1
|
Mohaghegh N, Iyer A, Wang E, Balajam NZ, Kang H, Akbari M, Barnhill MS, Khademhosseini A, Pearson RM, Hassani Najafabadi A. Apigenin-loaded nanoparticles for obesity intervention through immunomodulation and adipocyte browning. J Control Release 2025; 382:113670. [PMID: 40187647 DOI: 10.1016/j.jconrel.2025.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Obesity is characterized by a significant imbalance in adipose tissue macrophages (ATMs), shifting from anti-inflammatory M2 to pro-inflammatory M1 phenotypes, contributing to chronic low-grade inflammation and metabolic dysfunction. This study explores the potential of nanoparticle (NP)-mediated immunomodulation to address obesity-related inflammation, adipocyte browning, and metabolic dysfunction. Apigenin (Api), a natural compound with notable anti-inflammatory properties, was encapsulated within poly(lactic-co-glycolic acid) (PLGA) NPs (Api-NPs) for localized delivery to adipose tissues (ATs). Api-NPs demonstrated favorable physicochemical properties and sustained release profiles. In vitro, Api-NPs, increased M2 macrophage (MΦ) polarization, reduced inflammatory markers, and promoted adipocyte browning. In a high-fat diet (HFD)-induced obesity mouse model, Api-NP administration effectively modulated MΦ polarization and enhanced AT browning, leading to marked reductions in body weight and AT mass. Our findings indicate that Api-NP treatment mitigates obesity-related inflammation and promotes beneficial changes in AT composition and function. Importantly, histological evaluations confirmed the absence of toxicity in major organs, reinforcing the safety profile of this approach. These results position Api-NPs as a promising novel therapeutic strategy for obesity management, integrating immune modulation and localized drug delivery to address the complexities of obesity and its associated inflammatory processes.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Anjali Iyer
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ethan Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | | |
Collapse
|
2
|
Dai Q, Ain Q, Seth N, Zhao H, Rooney M, Zipprich A. Aging-Associated Liver Sinusoidal Endothelial Cells Dysfunction Aggravates the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. Aging Cell 2025:e14502. [PMID: 39912563 DOI: 10.1111/acel.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
Aging increases the susceptibility to metabolic dysfunction-associated steatotic liver disease (MASLD). Liver sinusoidal endothelial cells (LSECs) help in maintaining hepatic homeostasis, but the contribution of age-associated LSECs dysfunction to MASLD is not clear. The aim of this study was to investigate the effect of aging-associated LSECs dysfunction on MASLD. Free fatty acid-treated AML12 cells were co-cultured with young and etoposide-induced senescent TSEC cells to evaluate the senescence-associated endothelial effects on the lipid accumulation in hepatocytes. In addition, young and aged rats were subjected to methionine-choline-deficient diet-induced metabolic dysfunction-associated steatohepatitis (MASH). Hepatic hemodynamics and endothelial dysfunction were evaluated by in situ liver perfusion. Liver tissue samples from young and aged healthy controls and MASH patients were also analyzed. Steatotic AML12 cells co-cultured with young TSEC cells showed less lipid accumulation, and such effect was abolished by eNOS inhibitor or with senescent TSEC cells. However, co-culture with resveratrol-treated senescent TSEC cells could partially resume the NO-mediated protective effects of endothelial cells. Furthermore, aged MASH rats showed more severe liver injury, steatosis, fibrosis, and endothelial and microcirculatory dysfunction. In addition, aged MASH patients showed more pronounced liver injury and fibrosis with lower hepatic eNOS, p-eNOS, and SIRT1 protein levels than in young patients. Senescence compromises the protective effects of LSECs against hepatocyte steatosis. In addition, aging aggravates not only liver steatosis and fibrosis but also intensifies LSECs dysfunction in MASH rats. Accordingly aged MASH patients also showed endothelial dysfunction with more severe liver injury and fibrosis.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Dai Q, Ain Q, Seth N, Rooney M, Zipprich A. Liver sinusoidal endothelial cells: Friend or foe in metabolic dysfunction- associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Dig Liver Dis 2025:S1590-8658(25)00201-4. [PMID: 39904692 DOI: 10.1016/j.dld.2025.01.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the predominant liver disease and is becoming the paramount contributor to end-stage liver disease and liver-related deaths. Liver sinusoidal endothelial cells (LSECs) located between the hepatic parenchyma and blood from viscera and gastrointestinal tract are the gatekeepers for the hepatic microenvironment and normal function. In normal physiological conditions, LSECs govern the substance exchange between hepatic parenchyma and blood through dynamic regulation of fenestration and maintain the quiescent state of Kupffer cells (KCs) and hepatic stellate cells. In MASLD, lipotoxicity, insulin resistance, gastrointestinal microbiota dysbiosis, and mechanical compression caused by fat-laden hepatocytes result in LSECs capillarization and dysfunction. The altered LSECs progressively shift from healer to injurer, exacerbating liver inflammation and advancing liver fibrosis. This review focuses on the deteriorative roles of LSECs and related molecular mechanisms involved in MASLD and their contribution to metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis development and progression. Furthermore, in this review, we propose that targeting LSECs dysfunction is a prospective therapeutic strategy to restore the physiological function of LSECs and mitigate MASLD progression.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Navodita Seth
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07747, Jena, Thuringia, Germany.
| |
Collapse
|
4
|
Ezhilarasan D, Karthikeyan S, Najimi M, Vijayalakshmi P, Bhavani G, Jansi Rani M. Preclinical liver toxicity models: Advantages, limitations and recommendations. Toxicology 2025; 511:154020. [PMID: 39637935 DOI: 10.1016/j.tox.2024.154020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Experimental animal models are crucial for elucidating the pathophysiology of liver injuries and for assessing new hepatoprotective agents. Drugs and chemicals such as acetaminophen, isoniazid, valproic acid, ethanol, carbon tetrachloride (CCl4), dimethylnitrosamine (DMN), and thioacetamide (TAA) are metabolized by the CYP2E1 enzyme, producing hepatotoxic metabolites that lead to both acute and chronic liver injuries. In experimental settings, acetaminophen (centrilobular necrosis), carbamazepine (centrilobular necrosis and inflammation), sodium valproate (necrosis, hydropic degeneration and mild inflammation), methotrexate (sinusoidal congestion and inflammation), and TAA (centrilobular necrosis and inflammation) are commonly used to induce various types of acute liver injuries. Repeated and intermittent low-dose administration of CCl4, TAA, and DMN activates quiescent hepatic stellate cells, transdifferentiating them into myofibroblasts, which results in abnormal extracellular matrix production and fibrosis induction, more rapidly with DMN and CCL4 than TAA (DMN > CCl4 > TAA). Regarding toxicity and mortality, CCl4 is more toxic than DMN and TAA (CCl4 > DMN > TAA). Models used to induce metabolic dysfunction-associated liver disease (MAFLD) vary, but MAFLD's multifactorial nature driven by factors like obesity, fatty liver, dyslipidaemia, type II diabetes, hypertension, and cardiovascular disease makes it challenging to replicate human metabolic dysfunction-associated steatohepatitis accurately. From an experimental point of view, the degree and pattern of liver injury are influenced by various factors, including the type of hepatotoxic agent, exposure duration, route of exposure, dosage, frequency of administration, and the animal model utilized. Therefore, there is a pressing need for standardized protocols and regulatory guidelines to streamline the selection of animal models in preclinical studies.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.
| | - Sivanesan Karthikeyan
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Paramasivan Vijayalakshmi
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Asan Memorial Dental College and Hospital, Chengalpattu, Tamil Nadu, India
| | - Ganapathy Bhavani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India; Department of Pharmacology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Muthukrishnan Jansi Rani
- Department of Pharmacology and Environmental Toxicology, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
5
|
Ponte ME, Prom JC, Newcomb MA, Jordan AB, Comfort LL, Hu J, Puchalska P, Geisler CE, Hayes MR, Morris EM. Reduced Liver Mitochondrial Energy Metabolism Impairs Food Intake Regulation Following Gastric Preloads and Fasting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.24.620086. [PMID: 39554188 PMCID: PMC11565831 DOI: 10.1101/2024.10.24.620086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Objective The capacity of the liver to serve as a peripheral sensor in the regulation of food intake has been debated for over half a century. The anatomical position and physiological roles of the liver suggest it is a prime candidate to serve as an interoceptive sensor of peripheral tissue and systemic energy state. Importantly, maintenance of liver ATP levels and within-meal food intake inhibition is impaired in human subjects with obesity and obese pre-clinical models. Previously, we have shown decreased hepatic mitochondrial energy metabolism (i.e., oxidative metabolism & ADP-dependent respiration) in male liver-specific, heterozygous PGC1a mice results in increased short-term diet-induced weight gain with increased within meal food intake. Herein, we tested the hypothesis that decreased liver mitochondrial energy metabolism impairs meal termination following nutrient oral pre-loads. Methods Liver mitochondrial respiratory response to changes in ΔGATP and adenine nucleotide concentration following fasting were examined in male liver-specific, heterozygous PGC1a mice. Further, food intake and feeding behavior during basal conditions, following nutrient oral pre-loads, and following fasting were investigated. Results We observed male liver-specific, heterozygous PGC1a mice have reduced mitochondrial response to changes in ΔGATP and tissue ATP following fasting. These impairments in liver energy state are associated with larger and longer meals during chow feeding, impaired dose-dependent food intake inhibition in response to mixed and individual nutrient oral pre-loads, and greater acute fasting-induced food intake. Conclusion These data support previous work proposing liver-mediated food intake regulation through modulation of peripheral satiation signals.
Collapse
Affiliation(s)
- Michael E. Ponte
- Dept. of Cell Biology & Physiology University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John C. Prom
- Dept. of Cell Biology & Physiology University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mallory A. Newcomb
- Dept. of Cell Biology & Physiology University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Annabelle B. Jordan
- Dept. of Cell Biology & Physiology University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Lucas L. Comfort
- Dept. of Cell Biology & Physiology University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jiayin Hu
- Dept. of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN
| | - Caroline E. Geisler
- Dept. of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Pharmaceutical Sciences University of Kentucky, Lexington, KY, USA
| | - Matthew R. Hayes
- Dept. of Psychiatry University of Pennsylvania, Philadelphia, PA, USA
| | - E. Matthew Morris
- Dept. of Cell Biology & Physiology University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Children’s Healthy Lifestyle and Nutrition Children’s Mercy Hospital, Kansas City, Missouri, USA
- University of Kansas Diabetes Institute Kansas City, Kansas
| |
Collapse
|
6
|
Feješ A, Šebeková K, Borbélyová V. Pathophysiological Role of Neutrophil Extracellular Traps in Diet-Induced Obesity and Metabolic Syndrome in Animal Models. Nutrients 2025; 17:241. [PMID: 39861371 PMCID: PMC11768048 DOI: 10.3390/nu17020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
The global pandemic of obesity poses a serious health, social, and economic burden. Patients living with obesity are at an increased risk of developing noncommunicable diseases or to die prematurely. Obesity is a state of chronic low-grade inflammation. Neutrophils are first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are web-like DNA structures of nuclear or mitochondrial DNA associated with cytosolic antimicrobial proteins. The primary function of NETosis is preventing the dissemination of pathogens. However, neutrophils may occasionally misidentify host molecules as danger-associated molecular patterns, triggering NET formation. This can lead to further recruitment of neutrophils, resulting in propagation and a vicious cycle of persistent systemic inflammation. This scenario may occur when neutrophils infiltrate expanded obese adipose tissue. Thus, NETosis is implicated in the pathophysiology of autoimmune and metabolic disorders, including obesity. This review explores the role of NETosis in obesity and two obesity-associated conditions-hypertension and liver steatosis. With the rising prevalence of obesity driving research into its pathophysiology, particularly through diet-induced obesity models in rodents, we discuss insights gained from both human and animal studies. Additionally, we highlight the potential offered by rodent models and the opportunities presented by genetically modified mouse strains for advancing our understanding of obesity-related inflammation.
Collapse
Affiliation(s)
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, 83303 Bratislava, Slovakia; (A.F.); (V.B.)
| | | |
Collapse
|
7
|
Mignini I, Galasso L, Piccirilli G, Calvez V, Termite F, Esposto G, Borriello R, Miele L, Ainora ME, Gasbarrini A, Zocco MA. Interplay of Oxidative Stress, Gut Microbiota, and Nicotine in Metabolic-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1532. [PMID: 39765860 PMCID: PMC11727446 DOI: 10.3390/antiox13121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress has been described as one of the main drivers of intracellular damage and metabolic disorders leading to metabolic syndrome, a major health problem worldwide. In particular, free radicals alter lipid metabolism and promote lipid accumulation in the liver, existing in the hepatic facet of metabolic syndrome, the metabolic dysfunction-associated steatotic liver disease (MASLD). Recent literature has highlighted how nicotine, especially if associated with a high-fat diet, exerts a negative effect on the induction and progression of MASLD by upregulating inflammation and increasing oxidative stress, abdominal fat lipolysis, and hepatic lipogenesis. Moreover, considerable evidence shows the central role of intestinal dysbiosis in the pathogenesis of MASLD and the impact of nicotine-induced oxidative stress on the gut microbiome. This results in an intricate network in which oxidative stress stands at the intersection point between gut microbiome, nicotine, and MASLD. The aim of this review is to delve into the molecular mechanisms linking tobacco smoking and MASLD, focusing on nicotine-induced microbiota modifications and their impact on MASLD development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (L.G.); (G.P.); (V.C.); (F.T.); (G.E.); (R.B.); (L.M.); (M.E.A.); (A.G.)
| |
Collapse
|
8
|
Patil M, Thapa D, Warne LN, Lareu RR, Dallerba E, Lian J, Massi M, Carlessi R, Falasca M. Chronic metabolic effects of novel gut-oriented small-molecule GPR119 agonists in diet-induced obese mice. Biomed Pharmacother 2024; 181:117675. [PMID: 39566336 DOI: 10.1016/j.biopha.2024.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
The pharmacological activation of G-protein coupled receptor-119 (GPR119) modulates glucose, energy, and hepatic lipid homeostasis in type-2 diabetes (T2D). We developed synthetic small-molecule GPR119 agonists targeting gastrointestinal receptors. This study investigates the chronic metabolic effects of lead candidates, ps297 and ps318, individually and in combination with sitagliptin, a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in high-fat diet (HFD)-induced obese (DIO) mice. In a 10-week dose-escalation protocol, DIO mice were orally treated with the investigational agents alone (10-90 mg/kg/day) and in combination with sitagliptin (20 mg/kg/day). Weekly body weight, food intake, and random blood glucose levels were monitored during the treatment phase. Post-treatment, an intraperitoneal glucose tolerance test (ipGTT), estimation of plasma biomarkers and haematological assessment were conducted. The treatment's effect on hepatic steatosis was studied by estimating liver biomarkers and histological examinations. Ten-week sitagliptin combination therapy with the investigational entities restored incretins, insulin, and other metabolic hormonal secretions, accompanied by improved glucose homeostasis and retarded weight gain. Interestingly, monotherapy with investigational agents improved liver health by reducing liver weight, liver enzymes, and inflammation. Hepatic effects were further enhanced by co-administration of sitagliptin, evident by amelioration in hepatic steatosis endpoints such as liver weight, plasma liver enzyme concentrations, hepatic triglycerides (TG), total cholesterol (CHO), hydroxyproline content, and cytokine levels. Histopathological investigations confirmed regression in hepatic steatosis in the combination groups. These findings demonstrate the therapeutic potential of novel gut-oriented GPR119 agonists in combination with a DPP-IV inhibitor to ameliorate metabolic dysfunction-associated steatohepatitis (MASH), warranting further mechanistic investigations.
Collapse
Affiliation(s)
- Mohan Patil
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Dinesh Thapa
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Leon N Warne
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; College of Science, Health, Engineering, Murdoch University, Perth, WA, Australia
| | - Ricky R Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Jerome Lian
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Rodrigo Carlessi
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Marco Falasca
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy.
| |
Collapse
|
9
|
Guraka A, Sreedharan S, Arasaradnam R, Tripathi G, Kermanizadeh A. The Role of the Gut Microbiome in the Development and Progression of Type 2 Diabetes and Liver Disease. Nutr Rev 2024:nuae172. [PMID: 39673297 DOI: 10.1093/nutrit/nuae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and progressive liver disease are 2 of the most significant global health concerns, and they have alarming and ever-increasing prevalence. A growing body of literature has demonstrated a potential multilateral link between gut microbiome dysbiosis and the development and progression of the above-mentioned conditions. Modulation of gut microbial composition from the norm is due to changes in diet allied with external factors such as age, genetics, and environmental changes. In this comprehensive review, we recapitulate the research to date investigating the links between gut microbiome dysbiosis and T2DM or liver disease, with special attention to the importance of diet. Additionally, we review the most commonly used tools and methodologies of investigating changes in the gut microbiome, highlighting the advantages and limitations of each strategy, before introducing a novel in vitro approach to the problem. Finally, the review offers recommendations for future research in this field that will allow better understanding of how the gut microbiota affects disease progression and of the prospects for intestinal microbiota-based therapeutic options.
Collapse
Affiliation(s)
- Asha Guraka
- University of Derby, College of Science and Engineering, Derby, DE22 1GB, United Kingdom
| | - Sreejesh Sreedharan
- University of Derby, College of Science and Engineering, Derby, DE22 1GB, United Kingdom
| | - Ramesh Arasaradnam
- University of Warwick, Warick Medical School, Warwick, CV4 7AL, United Kingdom
| | - Gyan Tripathi
- Nottingham Trent University, School of Science and Technology, Nottingham, NG18 5BH, United Kingdom
| | - Ali Kermanizadeh
- University of Derby, College of Science and Engineering, Derby, DE22 1GB, United Kingdom
| |
Collapse
|
10
|
Tang M, Cao H, Ma Y, Yao S, Wei X, Tan Y, Liu F, Peng Y, Fan N. USP13 ameliorates nonalcoholic fatty liver disease through inhibiting the activation of TAK1. J Transl Med 2024; 22:671. [PMID: 39033101 PMCID: PMC11264885 DOI: 10.1186/s12967-024-05465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The molecular mechanisms underlying nonalcoholic fatty liver disease (NAFLD) remain to be fully elucidated. Ubiquitin specific protease 13 (USP13) is a critical participant in inflammation-related signaling pathways, which are linked to NAFLD. Herein, the roles of USP13 in NAFLD and the underlying mechanisms were investigated. METHODS L02 cells and mouse primary hepatocytes were subjected to free fatty acid (FFA) to establish an in vitro model reflective of NAFLD. To prepare in vivo model of NAFLD, mice fed a high-fat diet (HFD) for 16 weeks and leptin-deficient (ob/ob) mice were used. USP13 overexpression and knockout (KO) strategies were employed to study the function of USP13 in NAFLD in mice. RESULTS The expression of USP13 was markedly decreased in both in vitro and in vivo models of NAFLD. USP13 overexpression evidently inhibited lipid accumulation and inflammation in FFA-treated L02 cells in vitro. Consistently, the in vivo experiments showed that USP13 overexpression ameliorated hepatic steatosis and metabolic disorders in HFD-fed mice, while its deficiency led to contrary outcomes. Additionally, inflammation was similarly attenuated by USP13 overexpression and aggravated by its deficiency in HFD-fed mice. Notably, overexpressing of USP13 also markedly alleviated hepatic steatosis and inflammation in ob/ob mice. Mechanistically, USP13 bound to transforming growth factor β-activated kinase 1 (TAK1) and inhibited K63 ubiquitination and phosphorylation of TAK1, thereby dampening downstream inflammatory pathways and promoting insulin signaling pathways. Inhibition of TAK1 activation reversed the exacerbation of NAFLD caused by USP13 deficiency in mice. CONCLUSIONS Our findings indicate the protective role of USP13 in NAFLD progression through its interaction with TAK1 and inhibition the ubiquitination and phosphorylation of TAK1. Targeting the USP13-TAK1 axis emerges as a promising therapeutic strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Min Tang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Cao
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Endocrinology, Songjiang District Central Hospital, Shanghai, China
| | - Yunqin Ma
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuangshuang Yao
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijiong Tan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Endocrinology and Metabolism, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| | - Nengguang Fan
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Venetos NM, Stomberski CT, Qian Z, Premont RT, Stamler JS. Activation of hepatic acetyl-CoA carboxylase by S-nitrosylation in response to diet. J Lipid Res 2024; 65:100542. [PMID: 38641009 PMCID: PMC11126798 DOI: 10.1016/j.jlr.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
Nitric oxide (NO), produced primarily by nitric oxide synthase enzymes, is known to influence energy metabolism by stimulating fat uptake and oxidation. The effects of NO on de novo lipogenesis (DNL), however, are less clear. Here we demonstrate that hepatic expression of endothelial nitric oxide synthase is reduced following prolonged administration of a hypercaloric high-fat diet. This results in marked reduction in the amount of S-nitrosylation of liver proteins including notably acetyl-CoA carboxylase (ACC), the rate-limiting enzyme in DNL. We further show that ACC S-nitrosylation markedly increases enzymatic activity. Diminished endothelial nitric oxide synthase expression and ACC S-nitrosylation may thus represent a physiological adaptation to caloric excess by constraining lipogenesis. Our findings demonstrate that S-nitrosylation of liver proteins is subject to dietary control and suggest that DNL is coupled to dietary and metabolic conditions through ACC S-nitrosylation.
Collapse
Affiliation(s)
- Nicholas M Venetos
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Colin T Stomberski
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Zhaoxia Qian
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard T Premont
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jonathan S Stamler
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
12
|
Yang J, Dai M, Wang Y, Yan Z, Mao S, Liu A, Lu C. A CDAHFD-induced mouse model mimicking human NASH in the metabolism of hepatic phosphatidylcholines and acyl carnitines. Food Funct 2024; 15:2982-2995. [PMID: 38411344 DOI: 10.1039/d3fo05111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is the hepatic manifestation of a cluster of conditions associated with lipid metabolism disorders. Ideal animal models mimicking the human NASH need to be explored to better understand the pathogenesis. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has recently been used to induce the NASH model, but the advantages are not established. NASH models were induced using the well-known traditional methionine- and choline-deficient (MCD) diet for 5 weeks and the recently used CDAHFD for 3 weeks. Liver phenotypes were analyzed to evaluate the differences in markers related to NASH. Lipidomics and metabolism analyses were used to investigate the effects of dietary regimens on the lipidome of the liver. The CDAHFD induced stronger NASH responses than the MCD, including lipid deposition, liver injury, inflammation, bile acid overload and hepatocyte proliferation. A significant difference in the hepatic lipidome was revealed between the CDAHFD and MCD-induced NASH models. In particular, the CDAHFD reduced the hepatic levels of phosphatidylcholines (PCs) and acylcarnitines (ACs), which was supported by the metabolism analysis and in line with the tendency of human NASH. Pathologically, the CDAHFD could effectively induce a more human-like NASH model over the traditional MCD. The hepatic PCs, ACs and their metabolism in CDAHFD-treated mice were down-regulated, similar to those in human NASH.
Collapse
Affiliation(s)
- Jie Yang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Manyun Dai
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Ying Wang
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Zheng Yan
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shuqi Mao
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| | - Aiming Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Caide Lu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
13
|
Al-Rashed F, Arefanian H, Madhoun AA, Bahman F, Sindhu S, AlSaeed H, Jacob T, Thomas R, Al-Roub A, Alzaid F, Malik MDZ, Nizam R, Thanaraj TA, Al-Mulla F, Hannun YA, Ahmad R. Neutral Sphingomyelinase 2 Inhibition Limits Hepatic Steatosis and Inflammation. Cells 2024; 13:463. [PMID: 38474427 PMCID: PMC10931069 DOI: 10.3390/cells13050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is manifested by hepatic steatosis, insulin resistance, hepatocyte death, and systemic inflammation. Obesity induces steatosis and chronic inflammation in the liver. However, the precise mechanism underlying hepatic steatosis in the setting of obesity remains unclear. Here, we report studies that address this question. After 14 weeks on a high-fat diet (HFD) with high sucrose, C57BL/6 mice revealed a phenotype of liver steatosis. Transcriptional profiling analysis of the liver tissues was performed using RNA sequencing (RNA-seq). Our RNA-seq data revealed 692 differentially expressed genes involved in processes of lipid metabolism, oxidative stress, immune responses, and cell proliferation. Notably, the gene encoding neutral sphingomyelinase, SMPD3, was predominantly upregulated in the liver tissues of the mice displaying a phenotype of steatosis. Moreover, nSMase2 activity was elevated in these tissues of the liver. Pharmacological and genetic inhibition of nSMase2 prevented intracellular lipid accumulation and TNFα-induced inflammation in in-vitro HepG2-steatosis cellular model. Furthermore, nSMase2 inhibition ameliorates oxidative damage by rescuing PPARα and preventing cell death associated with high glucose/oleic acid-induced fat accumulation in HepG2 cells. Collectively, our findings highlight the prominent role of nSMase2 in hepatic steatosis, which could serve as a potential therapeutic target for NAFLD and other hepatic steatosis-linked disorders.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Fatemah Bahman
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.A.M.); (S.S.)
| | - Halemah AlSaeed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Reeby Thomas
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Areej Al-Roub
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| | - Fawaz Alzaid
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France;
| | - MD Zubbair Malik
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Thangavel Alphonse Thanaraj
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.Z.M.); (R.N.); (T.A.T.); (F.A.-M.)
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Dasman 15462, Kuwait; (H.A.); (F.B.); (H.A.); (T.J.); (R.T.); (A.A.-R.)
| |
Collapse
|
14
|
Maurotti S, Pujia R, Ferro Y, Mare R, Russo R, Coppola A, Gazzaruso C, Montalcini T, Pujia A, Paone S, Mollace V, Mazza E. A nutraceutical with Citrus bergamia and Cynara cardunculus improves endothelial function in adults with non-alcoholic fatty liver disease. Nutrition 2024; 118:112294. [PMID: 38042043 DOI: 10.1016/j.nut.2023.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Polyphenol intake may prevent hepatic steatosis and cardiovascular disease by potentially improving endothelial function. The purposes of this study are to investigate the association between fatty liver disease and endothelial dysfunction and to test the effects of a nutraceutical containing extracts made from Citrus bergamia and Cynara cardunculus on peripheral vascular endothelial function in adults with liver steatosis. METHODS We analyzed data from 32 individuals with hepatic steatosis and endothelial dysfunction (reactive hyperemia index ≤ 1.67). Sixteen subjects took 1 capsule/d (300 mg/d) containing Cynara cardunculus extract and bergamot polyphenol fraction, while the other 16 subjects matched for age, sex, and body mass index took 1 capsule/d of placebo (maltodextrin) for 12 wk. All anthropometric parameters were assessed at baseline and after 12 wk as were lipids, glucose, and reactive hyperemia index using an EndoPAT 2000. RESULTS The mean age was 52 ± 9 y. The mean reactive hyperemia index was 1.15 ± 0.4. After 12 wk, we found a greater increase in reactive hyperemia index in the participants taking the nutraceutical rather than placebo (0.58 ± 0.5 versus 0.13 ± 0.5; P = 0.02, respectively). The stepwise multivariable analysis confirmed a positive association between reactive hyperemia index change and the nutraceutical treatment (B = 0.38; P = 0.025) and negative association with reactive hyperemia index values at baseline (B = -0.81; P < 0.001). No association was found between the reduction in the amount of intrahepatic fat and the improvement of endothelial function (B = 0.002; P = 0.56). CONCLUSIONS A nutraceutical containing bergamot and artichoke extracts improves peripheral vascular endothelial function in adults with hepatic steatosis and early phase of atherosclerosis.
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy.
| | - Rosario Mare
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Raffaella Russo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Adriana Coppola
- Diabetes and Endocrine-Metabolic Diseases Unit, Istituto Clinico Beato Matteo, Gruppo Ospedaliero San Donato, Vigevano, Italy
| | - Carmine Gazzaruso
- Diabetes and Endocrine-Metabolic Diseases Unit, Istituto Clinico Beato Matteo, Gruppo Ospedaliero San Donato, Vigevano, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Magna Græcia University of Catanzaro, Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Sara Paone
- Institute of Research for Food Safety & Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Elisa Mazza
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
15
|
Baek KW, Won JH, Xiang YY, Woo DK, Park Y, Kim JS. Exercise intensity impacts the improvement of metabolic dysfunction-associated steatotic liver disease via variations of monoacylglycerol O-acyltransferase 1 expression. Clin Res Hepatol Gastroenterol 2024; 48:102263. [PMID: 38061546 DOI: 10.1016/j.clinre.2023.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The involvement of monoacylglycerol O-acyltransferase 1 (MOGAT1) in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) has been recognized. While exercise is recommended for the improvement of obesity and MASLD, the impact of exercise intensity remains unclear. This study aimed to examine the influence of exercise intensity on MOGAT1 expression in high-fat diet (HFD)-induced obese mice with MASLD. METHOD Male C57BL/6 mice aged 6 weeks were subjected to either a regular or HFD with 60 % fat content for 8 weeks. The mice were categorized into 5 groups based on their diet and exercise intensity: normal diet group (ND), HFD group, low-intensity exercise with HFD group (HFD+LIE), moderate-intensity exercise with HFD group (HFD+MIE), and high-intensity exercise (HIE) with HFD group (HFD+HIE). The duration of running was adjusted to ensure uniform exercise load across groups (total distance = 900 m): HFD+LIE at 12 m/min for 75 min, HFD+MIE at 15 m/min for 60 min, and HFD+HIE at 18 m/min for 50 min. RESULTS Lipid droplet size and MASLD activity score were significantly lower in the HFD+HIE group compared to other exercise-intensity groups (p < 0.05). Among the 3 intensity exercise groups, the lowest MOGAT1 protein expression was found in the HFD+HIE group (p < 0.05). CONCLUSION This study reveals that high-intensity exercise has the potential to mitigate MASLD development, partly attributed to the downregulation of MOGAT1 expression.
Collapse
Affiliation(s)
- Kyung-Wan Baek
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Kyun Woo
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; College of Pharmacy, Gyeongsang National University, Jinju, 52828, Korea
| | - Yoonjung Park
- Department of Health and Human Performance, University of Houston, Houston, 77204, USA
| | - Ji-Seok Kim
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea; Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea; Department of Health and Human Performance, University of Houston, Houston, 77204, USA.
| |
Collapse
|
16
|
Greatorex S, Kaur S, Xirouchaki CE, Goh PK, Wiede F, Genders AJ, Tran M, Jia Y, Raajendiran A, Brown WA, McLean CA, Sadoshima J, Watt MJ, Tiganis T. Mitochondria- and NOX4-dependent antioxidant defense mitigates progression to nonalcoholic steatohepatitis in obesity. J Clin Invest 2023; 134:e162533. [PMID: 38060313 PMCID: PMC10849767 DOI: 10.1172/jci162533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is prevalent in the majority of individuals with obesity, but in a subset of these individuals, it progresses to nonalcoholic steatohepatitis (0NASH) and fibrosis. The mechanisms that prevent NASH and fibrosis in the majority of patients with NAFLD remain unclear. Here, we report that NAD(P)H oxidase 4 (NOX4) and nuclear factor erythroid 2-related factor 2 (NFE2L2) were elevated in hepatocytes early in disease progression to prevent NASH and fibrosis. Mitochondria-derived ROS activated NFE2L2 to induce the expression of NOX4, which in turn generated H2O2 to exacerbate the NFE2L2 antioxidant defense response. The deletion or inhibition of NOX4 in hepatocytes decreased ROS and attenuated antioxidant defense to promote mitochondrial oxidative stress, damage proteins and lipids, diminish insulin signaling, and promote cell death upon oxidant challenge. Hepatocyte NOX4 deletion in high-fat diet-fed obese mice, which otherwise develop steatosis, but not NASH, resulted in hepatic oxidative damage, inflammation, and T cell recruitment to drive NASH and fibrosis, whereas NOX4 overexpression tempered the development of NASH and fibrosis in mice fed a NASH-promoting diet. Thus, mitochondria- and NOX4-derived ROS function in concert to drive a NFE2L2 antioxidant defense response to attenuate oxidative liver damage and progression to NASH and fibrosis in obesity.
Collapse
Affiliation(s)
- Spencer Greatorex
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Supreet Kaur
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | | | - Pei K. Goh
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Florian Wiede
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Amanda J. Genders
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Melanie Tran
- Department of Biochemistry and Molecular Biology
| | - YaoYao Jia
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Arthe Raajendiran
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| | - Wendy A. Brown
- Department of Surgery, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | | | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Matthew J. Watt
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute
- Department of Biochemistry and Molecular Biology
| |
Collapse
|
17
|
Quan Y, Shou D, Yang S, Cheng J, Li Y, Huang C, Chen H, Zhou Y. Mdivi1 ameliorates mitochondrial dysfunction in non-alcoholic steatohepatitis by inhibiting JNK/MFF signaling. J Gastroenterol Hepatol 2023; 38:2215-2227. [PMID: 37839851 DOI: 10.1111/jgh.16372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND AIMS Mitochondrial dysfunction plays a crucial role in the progression of non-alcoholic steatohepatitis (NASH). Mitochondrial division inhibitor 1 (Mdivi1) is a potential inhibitor of dynamin-related protein (Drp1) and mitochondrial fission. However, the therapeutic effect of Mdivi1 against NASH and its underlying molecular mechanisms remain unclear. METHODS In this study, we established mouse models of NASH by inducing high-fat/high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diets and treated the animals with 5 mg/kg/day Mdivi1 or placebo. RESULTS Treatment with Mdivi1 significantly alleviated diet-induced fatty liver phenotypes, including increased liver weight/body weight ratio, insulin resistance, hepatic lipid accumulation, steatohepatitis, and liver injury. Furthermore, Mdivi1 treatment suppressed HFHC or MCD diet-induced changes in the expression of genes related to lipid metabolism and inflammatory cytokines. Additionally, Mdivi1 reduced macrophage infiltration in the injured liver and promoted polarization of macrophages towards the M1 phenotype. At the molecular level, Mdivi1 attenuated mitochondrial fission by reducing Drp1 activation and expression, thereby decreasing mitochondrial reactive oxygen species accumulation and mitochondrial DNA damage. Moreover, Mdivi1-treated mice exhibited elevated levels of phosphorylated-c-Jun N-terminal kinase (p-JNK), mitochondrial fission factor (MFF), cleaved caspase 3 protein, and TUNEL-positive cell expression in the liver, suggesting that Mdivi1 might ameliorate mitochondrial dysfunction and reduce hepatocyte apoptosis by inhibiting the JNK/MFF pathway. CONCLUSION Collectively, Mdivi1 protected against diet-induced NASH by restoring mitochondrial homeostasis and function, potentially through its inhibitory effect on the JNK/MFF pathway. Consequently, further investigation of Mdivi1 as a promising drug for NASH treatment is warranted.
Collapse
Affiliation(s)
- Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Siqi Yang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiemin Cheng
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Yildirim OG, Guney C, Alcigir ME, Akar F. High-fructose consumption suppresses insulin signaling pathway accompanied by activation of macrophage and apoptotic markers in rat testis. Reprod Biol 2023; 23:100815. [PMID: 37839228 DOI: 10.1016/j.repbio.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Dietary high-fructose may cause metabolic disturbances; however, its effect on the reproductive system is little understood. The insulin signaling pathway is critical in testicular development, maintenance of microcirculation and spermatogenesis. Therefore, in this study, we aimed to investigate the impact of dietary high-fructose on insulin signaling pathway as well as macrophage and apoptotic markers in testicular tissue of rats. Fructose was administered to male Wistar rats as a 20% solution in drinking water for fifteen-week. Gene expression of ir-β, irs-1, irs-2, pi3k, akt, mtor, and enos in the testicular samples was determined by real-time PCR. Protein expression of IR, IRS-1, IRS-2, PI3K, Akt, phospho-Akt (p-Akt), mTOR, eNOS, phospho-eNOS (p-eNOS), and GLUT5 was established by analysis of Western Blot. Testicular expression of occludin, CD163, CD68, caspase-8, and caspase-3 was analyzed by using immunohistochemical assay. Testicular level of fructose was measured by colorimetric method. Dietary high-fructose decreased mRNA expressions of irs-1, irs-2, pi3k, and mtor in the testicular tissue of rats. Also, this dietary intervention impaired protein expressions of IR, IRS-1, IRS-2, PI3K, p-Akt, mTOR, eNOS, and p-eNOS as well as p-Akt/Akt and p-eNOS/eNOS ratios in the testis of rats. However, a high-fructose diet increased the expression of CD163, CD68, caspase-8 and caspase-3, but decreased that of occludin, in the testicular tissue of rats. The high-fructose consumption in rats suppresses testicular insulin signaling but activates macrophages-related factors and apoptotic markers. These changes induced by dietary fructose could be related to male reproductive dysfunction.
Collapse
Affiliation(s)
- Onur Gökhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Ceren Guney
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehmet Eray Alcigir
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
19
|
Mullish BH, Tohumcu E, Porcari S, Fiorani M, Di Tommaso N, Gasbarrini A, Cammarota G, Ponziani FR, Ianiro G. The role of faecal microbiota transplantation in chronic noncommunicable disorders. J Autoimmun 2023; 141:103034. [PMID: 37087392 DOI: 10.1016/j.jaut.2023.103034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 04/24/2023]
Abstract
The gut microbiome plays a key role in influencing several pathways and functions involved in human health, including metabolism, protection against infection, and immune regulation. Perturbation of the gut microbiome is recognised as a pathogenic factor in several gastrointestinal and extraintestinal disorders, and is increasingly considered as a therapeutic target in these conditions. Faecal microbiota transplantation (FMT) is the transfer of the microbiota from healthy screened stool donors into the gut of affected patients, and is a well-established and highly effective treatment for recurrent Clostridioides difficile infection. Despite the mechanisms of efficacy of FMT not being fully understood, it has been investigated in several chronic noncommunicable disorders, with variable results. This review aims to give an overview of mechanisms of efficacy of FMT in chronic noncommunicable disorders, and to paint the current landscape of its investigation in these medical conditions, including inflammatory bowel disease (IBD), chronic liver disorders, and also extraintestinal autoimmune conditions.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Ege Tohumcu
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marcello Fiorani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Natalia Di Tommaso
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Gastroenterology Unit, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy.
| |
Collapse
|
20
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
22
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
23
|
Zheng Y, Wang S, Wu J, Wang Y. Mitochondrial metabolic dysfunction and non-alcoholic fatty liver disease: new insights from pathogenic mechanisms to clinically targeted therapy. J Transl Med 2023; 21:510. [PMID: 37507803 PMCID: PMC10375703 DOI: 10.1186/s12967-023-04367-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is among the most widespread metabolic disease globally, and its associated complications including insulin resistance and diabetes have become threatening conditions for human health. Previous studies on non-alcoholic fatty liver disease (NAFLD) were focused on the liver's lipid metabolism. However, growing evidence suggests that mitochondrial metabolism is involved in the pathogenesis of NAFLD to varying degrees in several ways, for instance in cellular division, oxidative stress, autophagy, and mitochondrial quality control. Ultimately, liver function gradually declines as a result of mitochondrial dysfunction. The liver is unable to transfer the excess lipid droplets outside the liver. Therefore, how to regulate hepatic mitochondrial function to treat NAFLD has become the focus of current research. This review provides details about the intrinsic link of NAFLD with mitochondrial metabolism and the mechanisms by which mitochondrial dysfunctions contribute to NAFLD progression. Given the crucial role of mitochondrial metabolism in NAFLD progression, the application potential of multiple mitochondrial function improvement modalities (including physical exercise, diabetic medications, small molecule agonists targeting Sirt3, and mitochondria-specific antioxidants) in the treatment of NAFLD was evaluated hoping to provide new insights into NAFLD treatment.
Collapse
Affiliation(s)
- Youwei Zheng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shiting Wang
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jialiang Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yong Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
24
|
Fang J, Celton-Morizur S, Desdouets C. NAFLD-Related HCC: Focus on the Latest Relevant Preclinical Models. Cancers (Basel) 2023; 15:3723. [PMID: 37509384 PMCID: PMC10377912 DOI: 10.3390/cancers15143723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.
Collapse
Affiliation(s)
- Jing Fang
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|
25
|
Gora AH, Rehman S, Dias J, Fernandes JMO, Olsvik PA, Sørensen M, Kiron V. Protective mechanisms of a microbial oil against hypercholesterolemia: evidence from a zebrafish model. Front Nutr 2023; 10:1161119. [PMID: 37435570 PMCID: PMC10332275 DOI: 10.3389/fnut.2023.1161119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2023] Open
Abstract
A Western diet elevates the circulating lipoprotein and triglyceride levels which are the major risk factors in cardiovascular disease (CVD) development. Consumption of long-chain omega-3 fatty acids can stall the disease progression. Although these fatty acids can significantly impact the intestine under a hypercholesterolemic condition, the associated changes have not been studied in detail. Therefore, we investigated the alterations in the intestinal transcriptome along with the deviations in the plasma lipids and liver histomorphology of zebrafish offered DHA- and EPA-rich oil. Fish were allocated to 4 dietary treatments: a control group, a high cholesterol group and microbial oil groups with low (3.3%) and high (6.6%) inclusion levels. We quantified the total cholesterol, lipoprotein and triglyceride levels in the plasma. In addition, we assessed the liver histology, intestinal transcriptome and plasma lipidomic profiles of the study groups. The results suggested that higher levels of dietary microbial oil could control the CVD risk factor indices in zebrafish plasma. Furthermore, microbial oil-fed fish had fewer liver vacuoles and higher mRNA levels of genes involved in β-oxidation and HDL maturation. Analyses of the intestine transcriptome revealed that microbial oil supplementation could influence the expression of genes altered by a hypercholesterolemic diet. The plasma lipidomic profiles revealed that the higher level of microbial oil tested could elevate the long-chain poly-unsaturated fatty acid content of triglyceride species and lower the concentration of several lysophosphatidylcholine and diacylglycerol molecules. Our study provides insights into the effectiveness of microbial oil against dyslipidemia in zebrafish.
Collapse
Affiliation(s)
- Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | | | - Pål A. Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
26
|
Amorim R, Magalhães CC, Borges F, Oliveira PJ, Teixeira J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. BIOLOGY 2023; 12:biology12040595. [PMID: 37106795 PMCID: PMC10135755 DOI: 10.3390/biology12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carina C Magalhães
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
27
|
Drummer C, Saaoud F, Jhala NC, Cueto R, Sun Y, Xu K, Shao Y, Lu Y, Shen H, Yang L, Zhou Y, Yu J, Wu S, Snyder NW, Hu W, Zhuo J‘J, Zhong Y, Jiang X, Wang H, Yang X. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front Immunol 2023; 14:1113883. [PMID: 36776889 PMCID: PMC9909353 DOI: 10.3389/fimmu.2023.1113883] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of 25% of the population and is a leading cause of cirrhosis and hepatocellular carcinoma. NAFLD ranges from simple steatosis (non-alcoholic fatty liver) to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs) and monocyte-derived macrophages, act as key players in the progression of NAFLD. Caspases are a family of endoproteases that provide critical connections to cell regulatory networks that sense disease risk factors, control inflammation, and mediate inflammatory cell death (pyroptosis). Caspase-11 can cleave gasdermin D (GSDMD) to induce pyroptosis and specifically defends against bacterial pathogens that invade the cytosol. However, it's still unknown whether high fat diet (HFD)-facilitated gut microbiota-generated cytoplasmic lipopolysaccharides (LPS) activate caspase-11 and promote NAFLD. Methods To examine this hypothesis, we performed liver pathological analysis, RNA-seq, FACS, Western blots, Seahorse mitochondrial stress analyses of macrophages and bone marrow transplantation on HFD-induced NAFLD in WT and Casp11-/- mice. Results and Discussion Our results showed that 1) HFD increases body wight, liver wight, plasma cholesterol levels, liver fat deposition, and NAFLD activity score (NAS score) in wild-type (WT) mice; 2) HFD increases the expression of caspase-11, GSDMD, interleukin-1β, and guanylate-binding proteins in WT mice; 3) Caspase-11 deficiency decreases fat liver deposition and NAS score; 4) Caspase-11 deficiency decreases bone marrow monocyte-derived macrophage (MDM) pyroptosis (inflammatory cell death) and inflammatory monocyte (IM) surface GSDMD expression; 5) Caspase-11 deficiency re-programs liver transcriptomes and reduces HFD-induced NAFLD; 6) Caspase-11 deficiency decreases extracellular acidification rates (glycolysis) and oxidative phosphorylation (OXPHOS) in inflammatory fatty acid palmitic acid-stimulated macrophages, indicating that caspase-11 significantly contributes to maintain dual fuel bioenergetics-glycolysis and OXPHOS for promoting pyroptosis in macrophages. These results provide novel insights on the roles of the caspase-11-GSDMD pathway in promoting hepatic macrophage inflammation and pyroptosis and novel targets for future therapeutic interventions involving the transition of NAFLD to NASH, hyperlipidemia, type II diabetes, metabolic syndrome, metabolically healthy obesity, atherosclerotic cardiovascular diseases, autoimmune diseases, liver transplantation, and hepatic cancers.
Collapse
Affiliation(s)
- Charles Drummer
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nirag C. Jhala
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ramon Cueto
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Huimin Shen
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Jun Yu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Sheng Wu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Nathaniel W. Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wenhui Hu
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jia ‘Joe’ Zhuo
- Tulane Hypertension & Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
28
|
Alshaibi HF, Bakhashab S, Almuhammadi A, Althobaiti YS, Baghdadi MA, Alsolami K. Protective Effect of Vitamin D against Hepatic Molecular Apoptosis Caused by a High-Fat Diet in Rats. Curr Issues Mol Biol 2023; 45:479-489. [PMID: 36661517 PMCID: PMC9857557 DOI: 10.3390/cimb45010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
The protective effects of vitamin D (VitD) in different diseases were studied. The liver is of great interest, especially with the presence of VitD receptors. A high-fat diet (HFD) is associated with many diseases, including liver injury. Consumption of saturated fatty acids triggers hepatic apoptosis and is associated with increased inflammation. We aimed in this study to investigate the protective effects of VitD on hepatic molecular apoptotic changes in response to an HFD in rats. Forty male Wistar albino rats were used and divided into four groups: control, HFD, control + VitD, and VitD-supplemented HFD (HFD + VitD) groups. After six months, the rats were sacrificed, and the livers were removed. RNA was extracted from liver tissues and used for the quantitative real-time RT-PCR of different genes: B-cell lymphoma/leukemia-2 (BCL2), BCL-2-associated X protein (Bax), Fas cell surface death receptor (FAS), FAS ligand (FASL), and tumor necrosis factor α (TNF-α). The results showed that an HFD increased the expression of the pro-apoptotic genes Bax, FAS, and FASL, and reduced the expression of the anti-apoptotic gene BCL2. Interestingly, a VitD-supplemented HFD significantly increased the BCL2 expression and decreased the expression of all pro-apoptotic genes and TNFα. In conclusion, VitD has a protective role against hepatic molecular apoptotic changes in response to an HFD.
Collapse
Affiliation(s)
- Huda F. Alshaibi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cell Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-504687127
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asma Almuhammadi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21589, Saudi Arabia
| | - Khadeejah Alsolami
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
29
|
Flessa CM, Nasiri-Ansari N, Kyrou I, Leca BM, Lianou M, Chatzigeorgiou A, Kaltsas G, Kassi E, Randeva HS. Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci 2022; 23:15791. [PMID: 36555433 PMCID: PMC9780957 DOI: 10.3390/ijms232415791] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A rapidly increasing incidence of non-alcoholic fatty liver disease (NAFLD) is noted worldwide due to the adoption of western-type lifestyles and eating habits. This makes the understanding of the molecular mechanisms that drive the pathogenesis of this chronic disease and the development of newly approved treatments of utmost necessity. Animal models are indispensable tools for achieving these ends. Although the ideal mouse model for human NAFLD does not exist yet, several models have arisen with the combination of dietary interventions, genetic manipulations and/or administration of chemical substances. Herein, we present the most common mouse models used in the research of NAFLD, either for the whole disease spectrum or for a particular disease stage (e.g., non-alcoholic steatohepatitis). We also discuss the advantages and disadvantages of each model, along with the challenges facing the researchers who aim to develop and use animal models for translational research in NAFLD. Based on these characteristics and the specific study aims/needs, researchers should select the most appropriate model with caution when translating results from animal to human.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health and Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Bianca M. Leca
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Maria Lianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
30
|
Pansa CC, Molica LR, Moraes KCM. Non-alcoholic fatty liver disease establishment and progression: genetics and epigenetics as relevant modulators of the pathology. Scand J Gastroenterol 2022; 58:521-533. [PMID: 36426638 DOI: 10.1080/00365521.2022.2148835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) results from metabolic dysfunctions that affect more than one-third of the world population. Over the last decades, scientific investigations have clarified many details on the pathology establishment and development; however, effective therapeutics approaches are still evasive. In addition, studies demonstrated that NAFLD establishment and progression are related to several etiologies. Recently, genetics and epigenetics backgrounds have emerged as relevant elements to the pathology onset, and, hence, deserve deep investigation to clarify molecular details on NAFLD signaling, which may be correlated with population behavior. Thus, to minimize the global problem, public health and public policies should take advantage of studies on NAFLD over the next following decades. METHODS In this context, we have performed a selective literature review focusing on biochemistry of lipid metabolism, genetics, epigenetics, and the ethnicity as strong elements that drive NAFLD establishment. RESULTS Considering the etiological agents that acts on NAFLD development and progression, the genetics and the epigenetics emerged as relevant factors. Genetics acts as a powerful element in the establishment and progression of the NAFLD. Over the last decades, details concerning genes and their polymorphisms, as well as epigenetics, have been considered relevant elements in the systems biology of diseases, and their effects on NAFLD should be considered in-depth, as well as the ethnicity, clarifying whether people are susceptible to liver diseases. Moreover, the endemicity and social problems of hepatic disfunction are far to be solved, which require a combined effort of various sectors of society. CONCLUSION Hence, the elements presented and discussed in this short review demonstrated their relevance to the physiological control of NAFLD, opening perspectives for research to develop new strategy to treat fatty liver diseases.
Collapse
Affiliation(s)
- Camila Cristiane Pansa
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Letícia Ramos Molica
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| | - Karen C M Moraes
- Departamento de Biologia Geral e Aplicada, Cellular Signalling and Gene Expression Laboratory, Universidade Estadual Paulista "Júlio de Mesquita Filho", Instituto de Biociências, Rio Claro, Brazil
| |
Collapse
|
31
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
32
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
33
|
Biological Sensing of Nitric Oxide in Macrophages and Atherosclerosis Using a Ruthenium-Based Sensor. Biomedicines 2022; 10:biomedicines10081807. [PMID: 36009353 PMCID: PMC9405170 DOI: 10.3390/biomedicines10081807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Macrophage-derived nitric oxide (NO) plays a critical role in atherosclerosis and presents as a potential biomarker. We assessed the uptake, distribution, and NO detection capacity of an irreversible, ruthenium-based, fluorescent NO sensor (Ru-NO) in macrophages, plasma, and atherosclerotic plaques. In vitro, incubation of Ru-NO with human THP1 monocytes and THP1-PMA macrophages caused robust uptake, detected by Ru-NO fluorescence using mass-cytometry, confocal microscopy, and flow cytometry. THP1-PMA macrophages had higher Ru-NO uptake (+13%, p < 0.05) than THP1 monocytes with increased Ru-NO fluorescence following lipopolysaccharide stimulation (+14%, p < 0.05). In mice, intraperitoneal infusion of Ru-NO found Ru-NO uptake was greater in peritoneal CD11b+F4/80+ macrophages (+61%, p < 0.01) than CD11b+F4/80− monocytes. Infusion of Ru-NO into Apoe−/− mice fed high-cholesterol diet (HCD) revealed Ru-NO fluorescence co-localised with atherosclerotic plaque macrophages. When Ru-NO was added ex vivo to aortic cell suspensions from Apoe−/− mice, macrophage-specific uptake of Ru-NO was demonstrated. Ru-NO was added ex vivo to tail-vein blood samples collected monthly from Apoe−/− mice on HCD or chow. The plasma Ru-NO fluorescence signal was higher in HCD than chow-fed mice after 12 weeks (37.9%, p < 0.05). Finally, Ru-NO was added to plasma from patients (N = 50) following clinically-indicated angiograms. There was lower Ru-NO fluorescence from plasma from patients with myocardial infarction (−30.7%, p < 0.01) than those with stable coronary atherosclerosis. In conclusion, Ru-NO is internalised by macrophages in vitro, ex vivo, and in vivo, can be detected in atherosclerotic plaques, and generates measurable changes in fluorescence in murine and human plasma. Ru-NO displays promising utility as a sensor of atherosclerosis.
Collapse
|
34
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
35
|
Sumlu E, Bostancı A, Sadi G, Alçığır ME, Akar F. Lactobacillus plantarum improves lipogenesis and IRS-1/AKT/eNOS signalling pathway in the liver of high-fructose-fed rats. Arch Physiol Biochem 2022; 128:786-794. [PMID: 32067511 DOI: 10.1080/13813455.2020.1727527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the present study, we investigated the influence of Lactobacillus plantarum and Lactobacillus helveticus supplementation on lipogenesis, insulin signalling and glucose transporters in liver of high-fructose-fed rats. Fructose was given to the rats as a 20% solution in drinking water for 15 weeks. Lactobacillus plantarum and L. helveticus supplementations were performed by gastric gavage once a day during final 6 weeks. Dietary high-fructose increased hepatic weight, lipid accumulation and FASN expression as well as caused a significant reduction in IRS-1 expression, pAKT/total AKT and peNOS/total eNOS ratios, but an elevation in GLUT2 and GLUT5 mRNAs in the liver. Lactobacillus plantarum supplementation decreased hepatic weight, triglyceride content and FASN expression as well as improved IRS-1/AKT/eNOS pathway and GLUT2 expression in the liver of high-fructose-fed rats. However, L. helveticus supplementation exerted a restoring effect on lipid accumulation by decreasing FASN expression, and regulating effect on IRS-1 and GLUT2 expressions.
Collapse
Affiliation(s)
- Esra Sumlu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Aykut Bostancı
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Mehmet Eray Alçığır
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
36
|
Hepatocyte-specific activity of TSC22D4 triggers progressive NAFLD by impairing mitochondrial function. Mol Metab 2022; 60:101487. [PMID: 35378329 PMCID: PMC9034319 DOI: 10.1016/j.molmet.2022.101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Fibrotic organ responses have recently been identified as long-term complications in diabetes. Indeed, insulin resistance and aberrant hepatic lipid accumulation represent driving features of progressive non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to fibrosis. Effective pharmacological regimens to stop progressive liver disease are still lacking to-date. Methods Based on our previous discovery of transforming growth factor beta-like stimulated clone (TSC)22D4 as a key driver of insulin resistance and glucose intolerance in obesity and type 2 diabetes, we generated a TSC22D4-hepatocyte specific knockout line (TSC22D4-HepaKO) and exposed mice to control or NASH diet models. Mechanistic insights were generated by metabolic phenotyping and single-nuclei RNA sequencing. Results Hepatic TSC22D4 expression was significantly correlated with markers of liver disease progression and fibrosis in both murine and human livers. Indeed, hepatic TSC22D4 levels were elevated in human NASH patients as well as in several murine NASH models. Specific genetic deletion of TSC22D4 in hepatocytes led to reduced liver lipid accumulation, improvements in steatosis and inflammation scores and decreased apoptosis in mice fed a lipogenic MCD diet. Single-nuclei RNA sequencing revealed a distinct TSC22D4-dependent gene signature identifying an upregulation of mitochondrial-related processes in hepatocytes upon loss of TSC22D4. An enrichment of genes involved in the TCA cycle, mitochondrial organization, and triglyceride metabolism underscored the hepatocyte-protective phenotype and overall decreased liver damage as seen in mouse models of hepatocyte-selective TSC22D4 loss-of-function. Conclusions Together, our data uncover a new connection between targeted depletion of TSC22D4 and intrinsic metabolic processes in progressive liver disease. Hepatocyte-specific reduction of TSC22D4 improves hepatic steatosis and promotes hepatocyte survival via mitochondrial-related mechanisms thus paving the way for targeted therapies. TSC22D4 is significantly upregulated in both patients with NASH and liver fibrosis and in murine models of NAFLD. Hepatocyte-specific knockdown of TSC22D4 results in reduced steatosis and hepatocyte damage in MCD diet fed mice. Single-nuclei RNA sequencing from TSC22D4-HepaKO mice reveals enrichment in lipid metabolism and OXPHOS pathways. Loss of TSC22D4 increases the oxidative consumption rate and upregulates mitochondrial maintenance genes in hepatocytes. TSC22D4 expression negatively correlates with mitochondrial targets in NASH patients.
Collapse
|
37
|
Pantaleão ACS, de Castro MP, Meirelles Araujo KSF, Campos CFF, da Silva ALA, Manso JEF, Machado JC. Ultrasound biomicroscopy for the assessment of early-stage nonalcoholic fatty liver disease induced in rats by a high-fat diet. Ultrasonography 2022; 41:750-760. [PMID: 35923118 PMCID: PMC9532208 DOI: 10.14366/usg.21182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The aim of this study was to assess the ability of ultrasound biomicroscopy (UBM) to diagnose the initial stages of nonalcoholic fatty liver disease (NAFLD) in a rat model. METHODS Eighteen male Wistar rats were allocated to control or experimental groups. A high-fat diet (HFD) with 20% fructose and 2% cholesterol, resembling a common Western diet, was fed to animals in the experimental groups for up to 16 weeks; those in the control group received a regular diet. A 21 MHz UBM system was used to acquire B-mode images at specific times: baseline (T0), 10 weeks (T10), and 16 weeks (T16). The sonographic hepatorenal index (SHRI), based on the average ultrasound image gray-level intensities from the liver parenchyma and right renal cortex, was determined at T0, T10, and T16. The liver specimen histology was classified using the modified Nonalcoholic Steatohepatitis Clinical Research Network NAFLD activity scoring system. RESULTS The livers in the animals in the experimental groups progressed from sinusoidal congestion and moderate macro- and micro-vesicular steatosis to moderate steatosis and frequent hepatocyte ballooning. The SHRI obtained in the experimental group animals at T10 and T16 was significantly different from the SHRI of pooled control group. No significant difference existed between the SHRI in animals receiving HFD between T10 and T16. CONCLUSION SHRI measurement using UBM may be a promising noninvasive tool to characterize early-stage NAFLD in rat models.
Collapse
Affiliation(s)
- Antonio Carlos Soares Pantaleão
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - André Luiz Alves da Silva
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Carlos Machado
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Biomedical Engineering Program-COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, Oliveira PJ, Wieckowski MR. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest 2022; 52:e13622. [PMID: 34050922 DOI: 10.1111/eci.13622] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
According to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damage with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
Collapse
Affiliation(s)
| | - Ines C M Simoes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | | | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Afshan N Malik
- Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
39
|
Evaluation of Anti-Obesity Activity of an Herbal Formulation (F2) in DIO Mice Model and Validation of UPLC-DAD Method for Quality Control. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is considered a chronic metabolic disorder that can be associated with multiple medical complications. Currently, there is no or limited curative therapy for obesity. This study focused on the assessment of anti-obesity activity and UPLC standardization of a polyherbal formulation (F2). An anti-obesity activity was investigated using the diet-induced obese (DIO) mice model, where obesity was developed in C57BL/6J mice by providing a high-fat diet (HFD) for five weeks without treating drugs. After the successful development of obesity, the obese mice were treated with F2 for seven weeks with continuing HFD feeding. The major obesity-related parameters such as body weight gain, food efficiency ratio, serum lipid profile, and white adipose tissue (WAT) mass were found to be significantly reduced in F2 treated obese mice. These results were supported by the down-regulation of specific adipogenic transcription factors (PPARγ, SREBP-1c, and ap2) in epididymal WAT. Histological evaluation of liver and WAT also revealed reduced fat deposition in the tissues by F2 compared to the HFD control group. The overall observations indicated that the F2 exhibited pronounced obesity-controlling activity through the inhibition of adipocyte differentiation and triglyceride accumulation in the tissues, and serum lipid depletion. In addition, F2 ameliorated obesity-induced insulin resistance. Furthermore, the UPLC-DAD method for quality control of F2 was validated and standardized using five reference compounds: astragalin, ellagic acid, fisetin, fustin, and sulfuretin.
Collapse
|
40
|
Simões ICM, Amorim R, Teixeira J, Karkucinska-Wieckowska A, Carvalho A, Pereira SP, Simões RF, Szymanska S, Dąbrowski M, Janikiewicz J, Dobrzyń A, Oliveira PJ, Potes Y, Wieckowski MR. The Alterations of Mitochondrial Function during NAFLD Progression-An Independent Effect of Mitochondrial ROS Production. Int J Mol Sci 2021; 22:ijms22136848. [PMID: 34202179 PMCID: PMC8268944 DOI: 10.3390/ijms22136848] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL. Up to the 20th week, an early mitochondrial remodeling with increased OXPHOS subunits levels and higher mitochondrial respiration occurred. Interestingly, a progressive loss of mitochondrial respiration along "Western diet" feeding was identified, accompanied by higher susceptibility to mitochondrial permeability transition pore opening. Importantly, our findings prove that mitochondrial alterations and subsequent impairment are independent of an excessive mitochondrial reactive oxygen species (ROS) generation, which was found to be progressively diminished along with disease progression. Instead, increased peroxisomal abundance and peroxisomal fatty acid oxidation-related pathway suggest that peroxisomes may contribute to hepatic ROS generation and oxidative damage, which may accelerate hepatic injury and disease progression. We show here for the first time the sequential events of mitochondrial alterations involved in non-alcoholic fatty liver disease (NAFLD) progression and demonstrate that mitochondrial ROS are not one of the first hits that cause NAFLD progression.
Collapse
Affiliation(s)
- Inês C. M. Simões
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Ricardo Amorim
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - José Teixeira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | | | - Adriana Carvalho
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | - Susana P. Pereira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
- Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Rui F. Simões
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | - Sylwia Szymanska
- Department of Pathology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (A.K.-W.); (S.S.)
| | - Michał Dąbrowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Justyna Janikiewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Agnieszka Dobrzyń
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (R.A.); (J.T.); (A.C.); (S.P.P.); (R.F.S.); (P.J.O.)
| | - Yaiza Potes
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
- Correspondence: (Y.P.); (M.R.W.)
| | - Mariusz R. Wieckowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland; (I.C.M.S.); (M.D.); (J.J.); (A.D.)
- Correspondence: (Y.P.); (M.R.W.)
| |
Collapse
|
41
|
Li Y, Chen L, Li L, Sottas C, Petrillo SK, Lazaris A, Metrakos P, Wu H, Ishida Y, Saito T, Golden-Mason L, Rosen HR, Wolff JJ, Silvescu CI, Garza S, Cheung G, Huang T, Fan J, Culty M, Stiles B, Asahina K, Papadopoulos V. Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. iScience 2021; 24:102457. [PMID: 34013171 PMCID: PMC8113880 DOI: 10.1016/j.isci.2021.102457] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Translocator protein (TSPO, 18 kDa) levels increase in parallel with the evolution of simple steatosis (SS) to nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD). However, TSPO function in SS and NASH is unknown. Loss of TSPO in hepatocytes in vitro downregulated acetyl-CoA acetyltransferase 2 and increased free cholesterol (FC). FC accumulation induced endoplasmic reticulum stress via IRE1A and protein kinase RNA-like ER kinase/ATF4/CCAAT-enhancer-binding protein homologous protein pathways and autophagy. TSPO deficiency activated cellular adaptive antioxidant protection; this adaptation was lost upon excessive FC accumulation. A TSPO ligand 19-Atriol blocked cholesterol binding and recapitulated many of the alterations seen in TSPO-deficient cells. These data suggest that TSPO deficiency accelerated the progression of SS. In NASH, however, loss of TSPO ameliorated liver fibrosis through downregulation of bile acid synthesis by reducing CYP7A1 and CYP27A1 levels and increasing farnesoid X receptor expression. These studies indicate a dynamic and complex role for TSPO in the evolution of NAFLD.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie K. Petrillo
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Anthoula Lazaris
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Peter Metrakos
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Hangyu Wu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | - Lucy Golden-Mason
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | - Hugo R. Rosen
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | | | | | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tiffany Huang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjiang Fan
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bangyan Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Kinji Asahina
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
42
|
Akar F, Sumlu E, Alçığır ME, Bostancı A, Sadi G. Potential mechanistic pathways underlying intestinal and hepatic effects of kefir in high-fructose-fed rats. Food Res Int 2021; 143:110287. [PMID: 33992387 DOI: 10.1016/j.foodres.2021.110287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022]
Abstract
Excess intake of fructose may contribute to the high prevalence of metabolic disorder. In this study, we investigated the effects of kefir supplementation on the intestine-liver-adipose tissue axis in metabolic disorder induced by high-fructose diet in rats to describe mechanistic action and potential therapeutic value of kefir. Fructose was given to the rats as a 20% solution in drinking water for 15 weeks. Kefir was administrated by gastric gavage once a day during the final six weeks. Kefir supplementation improved metabolic parameters, including plasma triglyceride and insulin levels; hepatic weight, triglyceride content and fatty degeneration; omental fat mass in fructose-fed rats. Kefir supplementation decreased the ratio of Firmicutes/Bacteroidetes in feces, as well as necrotic degeneration, expression levels of nuclear factor-kappa B (NF-κB), and inducible nitric oxide synthase (iNOS), but increased expression of tight-junction proteins occludin and claudin-1, in the ileum of the fructose-fed rats. Kefir treatment also reduced the mRNA levels of key lipogenic genes sterol regulatory element-binding protein (SREBP-1c) and fatty acid synthase (FASN) together with a decline in expression of tumor necrosis factor-alpha (TNF-α), NF-κB, and glycosylated glycoprotein (CD68) in the liver. Moreover, kefir treatment improved insulin signaling at the level of insulin receptor substrate 1 (IRS-1) and phospho-endothelial nitric oxide synthase (peNOS) as well as fructose transporters (GLUT2 and GLUT5) in the liver, but not in the adipose tissue, of high-fructose-fed rats. Consequently, kefir supplementation suppresses hepatic lipogenesis and inflammatory status, but promotes insulin signaling, in association with a change of the fecal microbiota and attenuation of the intestinal permeability factors in high-fructose-fed rats. Thus, we propose that kefir has favorable effects on the hepatic and intestinal irregularities induced by fructose overconsumption.
Collapse
Affiliation(s)
- Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Esra Sumlu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehmet Eray Alçığır
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Aykut Bostancı
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
43
|
Ognik K, Dworzański W, Sembratowicz I, Fotschki B, Cholewińska E, Listos P, Juśkiewicz J. The effect of the high-fat diet supplemented with various forms of chromium on rats body composition, liver metabolism and organ histology Cr in liver metabolism and histology of selected organs. J Trace Elem Med Biol 2021; 64:126705. [PMID: 33383354 DOI: 10.1016/j.jtemb.2020.126705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND In the present study, we hypothesized that feeding rats a high-fat diet negatively affects liver metabolism and function and disturbs the histology of some internal organs. We also postulated that there is a form of chromium whose administration alleviates the negative effects of a high-fat diet in rats. METHODS To verify the hypotheses, we tested the effect of various forms of chrome (picolinate - Cr-Pic, Chromium(III)-methionine complex - Cr-Met, and chrome nanoparticles - Cr-NPs) applied in the recommended amount of 0.3 mg/kg of BW on growth parameters, body fat, liver metabolism and functional disorders, and histological parameters of selected internal organs in rats fed a standard (S) or high-fat diet (F). The experiment was conducted on 56 male outbred Wistar rats (Rattus norvegicus. Cmdb:WI) randomly divided into eight experimental groups. For eight weeks the rats received a standard or high-fat diet, without Cr or with Cr at 0.3 mg/kg diet in the form of Cr-Pic, Cr-Met or Cr-NPs. RESULTS AND CONCLUSION The use of a F diet disrupted the lipid-carbohydrate profile, worsened liver metabolism and function, reduced the expression of hepatic PPAR-α and leaded to negative changes in the histological image of internal organs - liver, kidneys and pancreas. The 8-week use of an chromium supplement in a F diet, regardless of the form used, did not improve the ratio of fat tissue to lean tissue, worsened liver function and negatively affected on the histological image of the liver, kidneys and pancreas. However, the most negative changes in lipid-carbohydrate metabolism and liver functioning were observed with CrNPs supplementation.
Collapse
Affiliation(s)
- Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Wojciech Dworzański
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, Lublin, 20-090, Poland
| | - Iwona Sembratowicz
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Bartosz Fotschki
- Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
| | - Piotr Listos
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, Lublin, 20-612, Poland
| | - Jerzy Juśkiewicz
- Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, 10-748, Poland
| |
Collapse
|
44
|
Accumulation of 8-hydroxydeoxyguanosine, L-arginine and Glucose Metabolites by Liver Tumor Cells Are the Important Characteristic Features of Metabolic Syndrome and Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Int J Mol Sci 2020; 21:ijms21207746. [PMID: 33092030 PMCID: PMC7594076 DOI: 10.3390/ijms21207746] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
To uncover mechanisms and explore novel biomarkers of obesity, type 2 diabetes (T2DM) and nonalcoholic steatohepatitis (NASH)-associated hepatocarcinogenesis, cellular and molecular alterations in the liver, and hepatocellular carcinomas (HCCs) were investigated in NASH model 60-week-old Tsumura, Suzuki, Obese Diabetic (TSOD) mice and NASH HCC patients. Markedly elevated lipid deposition, inflammation, fibrosis, and peroxisome proliferation in the liver, preneoplastic lesions, and HCCs of TSOD mice were accompanied by accumulation of polysaccharides in the cellular cytoplasm and nuclei and increase of oxidative DNA damage marker, 8-hydroxydeoxyguanosine (8-OHdG) formation in the liver and altered foci. Metabolomics of TSOD mice HCCs demonstrated significant elevation of the concentration of amino acid L-arginine, phosphocreatine, S-adenosylmethionine/S-adenosylhomocysteine ratio, adenylate, and guanylate energy charges in coordination with tremendous rise of glucose metabolites, mostly fructose 1,6-diphosphate. L-arginine accumulation in HCCs was associated with significant under-expression of arginase 1 (ARG1), suppression of the urea cycle, methionine and putrescine degradation pathways, activation of Ser and Thr kinase Akt AKT, phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinase 1/2 (ERK1/2) kinases, β-catenin, mammalian target of rapamycin (mTOR), and cell proliferation. Furthermore, clinicopathological analysis in 20 metabolic syndrome/NASH and 80 HCV-positive HCC patients demonstrated significant correlation of negative ARG1 expression with poor tumor differentiation, higher pathological stage, and significant decrease of survival in metabolic syndrome/NASH-associated HCC patients, thus indicating that ARG1 could become a potential marker for NASH HCC. From these results, formation of oxidative stress and 8-OHdG in the DNA and elevation of glucose metabolites and L-arginine due to ARG1 suppression in mice liver cells are the important characteristics of T2DM/NASH-associated hepatocarcinogenesis, which may take part in activating oxidative stress resistance, synthesis of phosphocreatine, cell signaling, methylation, and proliferation.
Collapse
|
45
|
High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem Biol Interact 2020; 330:109199. [DOI: 10.1016/j.cbi.2020.109199] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
46
|
The Effect of Rice Bran Extract on Arterial Blood Pressure, Hepatic Steatosis, and Inflammation in Mice Fed with a High-Fat Diet. J Nutr Metab 2020; 2020:8374287. [PMID: 32685208 PMCID: PMC7341425 DOI: 10.1155/2020/8374287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. Methods Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). Results The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. Conclusions These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.
Collapse
|
47
|
Radhakrishnan S, Ke JY, Pellizzon MA. Targeted Nutrient Modifications in Purified Diets Differentially Affect Nonalcoholic Fatty Liver Disease and Metabolic Disease Development in Rodent Models. Curr Dev Nutr 2020; 4:nzaa078. [PMID: 32494762 PMCID: PMC7250583 DOI: 10.1093/cdn/nzaa078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex spectrum of disorders ranging from simple benign steatosis to more aggressive forms of nonalcoholic steatohepatitis (NASH) and fibrosis. Although not every patient with NAFLD/NASH develops liver complications, if left untreated it may eventually lead to cirrhosis and hepatocellular carcinoma. Purified diets formulated with specific nutritional components can drive the entire spectrum of NAFLD in rodent models. Although they may not perfectly replicate the clinical and histological features of human NAFLD, they provide a model to gain further understanding of disease progression in humans. Owing to the growing demand of diets for NAFLD research, and for our further understanding of how manipulation of dietary components can alter disease development, we outlined several commonly used dietary approaches for rodent models, including mice, rats, and hamsters, time frames required for disease development and whether other metabolic diseases commonly associated with NAFLD in humans occur.
Collapse
Affiliation(s)
| | - Jia-Yu Ke
- Research Diets, Inc., New Brunswick, NJ, USA
| | | |
Collapse
|
48
|
Musolino V, Gliozzi M, Bombardelli E, Nucera S, Carresi C, Maiuolo J, Mollace R, Paone S, Bosco F, Scarano F, Scicchitano M, Macrì R, Ruga S, Zito MC, Palma E, Gratteri S, Ragusa M, Volterrani M, Fini M, Mollace V. The synergistic effect of Citrus bergamia and Cynara cardunculus extracts on vascular inflammation and oxidative stress in non-alcoholic fatty liver disease. J Tradit Complement Med 2020; 10:268-274. [PMID: 32670822 PMCID: PMC7340872 DOI: 10.1016/j.jtcme.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIM Non-Alcoholic Fatty Liver Disease (NAFLD) represents a risk factor for cardiovascular diseases. NAFLD is worsened by the simultaneous occurrence of type 2 diabetes mellitus (T2DM) causing an enhancement of inflammatory and fibrotic processes. Although insulin resistance appears the link between NAFLD and T2DM, current pharmacological treatments of T2DM failed to produce relevant benefits in preventing T2DM-related liver dysfunction. In this randomized, double blind, placebo-controlled clinical study, we evaluated the effect of Bergacyn, an innovative formulation originating from the combination of Bergamot Polyphenolic Fraction (BPF) and Cynara cardunculus (CyC). EXPERIMENTAL PROCEDURE 80 adult patients with a history of at least 12 months of T2DM and NAFLD received orally BPF (300 mg/daily) Cyc (300 mg/daily), separately or formulated in combination 50/50% (Bergacyn; 300 mg/daily), or placebo all containing 300 mg of bergamot albedo fibers micronized and co-grinded as excipients. RESULTS AND CONCLUSION Serum measurements and liver ultrasound analyses showed that concomitant administration of BPF and CyC produced significant improvement of NAFLD biomarkers in patients with T2DM. This effect was associated with a substantial reduction of oxidative stress/inflammatory biomarkers, thus contributing to a significant improvement of NO-mediated reactive vasodilation. Furthermore, the effect of Bergacyn showed a synergistic effect of both extracts, thus suggesting that this peculiar formulation represents a novel therapeutic strategy to counteract vascular inflammation and endothelial dysfunction in patients suffering from T2DM and NAFLD. Further studies in larger cohort of diabetic patients are required to better identify the potential of Bergacyn on metabolic disorders accompanying T2DM and NAFLD.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Ezio Bombardelli
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Sara Paone
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Santo Gratteri
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | - Monica Ragusa
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
| | | | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health, Department of Health Sciences, University “Magna Graecia” of Catanzaro, Nutramed Scarl and, Italy
- San Raffaele IRCCS, Rome, Italy
| |
Collapse
|
49
|
Raigani S, Karimian N, Huang V, Zhang AM, Beijert I, Geerts S, Nagpal S, Hafiz EOA, Fontan FM, Aburawi MM, Mahboub P, Markmann JF, Porte RJ, Uygun K, Yarmush M, Yeh H. Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies. PLoS One 2020; 15:e0228011. [PMID: 31978172 PMCID: PMC6980574 DOI: 10.1371/journal.pone.0228011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ω-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Negin Karimian
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Viola Huang
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Anna M. Zhang
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Irene Beijert
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sharon Geerts
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Sonal Nagpal
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Ehab O. A. Hafiz
- Electron Microscopy Research Division, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fermin M. Fontan
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Mohamed M. Aburawi
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Paria Mahboub
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Korkut Uygun
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Martin Yarmush
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, Massachusetts, United States of America
| | - Heidi Yeh
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Plasma Krebs Cycle Intermediates in Nonalcoholic Fatty Liver Disease. J Clin Med 2020; 9:jcm9020314. [PMID: 31979094 PMCID: PMC7073566 DOI: 10.3390/jcm9020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic liver disease (NAFLD) is manifested with a wide spectrum of clinical symptoms and is closely associated with the metabolic syndrome, inflammation, and mitochondrial dysfunction. Although the mechanism of mitochondrial dysfunction in NAFLD is still not fully elucidated, multiple studies have demonstrated evidence of molecular, biochemical, and biophysical mitochondrial abnormalities in NAFLD. Given the association between NAFLD and mitochondrial dysfunction, the aim of this study is to analyze circulating levels of Krebs cycle intermediates in a cohort of NAFLD-affected individuals and matching healthy controls and to correlate our findings with the liver function metrics. Standard serum biochemistry and Krebs cycle intermediates were analyzed in NAFLD (n = 22) and matched control (n = 67) cohorts. Circulating levels of isocitrate and citrate were significantly (p < 0.05) elevated in the NAFLD cohort of patients. The area under the curve (AUROC) for these two metabolites exhibited a moderate clinical utility. Correlations between plasma Krebs cycle intermediates and standard clinical plasma metrics were explored by Pearson’s correlation coefficient. The data obtained for plasma Krebs cycle intermediates suggest pathophysiological insights that link mitochondrial dysfunction with NAFLD. Our findings reveal that plasma isocitrate and citrate can discriminate between normal and NAFLD cohorts and can be utilized as noninvasive markers of mitochondrial dysfunction in NAFLD. Future studies with large populations at different NAFLD stages are warranted.
Collapse
|