1
|
Liu J, Li Z, Li Z, Wang A, Liao X, Liu Z, Wu J. Fudosteine attenuates lung inflammation in mice with PM2.5-induced asthma exacerbation by inhibiting pyroptosis via the NLRP3/caspase-1/GSDMD pathway. Toxicol Appl Pharmacol 2025; 499:117346. [PMID: 40228672 DOI: 10.1016/j.taap.2025.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
This study aimed to explore the potential preventive effects of fudosteine (Fud) on PM2.5-induced asthma exacerbations in a murine model. BALB/c mice were randomly allocated into six groups: control, Fud, ovalbumin (OVA), OVA+Fud, OVA+PM2.5, and OVA+PM2.5 + Fud. An asthma model was established through OVA sensitization and challenge. Compared to the OVA group, PM2.5 exposure exacerbated allergic asthma, as evidenced by increased collagen fiber deposition, goblet cell metaplasia, mucus secretion, heightened airway inflammation, elevated total cell and eosinophil counts, and upregulated levels of interleukin (IL)-1β, IL-18, and NLRP3 expression in lung tissues. Notably, fudosteine treatment mitigated these pathological changes. Western blot analysis revealed that fudosteine significantly reduced the expression of NLRP3, caspase-1, gasdermin D (GSDMD), cleaved-caspase-1, and cleaved-GSDMD in lung tissues. In conclusion, fudosteine alleviated lung inflammation, collagen deposition, and mucus secretion in PM2.5-induced asthma exacerbation, potentially by inhibiting the NLRP3 inflammasome-mediated pyroptosis pathway.
Collapse
Affiliation(s)
- Jianling Liu
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhongpeng Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhangwen Li
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Aili Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoyang Liao
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhangquan Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jian Wu
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Jang JW, Capaldi E, Smith T, Verma P, Varga J, Ho KJ. Trimethylamine N-oxide: a meta-organismal axis linking the gut and fibrosis. Mol Med 2024; 30:128. [PMID: 39180015 PMCID: PMC11344357 DOI: 10.1186/s10020-024-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Tissue fibrosis is a common pathway to failure in many organ systems and is the cellular and molecular driver of myriad chronic diseases that are incompletely understood and lack effective treatment. Recent studies suggest that gut microbe-dependent metabolites might be involved in the initiation and progression of fibrosis in multiple organ systems. MAIN BODY OF THE MANUSCRIPT In a meta-organismal pathway that begins in the gut, gut microbiota convert dietary precursors such as choline, phosphatidylcholine, and L-carnitine into trimethylamine (TMA), which is absorbed and subsequently converted to trimethylamine N-oxide (TMAO) via the host enzyme flavin-containing monooxygenase 3 (FMO3) in the liver. Chronic exposure to elevated TMAO appears to be associated with vascular injury and enhanced fibrosis propensity in diverse conditions, including chronic kidney disease, heart failure, metabolic dysfunction-associated steatotic liver disease, and systemic sclerosis. CONCLUSION Despite the high prevalence of fibrosis, little is known to date about the role of gut dysbiosis and of microbe-dependent metabolites in its pathogenesis. This review summarizes recent important advances in the understanding of the complex metabolism and functional role of TMAO in pathologic fibrosis and highlights unanswered questions.
Collapse
Affiliation(s)
- Jae Woong Jang
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Emma Capaldi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Tracy Smith
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA
| | - Priyanka Verma
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - John Varga
- Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Floor 3, Reception A, Ann Arbor, MI, 48109, USA
| | - Karen J Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 650, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Zhai J, Chen Z, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. The Protective Effects of Curcumin against Renal Toxicity. Curr Med Chem 2024; 31:5661-5669. [PMID: 38549536 DOI: 10.2174/0109298673271161231121061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 09/25/2024]
Abstract
Curcumin is a naturally polyphenolic compound used for hepatoprotective, thrombosuppressive, neuroprotective, cardioprotective, antineoplastic, antiproliferative, hypoglycemic, and antiarthritic effects. Kidney disease is a major public health problem associated with severe clinical complications worldwide. The protective effects of curcumin against nephrotoxicity have been evaluated in several experimental models. In this review, we discussed how curcumin exerts its protective effect against renal toxicity and also illustrated the mechanisms of action such as anti-inflammatory, antioxidant, regulating cell death, and anti-fibrotic. This provides new perspectives and directions for the clinical guidance and molecular mechanisms for the treatment of renal diseases by curcumin.
Collapse
Affiliation(s)
- Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| |
Collapse
|
4
|
Gupta R, Kalra P, Ramamurthy LB, Rath S. Thyroid Eye Disease and Its Association With Diabetes Mellitus: A Major Review. Ophthalmic Plast Reconstr Surg 2023; 39:S51-S64. [PMID: 38054986 DOI: 10.1097/iop.0000000000002449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Thyroid eye disease (TED) associated with diabetes mellitus (DM) presents unique challenges. DM is a risk factor for TED. Standard management of TED with glucocorticoids (GC), orbital radiation, or teprotumumab can cause adverse events in poor glycemic control. The authors reviewed the literature on the relationship between TED and DM and the management of co-existing diseases. METHODS The authors searched PubMed with keywords "thyroid eye disease," "diabetes mellitus," and similar terms from 2013 to 2022. The authors included relevant studies after screening the abstracts. Additional references to the selected studies were included where applicable. Data were extracted from the final articles according to the preplanned outline of the review. RESULTS The initial search yielded 279 abstracts. The final review included 93 articles. TED and DM interact at multiple levels-genetic, immunologic, cellular, nutritional, and metabolic. Both DM and thyroid dysfunction exacerbate the morbidity caused by the other. Metabolic factors also affect the inflammatory pathway for TED. Patients with DM develop TED with greater frequency and severity, necessitating interventions for vision salvage. Agents (GC, teprotumumab, or radiation) used for TED are often unsuitable for treatment with DM, especially if there is poor glycemic control or diabetic retinopathy. There were no studies on using steroid-sparing agents in TED with DM. CONCLUSION TED and DM co-exist because of multiple intersections in the pathophysiology. Challenges in the treatment include increased TED severity and risk of hyperglycemia and retinopathy. Multidisciplinary teams best undertake treatment of TED with DM.
Collapse
Affiliation(s)
- Roshmi Gupta
- Orbit, Oculoplasty and Ocular Oncology, Trustwell Hospital, Bengaluru, Karnataka, India
| | - Pramila Kalra
- Department of Endocrinology, Ramaiah Medical College and Hospitals, Bengaluru, Karnataka, India
| | - Lakshmi B Ramamurthy
- Department of Ophthalmology, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India
| | - Suryasnata Rath
- Ophthalmic Plastics, Orbit, and Ocular Oncology Services, Mithu Tulsi Chanrai campus, L V Prasad Eye Institute, Bhubaneswar, India
| |
Collapse
|
5
|
Woo S, Gandhi S, Ghincea A, Saber T, Lee CJ, Ryu C. Targeting the NLRP3 inflammasome and associated cytokines in scleroderma associated interstitial lung disease. Front Cell Dev Biol 2023; 11:1254904. [PMID: 37849737 PMCID: PMC10577231 DOI: 10.3389/fcell.2023.1254904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
SSc-ILD (scleroderma associated interstitial lung disease) is a complex rheumatic disease characterized in part by immune dysregulation leading to the progressive fibrotic replacement of normal lung architecture. Because improved treatment options are sorely needed, additional study of the fibroproliferative mechanisms mediating this disease has the potential to accelerate development of novel therapies. The contribution of innate immunity is an emerging area of investigation in SSc-ILD as recent work has demonstrated the mechanistic and clinical significance of the NLRP3 inflammasome and its associated cytokines of TNFα (tumor necrosis factor alpha), IL-1β (interleukin-1 beta), and IL-18 in this disease. In this review, we will highlight novel pathophysiologic insights afforded by these studies and the potential of leveraging this complex biology for clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | - Changwan Ryu
- Department of Internal Medicine, Yale School of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Lin CC, Liao SL, Wei YH. The Role of Interleukin-17A and NLRP3 Inflammasome in the Pathogenesis of Graves' Ophthalmopathy. Life (Basel) 2023; 13:life13041007. [PMID: 37109536 PMCID: PMC10141012 DOI: 10.3390/life13041007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The development of Graves' ophthalmopathy (GO) is associated with autoimmune dysfunction. Recent studies have indicated that IL-17A, inflammasomes, and related cytokines may be involved in the etiology of GO. We sought to investigate the pathogenic role of IL-17A and NLRP3 inflammasomes in GO. Orbital fat specimens were collected from 30 patients with GO and 30 non-GO controls. Immunohistochemical staining and orbital fibroblast cultures were conducted for both groups. IL-17A was added to the cell cultures, and cytokine expression, signaling pathways, and inflammasome mechanisms were investigated using reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and small interfering RNA (siRNA) methods. Immunohistochemical staining showed higher NLRP3 expression in GO orbital tissue than in non-GO controls. IL-17A upregulated pro-IL-1β mRNA levels and IL-1β protein levels in the GO group. Furthermore, IL-17A was confirmed to enhance caspase-1 and NLRP3 protein expression in orbital fibroblasts, suggesting NLRP3 inflammasome activation. Inhibiting caspase-1 activity could also decrease IL-1β secretion. In siRNA-transfected orbital fibroblasts, significantly decreased NLRP3 expression was observed, and IL-17A-mediated pro-IL-1β mRNA release was also downregulated. Our observations illustrate that IL-17A promotes IL-1β production from orbital fibroblasts via the NLRP3 inflammasome in GO, and cytokines subsequently released may induce more inflammation and autoimmunity.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Ophthalmology, Taipei City Hospital, Taipei 103212, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
7
|
Xu Y, Biby S, Kaur B, Zhang S. A patent review of NLRP3 inhibitors to treat autoimmune diseases. Expert Opin Ther Pat 2023; 33:455-470. [PMID: 37470439 PMCID: PMC10440821 DOI: 10.1080/13543776.2023.2239502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION NOD-like receptor family pyrin domain containing 3 (NLRP3) can sense a plethora of exogenous and endogenous dangers. Upon activation, a multimeric protein complex, the NLRP3 inflammasome, is formed to initiate the innate immune responses. Emerging studies have implicated the pathophysiological roles of this protein complex in human disorders, highlighting that it represents a druggable target for therapeutics development. AREAS COVERED The current review summarizes the functional facets of the NLRP3 inflammasome, its association with autoimmune diseases, and recent patents on the development of NLRP3 inhibitors. Literature search was conducted using SciFinder and Google Patents with the key word NLRP3 and NLRP3 inhibitors. EXPERT OPINION Although significant advances have been made in understanding the NLRP3 inflammasome, more studies are still needed to elucidate the molecular mechanisms underlying its roles in autoimmune diseases. A number of NLRP3 inhibitors have been patented, however, none of them have been approved for clinical use. Due to the complex nature of the NLRP3 inflammasome, novel screening assays along with target engagement methods could benefit the drug discovery and clinical translation. In addition, clinical trials on NLRP3 inhibitors are still in their early stages, and continuous investigations are needed to fully assess their safety and effectiveness.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Baljit Kaur
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
8
|
Liu Y, Kong X, You Y, Xiang L, Zhang Y, Wu R, Zhou L, Duan L. S100A8-Mediated NLRP3 Inflammasome-Dependent Pyroptosis in Macrophages Facilitates Liver Fibrosis Progression. Cells 2022; 11:cells11223579. [PMID: 36429008 PMCID: PMC9688473 DOI: 10.3390/cells11223579] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
NLRP3 inflammasome-dependent pyroptosis has been implicated in liver fibrosis progression. However, the definite intrahepatic cell types that undergo pyroptosis and the underlying mechanism as well as the clinical importance remain unclear. Here, augmented levels of pyroptosis-related indicators GSDMD, IL-1β, and IL-18 were verified in both liver fibrosis patients and CCl4-induced fibrotic mouse model. Confocal imaging of NLRP3 with albumin, F4/80 or α-SMA revealed that enhanced NLRP3 was mainly localized to kupffer cells (KCs), indicating that KCs are major cell types that undergo pyroptosis. Targeting pyroptosis by inhibitor MCC950 attenuated the severity and ameliorated liver function in fibrosis models. In addition, elevated S100A8 in liver fibrosis patients was correlated with pyroptosis-related indicators. S100A8 stimulated pyroptotic death of macrophages, which resulted in activation of human hepatic stellate cell line LX-2 cells and increased collagen deposition. Mechanistically, S100A8 activated TLR4/NF-κB signaling and upregulated its target genes NLRP3, pro-IL-1β, and pro-IL-18 expression, and induced reactive oxygen (ROS) abundance to activate NLRP3 inflammasome, finally leading to pyroptotic cell death in macrophages. More importantly, circulating GSDMD had the optimal predicting value for liver fibrosis progression. In conclusion, S100A8-mediated NLRP3 inflammasome-dependent pyroptosis by TLR4/NF-κB activation and ROS production in macrophages facilitates liver fibrosis progression. The identified GSDMD has the potential to be a biomarker for liver fibrosis evaluation.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xuehua Kong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan You
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linwei Xiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lan Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (L.Z.); (L.D.); Tel.: +23-68485388 (L.Z.); +23-63693193 (L.D.)
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Correspondence: (L.Z.); (L.D.); Tel.: +23-68485388 (L.Z.); +23-63693193 (L.D.)
| |
Collapse
|
9
|
Park SY, Kang MJ, Jin N, Lee SY, Lee YY, Jo S, Eom JY, Han H, Chung SI, Jang K, Kim TH, Park J, Han JS. House dust mite-induced Akt-ERK1/2-C/EBP beta pathway triggers CCL20-mediated inflammation and epithelial-mesenchymal transition for airway remodeling. FASEB J 2022; 36:e22452. [PMID: 35916017 DOI: 10.1096/fj.202200150rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
House dust mite (HDM) allergens cause inflammatory responses and chronic allergic diseases such as bronchial asthma and atopic dermatitis. Here, we investigate the mechanism by which HDM induces C-C chemokine ligand 20 (CCL20) expression to promote chronic inflammation and airway remodeling in an HDM-induced bronchial asthma mouse model. We showed that HDM increased CCL20 levels via the Akt-ERK1/2-C/EBPβ pathway. To investigate the role of CCL20 in chronic airway inflammation and remodeling, we made a mouse model of CCL20-induced bronchial asthma. Treatment of anti-CCL20Ab in this mouse model showed the reduced airway hyper-responsiveness and inflammatory cell infiltration into peribronchial region by neutralizing CCL20. In addition, CCL20 induced the Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation through NLRP3 deubiquitination and transcriptional upregulation in BEAS-2B cells. As expected, anti-CCL20Ab markedly suppressed NLRP3 activation induced by CCL20. Moreover, HDM-induced CCL20 leads to epithelial-mesenchymal transition in the lung epithelium which appears to be an important regulator of airway remodeling in allergic asthma. We also found that anti-CCL20Ab attenuates airway inflammation and remodeling in an HDM-induced mouse model of bronchial asthma. Taken together, our results suggest that HDM-induced CCL20 is required for chronic inflammation that contributes airway remodeling in a mouse model of asthma.
Collapse
Affiliation(s)
- Shin-Young Park
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Min-Jeong Kang
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Nuri Jin
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - So Young Lee
- EONE-DIAGNOMICS Genome Center Co. Ltd., Incheon, Republic of Korea
| | | | - Sungsin Jo
- Institute for Rheumatology Research, Hanyang University, Seoul, Republic of Korea
| | - Jeong Yun Eom
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Heejae Han
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sook In Chung
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Institute for Rheumatology Research, Hanyang University, Seoul, Republic of Korea
| | - Jungwon Park
- Institute for Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joong-Soo Han
- Biomedical Research Institute and Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Zhao X, Liu Y, Wang L, Yan C, Liu H, Zhang W, Zhao H, Cheng C, Chen Z, Xu T, Li K, Cai J, Qiao T. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115206. [PMID: 35301099 DOI: 10.1016/j.jep.2022.115206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oridonin (Ori), extracted from Isodon rubescens (Hemsl.) H.Hara, is a well-known traditional Chinese herbal medicinal product that possesses antioxidant and anti-inflammatory activities. Oxidative stress and inflammation are the main pathophysiological mechanisms in hindlimb IR injury. However, whether Ori has a protective effect on hind limb IR injury is unknown. AIM OF THE STUDY The present study was designed to determine the effect of Ori on hindlimb IR injury and its relationship with oxidative stress and inflammation. MATERIALS AND METHODS The hind limb IR injury model in mice was used to evaluate the protective effect and related mechanisms of Ori. Forty-eight C57BL/6 mice (n = 12 per group) were randomly divided into four groups: Sham group; IR group; IR + Ori (10 mg/kg) group and IR + Ori (20 mg/kg) group. Mice in the IR and IR + Ori groups were subjected to hindlimb IR injury, while mice in the Sham group were subjected to no hindlimb IR injury. HE staining, Masson's staining, TTC staining, DHE staining, TUNEL staining, western blotting analysis and quantitative real-time PCR were employed to explore the mechanisms by which Ori exerts a protective effect on a classical hindlimb IR model in mice. RESULTS We found that Ori pretreatment prevented muscle damage and decreased cell apoptosis levels compared with the vehicle control. Moreover, the SOD2, CAT, MDA and ROS levels in muscle showed that Ori could significantly reduce oxidative stress in hindlimb IR mice, while the IL-1β and TNF-α levels in muscle showed that Ori could significantly attenuate IR-induced inflammation. We also found that Ori could increase the expression of Nrf2 and its downstream protein HO-1 and inhibit the expression levels of NLRP3-related proteins (NLRP3, ASC and Caspase-1) in vivo. CONCLUSIONS Our study suggested that Ori has a protective effect on hindlimb IR injury, which may be related to Nrf2-mediated oxidative stress and NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Han Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chen Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tianze Xu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
11
|
Cao W, Wang X, Li J, Yan M, Chang CH, Kim J, Jiang J, Liao YP, Tseng S, Kusumoputro S, Lau C, Huang M, Han P, Lu P, Xia T. NLRP3 inflammasome activation determines the fibrogenic potential of PM 2.5 air pollution particles in the lung. J Environ Sci (China) 2022; 111:429-441. [PMID: 34949371 DOI: 10.1016/j.jes.2021.04.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 06/14/2023]
Abstract
Airborne fine particulate matter (PM2.5) is known to cause respiratory inflammation such as chronic obstructive pulmonary disease and lung fibrosis. NLRP3 inflammasome activation has been implicated in these diseases; however, due to the complexity in PM2.5 compositions, it is difficult to differentiate the roles of the components in triggering this pathway. We collected eight real-life PM2.5 samples for a comparative analysis of their effects on NLRP3 inflammasome activation and lung fibrosis. In vitro assays showed that although the PM2.5 particles did not induce significant cytotoxicity at the dose range of 12.5 to 100 µg/mL, they induced potent TNF-α and IL-1β production in PMA differentiated THP-1 human macrophages and TGF-β1 production in BEAS-2B human bronchial epithelial cells. At the dose of 100 µg/mL, PM2.5 induced NLRP3 inflammasome activation by inducing lysosomal damage and cathepsin B release, leading to IL-1β production. This was confirmed by using NLRP3- and ASC-deficient cells as well as a cathepsin B inhibitor, ca-074 ME. Administration of PM2.5 via oropharyngeal aspiration at 2 mg/kg induced significant TGF-β1 production in the bronchoalveolar lavage fluid and collagen deposition in the lung at 21 days post-exposure, suggesting PM2.5 has the potential to induce pulmonary fibrosis. The ranking of in vitro IL-1β production correlates well with the in vivo total cell count, TGF-β1 production, and collagen deposition. In summary, we demonstrate that the PM2.5 is capable of inducing NLRP3 inflammasome activation, which triggers a series of cellular responses in the lung to induce fibrosis.
Collapse
Affiliation(s)
- Wei Cao
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China.
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States.
| | - Jiulong Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
| | - Chong Hyun Chang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Joshua Kim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Jinhong Jiang
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States
| | - Shannon Tseng
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Sydney Kusumoputro
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles 90095, CA, United States
| | - Candice Lau
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095, CA, United States
| | - Marissa Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, CA, United States
| | - Pengli Han
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China
| | - Pengju Lu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China
| | - Tian Xia
- Translational Medical Center, Zhengzhou Central Hospital Affiliated Zhengzhou University, Zhengzhou 450007, China; Division of NanoMedicine, Department of Medicine, University of California, Los Angeles 90095, CA, United States.
| |
Collapse
|
12
|
Song Z, Gong Q, Guo J. Pyroptosis: Mechanisms and Links with Fibrosis. Cells 2021; 10:cells10123509. [PMID: 34944017 PMCID: PMC8700428 DOI: 10.3390/cells10123509] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is responsible for approximately 45% of deaths in the industrialized world and has been a major global healthcare burden. Excessive fibrosis is the primary cause of organ failure. However, there are currently no approved drugs available for the prevention or treatment of fibrosis-related diseases. It has become evident that fibrosis is characterized by inflammation. In a large number of studies of various organs in mice and humans, pyroptosis has been found to play a significant role in fibrosis. Pyroptosis is a form of programmed cell death mediated by the N-terminal fragment of cysteinyl aspartate-specific proteinase (caspase)-1-cleaved gasdermin D (GSDMD, producing GSDMD-N) that gives rise to inflammation via the release of some proinflammatory cytokines, including IL-1β, IL-18 and HMGB1. These cytokines can initiate the activation of fibroblasts. Inflammasomes, an important factor upstream of GSDMD, can activate caspase-1 to trigger the maturation of IL-1β and IL-18. Moreover, the inhibition of inflammasomes, proinflammatory cytokines and GSDMD can prevent the progression of fibrosis. This review summarizes the growing evidence indicating that pyroptosis triggers fibrosis, and highlights potential novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Zihao Song
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, China;
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, China;
- Correspondence: (Q.G.); (J.G.)
| | - Jiawei Guo
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Correspondence: (Q.G.); (J.G.)
| |
Collapse
|
13
|
González-Mariscal I, Pozo-Morales M, Romero-Zerbo SY, Espinosa-Jimenez V, Escamilla-Sánchez A, Sánchez-Salido L, Cobo-Vuilleumier N, Gauthier BR, Bermúdez-Silva FJ. Abnormal cannabidiol ameliorates inflammation preserving pancreatic beta cells in mouse models of experimental type 1 diabetes and beta cell damage. Biomed Pharmacother 2021; 145:112361. [PMID: 34872800 DOI: 10.1016/j.biopha.2021.112361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/02/2022] Open
Abstract
The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies, including autoimmune diseases. However, its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week, following STZ challenge, and euthanized 1 week later. Blood, pancreas, pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice, treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly, Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice, Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-κB and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether, Abn-CBD reduces circulating and intra-islet inflammation, preserving islets, thus delaying the progression of insulitis. Hence, Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain.
| | - Macarena Pozo-Morales
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, 29071 Málaga, Spain
| | - Vanesa Espinosa-Jimenez
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain
| | - Alejandro Escamilla-Sánchez
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain; Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
14
|
Ge S, Yang W, Chen H, Yuan Q, Liu S, Zhao Y, Zhang J. MyD88 in Macrophages Enhances Liver Fibrosis by Activation of NLRP3 Inflammasome in HSCs. Int J Mol Sci 2021; 22:ijms222212413. [PMID: 34830293 PMCID: PMC8622429 DOI: 10.3390/ijms222212413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in liver fibrosis has not been thoroughly investigated. In this study, we used a carbon tetrachloride (CCl4)-induced mouse fibrosis model in which MyD88 was selectively depleted in myeloid cells. MyD88 deficiency in myeloid cells attenuated liver fibrosis in mice and decreased inflammatory cell infiltration. Furthermore, deficiency of MyD88 in macrophages inhibits the secretion of CXC motif chemokine 2 (CXCL2), which restrains the activation of HSCs characterized by NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. Moreover, targeting CXCL2 by CXCR2 inhibitors attenuated the activation of HSCs and reduced liver fibrosis. Thus, MyD88 may represent a potential candidate target for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shuang Ge
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
| | - Wei Yang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
| | - Haiqiang Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Qi Yuan
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Shi Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
- Correspondence: (Y.Z.); (J.Z.)
| | - Jinhua Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
15
|
Kapetanaki S, Kumawat AK, Persson K, Demirel I. The Fibrotic Effects of TMAO on Human Renal Fibroblasts Is Mediated by NLRP3, Caspase-1 and the PERK/Akt/mTOR Pathway. Int J Mol Sci 2021; 22:ijms222111864. [PMID: 34769294 PMCID: PMC8584593 DOI: 10.3390/ijms222111864] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-β1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO’s fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO’s effects and to identify novel therapeutic targets in the context of chronic kidney disease.
Collapse
Affiliation(s)
- Stefania Kapetanaki
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Nephrology Department, Karolinska University Hospital, 171 76 Solna, Sweden
- Nephrology Department, Karolinska University Hospital, 141 86 Huddinge, Sweden
- Correspondence: ; Tel.: +46-1930-3000
| | - Ashok Kumar Kumawat
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- Cardiovascular Research Center, School of Medical Sciences, Örebro University, 701 82 Örebro, Sweden
| | - Katarina Persson
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Campus USÖ, Örebro University, 701 82 Örebro, Sweden; (A.K.K.); (K.P.); (I.D.)
- iRiSC—Inflammatory Response and Infection Susceptibility Center, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
16
|
Short WD, Wang X, Li H, Yu L, Kaul A, Calderon GA, Gilley J, Bollyky PL, Balaji S, Keswani SG. Interleukin-10 Producing T Lymphocytes Attenuate Dermal Scarring. Ann Surg 2021; 274:627-636. [PMID: 34506318 PMCID: PMC8428868 DOI: 10.1097/sla.0000000000004984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Demonstrate the impact of IL-10 producing T lymphocytes on mediating dermal scarring. SUMMARY BACKGROUND DATA We demonstrated that CD4+ cells are essential to improving postinjury wound healing and preventing fibrosis. CD4+ subsets secrete differential cytokine and growth factor profiles, though their role in fibrosis is not known. IL-10, a key anti-inflammatory cytokine shown to promote regenerative wound healing, is secreted by some CD4+ subsets. We, therefore, hypothesize that IL-10 producing CD4+ T lymphocyte subsets selectively attenuate dermal wound fibrosis. METHODS IL-10-/- and wild-type murine splenocytes were enriched for CD4+ lymphocytes and adoptively transferred into severe combined immunodeficient (SCID) mice that received full-thickness wounds which were analyzed at days 7 and 28 for inflammation and collagen content. We then sorted CD4+CD44int/lowFoxP3-CD62L+ T cells (Tnaive) or CD4+CD44HiFoxP3- type 1 regulatory (Tr1) T cell subsets from 10BiT murine splenocytes, activated them, and transferred them into wounds. In vitro, dermal fibroblasts were cocultured with Tnaive or Tr1 and the effect on extracellular matrix (ECM) regulation was analyzed. RESULTS The anti-inflammatory and antifibrotic effects of CD4+ cells on SCID wounds were lost with cells from IL-10-/- mice. Adoptive transfer of Tr1 into SCID mice resulted in accelerated wound closure at d7 with reduced fibrosis at d28, with Tr1 favoring hyaluronan production by fibroblasts, an ECM molecule implicated in IL-10-induced regenerative healing. CONCLUSIONS IL-10 producing T-lymphocytes, specifically Tr1, regulate inflammatory cell cytokine expression to promote HA-rich ECM deposition and attenuate fibrosis. Promoting IL-10 producing lymphocytes in wounds may be a therapeutic target to promote regenerative wound healing.
Collapse
Affiliation(s)
- Walker D Short
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Xinyi Wang
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Hui Li
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Ling Yu
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Aditya Kaul
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Gisele A Calderon
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Jamie Gilley
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Sundeep G Keswani
- Department of Surgery, Division of Pediatric Surgery, Laboratory for Regenerative Tissue Repair, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
17
|
Lu M, Li H, Liu W, Zhang X, Li L, Zhou H. Curcumin attenuates renal interstitial fibrosis by regulating autophagy and retaining mitochondrial function in unilateral ureteral obstruction rats. Basic Clin Pharmacol Toxicol 2021; 128:594-604. [PMID: 33354908 DOI: 10.1111/bcpt.13550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Renal interstitial fibrosis (RIF) is the leading cause of end-stage renal disease, partly because of the lack of effective treatments. Curcumin, the primary active ingredient in turmeric, reportedly exerts potent antifibrotic effects. This study investigated the effects of curcumin on RIF in unilateral ureteral obstruction (UUO) rats and characterized the underlying action mechanism. UUO rats were treated with curcumin for 7 and 14 d. Renal fibrosis was evaluated through haematoxylin-eosin staining, Masson staining, and type I and III collagen expression. Autophagy and mitochondria were observed through scanning electron microscopy. NLRP3 inflammasomes, mitochondria, and autophagy-related proteins were detected through Western blotting. Mitochondrial respiratory enzyme activity was assessed spectrophotometrically. Compared with UUO rats, renal fibrosis was attenuated and NLRP3 inflammasome activation was inhibited in curcumin-treated rats. Furthermore, mitochondrial dysfunction was ameliorated and the LC3B/LC3A ratio and Beclin-1 expression were increased in curcumin-treated rats. Additionally, curcumin inhibited the PI3K/AKT/mTOR pathway. These results indicate that curcumin is a promising treatment agent for RIF, and its antifibrotic effects may be mediated by the inhibition of NLRP3 inflammasome activity through the regulation of autophagy and protection of mitochondrial function in UUO rats.
Collapse
Affiliation(s)
- Miaomiao Lu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hang Li
- Department of Radiotherapy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wenlin Liu
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xuemei Zhang
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lili Li
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongli Zhou
- Department of Nephrology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
18
|
Liu C, Hu T, Cai Z, Xie Q, Yuan Y, Li N, Xie S, Yao Q, Zhao J, Wu QQ, Tang Q. Nucleotide-Binding Oligomerization Domain-Like Receptor 3 Deficiency Attenuated Isoproterenol-Induced Cardiac Fibrosis via Reactive Oxygen Species/High Mobility Group Box 1 Protein Axis. Front Cell Dev Biol 2020; 8:713. [PMID: 32850832 PMCID: PMC7431462 DOI: 10.3389/fcell.2020.00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023] Open
Abstract
Nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) is involved in fibrosis of multiple organs, such as kidney, liver, lung, and the like. However, the role of NLRP3 in cardiac fibrosis is still controversial and remains unclear. The study aims to investigate the role of NLRP3 on cardiac fibrosis induced by isoproterenol (ISO). In vivo, NLRP3 knockout and wild-type mice were subcutaneously injected with ISO to induce the cardiac fibrosis model. The results showed that NLRP3 deficiency alleviated the cardiac fibrosis and inflammation induced by ISO. In vitro, neonatal rat ventricular myocytes (NRVMs) and primary adult mouse cardiac fibroblasts of NLRP3 knockout and wild-type mice were isolated and challenged with ISO. Adenovirus (Ad-) NLRP3 and small interfering RNAs targeting NLRP3 were used to transfect NRVMs to overexpress or knockdown NLRP3. We found that NLRP3 could regulate high-mobility group box 1 protein (HMGB1) secretion via reactive oxygen species production in NRVMs and the HMGB1 secreted by NRVMs promoted the activation and proliferation of cardiac fibroblasts. Thus, we concluded that the NLRP3/reactive oxygen species/HMGB1 pathway could be the underlying mechanism of ISO-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhulan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingwen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Jinhua Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
19
|
Pinar AA, Yuferov A, Gaspari TA, Samuel CS. Relaxin Can Mediate Its Anti-Fibrotic Effects by Targeting the Myofibroblast NLRP3 Inflammasome at the Level of Caspase-1. Front Pharmacol 2020; 11:1201. [PMID: 32848798 PMCID: PMC7417934 DOI: 10.3389/fphar.2020.01201] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction The NLRP3 inflammasome produces interleukin (IL)-1β and IL-18, which when chronically activated by transforming growth factor (TGF)-β1, contribute to fibrosis. The recombinant form of the anti-fibrotic hormone, relaxin (RLX), suppresses the pro-fibrotic influence of TGF-β1 and toll-like receptor (TLR)-4 on NLRP3 inflammasome priming and activity in human cardiac myofibroblasts and mice with cardiomyopathy. However, whether RLX also modulates components of the myofibroblast NLRP3 inflammasome remains unknown. Methods and Results Stimulation of a human dermal fibroblast (HDF) cell line with TGF-β1 [5 ng/ml; to promote myofibroblast (HDMF) differentiation], LPS (100 ng/ml; to prime the NLRP3 inflammasome) and ATP (5 mM; to activate the NLPR3 inflammasome) (T+L+A) significantly increased NLRP3 inflammasome priming and activity after 8 and 72 h; and α-SMA expression (myofibroblast differentiation) and collagen-I deposition after 72 h. siRNA-induced knock-down of NLRP3 inflammasome priming components (NLRP3, ASC, caspase-1) in T+L+A-stimulated HDMFs for 24 h, completely knocked-down each component after 72 h. RLX (100 ng/ml) administration to T+L+A-stimulated HDMFs after control, NLRP3 or ASC siRNA transfection, equivalently suppressed IL-1β, pro-IL-18, α-SMA, and collagen-I protein levels (by 40%–50%; all p<0.05 vs. T+L+A) after 72 h, as determined by Western blotting. These RLX-induced effects were abrogated by siRNA knock-down of caspase-1. Conclusion The anti-fibrotic actions of RLX appear to require modulation of caspase-1 within the myofibroblast NLRP3 inflammasome.
Collapse
Affiliation(s)
- Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Alexander Yuferov
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Liu Y, Bi X, Zhang Y, Wang Y, Ding W. Mitochondrial dysfunction/NLRP3 inflammasome axis contributes to angiotensin II-induced skeletal muscle wasting via PPAR-γ. J Transl Med 2020; 100:712-726. [PMID: 31857693 DOI: 10.1038/s41374-019-0355-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/19/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Angiotensin II (Ang II) levels are elevated in patients with chronic kidney disease or heart failure, and directly causes skeletal muscle wasting in rodents, but the molecular mechanisms of Ang II-induced skeletal muscle wasting and its potential as a therapeutic target are unknown. We investigated the NLR family pyrin domain containing 3 (NLRP3) inflammasome-mediated muscle atrophy response to Ang II in C2C12 myotubes and Nlrp3 knockout mice. We also assessed the mitochondrial dysfunction (MtD)/NLRP3 inflammasome axis in Ang II-induced C2C12 myotubes. Finally, we examined whether a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist could attenuate skeletal muscle wasting by targeting the MtD/NLRP3 inflammasome axis in vitro and in vivo. We demonstrated that Ang II increased NLRP3 inflammasome activation in cultured C2C12 myotubes dose dependently. Nlrp3 knockdown or Nlrp3-/- mice were protected from the imbalance of protein synthesis and degradation. Exposure of C2C12 to Ang II increased mitochondrial ROS (mtROS) generation, accompanied by MtD. Remarkably, the mitochondrial-targeted antioxidant not only decreased mtROS and MtD, it also significantly inhibited NLRP3 inflammasome activation and restored skeletal muscle atrophy. Finally, the PPAR-γ agonist protected against Ang II-induced muscle wasting by preventing MtD, oxidative stress, and NLRP3 inflammasome activation in vitro and in vivo. This work suggests a potential role of MtD/NLRP3 inflammasome pathway in the pathogenesis of Ang II-induced skeletal muscle wasting, and targeting the PPAR-γ/MtD/NLRP3 inflammasome axis may provide a therapeutic approach for muscle wasting.
Collapse
Affiliation(s)
- Yuqing Liu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Xiao Bi
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Yumei Zhang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Yingdeng Wang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 zhizaoju Road, 200011, Shanghai, China.
| |
Collapse
|
21
|
Shi C, Yang H, Zhang Z. Involvement of Nucleotide-Binding Oligomerization Domain-Like Receptor Family Pyrin Domain Containing 3 Inflammasome in the Pathogenesis of Liver Diseases. Front Cell Dev Biol 2020; 8:139. [PMID: 32211410 PMCID: PMC7075939 DOI: 10.3389/fcell.2020.00139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
The inflammasome is widely acknowledged for its crucial role in the pathogenesis of cancers and many neurodegenerative, metabolic, and auto-inflammatory diseases in recent years. Multiple types of inflammasomes exist. However, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most often investigated inflammasome and has come to limelight in recent studies. NLRP3 inflammasome is a multi-protein complex. Its activation can cause the cleavage of inactive pro-caspase-1 into activated caspase-1, that ultimately promotes the transformation of pro-interleukin (IL)-1β and pro-IL-18 into biologically-active IL-1β and IL-18, respectively. These processes lead to the local inflammatory responses and induce pyroptosis, causing disparaging effects. Recently, numerous studies have shown that NLRP3 inflammasome plays an important role in the pathogenesis of liver diseases, including non-alcoholic fatty liver disease, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Liver diseases have become a severe health burden worldwide, and there is adequate evidence indicating that the regulation of NLRP3 inflammasome acts as a guard against hazard to liver. In this review, we provide a straightforward overview of NLRP3 inflammasome as well as several frequent liver diseases. We then discuss the contribution and regulation of NLRP3 inflammasome during the pathogenesis of liver diseases, which may provide an important indication for the prevention and treatment of various liver diseases.
Collapse
Affiliation(s)
- Congjian Shi
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
22
|
Vinaik R, Abdullahi A, Barayan D, Jeschke MG. NLRP3 inflammasome activity is required for wound healing after burns. Transl Res 2020; 217:47-60. [PMID: 31843468 PMCID: PMC7036017 DOI: 10.1016/j.trsl.2019.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Survival of burn patients is contingent on effective wound healing, a complex process that requires coordinated responses of myeloid cells and inflammatory pathways. NLRP3, which serves as a platform for secretion of proinflammatory cytokines, is implicated as a central regulator of wound healing. However, its role during the acute dermal and epidermal regeneration in the context of burns is unknown. Wild-type (WT) and NLRP3-/- mice were exposed to a 30% TBSA scald burn. Gene expression was conducted via real-time polymerase chain reaction. Trichrome staining was used to assess collagen deposition and granulation tissue formation. F4/80 immunostaining compared macrophage infiltration. Flow cytometric analysis was used to characterize skin macrophage distribution and profile. NLRP3, IL1β and IL18 expression was upregulated in skin after burn, and these changes were nonexistent in NLRP3-/-. NLRP3-/- had decreased expression of proinflammatory cytokines, chemokines, inflammatory markers, and growth factors at 3 days (P < 0.05). NLRP3-/- burn skin demonstrated significantly less macrophage infiltration and higher expression of anti-inflammatory markers Arg1 and Fizz1 (P < 0.05) compared to WT. Trichrome staining showed decreased collagen deposition compared to WT. We show that NLRP3 is protective in burn wound healing, primarily through production of inflammatory mediators, macrophage recruitment, and polarization to a proinflammatory phenotype. Our findings highlight a central role of NLRP3 in wound healing through regulation of inflammation and macrophage polarization after burns.
Collapse
Affiliation(s)
| | | | | | - Marc G Jeschke
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada.
| |
Collapse
|
23
|
Dong Z, Zhuang Q, Ning M, Wu S, Lu L, Wan X. Palmitic acid stimulates NLRP3 inflammasome activation through TLR4-NF-κB signal pathway in hepatic stellate cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:168. [PMID: 32309315 PMCID: PMC7154441 DOI: 10.21037/atm.2020.02.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background The NLRP3 inflammasome activation plays an important role in the development of NASH and fibrogenesis. However, the mechanisms involved in NLRP3 activation in hepatic stellate cells (HSCs) have been unclear. The aim of this study was to investigate the mechanism of NLRP3 activation in HSCs and the role of NLPR3 inflammasome activation in HSCs on the development of nonalcoholic steatohepatitis (NASH) to fibrosis. Methods Primary HSCs isolated from SD rats were incubated with palmitic acid and/or LPS, respectively. For in vivo animal experiment, 4-week-old SD rats were fed with high fat diet (HF-diet) for 12 weeks, SD rats were sacrificed at 0, 4, 8 and 12 w. In another group of animal experiment, 4-week-old SD rats were fed with HF-diet and a NLRP3 inhibitor (intraperitoneal injection of NLRP3 inhibitor glybenclamide 5 mg/kg, injected every 3 days) for 12 weeks. Liver tissue and serum were harvested. RT-PCR, WB, ELISA, immunofluorescence and immunohistochemistry were performed to assess the NLRP3 inflammasome activation and signal molecules. Results Palmitic acid stimulated NLPR3 inflammasome activation and fibrotic phenotype change in primary HSCs, LPS sensitizes the response of HSCs to palmitic acid. TLR4-NF-κB signal pathway was involved in NLRP3 inflammasome activation in palmitic acid-exposed HSCs and HF diet-induced NASH. It is evident that administration of NLRP3 inhibitor reduced the development of NASH to liver fibrosis in the NASH rat model. Conclusions Palmitic acid stimulates NLRP3 inflammasome activation through the TLR4-NF-κB signal pathway in HSCs. NLRP3 inflammasome activation in HSCs exacerbates the development of NASH to liver fibrosis.
Collapse
Affiliation(s)
- Zhixia Dong
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Min Ning
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
24
|
Shen X, Dong X, Han Y, Li Y, Ding S, Zhang H, Sun Z, Yin Y, Li W, Li W. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. Int Immunopharmacol 2020; 82:106339. [PMID: 32114413 DOI: 10.1016/j.intimp.2020.106339] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
Aging is closely related to the progress of renal fibrosis, which eventually results in renal dysfunction. Ginsenoside Rg1 (Rg1) has been reported to have an extensive anti-aging effect. However, the role and mechanism of Rg1 in aging-related renal fibrosis remain unclear. The present study aimed to evaluate the protective effect and mechanism of Rg1 in renal fibrosis during kidney aging in a model of SAMP8 mice. Taking SAMR1 mice as the control group, SAMP8 mice were administered Apocynin (50 mg/kg), Tempol (50 mg/kg), or Rg1 (5, 10 mg/kg) intragastrically for 9 weeks as treatment groups. The results showed that the elevated levels of blood urea nitrogen, serum creatinine and senescence-associated β-galactosidase (β-Gal) were markedly decreased, the glomerular mesangial proliferation was significantly alleviated and the increased levels of collagen IV and TGF-β1 were significantly downregulated by Rg1 in SAMP8 mice. In addition, the generation of ROS and the expression of NADHP oxidase 4 (NOX4) in the renal cortex were significantly reduced by Rg1 treatment. The expression levels of NLRP3 inflammasome-related proteins and the inflammation-related cytokine IL-1β were also inhibited by Rg1 treatment in the SAMP8 mice. These results suggested that Rg1 could delay kidney aging and inhibit aging-related glomerular fibrosis by reducing NOX4-derived ROS generation and downregulating NLRP3 inflammasome expression.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xianan Dong
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yuli Han
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Li
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shixin Ding
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Han Zhang
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhenghao Sun
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yanyan Yin
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
25
|
Chen Y, Ding S, Zhang H, Sun Z, Shen X, Sun L, Yin Y, Qun S, Li W. Protective effects of ginsenoside Rg1 on neuronal senescence due to inhibition of NOX2 and NLRP1 inflammasome activation in SAMP8 mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Yu Y, Sun J, Wang R, Liu J, Wang P, Wang C. Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1675-1710. [PMID: 31786946 DOI: 10.1142/s0192415x19500861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial fibrosis is implicated as a leading risk factor for heart failure, arrhythmia, and sudden death after cardiac injury, as the excessive interstitial extracellular matrix impedes heart contraction and electrical conduction. Complicated mechanisms involving oxidative stress, pro-inflammatory cytokines, chemokine families, NLRP3 inflammasomes, growth factors, and non-coding RNAs participate in cardiac fibrogenesis and make it difficult to designate specific and effective therapies. Oriental herbs have been popular for thousands of years in the health care of Asian residents, due to their multi-targeted, multi-faceted approaches and their multi-functional effects in fighting difficult and complicated diseases, including cardiovascular disorders such as myocardial fibrosis. Curcumin, a natural polyphenol and yellow pigment obtained from the spice turmeric, was found to have strong anti-oxidant and anti-inflammatory properties. Increasing evidence has shown that curcumin can be used to prevent and treat myocardial fibrosis, when the myocardium suffers pathological pro-fibrotic changes in vivo and in vitro. The present review focuses on recent studies elucidating the mechanisms of curcumin in treating different pathologic conditions, including ischemia, hypoxia/reoxygenation, pressure or volume overload, and hyperglycemia or high-fat-induced cardiac fibrosis. Novel analogs such as C66, B2BrBC, Y20, and J17 have been designed to maximize the therapeutic potentials of curcumin. These optimized curcumin analogs with improved bioavailability and pharmacokinetic profiles need to be clinically verified before curcumin could be recommended for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinghui Sun
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Ru Wang
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Peili Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| |
Collapse
|
27
|
Association of serum IL-18 with protein-energy wasting in end-stage renal disease patients on haemodialysis. Int Urol Nephrol 2019; 51:1271-1278. [PMID: 31119516 DOI: 10.1007/s11255-019-02167-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Protein-energy wasting (PEW) is highly prevalent in end-stage renal disease (ESRD) patients with inflammation who are on haemodialysis treatment. Interleukin-18 (IL-18) is an important pro-inflammatory cytokine that is significantly elevated in ESRD patients. However, the relationship between PEW and IL-18 is unclear. We therefore performed a cross-sectional study on 100 ESRD patients undergoing haemodialysis to clarify this. METHODS PEW was defined according to the diagnostic criteria of the International Society of Renal Nutrition and Metabolism. Inflammation was assessed based on the serum levels of C-reactive protein (CRP), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) and IL-18. We analysed the association between PEW and IL-18 by using logistic analysis and linear regression after adjustment for basic characteristics, comorbidities and laboratory findings. RESULTS Among the 100 haemodialysis patients who were recruited, 56 had PEW. Even though there was no difference between the PEW group and non-PEW group with regard to disease causes, age, gender, cholesterol, ferritin, and haemoglobin, the levels of inflammation indicators such as CRP, IL-6, TNF-α and IL-1β were significantly higher in the PEW group. Moreover, IL-18 was found to contribute to PEW, but was negatively correlated with pre-albumin after adjustment for possible confounding factors. CONCLUSIONS Thus, the findings indicate that IL-18 is associated with PEW in ESRD patients on haemodialysis, which suggests that IL-18 may be involved in the pathogenesis of PEW in this setting.
Collapse
|
28
|
Inzaugarat ME, Johnson CD, Holtmann TM, McGeough MD, Trautwein C, Papouchado BG, Schwabe R, Hoffman HM, Wree A, Feldstein AE. NLR Family Pyrin Domain-Containing 3 Inflammasome Activation in Hepatic Stellate Cells Induces Liver Fibrosis in Mice. Hepatology 2019; 69:845-859. [PMID: 30180270 PMCID: PMC6351190 DOI: 10.1002/hep.30252] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome plays an important role in liver fibrosis (LF) development. However, the mechanisms involved in NLRP3-induced fibrosis are unclear. Our aim was to test the hypothesis that the NLRP3 inflammasome in hepatic stellate cells (HSCs) can directly regulate their activation and contribute to LF. Primary HSCs isolated from wild-type (WT), Nlrp3-/- , or Nlrp3L351PneoR knock-in crossed to inducible (estrogen receptor Cre-CreT) mice were incubated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP), or 4OH-tamoxifen, respectively. HSC-specific Nlrp3L351P knock-in mice were generated by crossing transgenic mice expressing lecithin retinol acyltransferase (Lrat)-driven Cre and maintained on standard rodent chow for 6 months. Mice were then sacrificed; liver tissue and serum were harvested. Nlrp3 inflammasome activation along with HSC phenotype and fibrosis were assessed by RT-PCR, western blotting, fluorescence-activated cell sorting (FACS), enzyme-linked immunosorbent assay, immunofluorescence (IF), and immunohistochemistry (IHC). Stimulated WT HSCs displayed increased levels of NLRP3 inflammasome-induced reactive oxygen species (ROS) production and cathepsin B activity, accompanied by an up-regulation of mRNA and protein levels of fibrotic makers, an effect abrogated in Nlrp3-/- HSCs. Nlrp3L351P CreT HSCs also showed elevated mRNA and protein expression of fibrotic markers 24 hours after inflammasome activation induced with 4-hydroxytamoxifen (4OHT). Protein and mRNA expression levels of fibrotic markers were also found to be increased in isolated HSCs and whole liver tissue from Nlrp3L351P Lrat Cre mice compared to WT. Liver sections from 24-week-old NlrpL351P Lrat Cre mice showed fibrotic changes with increased alpha smooth muscle actin (αSMA) and desmin-positive cells and collagen deposition, independent of inflammatory infiltrates; these changes were also observed after LPS challenge in 8-week-old NlrpL351P Lrat Cre mice. Conclusion: Our results highlight a direct role for the NLRP3 inflammasome in the activation of HSCs directly triggering LF.
Collapse
Affiliation(s)
| | - Casey D. Johnson
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | | | | | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany
| | | | - Robert Schwabe
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, USA
| | - Hal M. Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Alexander Wree
- Department of Internal Medicine III, RWTH University Hospital Aachen, Germany,,Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| |
Collapse
|
29
|
Yuan X, Bhat OM, Meng N, Lohner H, Li PL. Protective Role of Autophagy in Nlrp3 Inflammasome Activation and Medial Thickening of Mouse Coronary Arteries. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2948-2959. [PMID: 30273598 PMCID: PMC6334256 DOI: 10.1016/j.ajpath.2018.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/16/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022]
Abstract
We hypothesized that autophagy and associated lysosome function serve as a critical modulator during Nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome activation on proatherogenic stimuli. We first demonstrated that 7-ketocholesterol stimulated Nlrp3 inflammasome formation and activation as shown by increased colocalization of inflammasome components [Nlrp3 versus apoptosis associated speck-like protein (Asc) or caspase-1] and enhanced cleavage of caspase-1 into active caspase-1 to generate IL-1β in coronary artery smooth muscle cells. Deletion of the CD38 gene (CD38-/-) that regulates lysosome function and autophagic flux also led to Nlrp3 inflammasome formation and activation. In the presence of rapamycin, the effects of either 7-ketocholesterol treatment or CD38 gene deletion were abolished. The autophagy inhibitor spautin-1 and the lysosome function blocker bafilomycin A1 also enhanced Nlrp3 inflammasome formation and activation. In animal experiments, we found that increased colocalization of Nlrp3 versus Asc or caspase-1 enhanced IL-1β accumulation and caspase-1 activity in the coronary arterial wall of CD38-/- mice on the Western diet compared with CD38+/+ mice. This increased colocalization was blocked by treatment with rapamycin but enhanced by chloroquine, a water-soluble blocker of autophagic flux. Morphologic examinations confirmed that the media of coronary arteries was significantly thicker in CD38-/- mice on the Western diet than CD38+/+ mice. In conclusion, the deficiency of autophagic flux promotes Nlrp3 inflammasome formation and activation in coronary artery smooth muscle cells on proatherogenic stimulation, leading to medial thickening of the coronary arterial wall.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nan Meng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Hannah Lohner
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
30
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
31
|
Mangali S, Bhat A, Udumula MP, Dhar I, Sriram D, Dhar A. Inhibition of protein kinase R protects against palmitic acid-induced inflammation, oxidative stress, and apoptosis through the JNK/NF-kB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J Cell Biochem 2018; 120:3651-3663. [PMID: 30259999 DOI: 10.1002/jcb.27643] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Double-stranded RNA-dependent protein kinase (PKR) is a critical regulator of apoptosis, oxidative stress, and inflammation under hyperlipidemic and insulin resistance conditions. Saturated free fatty acids, such as palmitic acid (PA), are known inducers of apoptosis in numerous cell types. However, the underlying molecular mechanism is not fully understood. The aim of the present study was to examine the effect of PA on cultured rat H9C2 cardiac myocytes cells and to investigate the PKR mediated harmful effects of PA in vitro in cultured cardiomyocytes. EXPERIMENTAL APPROACH PKR expression was determined by immunofluorescence and immunoblotting. Oxidative stress and apoptosis were determined by flow cytometry and assay kits. The expression of different gene markers of apoptosis, oxidative stress, and inflammation were measured by Western blot analysis and reverse transcription polymerase chain reaction. KEY RESULTS PKR expression, reactive oxygen species levels as well as apoptosis were increased in PA-treated cultured H9C2 cardiomyocytes. The harmful effects of PA were attenuated by a selective PKR inhibitor, C16. Moreover, we observed that upregulation of c-Jun N-terminal kinase (JNK), nuclear factor-kB (NF-kB) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) pathways is associated with increased expression of interleukin 6 and tumor necrosis factor-α in PA-treated cardiomyocytes and attenuation by a selective PKR inhibitor. CONCLUSION AND IMPLICATIONS Our study reports, for the first time, that PKR-mediated harmful effects of PA in cultured cardiomyocytes via activation of JNK, NF-kB, and NLRP3 pathways. Inhibition of PKR is one of the possible mechanistic approaches to inhibit inflammation, oxidative stress, and apoptosis in lipotoxicity-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Indu Dhar
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| |
Collapse
|
32
|
Li Y, Li H, Liu S, Pan P, Su X, Tan H, Wu D, Zhang L, Song C, Dai M, Li Q, Mao Z, Long Y, Hu Y, Hu C. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation. Mol Immunol 2018; 99:134-144. [PMID: 29783158 DOI: 10.1016/j.molimm.2018.05.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/10/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
Abstract
Acute respiratory distress syndrome(ARDS)is a severe clinical disorder characterized by its acute onset, diffuse alveolar damage, intractable hypoxemia, and non-cardiogenic pulmonary edema. Acute lung injury(ALI) can trigger persistent lung inflammation and fibrosis through activation of the NLRP3 inflammasome and subsequent secretion of mature IL-1β, suggesting that the NLRP3 inflammasome is a potential therapeutic target for ALI, for which new therapeutic approaches are needed. Our present study aims to assess whether pirfenidone,with anti-fibrotic and anti-inflammatory properties, can improve LPS-induced inflammation and fibrosis by inhibiting NLRP3 inflammasome activation. Male C57BL/6 J mice were intratracheally injected with LPS to induce ALI. Mice were administered pirfenidone by oral gavage throughout the entire experimental course. The mouse macrophage cell line (J774 A.1) was incubated with LPS and ATP, with or without PFD pre-treatment. We demonstrated that PFD remarkably ameliorated LPS-induced pulmonary inflammation and fibrosis and reduced IL-1β and TGF-β1 levels in bronchoalveolar lavage fluid(BALF). Pirfenidone substantially reduced NLRP3 and ASC expression and inhibited caspase-1 activation and IL-1β maturation in lung tissues. In vitro, the experiments revealed that PFD significantly suppressed LPS/ATP-induced production of reactive oxygen species (ROS) and decreased caspase-1 activation and the level of IL-1β in J774 A.1 cells. Taken together, the administration of PFD reduced LPS-induced lung inflammation and fibrosis by blocking NLRP3 inflammasome activation and subsequent IL-1β secretion. These findings indicated that PFD can down-regulate NLRP3 inflammasome activation and that it may offer a promising therapeutic approach for ARDS patients.
Collapse
Affiliation(s)
- Yi Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haitao Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pinhua Pan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xiaoli Su
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hongyi Tan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dongdong Wu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lemeng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Afliated to Xiangya Medical School, Central South University, Changsha 410008, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minhui Dai
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qian Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Mao
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Long
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
33
|
NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2018; 17:694-702. [PMID: 29729449 DOI: 10.1016/j.autrev.2018.01.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 12/12/2022]
Abstract
NLRP3, a member of nucleotide-binding domain-(NOD) like receptor family, can be found in large varieties of immune and non-immune cells. Upon activation, the NLRP3, apoptosis-associated speck-like protein (ASC) and pro-caspase-1 would assemble into a multimeric protein, called the NLRP3 inflammasome. Then the inflammasome promotes inflammation (through specific cleavage and production of bioactive IL-1β and IL-18) and pyroptotic cell death. Previous studies have indicated the importance of NLRP3 in regulating innate immunity. Recently, numerous studies have revealed their significance in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc) and inflammatory bowel disease (IBD). In this review, we will briefly discuss the biological features of NLRP3 and summarize the recent progression of the involvement of NLRP3 in the development and pathogenesis of autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
|
34
|
Conley SM, Abais JM, Boini KM, Li PL. Inflammasome Activation in Chronic Glomerular Diseases. Curr Drug Targets 2018; 18:1019-1029. [PMID: 27538510 DOI: 10.2174/1389450117666160817103435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The intracellular multiprotein complex termed the inflammasome functions as a platform of pro-inflammatory cytokine production such as IL-1β and IL-18. Under certain conditions, however, the inflammasome produces non-canonical effects such as induction of cell death, pyroptosis and cell metabolism alterations. OBJECTIVE In mammalian cells, several types of inflammasomes were identified, but the most widely studied one is the inflammasome containing NOD-like receptor with pyrin domain 3 (NLRP3), which has recently been reported as a central pathogenic mechanism of chronic degenerative diseases. Many activators or risk factors exert their actions through the activation of the NLRP3 inflammasome to produce a variety of functional changes in different cells including inflammatory, metabolic or survival responses. Several molecular signaling pathways are shown to mediate the activation of the NLRP3 inflammasome, and they are related to the modifications in K+ efflux, increased lysosome leakage and activation of cathepsin B or enhanced reactive oxygen species (ROS) production. In the kidney, inflammation is believed to mediate or promote the progression of glomerular sclerotic pathologies resulting in end-stage renal disease (ESRD). NLRP3 inflammasome activation may turn on glomerular inflammation and other cell damages, contributing to the onset of glomerular injury and ESRD. This inflammasome activation not only occurs in immune cells, but also in residential cells such as endothelial cells and podocytes in the glomeruli. SUMMARY This review briefly summarizes current evidence of NLRP3 inflammasome activation and related molecular mechanisms in renal glomeruli. The possible canonical and non-canonical effects of this inflammasome activation and its potential implication in the development of different glomerular diseases are highlighted.
Collapse
Affiliation(s)
- Sabena M Conley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298. United States
| | - Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298. United States
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204. United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298. United States
| |
Collapse
|
35
|
Carson JP, Ramm GA, Robinson MW, McManus DP, Gobert GN. Schistosome-Induced Fibrotic Disease: The Role of Hepatic Stellate Cells. Trends Parasitol 2018. [PMID: 29526403 DOI: 10.1016/j.pt.2018.02.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatic fibrosis is a common pathology in various liver diseases. Hepatic stellate cells (HSCs) are the main cell type responsible for collagen deposition and fibrosis formation in the liver. Schistosomiasis is characterised by granulomatous fibrosis around parasite eggs trapped within the liver and other host tissues. This response is facilitated by the recruitment of immune cells and the activation of HSCs. The interactions between HSCs and schistosome eggs are complex and diverse, and a better understanding of these interactions could lead to improved resolution of fibrotic liver disease, including that associated with schistosomiasis. Here, we discuss recent advances in HSC biology and the role of HSCs in hepatic schistosomiasis.
Collapse
Affiliation(s)
- Jack P Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia; Faculty of Medicine, The University of Queensland, Level 6, Oral Health Centre (Building), Herston Road, Herston, QLD, 4006, Australia
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
36
|
Bi X, Ai H, Wu Q, Fan Q, Ding F, Hu C, Ding W. Insulin Resistance Is Associated with Interleukin 1β (IL-1β) in Non-Diabetic Hemodialysis Patients. Med Sci Monit 2018; 24:897-902. [PMID: 29436520 PMCID: PMC5819312 DOI: 10.12659/msm.906269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Insulin resistance (IR) and inflammation are associated with increased risk of complications in chronic kidney disease (CKD) patients. However, the relationship between IR and the important proinflammatory interleukin-1β (IL-1β) is unclear in CKD patients. Material/Methods We conducted a cross-sectional study including 79 non-diabetic patients who received hemodialysis after the exclusion process. Homeostasis model assessment (HOMA-IR) and leptin adiponectin ratio (LAR) were used to evaluate IR. Inflammation was assessed through C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β evaluation. We tested associations of IR with IL-1β using logistic analysis and linear regression. Results Patients were divided into a HOMA-IR-positive group and a HOMA-IR-negative group. Although there were no differences between the 2 groups in terms of etiological causes, age, sex, BMI, triglyceride, cholesterol, ferritin, uric acid, and inflammatory indicators such as CRP, we found that IL-6, TNF-α, and IL-1β were significantly increased in the HOMA-IR-positive group compared with the HOMA-IR-negative group. Moreover, IL-1β contributed to HOMA-IR positivity and was positively correlated with LAR after adjusting for possible confounding factors. Conclusions Insulin resistance correlates positively with IL-1β among non-diabetic hemodialysis patients, which suggests that IL-1β may be involved in the pathogenesis of IR in this setting.
Collapse
Affiliation(s)
- Xiao Bi
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Honglan Ai
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Qiaoming Wu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Qiang Fan
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Chun Hu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| |
Collapse
|
37
|
Meng N, Xia M, Lu YQ, Wang M, Boini KM, Li PL, Tang WX. Activation of NLRP3 inflammasomes in mouse hepatic stellate cells during Schistosoma J. infection. Oncotarget 2018; 7:39316-39331. [PMID: 27322427 PMCID: PMC5129935 DOI: 10.18632/oncotarget.10044] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
The major pathological changes during Schistosoma J. infection are characterized by granulomatous inflammation in the liver, a cellular immune response to schistosomal egg antigens. The molecular mechanisms initiating or promoting this schistosomal granulomatous inflammation remain poorly understood. In the present study, we first demonstrated that in mice infected with Schistosoma J. for 6 weeks exhibited increased levels of IL-1β in liver, a major product of NLRP3 inflammasomes and collagen deposition around the eosinophilic granuloma with Schistosoma J. eggs, which was substantially attenuated by caspase-1 inhibitor, YVAD. This activation of the NLRP3 inflammasome occurred in hepatic stellate cells (HSCs), as shown by a marked increase in co-localization of IL-1β with HSCs marker, desmin. Using isolated, cultured mouse HSCs, we further explored the mechanisms by which soluble egg antigen (SEA) from Schistosoma J. activates NLRP3 inflammasomes. SEA induced the formation and activation of NLRP3 inflammasomes, which was associated with both redox regulation and lysosomal dysfunction, but not with potassium channel activation. These results suggest that NLRP3 inflammasome activation in HSCs may serve as an early mechanism to turn on the inflammatory response and thereby instigate liver fibrosis during Schistosoma J. infection.
Collapse
Affiliation(s)
- Nan Meng
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Ya-Qi Lu
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Wang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Wang-Xian Tang
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Gan W, Ren J, Li T, Lv S, Li C, Liu Z, Yang M. The SGK1 inhibitor EMD638683, prevents Angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1-10. [DOI: 10.1016/j.bbadis.2017.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/08/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
|
39
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
40
|
Cannito S, Novo E, Parola M. Therapeutic pro-fibrogenic signaling pathways in fibroblasts. Adv Drug Deliv Rev 2017; 121:57-84. [PMID: 28578015 DOI: 10.1016/j.addr.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/28/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
Myofibroblasts (MFs) play a critical role in the progression of chronic inflammatory and fibroproliferative diseases in different tissues/organs, whatever the etiology. Fibrosis is preceded and sustained by persistent injury and inflammatory response in a profibrogenic scenario involving mutual interactions, operated by several mediators and pathways, of MFs and related precursor cells with innate immunity cells and virtually any cell type in a defined tissue. These interactions, mediators and related signaling pathways are critical in initiating and perpetuating the differentiation of precursor cells into MFs that in different tissues share peculiar traits and phenotypic responses, including the ability to proliferate, produce ECM components, migrate and contribute to the modulation of inflammatory response and tissue angiogenesis. Literature studies related to liver, lung and kidney fibrosis have outlined a number of MF-related core regulatory fibrogenic signaling pathways conserved across these different organs and potentially targetable in order to develop effective antifibrotic therapeutic strategies.
Collapse
|
41
|
Sun NN, Yu CH, Pan MX, Zhang Y, Zheng BJ, Yang QJ, Zheng ZM, Meng Y. Mir-21 Mediates the Inhibitory Effect of Ang (1-7) on AngII-induced NLRP3 Inflammasome Activation by Targeting Spry1 in lung fibroblasts. Sci Rep 2017; 7:14369. [PMID: 29084974 PMCID: PMC5662719 DOI: 10.1038/s41598-017-13305-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-21 (mir-21) induced by angiotensin II (AngII) plays a vital role in the development of pulmonary fibrosis, and the NLRP3 inflammasome is known to be involved in fibrogenesis. However, whether there is a link between mir-21 and the NLRP3 inflammasome in pulmonary fibrosis is unknown. Angiotensin-converting enzyme 2/angiotensin(1-7) [ACE2/Ang(1-7)] has been shown to attenuate AngII-induced pulmonary fibrosis, but it is not clear whether ACE2/Ang(1-7) protects against pulmonary fibrosis by inhibiting AngII-induced mir-21 expression. This study's aim was to investigate whether mir-21 activates the NLRP3 inflammasome and mediates the different effects of AngII and ACE2/Ang(1-7) on lung fibroblast apoptosis and collagen synthesis. In vivo, AngII exacerbated bleomycin (BLM)-induced lung fibrosis in rats, and elevated mir-21 and the NLRP3 inflammasome. In contrast, ACE2/Ang(1-7) attenuated BLM-induced lung fibrosis, and decreased mir-21 and the NLRP3 inflammasome. In vitro, AngII activated the NLRP3 inflammasome by up-regulating mir-21, and ACE2/Ang(1-7) inhibited NLRP3 inflammasome activation by down-regulating AngII-induced mir-21. Over-expression of mir-21 activated the NLRP3 inflammasome via the ERK/NF-κB pathway by targeting Spry1, resulting in apoptosis resistance and collagen synthesis in lung fibroblasts. These results indicate that mir-21 mediates the inhibitory effect of ACE2/Ang(1-7) on AngII-induced activation of the NLRP3 inflammasome by targeting Spry1 in lung fibroblasts.
Collapse
Affiliation(s)
- Na-Na Sun
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Hui Yu
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miao-Xia Pan
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Jun Zheng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian-Jie Yang
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-Mao Zheng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
42
|
NLRP3 Deficiency Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in a Mouse Unilateral Ureteral Obstruction Model of Chronic Kidney Disease. Mediators Inflamm 2017; 2017:8316560. [PMID: 28348462 PMCID: PMC5350413 DOI: 10.1155/2017/8316560] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
Background and Aims. The nucleotide-binding domain and leucine-rich repeat containing PYD-3 (NLRP3) inflammasome has been implicated in the pathogenesis of chronic kidney disease (CKD); however, its exact role in glomerular injury and tubulointerstitial fibrosis is still undefined. The present study was performed to identify the function of NLRP3 in modulating renal injury and fibrosis and the potential involvement of mitochondrial dysfunction in the murine unilateral ureteral obstruction (UUO) model of CKD. Methods. Employing wild-type (WT) and NLRP3−/− mice with or without UUO, we evaluated renal structure, tissue injury, and mitochondrial ultrastructure, as well as expression of some vital molecules involved in the progression of fibrosis, apoptosis, inflammation, and mitochondrial dysfunction. Results. The severe glomerular injury and tubulointerstitial fibrosis induced in WT mice by UUO was markedly attenuated in NLRP3−/− mice as evidenced by blockade of extracellular matrix deposition, decreased cell apoptosis, and phenotypic alterations. Moreover, NLRP3 deletion reversed UUO-induced impairment of mitochondrial morphology and function. Conclusions. NLRP3 deletion ameliorates mitochondrial dysfunction and alleviates renal fibrosis in a murine UUO model of CKD.
Collapse
|
43
|
Abstract
Atrial fibrillation (AF) is an important cause of stroke and risk factor for heart failure and death. Current pharmacologic treatments for AF have limited efficacy, and treatments that more directly target the underlying causes of AF are needed. Oxidant stress and inflammatory activation are interrelated pathways that promote atrial electrical and structural remodeling, leading to atrial ectopy, interstitial fibrosis, and increased stroke risk. This review evaluates the impact of common stressors on atrial oxidant stress and inflammatory activation and the contribution of these pathways to atrial remodeling. Recent studies suggest that integrated efforts to target the underlying risk factors, rather than the AF per se, may have a greater impact on health and outcomes than isolated efforts focused on the electrical abnormalities.
Collapse
|
44
|
Ferrari D, Gambari R, Idzko M, Müller T, Albanesi C, Pastore S, La Manna G, Robson SC, Cronstein B. Purinergic signaling in scarring. FASEB J 2016; 30:3-12. [PMID: 26333425 PMCID: PMC4684510 DOI: 10.1096/fj.15-274563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 12/23/2022]
Abstract
Adenosine (ADO) and nucleotides such as ATP, ADP, and uridine 5'-triphosphate (UTP), among others, may serve as extracellular signaling molecules. These mediators activate specific cell-surface receptors-namely, purinergic 1 and 2 (P1 and P2)-to modulate crucial pathophysiological responses. Regulation of this process is maintained by nucleoside and nucleotide transporters, as well as the ectonucleotidases ectonucleoside triphosphate diphosphohydrolase [ENTPD; cluster of differentiation (CD)39] and ecto-5'-nucleotidase (5'-NT; CD73), among others. Cells involved in tissue repair, healing, and scarring respond to both ADO and ATP. Our recent investigations have shown that modulation of purinergic signaling regulates matrix deposition during tissue repair and fibrosis in several organs. Cells release adenine nucleotides into the extracellular space, where these mediators are converted by CD39 and CD73 into ADO, which is anti-inflammatory in the short term but may also promote dermal, heart, liver, and lung fibrosis with repetitive signaling under defined circumstances. Extracellular ATP stimulates cardiac fibroblast proliferation, lung inflammation, and fibrosis. P2Y2 (UTP/ATP) and P2Y6 [ADP/UTP/uridine 5'-diphosphate (UDP)] have been shown to have profibrotic effects, as well. Modulation of purinergic signaling represents a novel approach to preventing or diminishing fibrosis. We provide an overview of the current understanding of purinergic signaling in scarring and discuss its potential to prevent or decrease fibrosis.
Collapse
Affiliation(s)
- Davide Ferrari
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Roberto Gambari
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Marco Idzko
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Tobias Müller
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Cristina Albanesi
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Saveria Pastore
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Gaetano La Manna
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Simon C Robson
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| | - Bruce Cronstein
- *Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Pneumology, University of Freiburg, Freiburg, Germany; Laboratory of Immunology and Laboratory of Tissue Engineering and Cutaneous Physiopathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Department of Specialized, Diagnostic, and Experimental Medicine, University of Bologna, Bologna, Italy; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA; and Department of Medicine, New York University, New York, New York, USA
| |
Collapse
|
45
|
Abstract
SIGNIFICANCE In response to infection or cellular stress, inflammasomes are assembled and activated to mediate host defense and to initiate or promote the development of different diseases, in particular, autoinflammatory diseases and chronic degenerative diseases. Understanding of inflammasomes and related physiological and pathological relevance to the cardiovascular system will open a new chapter on the pathogenesis of inflammation and related diseases and will help develop novel therapeutic strategies for prevention or treatment of cardiovascular diseases. RECENT ADVANCES The inflammasome, in particular the nucleotide oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome, has been recently recognized as a fundamental mechanism to mediate or promote the pathogenesis of degenerative diseases. Some important mechanisms responsible for NLRP3 inflammasome activation have been proposed and many molecular targets associated with this inflammasome activation are shown to be the possible candidates of therapeutic targets for treatment of cardiovascular diseases. CRITICAL ISSUES The concepts that NLRP3 inflammasome activation occurs just in immune cells or phagocytes and that its role is only for the inflammatory progression of cardiovascular diseases are oversimplified. A large body of other cell types are capable of NLRP3 inflammasome activation, and many uncanonical effects of this inflammasome may also be implicated in the development of cardiovascular diseases, which are discussed in a great detail by this Forum. FUTURE DIRECTIONS More mechanistic and translational studies will rapidly widen the horizon of knowledge on NLRP3 inflammasome activation and regulation, which may help develop novel effective therapeutic strategies to target this inflammasome for treatment or prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|