serum and tissue could affect patients with myocardial infarction (MI). The aim of the study is to investigate the change of cardiac functions and peripheral hemodynamics in MI rats after long-term inhalation of ultrafine Zn particles. Coronary artery ligation surgery was performed to induce MI in Wistar rats. The inhalation of ultrafine Zn particles was carried out for 6 weeks after the operation. Physiological and hemodynamic measurements and computational biomechanics analysis were demonstrated in eight groups of rats at postoperative 4 and 6 weeks. There was no statistical significance between shams and shams with inhalation of ultrafine Zn particles. There were significant impairments of cardiac and hemodynamic functions in MI rats. In comparison with MI rats, the inhalation of ultrafine Zn particles for 4 weeks slowed down the progression from MI to heart failure, but the inhalation for 6 weeks accelerated the process. The long-term inhalation of ultrafine zinc particles induced excessive accumulation of zinc in serum and tissue, which deteriorated cardiac and hemodynamic dysfunctions in MI rats. The findings suggested the importance for regulating Zn intake of MI patients as well as looking at ways to lower zinc concentrations in air pollutions.
Collapse
Affiliation(s)
- Yunlong Huo
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
- *Correspondence: Yunlong Huo,
| | - Li Li
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| |
Collapse
|
17
|
Chouchene L, Kessabi K, Gueguen MM, Kah O, Pakdel F, Messaoudi I. Interference with zinc homeostasis and oxidative stress induction as probable mechanisms for cadmium-induced embryo-toxicity in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39578-39592. [PMID: 35106724 DOI: 10.1007/s11356-022-18957-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The present study was conducted to provide new insights into the mechanisms that may be responsible for cadmium (Cd)-induced toxicity in zebrafish larvae as well as the role of the trace element zinc (Zn) in reversing Cd harmful effects. For this purpose, zebrafish eggs were exposed to Cd or/and Zn for 96 h. The effects on morphological aspect; mortality rate; Cd, Zn, and metallothionein (MT) levels; oxidative stress biomarkers; as well as molecular expression of some genes involved in Zn metabolism (Zn-MT, ZIP10, and ZnT1) and in antioxidant defense system (Cu/Zn-SOD, CAT and GPx) were examined. Our results showed that Cd toxicity was exerted, initially, by an interference with Zn metabolism. Thus, Cd was able to modify the expression of the corresponding genes so as to ensure its intracellular accumulation at the expense of Zn, causing its depletion. An oxidative stress was then generated, representing the second mode of Cd action which resulted in developmental anomalies and subsequently mortality. Interestingly, significant corrections have been noted following Zn supplementation based, essentially, on its ability to interact with the toxic metal. The increases of Zn bioavailability, the improvement of the oxidative status, as well as changes in Zn transporter expression profile are part of the protection mechanisms. The decrease of Cd-induced MTs after Zn supplement, both at the protein and the mRNA level, suggests that the protection provided by Zn is ensured through mechanisms not involving MT expression but which rather depend on the oxidative status.
Collapse
Affiliation(s)
- Lina Chouchene
- Génétique, Biodiversité Et Valorisation Des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad BP74, 5000, Monastir, Tunisia.
| | - Kaouthar Kessabi
- Génétique, Biodiversité Et Valorisation Des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad BP74, 5000, Monastir, Tunisia
| | - Marie-Madeleine Gueguen
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail), Université de Rennes, UMR_S 1085, 35000, Rennes, France
| | - Olivier Kah
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail), Université de Rennes, UMR_S 1085, 35000, Rennes, France
| | - Farzad Pakdel
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail), Université de Rennes, UMR_S 1085, 35000, Rennes, France
| | - Imed Messaoudi
- Génétique, Biodiversité Et Valorisation Des Bioressources, Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad BP74, 5000, Monastir, Tunisia
| |
Collapse
|
18
|
Vázquez-Lorente H, Herrera-Quintana L, Molina-López J, Gamarra Y, Planells E. Effect of zinc supplementation on circulating concentrations of homocysteine, vitamin B 12, and folate in a postmenopausal population. J Trace Elem Med Biol 2022; 71:126942. [PMID: 35149326 DOI: 10.1016/j.jtemb.2022.126942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The decrease in estrogen levels associated with menopause increases the risk of deficiencies of key micronutrients such as zinc and of disturbances in methylation cycle-related markers. The present study assesses the effect of 8-week Zn supplementation upon circulating concentrations of Hcy, B12, and Fol levels in a population of postmenopausal women. METHODS Fifty-one postmenopausal women aged between 44 and 76 years took part in the study. Two randomized groups (placebo and zinc [50 mg/day]) were treated during 8 weeks. Nutrient intake was assessed based on the 72-hour recall method. Zinc was analyzed by flame atomic absorption spectrophotometry. Clinical-nutritional parameters were determined by enzyme immunoassay techniques. RESULTS Folate levels increased significantly (p < 0.05) in the zinc group on comparing the baseline versus follow-up values. Homocysteine decreased in the inter-group analysis (p < 0.05) after the intervention. Furthermore, higher folate (r = -0.632; p = 0.005) and vitamin B12 (r = -0.512; p = 0.030) levels were correlated to low homocysteine levels in the zinc group after the intervention, although the zinc intervention had the same effect on B12 levels in both groups. CONCLUSION Zinc supplementation enhanced circulating folate and homocysteine by improving the folate values in the zinc-supplemented group and decreasing homocysteine levels inter-groups. Further studies involving larger samples and optimizing the doses and intervention period are needed to reinforce our main findings.
Collapse
Affiliation(s)
- Héctor Vázquez-Lorente
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| | - Lourdes Herrera-Quintana
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| | - Jorge Molina-López
- Faculty of Education, Psychology and Sports Sciences, University of Huelva, 21007 Huelva, Spain.
| | - Yenifer Gamarra
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| | - Elena Planells
- Department of Physiology, School of Pharmacy, Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071 Granada, Spain.
| |
Collapse
|
19
|
Zhao L, Zhang R, Zhang S, Zhang H, Yang Q, Xu Z. Upregulation of p67 phox in response to ischemia/reperfusion is cardioprotective by increasing ZIP2 expression via STAT3. Free Radic Res 2022; 56:115-126. [PMID: 35296207 DOI: 10.1080/10715762.2022.2052057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
While the zinc transporter ZIP2 (Slc39a2) is upregulated via STAT3 as an adaptive response to protect the heart from ischemia/reperfusion (I/R) injury, the precise mechanism underlying its upregulation remains unclear. The purpose of this study was to investigate the role of NADPH oxidase (NOX) isoform NOX2-derived ROS in the regulation of ZIP2 expression, focusing on the role of the NOX2 cytosolic factor p67phox. Mouse hearts or H9c2 cells were subjected to I/R. Protein expression was detected with Western blotting. Infarct size was measured with TTC staining. The cardiac-specific p67phox conditional knockout mice (p67phox cKO) were generated by adopting the CRISPR/Cas9 system. I/R-induced upregulation of STAT3 phosphorylation and ZIP2 expression was reversed by the ROS scavenger N-acetylcysteine (NAC) and the NOX inhibitor diphenyleneiodonium (DPI). p67phox but not NOX2 expression was increased 30 min after the onset of reperfusion, and downregulation of p67phox by siRNA or cKO invalidated I/R-induced upregulation of STAT3 phosphorylation and ZIP2 expression. Both NAC and DPI prevented upregulation of STAT3 phosphorylation and ZIP2 expression induced by overexpression of p67phox, whereas the STAT3 inhibitor stattic abrogated upregulation ZIP2 expression, indicating that the increase of p67phox at reperfusion is an upstream signaling event responsible for ZIP2 upregulation via STAT3. Experiments also showed that chelation of Zn2+ markedly enhanced p67phox and ZIP2 expression as well as STAT3 phosphorylation, whereas supplementation of Zn2+ had the opposite effects, indicating that cardiac Zn2+ loss upon reperfusion triggers p67phox upregulation. Furthermore, ischemic preconditioning (IPC) upregulated ZIP2 via p67phox, and cKO of p67phox aggravated cardiac injury after I/R, indicating that p67phox upregulation is cardioprotective against I/R injury. In conclusion, an increase of p67phox expression in response to Zn2+ is an intrinsic adaptive response to I/R and leads to cardioprotection against I/R by upregulating ZIP2 via STAT3.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Shuya Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hualu Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qing Yang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.,Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Yücel Çelik Ö, Akdas S, Yucel A, Kesikli B, Yazihan N, Uygur D. Maternal and Placental Zinc and Copper Status in Intra-Uterine Growth Restriction. Fetal Pediatr Pathol 2022; 41:107-115. [PMID: 33307921 DOI: 10.1080/15513815.2020.1857484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIM Zinc and copper are essential trace elements for cell growth and proliferation. Their deficiency may contribute to intrauterine growth restriction (IUGR). We aimed to determine the zinc and copper status of maternal serum and placenta samples of pregnant women with fetal IUGR and age-matched pregnant women without IUGR. METHOD Serum and placenta samples obtained from 37 IUGR and 21 healthy pregnant women were analyzed at delivery. RESULTS Placenta zinc concentrations and placenta zinc/copper ratio were significantly lower in the IUGR group compared to controls (p < 0.05). Placenta zinc concentrations correlated with birth weight (p: 0.01, r: 0.31). Maternal levels of zinc and copper were similar between pregnant women with IUGR and controls. CONCLUSIONS Lower placental zinc and zinc/copper ratio levels in pregnancies with IUGR may indicate that placenta zinc and placental zinc/copper status might be involved in IUGR.
Collapse
Affiliation(s)
- Özge Yücel Çelik
- Etlik Zubeyde Hanim Kadin Hastaliklari Egitim ve Arastirma Hastanesi, Ankara, Turkey
| | - Sevginur Akdas
- Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey
| | - Aykan Yucel
- Ankara City Hospital, Republic of Turkey Ministry of Health, Cankaya, Turkey
| | - Burcu Kesikli
- Pathophysiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nuray Yazihan
- Interdisciplinary Food, Metabolism and Clinical Nutrition Department, Ankara University, Ankara, Turkey.,Department of Pathophysiology, Ankara University Faculty of Medicine, Internal Medicine, Ankara, Turkey
| | - Dilek Uygur
- Ankara City Hospital, Republic of Turkey Ministry of Health, Cankaya, Turkey
| |
Collapse
|
21
|
Nie H, Hu H, Li Z, Wang R, He J, Li P, Li W, Cheng X, An J, Zhang Z, Bi J, Yao J, Guo H, Zhang X, He M. Associations of plasma metal levels with type 2 diabetes and the mediating effects of microRNAs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118452. [PMID: 34737026 DOI: 10.1016/j.envpol.2021.118452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to determine the associations of multiple plasma metal levels and plasma microRNAs (miRNAs) with diabetes risk, and further explore the mediating effects of plasma miRNAs on the associations of plasma metal with diabetes risk. We detected plasma levels of 23 metals by inductively coupled plasma mass spectrometry (ICP-MS) among 94 newly diagnosed and untreated diabetic cases and 94 healthy controls. The plasma miRNAs were examined by microRNA Array screening and Taqman real-time PCR validation among the same study population. The multivariate logistic regression models were employed to explore the associations of plasma metal and miRNAs levels with diabetes risk. Generalized linear regression models were utilized to investigate the relationships between plasma metal and plasma miRNAs, and mediation analysis was used to assess the mediating effects of plasma miRNAs on the relationships between plasma metals and diabetes risk. Plasma aluminum (Al), titanium (Ti), copper (Cu), zinc (Zn), selenium (Se), rubidium (Rb), strontium (Sr), barium (Ba), and Thallium (Tl) levels were correlated with elevated diabetic risk while molybdenum (Mo) with decreased diabetic risk (P < 0.05 after FDR multiple correction). MiR-122-5p and miR-3141 were positively associated with diabetes risk (all P < 0.05). Ti, Cu, and Zn were positively correlated with miR-122-5p (P = 0.001, 0.028 and 0.004 respectively). Ti, Cu, and Se were positively correlated with miR-3141 (P = 0.003, 0.015, and 0.031 respectively). In addition, Zn was positively correlated with miR-193b-3p (P = 0.002). Ti was negatively correlated with miR-26b-3p (P = 0.016), while Mo and miR-26b-3p were positively correlated (P = 0.042). In the mediation analysis, miR-122-5p mediated 48.0% of the association between Ti and diabetes risk. The biological mechanisms of the association are needed to be explored in further studies.
Collapse
Affiliation(s)
- Hongli Nie
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Hu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, Xinjiang, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Hosseini R, Montazerifar F, Shahraki E, Karajibani M, Mokhtari AM, Dashipour AR, Ferns GA, Jalali M. The Effects of Zinc Sulfate Supplementation on Serum Copeptin, C-Reactive Protein and Metabolic Markers in Zinc-Deficient Diabetic Patients on Hemodialysis: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol Trace Elem Res 2022; 200:76-83. [PMID: 33655432 DOI: 10.1007/s12011-021-02649-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 11/25/2022]
Abstract
We aimed to investigate the association between zinc (Zn) supplementation and serum levels of copeptin, high-sensitive C-reactive protein (hs-CRP), glycemic control, anthropometric parameters and renal function in Zn -deficient diabetic hemodialysis patients (DHPs). This randomized, double-blind, placebo-controlled trial (RCT) was conducted on 46 DHPs with Zn-deficiency. The Zn supplement group (n = 21) received a 220-mg/day Zn sulfate capsule (containing 50 mg Zn), and the control group (n = 25) received a placebo capsule (220 mg corn starch), for 8 weeks. Fasting, predialysis blood samples were taken at baseline and after 8 weeks to assess fasting blood glucose (FBG), serum insulin, copeptin, high-sensitive C-reactive protein (hs-CRP), blood urea nitrogen (BUN), creatinine (Cr) concentrations, and homoeostatic model assessment (HOMA-IR) and quantitative insulin-sensitivity check index (QUICKI). Compared to controls, serum copeptin (P < 0.001), hs-CRP (P < 0.001), BUN (P < 0.001), Cr (P < 0.001), Zn (P < 0.001), FBG (P < 0.001) levels, BMI (P < 0.001), and body weight (P < 0.001) were significantly affected following ZnSO4 supplementation for 8 weeks. In contrast, QUICKI (P = 0.57), HOMA-IR (P = 0.60), and serum insulin (P = 0.55) were not affected following Zn supplementation in comparison with patients receiving placebo. Zn sulfate supplementation appears to have favorable effects on serum copeptin and hs-CRP, FBG, and renal function in Zn-deficient DHPs. Iranian Registry of Clinical Trials Identifier: IRCT20190806044461N1.
Collapse
Affiliation(s)
- Razieh Hosseini
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzaneh Montazerifar
- Pregnancy Health Research Center, Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Elham Shahraki
- Genetics of Non-Communicable Disease Research Center, Department of Nephrology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mansour Karajibani
- Health Promotion Research Center , Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Mohammad Mokhtari
- School of Health, Gonabad University of Medical Sciences, Gonabad, Khorasan Razavi, Iran
| | - Ali Reza Dashipour
- Cellular and Molecular Research Center, Department of Food and Technology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Mohammad Jalali
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Csikós A, Kozma B, Pór Á, Kovács I, Lampé R, Miklós I, Takacs P. Zinc Transporter 9 (SLC30A9) Expression Is Decreased in the Vaginal Tissues of Menopausal Women. Biol Trace Elem Res 2021; 199:4011-4019. [PMID: 33409913 DOI: 10.1007/s12011-020-02525-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Our aim was to compare zinc transporter (ZnT/SLC30A, and ZIP/SLC39A) expression between pre- and postmenopausal women in human vaginal tissues. Zinc transporter families are responsible for the maintenance of intracellular zinc concentrations. Zinc has significant effects on the extracellular matrix composition. Vaginal wall biopsies were obtained from seven premenopausal and seven postmenopausal women. mRNA expression of twenty-four zinc transporters was determined by quantitative real-time PCR. Zinc transporter expression at the protein level was assessed by immunohistochemistry. Student's t test and Mann-Whitney U test were used to compare data. ZnT4 and ZnT9 mRNA expression were significantly lower in postmenopausal women compared with premenopausal women (mean ± SD mRNA expression in relative units, 96.43 ± 140.61 vs. 410.59 ± 304.34, p = 0.03 and 0.62 ± 0.39 vs. 1.13 ± 0.31, p = 0.02). In addition, ZIP2, ZIP3, and ZIP6 mRNA expressions were significantly lower in postmenopausal women compared with premenopausal women (mean ± SD mRNA expression in relative units, 1.11 ± 0.61 vs. 2.29 ± 1.20, p = 0.04; 2.32 ± 1.90 vs. 15.82 ± 12.97, p = 0.02 and 1.10 ± 0.80 vs. 5.73 ± 4.72, p = 0.03). ZnT9 protein expression in the stratum spinosum was significantly lower in postmenopausal women (p = 0.012). Zinc transporters were expressed differentially in the vaginal tissues. ZnT9 expression was significantly lower in postmenopausal women compared with premenopausal women.
Collapse
Affiliation(s)
- Anett Csikós
- Molecular Biology Group, FemPharma, LLC, Vígkedvű Mihály utca 21. II/5, Debrecen, 4024, Hungary.
| | - Bence Kozma
- Department of Obstetrics and Gynecology, University of Debrecen, Debrecen, Hungary
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy County Hospital, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy County Hospital, University of Debrecen, Debrecen, Hungary
| | - Rudolf Lampé
- Department of Obstetrics and Gynecology, University of Debrecen, Debrecen, Hungary
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Peter Takacs
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
24
|
Andrews-Guzmán M, Ruz M, Arredondo-Olguín M. Zinc Modulates the Response to Apoptosis in an In Vitro Model with High Glucose and Inflammatory Stimuli in C2C12 Cells. Biol Trace Elem Res 2021; 199:2288-2294. [PMID: 32840726 DOI: 10.1007/s12011-020-02348-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Apoptosis is programmed cell death and its alteration is related to cancer, neurologic, autoimmune, and chronic diseases. A number of factors can affect this process. The aim of this paper is to study the effect of supplemental zinc on apoptosis-related genes in C2C12 myoblast cells after being challenged with a series of stimuli, such as high glucose, insulin, and an inflammatory agent. C2C12 myoblast cells were cultured for 24 h with zinc (Zn) (ZnSO4) 10 or 100 μM and/or glucose 10 or 30 mM. In addition to these stimuli, the cells were challenged with insulin 1 nM or interleukin-6 (IL-6) 5 nM. The mRNA expression of proapoptotic genes caspase 3 and Fas, the antiapoptotic genes, Xiap and Bcl-xL and the ratio of pro-/antiapoptotic genes Bax/Bcl-2, were determined by qRT-PCR. The expression of caspase-3 gene was significantly increased in the presence of the combination high Zn/high glucose with and without the presence of insulin and IL6 in the culture medium Fas expression instead, showed uneven responses. The expression of Bcl-xL and Xiap was increased in most conditions by having high Zn in the medium regardless of the presence of insulin or IL6. Bax/Bcl2 ratio was decreased in the presence of high Zn. Zn was able to stimulate the expression of antiapoptotic genes. This effect was specially noted in high-glucose conditions with and without the presence of insulin. This effect is partially overridden by the presence of an inflammatory agent such as IL-6.
Collapse
Affiliation(s)
- Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
25
|
Li D, Cai Z, Pan Z, Yang Y, Zhang J. The effects of vitamin and mineral supplementation on women with gestational diabetes mellitus. BMC Endocr Disord 2021; 21:106. [PMID: 34030674 PMCID: PMC8145819 DOI: 10.1186/s12902-021-00712-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The effects of vitamin and mineral supplementation on women with gestational diabetes mellitus (GDM) have not been well established. We conduct a meta-analysis to evaluate the effects of vitamin and mineral supplementation on glycemic control, inflammation and oxidative stress for women with GDM. METHODS A systematic search of randomized controlled trials (RCTs) was conducted from PubMed, Embase, Web of Science and Cochrane Library up to July, 2020. Various results were pooled by using Review manager 5.3 and Stata 12.0. Mean difference (MD) with 95% confidence interval (CI) was estimated. Heterogeneity between studies was assessed by I-squared (I2) tests. RESULTS Six hundred ninety-eight patients from 12 trials were included in our meta-analysis. Magnesium, zinc, selenium, calcium, vitamin D and E (alone or in combination) were found to significantly improve glycemic control in women with GDM compared to those receiving placebos: fasting plasma glucose (FPG) (MD = - 9.02; 95% CI: - 12.09, - 5.96; P < 0.00001), serum insulin (MD = - 4.33; 95% CI: - 5.35, - 3.32; P < 0.00001), homeostasis model assessment-insulin resistance (HOMA-IR) (MD = - 1.34; 95% CI: - 1.60, - 1.07; P < 0.00001), and homeostasis model of assessment for β cell function (HOMA-B) (MD = - 15.58; 95% CI: - 23.70, - 7.46; P = 0.0002). Vitamin and mineral supplementation was found to attenuated inflammation and oxidative stress through decreasing high-sensitivity C-reactive protein (hs-CRP) (MD = - 1.29; 95% CI: - 1.82, - 0.76; P < 0.00001), malondialdehyde (MDA) (MD = - 0.71; 95% CI: - 0.97, - 0.45; P < 0.00001), and increasing total antioxidant capacity (TAC) (MD = 45.55; 95% CI: 22.02, 69.08; P = 0.0001). CONCLUSIONS This meta-analysis shows that vitamin and mineral supplementation significantly improved glycemic control, attenuated inflammation and oxidative stress in women with GDM.
Collapse
Affiliation(s)
- Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhenhong Pan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
26
|
Ding H, Zhang Q, Xu H, Yu X, Chen L, Wang Z, Feng J. Selection of copper and zinc dosages in pig diets based on the mutual benefit of animal growth and environmental protection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112177. [PMID: 33839484 DOI: 10.1016/j.ecoenv.2021.112177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Dietary copper and zinc additives facilitate the growth and development of animals, but heavy metal in feces threatens the ecological environment, and balance is the key to solving the problem. In this study, a trial of 2000 pigs (early nursery, 9-15 kg; late nursery, 15-25 kg; grower: 25-60 kg) was conducted to analyze the effects of different diets (gradient dosage of copper and zinc additives) on growth performance, antioxidant performance, immune function, and fecal heavy metal excretion of piglets and growing pigs. Although no significant differences were observed in average daily gain (ADG) and average daily feed intake (ADFI) between treatments during the entire nursery-grower period, the addition of appropriate high doses of copper and zinc to the diet had a beneficial effect on the antioxidant status and immune function of weaned piglets. Especially at early nursery, compared with the low-copper group (5 mg/kg Cu), the high-copper group (120 mg/kg Cu) could significantly increase the peroxidase (POD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), catalase (CAT) and copper/zinc superoxide dismutase (Cu/Zn-SOD), cortisol in the serum. Moreover, the addition of zinc and copper in the diet not only increased the concentration of corresponding trace elements in the serum, but also affected the concentration of other trace elements in the serum. The reduction of copper and zinc content in the diet contributed to reducing the copper and zinc content in feces. In conclusion, we have formulated the mutual benefit dosages of copper and zinc (9-15 kg: 5 mg/kg Cu and 50 mg/kg Zn; 15-25 kg: 4 mg/kg Cu and 50 mg/kg Zn; 25-60 kg: 4 mg/kg Cu and 10 mg/kg Zn) for weaning piglets and growing pigs, which would help ensure the healthy growth of animals and reduce environmental heavy metal residues. CAPSULE: This study developed a mutually beneficial dose of copper and zinc in pig diets, which promotes animal growth and protects the environment.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Qian Zhang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Huangen Xu
- Research Center of Zhejiang Kesheng Feed Co., Ltd., Shaoxing, Zhejiang, China
| | - Xiaonan Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Lingjun Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Zhonghang Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
27
|
Jayawardena R, Ranasinghe P, Kodithuwakku W, Dalpatadu C, Attia J. Zinc supplementation in pre-diabetes mellitus: a systematic review and meta-analysis. Minerva Endocrinol (Torino) 2021; 47:334-343. [PMID: 33759442 DOI: 10.23736/s2724-6507.21.03234-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Certain pharmacological and lifestyle interventions have been shown to reduce progression of pre-diabetes. We aimed to perform a systematic review and meta-analyses of studies assessing the outcomes of zinc supplementation in individuals with pre-diabetes. EVIDENCE ACQUISITION A comprehensive search was conducted in PubMed, SciVerse Scopus and Web of Science databases. Controlled clinical trials in pre-diabetics, on zinc supplement with or without other nutrients, assessing at least one accepted glycaemic parameter as an outcome were deemed eligible. EVIDENCE SYNTHESIS Three papers were included in the systematic review and meta analysis, with a total of 265 participants. Duration of zinc supplementation ranged from 6-12 months. The zinc dose ranged from 20-30 mg/day. In the pooled analysis, zinc supplementation significantly reduced FBG both when given alone (-10.86 mg/dL; 95% CI, -14.74 to -6.98; p<0.001) and with other micronutrients (-11.77 mg/dL; p<0.001). Similarly, 2hr-OGTT blood glucose was reduced by 21.08 mg/dL (95% CI, -40.05 to -2.11; p=0.03) in the pooled analysis of studies using zinc alone and in combination with other micronutrients. One study demonstrated a significant reduction of HbA1c by 0.5% with combined supplementation, while another reported a significant reduction in CRP with zinc supplementation. When all trials were considered, TC, HDL-c and HOMA-β showed significant improvement. Zinc supplementation significantly improved the zinc status from baseline. CONCLUSIONS Zinc supplementation demonstrated beneficial effects on glycaemic and lipid parameters in individuals with pre-diabetes. It may have the potential to reduce the prevalence of pre-diabetes and control associated morbidity and mortality.
Collapse
Affiliation(s)
- Ranil Jayawardena
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka - .,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia -
| | - Priyanga Ranasinghe
- Department of Pharmacology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Wasana Kodithuwakku
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Chamila Dalpatadu
- Department of Physiology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - John Attia
- Division of Medicine, Hunter New England Local Health District, School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| |
Collapse
|
28
|
The role of labile Zn 2+ and Zn 2+-transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Mol Cell Biochem 2020; 476:971-989. [PMID: 33225416 DOI: 10.1007/s11010-020-03964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demonstrated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn2+, those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from cellular Zn2+-homeostasis and responsible Zn2+-transporters associated with the Zn2+-homeostasis and Zn2+-signaling. Zn2+-signaling, controlled by cellular Zn2+-homeostatic mechanisms, is regulated with intracellular labile Zn2+ levels, which are controlled, especially, with the two Zn2+-transporter families; ZIPs and ZnTs. Our experimental studies in mammalian cardiomyocytes and human heart tissue showed that Zn2+-transporters localizes to mitochondria besides sarco(endo)plasmic reticulum and Golgi under physiological condition. The protein levels as well as functions of those transporters can re-distribute under pathological conditions, therefore, they can interplay among organelles in cardiomyocytes to adjust a proper intracellular labile Zn2+ level. In the present review, we aimed to summarize the already known Zn2+-transporters localize to mitochondria and function to stabilize not only the cellular Zn2+ level but also cellular oxidative stress status. In conclusion, one can propose that a detailed understanding of cellular Zn2+-homeostasis and Zn2+-signaling through mitochondria may emphasize the importance of new mitochondria-targeting agents for prevention and/or therapy of cardiovascular dysfunction in humans.
Collapse
|
29
|
Ma X, Jiang S, Yan S, Li M, Wang C, Pan Y, Sun C, Jin L, Yao Y, Li B. Association Between Copper, Zinc, Iron, and Selenium Intakes and TC/HDL-C Ratio in US Adults. Biol Trace Elem Res 2020; 197:43-51. [PMID: 31745720 DOI: 10.1007/s12011-019-01979-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The trace minerals zinc, copper, iron, and selenium are essential micronutrients, and because of their antioxidant activity, they are hypothesized to improve cardiovascular health. However, their associations with different risk levels for cardiovascular diseases are less clear. Data from the National Health and Nutrition Examination Survey 2007-2014 were used. In this study, the ratio of total cholesterol to high-density lipoprotein cholesterol (TC/HDL-C) was used as a risk marker for cardiovascular disease, and a ratio ≥ 5 was considered to indicate high risk. A total of 7597 adults (3673 men and 3924 women) were included, and 15.9% of the participants had a high risk of cardiovascular disease. Using quantile regression analysis, we found the negative correlation between zinc, copper, iron, and selenium intakes and TC/HDL-C. The effects of copper and zinc were enhanced with increasing quantiles of risk levels. In addition, the difference in the associations of the trace minerals was sex-dependent. The correlation between iron and cardiovascular risk in males was stronger than those in females, while that of copper was weaker than that in females. Moreover, a significant nonlinear relationship between selenium and the TC/HDL-C ratio was only found in females, and this relationship was U-shaped. Our findings suggest that among healthy adults in the US, zinc, copper, iron, and selenium intakes are inversely associated with cardiovascular disease risk, and the effect is enhanced with increasing quantiles of risk levels, with magnitudes differing by sex. Therefore, trace minerals may have the ability to prevent cardiovascular disease.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Meng Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Changcong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yingan Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Chong Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lina Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
30
|
Cooper ID, Crofts CAP, DiNicolantonio JJ, Malhotra A, Elliott B, Kyriakidou Y, Brookler KH. Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: rationale for clinical management. Open Heart 2020; 7:e001356. [PMID: 32938758 PMCID: PMC7496570 DOI: 10.1136/openhrt-2020-001356] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Risk factors for COVID-19 patients with poorer outcomes include pre-existing conditions: obesity, type 2 diabetes mellitus, cardiovascular disease (CVD), heart failure, hypertension, low oxygen saturation capacity, cancer, elevated: ferritin, C reactive protein (CRP) and D-dimer. A common denominator, hyperinsulinaemia, provides a plausible mechanism of action, underlying CVD, hypertension and strokes, all conditions typified with thrombi. The underlying science provides a theoretical management algorithm for the frontline practitioners.Vitamin D activation requires magnesium. Hyperinsulinaemia promotes: magnesium depletion via increased renal excretion, reduced intracellular levels, lowers vitamin D status via sequestration into adipocytes and hydroxylation activation inhibition. Hyperinsulinaemia mediates thrombi development via: fibrinolysis inhibition, anticoagulation production dysregulation, increasing reactive oxygen species, decreased antioxidant capacity via nicotinamide adenine dinucleotide depletion, haem oxidation and catabolism, producing carbon monoxide, increasing deep vein thrombosis risk and pulmonary emboli. Increased haem-synthesis demand upregulates carbon dioxide production, decreasing oxygen saturation capacity. Hyperinsulinaemia decreases cholesterol sulfurylation to cholesterol sulfate, as low vitamin D regulation due to magnesium depletion and/or vitamin D sequestration and/or diminished activation capacity decreases sulfotransferase enzyme SULT2B1b activity, consequently decreasing plasma membrane negative charge between red blood cells, platelets and endothelial cells, thus increasing agglutination and thrombosis.Patients with COVID-19 admitted with hyperglycaemia and/or hyperinsulinaemia should be placed on a restricted refined carbohydrate diet, with limited use of intravenous dextrose solutions. Degree/level of restriction is determined by serial testing of blood glucose, insulin and ketones. Supplemental magnesium, vitamin D and zinc should be administered. By implementing refined carbohydrate restriction, three primary risk factors, hyperinsulinaemia, hyperglycaemia and hypertension, that increase inflammation, coagulation and thrombosis risk are rapidly managed.
Collapse
Affiliation(s)
- Isabella D Cooper
- School of Life Sciences, University of Westminster - Cavendish Campus, London, UK
| | - Catherine A P Crofts
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | | | - Aseem Malhotra
- Visiting professor of Evidence Based Medicine, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Bradley Elliott
- School of Life Sciences, University of Westminster - Cavendish Campus, London, UK
| | - Yvoni Kyriakidou
- School of Life Sciences, University of Westminster - Cavendish Campus, London, UK
| | - Kenneth H Brookler
- Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
31
|
Mousavi SM, Hajishafiee M, Clark CCT, Borges do Nascimento IJ, Milajerdi A, Amini MR, Esmaillzadeh A. Clinical effectiveness of zinc supplementation on the biomarkers of oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2020; 161:105166. [PMID: 32828910 DOI: 10.1016/j.phrs.2020.105166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oxidative stress plays an important role in the occurrence of chronic diseases. Zinc supplementation is also known to be an antioxidant agent. While, there is no review on the effects of zinc supplementation on oxidative stress, this study aimed to systematically summarize randomized clinical trials (RCTs) which have evaluated the impacts of zinc supplementation on oxidative stress biomarkers. METHODS Systematic searches were performed using the PubMed/Medline, Scopus, and Google Scholar databases, up to April 2020. All RCTs assessed the effect of oral zinc supplementation on serum malondialdehyde (MDA), total antioxidant capacity (TAC), glutathione (GSH), and nitric oxide (NO) levels, were included. For each variable, mean differences (MD) and standard deviations (SDs) were combined using the random-effects model, and the fractional polynomial model was used to implement the dose-response analysis. RESULTS Ten RCTs were included. The pooled analysis of data showed that zinc supplementation significantly reduced MDA levels (MD: -0.42 μmol/L; 95 % CI: -0.71 to -0.13), increased serum TAC (MD: 225.96 mmol/L; 95 % CI: 68.42-383.5) and GSH levels (MD: 49.99 μmol/L; 95 % CI: 2.25 t 97.73), compared with the placebo group. In contrast, no significant changes were seen in NO levels following zinc supplementation (MD: -1.66 μmol/L; 95 % CI: -5.89 to 2.57). Dose-response analysis showed a significant non-linear relationship between zinc supplementation dosage and serum levels of MDA (p < 0.01), but not other biomarkers. CONCLUSIONS The current study showed that zinc supplementation would significantly decrease MDA and increase TAC and GSH, but not NO levels. Thus, it encourages the use of zinc supplementation in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hajishafiee
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV15FB, UK
| | - Israel Júnior Borges do Nascimento
- University Hospital and School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; School of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alireza Milajerdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Amini
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Food Security Research Center, Department of Community Nutrition, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
32
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Jeong JH, Kang DH, Park MK, Suh SW. An Inhibitor of the Sodium-Hydrogen Exchanger-1 (NHE-1), Amiloride, Reduced Zinc Accumulation and Hippocampal Neuronal Death after Ischemia. Int J Mol Sci 2020; 21:ijms21124232. [PMID: 32545865 PMCID: PMC7352629 DOI: 10.3390/ijms21124232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acidosis in the brain plays an important role in neuronal injury and is a common feature of several neurological diseases. It has been reported that the sodium–hydrogen exchanger-1 (NHE-1) is a key mediator of acidosis-induced neuronal injury. It modulates the concentration of intra- and extra-cellular sodium and hydrogen ions. During the ischemic state, excessive sodium ions enter neurons and inappropriately activate the sodium–calcium exchanger (NCX). Zinc can also enter neurons through voltage-gated calcium channels and NCX. Here, we tested the hypothesis that zinc enters the intracellular space through NCX and the subsequent zinc accumulation induces neuronal cell death after global cerebral ischemia (GCI). Thus, we conducted the present study to confirm whether inhibition of NHE-1 by amiloride attenuates zinc accumulation and subsequent hippocampus neuronal death following GCI. Mice were subjected to GCI by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by restoration of blood flow and resuscitation. Amiloride (10 mg/kg, intraperitoneally (i.p.)) was immediately injected, which reduced zinc accumulation and neuronal death after GCI. Therefore, the present study demonstrates that amiloride attenuates GCI-induced neuronal injury, likely via the prevention of intracellular zinc accumulation. Consequently, we suggest that amiloride may have a high therapeutic potential for the prevention of GCI-induced neuronal death.
Collapse
Affiliation(s)
- Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
- Correspondence: ; Tel.: +82-10-8573-6364
| |
Collapse
|
33
|
Khazdouz M, Djalalinia S, Sarrafi Zadeh S, Hasani M, Shidfar F, Ataie-Jafari A, Asayesh H, Zarei M, Gorabi AM, Noroozi M, Qorbani M. Effects of Zinc Supplementation on Cardiometabolic Risk Factors: a Systematic Review and Meta-analysis of Randomized Controlled Trials. Biol Trace Elem Res 2020; 195:373-398. [PMID: 31494808 DOI: 10.1007/s12011-019-01870-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of cardiometabolic risk factors has been increasing worldwide. The results of reported studies on the effects of zinc supplementation on cardiometabolic risk factors are unequivocal. This systematic review and meta-analysis of randomized controlled trials was conducted to evaluate the effects of zinc supplementation on cardiometabolic risk factors. A systematic search was conducted through international databases (PubMed/Medline, Institute of Scientific Information, and Scopus) until December 2018 to include all randomized controlled trials (RCT), quasi-RCT, and controlled clinical trials which assessed the effect of zinc supplementation on cardiometabolic risk factors including lipid profile, glycemic indices, blood pressure, and anthropometric indices. Random- or fixed-effects meta-analysis method was used to estimate the standardized mean difference (SMD) and 95% confidence interval (CI). A total of 20 studies were included in the meta-analysis, which included a total of 1141 participants in the intervention group. Meta-analysis showed that zinc supplementation significantly decreased plasma levels of triglyceride (SMD - 0.66, 95% CI - 1.27, - 0.06), very-low-density lipoprotein (SMD - 1.59, 95% CI - 2.86, - 0.31), and total cholesterol (SMD - 0.65, 95% CI - 1.15, - 0.15). Similarly, zinc supplementation significantly decreased fasting blood glucose (SMD - 0.52, 95% CI - 0.96, - 0.07) and HbA1c (SMD - 0.64, 95% CI - 1.27, - 0.02). The effects of zinc supplementation on blood pressure and anthropometric indices were not statistically significant (P > 0.05). Zinc supplements had beneficial effects on glycemic indices and lipid profile. Thus, it appeared that zinc supplementation might be associated with a decrease in cardiometabolic risk factors contributing to a reduction in risk of atherosclerosis.
Collapse
Affiliation(s)
- Maryam Khazdouz
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Djalalinia
- Development of Research & Technology Center, Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
- Non-communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Sarrafi Zadeh
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Motahareh Hasani
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Asal Ataie-Jafari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Asayesh
- Department of Medical Emergencies, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Zarei
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Armita Mahdavi Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Noroozi
- Social Determinants of Health Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Chasapis CT, Ntoupa PSA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020; 94:1443-1460. [PMID: 32394086 DOI: 10.1007/s00204-020-02702-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
Zinc (Zn) is one of the most important essential nutrients of great public health significance. It is involved in numerous biological functions and it is considered as a multipurpose trace element, due to its capacity to bind to more than 300 enzymes and more than 2000 transcriptional factors. Its role in biochemical pathways and cellular functions, such as the response to oxidative stress, homeostasis, immune responses, DNA replication, DNA damage repair, cell cycle progression, apoptosis and aging is significant. Zn is required for the synthesis of protein and collagen, thus contributing to wound healing and a healthy skin. Metallothioneins are metal-binding proteins and they are potent scavengers of heavy metals, including Zn, and protect the organism against stress. Zn deficiency is observed almost in 17% of the global population and affects many organ systems, leading to dysfunction of both humoral and cell-mediated immunity, thus increasing the susceptibility to infection. This review gives a thorough insight into the most recent evidence on the association between Zn biochemistry and human pathologies, epigenetic processes, gut microbial composition, drug targets and nanomedicine.
Collapse
Affiliation(s)
- Christos T Chasapis
- NMR Center, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Panagoula-Stamatina A Ntoupa
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Chara A Spiliopoulou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece
| | - Maria E Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Street, 11527, Goudi, Athens, Greece.
| |
Collapse
|
35
|
Naderi R, Shirpoor A, Samadi M, Pourheydar B, Moslehi A. Tropisetron improves pancreas function and increases insulin synthesis and secretion in the STZ-induced diabetic rats: involvement of UCP2/ZnT8 pathway. ACTA ACUST UNITED AC 2020; 72:1082-1091. [PMID: 32349166 DOI: 10.1111/jphp.13278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/21/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Diabetes mellitus is one of the most common metabolic diseases. Tropisetron, as a 5-HT3 receptor antagonist, has a considerable role in the inflammation and oxidative stress lowering. This study aimed to investigate the effect of this 5-HT3 receptor antagonist on insulin secretion in male diabetic rats and the possible mechanisms. METHODS Animals were divided into five equal groups; the control, tropisetron, diabetes, tropisetron-diabetes and glibenclamide-diabetes (7 in each group). Tropisetron and glibenclamide were administrated for 2 weeks after inducing type 1 diabetes. KEY FINDINGS We demonstrated that insulin secretion improved robustly in diabetes-tropisetron compared with the diabetic group. Oxidative stress biomarkers were lower in a diabetes-tropisetron group than in diabetic rats. Simultaneously, tropisetron administration promoted the expression of ZnT8 and GLUT2 and also beta-cell mass in pancreatic tissue, while the expression of uncoupling protein 2 (UCP2) was restrained. The histological evaluation confirmed our results. These effects were equipotent with glibenclamide, indicating that tropisetron can protect islets from the abnormal insulin secretion and morphological changes induced by type 1 diabetes. CONCLUSIONS This effect might be partly related to the modulated UCP2/ZnT8 signal pathway and improved oxidative stress-induced damage.
Collapse
Affiliation(s)
- Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahrokh Samadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bagher Pourheydar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Azam Moslehi
- Cellular & Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
36
|
Liu P, Liu J, Wu Y, Xi W, Wei Y, Yuan Z, Zhuo X. Zinc supplementation protects against diabetic endothelial dysfunction via GTP cyclohydrolase 1 restoration. Biochem Biophys Res Commun 2020; 521:1049-1054. [PMID: 31732151 DOI: 10.1016/j.bbrc.2019.11.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
This study explored whether zinc supplementation alleviates diabetic endothelial dysfunction and the possible mechanisms underlying. We found that high glucose exposure significantly increased reactive oxygen species (ROS) and decreased guanosine 5'-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels in bovine aortic endothelial cells (BAECs) in a time-dependent manner. High glucose increased zinc release from GTPCH1 in a similar trend. Zinc supplementation restored GTPCH1 and BH4 levels and blocked ROS accumulation in both BACEs and wild type GTPCH1 transfected HEK293 cells, but not in the zinc-free C141R mutant of GTPCH1 transfected ones. In vivo experiments showed that exogenous supplementation of zinc to streptozotocin (STZ)-induced diabetic mice partially improved the impaired maximal endothelium-dependent vasorelaxation, reversed the aberrant reduction of GTPCH1 and BH4, and suppressed the elevation of ROS in the aortas. In conclusion, our study demonstrated a novel mechanism that via GTPCH1 restoration zinc supplementation exerts a protective benefit on diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Peining Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junhui Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, Shaanxi, China
| | - Wen Xi
- Department of Clinical Laboratory, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuanyuan Wei
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China.
| | - Xiaozhen Zhuo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
37
|
Zn 2+ Interaction with Amyloid-Β: Affinity and Speciation. Molecules 2019; 24:molecules24152796. [PMID: 31370315 PMCID: PMC6695645 DOI: 10.3390/molecules24152796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022] Open
Abstract
Conflicting values, obtained by different techniques and often under different experimental conditions have been reported on the affinity of Zn2+ for amyloid-β, that is recognized as the major interaction responsible for Alzheimer’s disease. Here, we compare the approaches employed so far, i.e., the evaluation of Kd and the determination of the stability constants to quantitatively express the affinity of Zn2+ for the amyloid-β peptide, evidencing the pros and cons of the two approaches. We also comment on the different techniques and conditions employed that may lead to divergent data. Through the analysis of the species distribution obtained for two selected examples, we show the implications that the speciation, based on stoichiometric constants rather than on Kd, may have on data interpretation. The paper also demonstrates that the problem is further complicated by the occurrence of multiple equilibria over a relatively narrow pH range.
Collapse
|
38
|
Du L, Zhang H, Zhao H, Cheng X, Qin J, Teng T, Yang Q, Xu Z. The critical role of the zinc transporter Zip2 (SLC39A2) in ischemia/reperfusion injury in mouse hearts. J Mol Cell Cardiol 2019; 132:136-145. [DOI: 10.1016/j.yjmcc.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 11/29/2022]
|
39
|
Nazem MR, Asadi M, Jabbari N, Allameh A. Effects of zinc supplementation on superoxide dismutase activity and gene expression, and metabolic parameters in overweight type 2 diabetes patients: A randomized, double-blind, controlled trial. Clin Biochem 2019; 69:15-20. [DOI: 10.1016/j.clinbiochem.2019.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022]
|
40
|
Mansingh DP, Pradhan S, Biswas D, Barathidasan R, Vasanthi HR. Palliative Role of Aqueous Ginger Extract on N-Nitroso- N-Methylurea-Induced Gastric Cancer. Nutr Cancer 2019; 72:157-169. [PMID: 31155951 DOI: 10.1080/01635581.2019.1619784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 01/26/2023]
Abstract
Ginger (Zingiber officinale) is a spice and also an herbal medicine used worldwide for managing GI tract disturbances. However, its role in gastric cancer is sparingly known. This study ensures the standardization of gastric cancer by the induction of N-nitroso N-methyl Urea (MNU) and to determine the role of the aqueous extract of ginger (AGE) in MNU-induced gastric cancer in albino Wistar rats. Accordingly, the anticancer potential of AGE and its possible mode of action were assessed on rats exposed to MNU, by various biochemical and molecular assays. As evidenced by the extent of lipid peroxidation, gastrin levels and histopathological sections in MNU-induced cancerous lesions at 8 wk which was stabilized at 16 wk confirming the induction of gastric carcinoma by the chemical carcinogen. Further, results revealed that AGE alleviated the oxidative stress as evidenced by the stomach antioxidant enzymes (SOD, catalase, GPx, and GR), markers of oxidative stress (TRx, GRx) and Gastrin, a specific marker for gastric cancer and a decreased level of pro-inflammatory markers (NF-kB, TNF-α, IL-6, PGE2) which was further confirmed by histopathological analysis. AGE is responsible to mitigate oxidative stress and inflammation related to gastric cancer and could be used as a potential dietary intervention in gastric cancer therapy.
Collapse
Affiliation(s)
- Debjani P Mansingh
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Shalini Pradhan
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Deeptarup Biswas
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - R Barathidasan
- Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College & Research Institute campus, Puducherry, India
| | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
41
|
Jafarnejad S, Mahboobi S, McFarland LV, Taghizadeh M, Rahimi F. Meta-Analysis: Effects of Zinc Supplementation Alone or with Multi-Nutrients, on Glucose Control and Lipid Levels in Patients with Type 2 Diabetes. Prev Nutr Food Sci 2019; 24:8-23. [PMID: 31008092 PMCID: PMC6456233 DOI: 10.3746/pnf.2019.24.1.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023] Open
Abstract
The present study aims to assess the effects of zinc supplementation on metabolic parameters in patients with type 2 diabetes. A literature search was conducted in PubMedTM, Google ScholarTM, and ScopusTM up to March 2018. Twenty randomized controlled trials met the predefined inclusion criteria and were included in the meta-analysis. Weighted mean difference (WMD) with 95% confidence intervals (CIs) were calculated for net changes in glycemic indices including fasting blood glucose (FBG) and hemoglobin A1c (HbA1c), and in lipid markers including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and high density lipoprotein cholesterol (HDL-c). Subgroup analyses were performed based on intervention and study quality. Compared to controls, zinc supplementation significantly reduced the concentrations of both FBG and HbA1c (FBG WMD: −19.66 mg/dL, 95% CI: −33.71, −5.62; HbA1c WMD: −0.43 mg/dL, 95% CI: −0.80, −0.07). The pooled estimate showed a significant decrease in serum TC and LDL-c, and increase in serum HDL-c levels in treatment group compared with the control group (TC WMD: −18.51 mg/dL, 95% CI: −21.36, −15.66; LDL-c WMD: −4.80 mg/dL, 95% CI: −6.07, −3.53; HDL-c WMD: 1.45 mg/dL, 95% CI: 1.40, 1.51). Subgroup analysis of “no co-supplement” intervention demonstrated significant differences for mean changes in HDL-c and FBG levels, whereas subgroup analysis of high quality studies showed significant differences for mean changes of LDL-c, HDL-c, and FBG levels. Results suggested that zinc supplementation reduces FBG, HbA1c and LDL-c levels and increases HDL-C levels; however, these changes were related to intervention and quality of studies.
Collapse
Affiliation(s)
- Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 87137-81147, Iran
| | - Sepideh Mahboobi
- Department of Community Nutrition, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Lynne V McFarland
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-5502, USA
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan 87137-81147, Iran
| | - Fatemeh Rahimi
- Faculty of Public Health, Kermanshah University of Medical Science, Kermanshah 67158-47141, Iran
| |
Collapse
|
42
|
Nabavi SM, Nabavi SF, Sureda A, Xiao J, Dehpour AR, Shirooie S, Silva AS, Baldi A, Khan H, Daglia M. Anti-inflammatory effects of Melatonin: A mechanistic review. Crit Rev Food Sci Nutr 2019; 59:S4-S16. [DOI: 10.1080/10408398.2018.1487927] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Grup de Nutrici_o Comunit_aria i Estr_es Oxidatiu and CIBEROBN (Physiopathology of Obesity and Nutrition), Universitat de les Illes Balears, Palma de E-07122 Mallorca, Spain
| | - Janbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau SAR, China
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| | - Alessandra Baldi
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| |
Collapse
|
43
|
Ruz M, Carrasco F, Rojas P, Basfi-Fer K, Hernández MC, Pérez A. Nutritional Effects of Zinc on Metabolic Syndrome and Type 2 Diabetes: Mechanisms and Main Findings in Human Studies. Biol Trace Elem Res 2019; 188:177-188. [PMID: 30600497 DOI: 10.1007/s12011-018-1611-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
Zinc (Zn) plays crucial roles in mammalian metabolism. There is increasing interest about the potential beneficial effects of Zn on the prevention or treatment of non-communicable diseases. This review critically analyzes the information related to the role of Zn on the metabolic syndrome (MetS) as well as type 2 diabetes (T2D), and summarizes the biological basis of these potential effects of Zn. There are several mechanisms by which Zn may help to prevent the development or progression of MetS and T2D, respectively. Zn is involved in both insulin secretion and action in peripheral tissues. Specifically, Zn has insulin-mimetic properties that increase the activity of the insulin signaling pathway. Zn modulates long-chain polyunsaturated fatty acids levels through its action on the absorption of essential fatty acids in the intestine and its subsequent desaturation. Zn is also involved in both the assembly of chylomicrons and lipoproteins as well as their clearance, and thus, plays a role in lipolysis regulation. Finally, Zn has been found to play a role in redox metabolism, and in turn, on blood pressure. The evidence related to the association between Zn status and occurrence of MetS is inconsistent. Although there are several studies reporting an inverse relationship between Zn status or dietary Zn intake and MetS prevalence, others found a direct relationship between Zn status and MetS prevalence. Intervention studies also provide confusing information about this issue, making it hard to reach firm conclusions. Zn as part of the treatment for patients with T2D has been shown to have positive responses in terms of glucose control outcomes, but only among those with Zn deficiency.
Collapse
Affiliation(s)
- Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile.
| | - Fernando Carrasco
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Pamela Rojas
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Karen Basfi-Fer
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Maria Catalina Hernández
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Alvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
44
|
Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W. Zinc and its regulators in pancreas. Inflammopharmacology 2019; 27:453-464. [PMID: 30756223 DOI: 10.1007/s10787-019-00573-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
Studies have demonstrated that susceptibility to type 2 diabetes (T2D) is influenced by common polymorphism in the zinc transporter 8 gene SLC30A8, providing novel insight into the role of zinc in diabetes. Intriguingly, zinc participates in every step of the process, including insulin synthesis, crystallization, storage, secretion and signaling. Zinc deficiency or overload is associated with various disorders, such as diabetes, cardiovascular disease and obesity. Zinc supplementation is considered as an effective means of treating or preventing T2D in people with certain SLC30A8 genotypes. Three important protein families-zinc transporters (ZnTs), zinc importers (ZiPs) and metallothionein (MT)-participate in maintaining zinc homeostasis. Here, we review research on the physiological characteristics of zinc and its role in the pancreas and homeostasis regulation mechanisms, along with the latest research on the structure and function of ZnT/ZiP and MT. In addition, we summarize the advancements in research on SLC30A8 gene polymorphism in search of a mechanism to explain the relationship between the R risk allele and zinc transporter activity.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiongfang Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Yangni Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Wuyi Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Qiong Huang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
45
|
Carvacrol Attenuates Hippocampal Neuronal Death after Global Cerebral Ischemia via Inhibition of Transient Receptor Potential Melastatin 7. Cells 2018; 7:cells7120231. [PMID: 30486272 PMCID: PMC6315386 DOI: 10.3390/cells7120231] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Over the last two decades, evidence supporting the concept of zinc-induced neuronal death has been introduced, and several intervention strategies have been investigated. Vesicular zinc is released into the synaptic cleft, where it then translocates to the cytoplasm, which leads to the production of reactive oxygen species and neurodegeneration. Carvacrol inhibits transient receptor potential melastatin 7 (TRPM7), which regulates the homeostasis of extracellular metal ions, such as calcium and zinc. In the present study, we test whether carvacrol displays any neuroprotective effects after global cerebral ischemia (GCI), via a blockade of zinc influx. To test our hypothesis, we used eight-week-old male Sprague–Dawley rats, and a GCI model was induced by bilateral common carotid artery occlusion (CCAO), accompanied by blood withdrawal from the femoral artery. Ischemic duration was defined as a seven-minute electroencephalographic (EEG) isoelectric period. Carvacrol (50 mg/kg) was injected into the intraperitoneal space once per day for three days after the onset of GCI. The present study found that administration of carvacrol significantly decreased the number of degenerating neurons, microglial activation, oxidative damage, and zinc translocation after GCI, via downregulation of TRPM7 channels. These findings suggest that carvacrol, a TRPM7 inhibitor, may have therapeutic potential after GCI by reducing intracellular zinc translocation.
Collapse
|
46
|
Chu A, Holdaway C, Varma T, Petocz P, Samman S. Lower Serum Zinc Concentration Despite Higher Dietary Zinc Intake in Athletes: A Systematic Review and Meta-analysis. Sports Med 2018; 48:327-336. [PMID: 29164533 DOI: 10.1007/s40279-017-0818-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Zinc is an essential trace element that has been implicated in numerous biological functions, including immunity, energy metabolism and antioxidative processes. Recent evaluations of the literature have provided evidence of significant acute changes in zinc metabolism following a bout of aerobic exercise. OBJECTIVE The aim of this study was to determine the zinc status of trained athletes compared with control populations, as described in cross-sectional studies. DESIGN We conducted a systematic literature search of the PubMed, Scopus, SPORTDiscus and Cochrane Library electronic databases from inception to 28 January 2016 to identify cross-sectional studies that determined the zinc status of athletes compared with a control population. Meta-analysis of the differences in serum zinc concentration and dietary zinc intake between groups were conducted. RESULTS Twelve studies were included in the systematic review. Of the included studies, nine and eight studies provided sufficient data for the meta-analysis of serum zinc concentration and dietary zinc intake, respectively. Serum zinc concentration was significantly lower in athletes [- 0.93 μmol/L, 95% confidence interval (CI) - 1.62 to - 0.23] despite significantly higher dietary zinc intake compared with the control population (2.57 mg/day, 95% CI 0.97-4.16). Data on erythrocyte and urinary zinc from the included studies were insufficient for meta-analysis. CONCLUSIONS Despite higher total dietary zinc intake, athletes generally have lower serum zinc concentration, which suggests that athletes have higher requirement of zinc than those who are physically inactive. Further investigations of zinc metabolism during exercise and dietary zinc requirement in active populations are needed to establish evidence-based recommendations.
Collapse
Affiliation(s)
- Anna Chu
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Cushla Holdaway
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Trishala Varma
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Peter Petocz
- Department of Statistics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Samir Samman
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, 9054, New Zealand. .,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
47
|
Coverdale JPC, Khazaipoul S, Arya S, Stewart AJ, Blindauer CA. Crosstalk between zinc and free fatty acids in plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:532-542. [PMID: 30266430 PMCID: PMC6372834 DOI: 10.1016/j.bbalip.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
In mammalian blood plasma, serum albumin acts as a transport protein for free fatty acids, other lipids and hydrophobic molecules including neurodegenerative peptides, and essential metal ions such as zinc to allow their systemic distribution. Importantly, binding of these chemically extremely diverse entities is not independent, but linked allosterically. One particularly intriguing allosteric link exists between free fatty acid and zinc binding. Albumin thus mediates crosstalk between energy status/metabolism and organismal zinc handling. In recognition of the fact that even small changes in extracellular zinc concentration and speciation modulate the function of many cell types, the albumin-mediated impact of free fatty acid concentration on zinc distribution may be significant for both normal physiological processes including energy metabolism, insulin activity, heparin neutralisation, blood coagulation, and zinc signalling, and a range of disease states, including metabolic syndrome, cardiovascular disease, myocardial ischemia, diabetes, and thrombosis. Serum albumin binds and transports both free fatty acids and Zn2+ ions Elevated plasma free fatty acids impair Zn2+ binding by albumin through an allosteric mechanism The resulting changes in plasma zinc speciation are thought to impact blood coagulation and may promote thrombosis Increased free Zn2+ may lead to enhanced zinc export from plasma and dysregulation of zinc homeostasis in multiple tissues
Collapse
Affiliation(s)
| | | | - Swati Arya
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | | |
Collapse
|
48
|
|
49
|
Hamdiken M, Bouhalit S, Kechrid Z. Effect of Ruta chalepensis on Zinc, Lipid Profile and Antioxidant Levels in the Blood and Tissue of Streptozotocin-Induced Diabetes in Rats Fed Zinc-Deficient Diets. Can J Diabetes 2018; 42:356-364. [DOI: 10.1016/j.jcjd.2017.08.239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
|
50
|
Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1120-1132. [PMID: 29926844 PMCID: PMC6289396 DOI: 10.1038/aps.2018.25] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022]
Abstract
Zinc is an essential nutrient for human health and has anti-oxidative stress and anti-inflammatory functions. The association between zinc deficiency and the development of cardiovascular diseases (CVDs) has been supported by numerous studies. Supplementing zinc can reduce the risk of atherosclerosis and protect against myocardial infarction and ischemia/reperfusion injury. In this review we summarize the evidence in the literature, to consolidate the current knowledge on the dysregulation of zinc homeostasis in CVDs, and to explore the significant roles of the zinc homeostasis-regulatory proteins in cardiac physiology and pathophysiology. Moreover, this review also deliberates on the potential diagnostic and prognostic implications of zinc/zinc homeostasis-associated molecules (ZIP, ZnT, and MTs) in CVDs.
Collapse
|