1
|
Chakraborty S, Chandra S, Pandit S, Raj S, Gill HS, Sharma K, Bhattacharya D, Nag M, Lahiri D. Harnessing the power: the role of dissimilatory metal-reducing bacteria in microbial fuel cells. Arch Microbiol 2025; 207:176. [PMID: 40526314 DOI: 10.1007/s00203-025-04319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 06/19/2025]
Abstract
Dissimilatory metal-reducing bacteria (DMRB) have been considered very important contributors in developing and operating microbial fuel cells that represent one promising technology for waste treatment and sustainable energy generation. In keeping with this spirit, this review paper will scrutinise the elementary mechanisms whereby the unique metabolic processes of DMRB enable their role in facilitating the extracellular transmission of electrons to the anode from organic substrates. Important species like Shewanella and Geobacter are referred to because of their contributions toward improving the stability and efficiency of MFCs. The paper also discusses the benefits of using DMRB, such as their potential in bioremediation and increased electron transfer efficiency. Difficulties examined include preserving microbial stability, competing with other species, and improving operating conditions. The recent developments in materials science, genetic engineering, and integration with other renewable technologies are discussed to demonstrate the potential for future breakthroughs. The last section of this paper discusses the wider implications of DMRB in developing MFC technology for energy and environmental applications.
Collapse
Affiliation(s)
- Soumyadeep Chakraborty
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, U.P., India
| | - Soumyajit Chandra
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, U.P., India
| | - Soumya Pandit
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, U.P., India.
| | - Swetha Raj
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Harjot Singh Gill
- Institute of Engineering and E-Governance, Chandigarh University, Gharuan, Mohali, India
| | - Kuldeep Sharma
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Rajpura, Punjab, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India
| | - Moupriya Nag
- Department of Basic Science and Humanities, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Basic Science and Humanities, Institute of Engineering and Management, University of Engineering and Management, Kolkata, India.
| |
Collapse
|
2
|
Zheng X, Li R, Wang T, Li X, Han X, Dai Y, Liu J, Xu J. Unraveling Antibacterial Mechanisms of Surfactants against Staphylococcus aureus via Single-Cell Raman Spectroscopy. Anal Chem 2025; 97:9202-9211. [PMID: 40277167 DOI: 10.1021/acs.analchem.4c06380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Antibacterial agents, particularly surfactants, play crucial roles in the personal and home care industries. However, current methods for assessing their efficacy and mechanism are commonly time-consuming and expensive. Here, we established a ramanome-based approach to investigate the antibacterial mechanisms of cationic and anionic surfactants with varying alkyl chain lengths against Staphylococcus aureus as a model. Our findings further elucidate the synergy between anionic surfactants and acidic pH. Cell membrane integrity was disrupted by all of the surfactants, as revealed by the decrease in Raman bands assigned to major cellular components (nucleic acids, proteins, and cytochrome), leading to the leakage of cellular components. Moreover, the composition of the cell membrane was altered due to insertion of cationic surfactant, evidenced by the emergence of surfactant-characteristic bands in the spectrum of S. aureus; yet this was observed only under acidic conditions for anionic surfactants. Remarkably, changes in Raman bands of staphyloxanthin and S═O which are biomarkers of cellular oxidative states revealed that acidic conditions accelerated cell death induced by the anionic surfactant. These findings illustrate distinct mechanisms of action for cationic and anionic surfactants and suggest that ramanomics offers a rapid, low-cost, comprehensive, and mechanism-revealing approach for the assessment and screening of surfactants.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Rui Li
- Beauty Revealed, Procter & Gamble International Operations SA SG Branch, Singapore 138547
| | - Ting Wang
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Xunrong Li
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Xiao Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China
| | - Yajie Dai
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Jiquan Liu
- Procter & Gamble Singapore Innovation Center, Singapore 138547
| | - Jian Xu
- Single-Cell Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
3
|
Langwig MV, Koester F, Martin C, Zhou Z, Joye SB, Reysenbach AL, Anantharaman K. Endemism shapes viral ecology and evolution in globally distributed hydrothermal vent ecosystems. Nat Commun 2025; 16:4076. [PMID: 40307239 PMCID: PMC12043954 DOI: 10.1038/s41467-025-59154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Viruses are ubiquitous in deep-sea hydrothermal vents, where they influence microbial communities and biogeochemistry. Yet, viral ecology and evolution remain understudied in these environments. Here, we identify 49,962 viruses from 52 globally distributed hydrothermal vent samples (10 plume, 40 deposit, and 2 diffuse flow metagenomes), and reconstruct 5708 viral metagenome-assembled genomes, the majority of which were bacteriophages. Hydrothermal viruses were largely endemic, however, some viruses were shared between geographically separated vents, predominantly between the Lau Basin and Brothers Volcano in the Pacific Ocean. Geographically distant viruses shared proteins related to core functions such as structural proteins, and rarely, proteins of auxiliary functions involved in processes such as fermentation and cobalamin biosynthesis. Common microbial hosts of viruses included members of Campylobacterota, Alpha-, and Gammaproteobacteria in deposits, and Gammaproteobacteria in plumes. Campylobacterota- and Gammaproteobacteria-infecting viruses reflected variations in hydrothermal chemistry and functional redundancy in their predicted microbial hosts, suggesting that hydrothermal geology is a driver of viral ecology and coevolution of viruses and hosts. Our results indicate that viral ecology and evolution in globally distributed hydrothermal vents is shaped by endemism and thus may have increased susceptibility to the negative impacts of deep-sea mining and anthropogenic change in ocean ecosystems.
Collapse
Affiliation(s)
- Marguerite V Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Faith Koester
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Cody Martin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, TN, India.
| |
Collapse
|
4
|
Nilsen T, Pettersen R, Keeley NB, Ray JL, Majaneva S, Stokkan M, Hervik A, Angell IL, Snipen LG, Sundt MØ, Rudi K. Association of Microbial Networks with the Coastal Seafloor Macrofauna Ecological State. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7517-7529. [PMID: 40214404 PMCID: PMC12020364 DOI: 10.1021/acs.est.4c12464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Recent evidence suggests that there is a major switch in coastal seafloor microbial ecology already at a mildly deteriorated macrofaunal state. This knowledge is of critical value in the management and conservation of the coastal seafloor. We therefore aimed to determine the relationships between seafloor microbiota and macrofauna on a regional scale. We compared prokaryote, macrofauna, chemical, and geographical data from 1546 seafloor samples, which varied in their exposure to aquaculture activities along the Norwegian and Icelandic coasts. We found that the seafloor samples contained either a network centralized by a sulfur oxidizer (42.4% of samples, n = 656) or a network centralized by an archaeal ammonium oxidizer (44.0% of samples, n = 681). Very few samples contained neither network (9.8% of samples, n = 151) or both (3.8% of samples, n = 58). Samples with a sulfur oxidizer network had a 10-fold higher risk of macrofauna loss (odds ratios, 95% CI: 9.5 to 15.6), while those with an ammonium oxidizer network had a 10-fold lower risk (95% CI: 0.068 to 0.11). The sulfur oxidizer network was negatively correlated to distance from Norwegian aquaculture sites (Spearman rho = -0.42, p < 0.01) and was present in all Icelandic samples (n = 274). The ammonium oxidizer network was absent from Icelandic samples and positively correlated to distance from Norwegian aquaculture sites (Spearman rho = 0.67, p < 0.01). Based on 356 high-quality metagenome-assembled genomes (MAGs), we found that bicarbonate-dependent carbon fixation and low-affinity oxygen respiration were associated with the ammonium oxidizer network, while the sulfur oxidizer network was associated with ammonium retention, sulfur metabolism, and high-affinity oxygen respiration. In conclusion, our findings highlight the critical roles of microbial networks centralized by sulfur and ammonium oxidizers in mild macrofauna deterioration, which should be included as an essential part of seafloor surveillance.
Collapse
Affiliation(s)
- Tonje Nilsen
- Norwegian
University of Life Sciences, Ås 1433, Norway
| | | | | | | | | | | | | | | | | | | | - Knut Rudi
- Norwegian
University of Life Sciences, Ås 1433, Norway
| |
Collapse
|
5
|
Siddeeque R, Heger L, Kägi J, Friedrich T, Melin F, Hellwig P. Interplay of acidic residues in the proton channel of E. coli cytochrome bd-I oxidase to promote oxygen reduction and NO release. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149537. [PMID: 39778731 DOI: 10.1016/j.bbabio.2025.149537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The reduction of oxygen to water is crucial to life under aerobic conditions. Cytochrome bd oxidases perform this reaction with a very high oxygen affinity. Members of this protein family are solely found in prokaryotes and some archaea playing an important role in bacterial virulence and antibiotic resistance. Here, we combine mutagenesis, electrocatalysis, nitric oxide binding and release experiments as well as FTIR spectroscopy to demonstrate that proton delivery to the active site is essentially rate limiting in Cyt bd-I electrocatalysis. D58 and D105 of subunit CydB are crucial residues in this proton path and communicate via a hydrogen bond network. Oxygen reduction depends on proton delivery to the active site, which also influences NO release.
Collapse
Affiliation(s)
- Raaif Siddeeque
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081 Strasbourg, France
| | - Lucia Heger
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany.
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081 Strasbourg, France; Institut universitaire de France (IUF), France.
| |
Collapse
|
6
|
Engelgeh T, Wamp S, Rothe P, Herrmann J, Fischer MA, Müller R, Halbedel S. ClpP2 proteasomes and SpxA1 determine Listeria monocytogenes tartrolon B hyper-resistance. PLoS Genet 2025; 21:e1011621. [PMID: 40184427 PMCID: PMC11970672 DOI: 10.1371/journal.pgen.1011621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/13/2025] [Indexed: 04/06/2025] Open
Abstract
The foodborne bacterium Listeria monocytogenes is transmitted to humans from various environmental sources through consumption of contaminated plant and animal-based food. L. monocytogenes uses ATP-binding cassette (ABC)-type drug transporters to resist antimicrobial compounds produced by competitors co-residing in its environmental reservoirs. We have shown previously that the TimAB transporter confers resistance of L. monocytogenes to tartrolon B, a boron containing macrodiolide produced by myxo- and proteobacterial species. Tartrolon B acts as a potassium ionophore and is sensed by TimR, the transcriptional repressor of timABR operon. We here have isolated tartrolon B resistant suppressor mutations outside the timABR locus. These mutations inactivated the clpP2 gene, which encodes the main proteolytic component of house-keeping Clp proteases. Deletion of clpP2 impaired growth and virulence but caused tartrolon B hyper-resistance. This phenotype was timAB-dependent, but neither production nor degradation of TimAB was affected upon clpP2 inactivation. Combinatorial deletions of the genes encoding the three Clp ATPases showed that ClpCP2 and ClpXP2 proteasomes jointly promote tartrolon B hyper-resistance. Genetic follow-up experiments identified the ClpP2 substrate and transcription factor SpxA1 and its protease adaptor YjbH as further tartrolon B resistance determinants. SpxA1 activates transcription of the cydABCD operon encoding cytochrome oxidase and in accordance with this transposon mutants with impaired cytochrome oxidase function were depleted from a transposon mutant library during tartrolon B exposure. Our work demonstrates novel roles of Clp proteasomes, SpxA1 and cytochrome oxidase CydAB in the resistance against compounds dissipating transmembrane ion gradients and helps to better understand the genetic and chemical basis of the manifold ecological interactions of an important human pathogen in its natural ecologic niches.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Martin A. Fischer
- FG13 Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Borisov VB, Forte E. Carbon Monoxide and Prokaryotic Energy Metabolism. Int J Mol Sci 2025; 26:2809. [PMID: 40141451 PMCID: PMC11942997 DOI: 10.3390/ijms26062809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Carbon monoxide (CO) plays a multifaceted role in both physiology and pathophysiology. At high levels, it is lethal to humans due to its tight binding to globins and cytochrome c oxidase. At low doses, CO can exhibit beneficial effects; it serves as an endogenous signaling molecule and possesses antibacterial properties, which opens up possibilities for its use as an antimicrobial agent. For this purpose, research is in progress to develop metal-based CO-releasing molecules, metal-free organic CO prodrugs, and CO-generating hydrogel microspheres. The energy metabolism of prokaryotes is a key point that may be targeted by CO to kill invading pathogens. The cornerstone of prokaryotic energy metabolism is a series of membrane-bound enzyme complexes, which constitute a respiratory chain. Terminal oxidases, at the end of this chain, contain hemes and are therefore potential targets for CO. However, this research area is at its very early stage. The impact of CO on bacterial energy metabolism may also provide a basis for biotechnological applications in which this gas is present. This review discusses the molecular basis of the effects of CO on microbial growth and aerobic respiration supported by different terminal oxidases in light of recent findings.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, I-00185 Rome, Italy;
| |
Collapse
|
8
|
Hellwig P. The electrochemical properties of the highly diverse terminal oxidases from different organisms. Bioelectrochemistry 2025; 165:108946. [PMID: 40020283 DOI: 10.1016/j.bioelechem.2025.108946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
Terminal oxidases are critical for aerobic respiratory chains of prokaryotes and eukaryotes, responsible for the final step in the electron transport chain. These enzymes catalyze the transfer of electrons from reduced electron carriers (such as cytochrome c or quinols) to the terminal electron acceptor, molecular oxygen (O₂), thereby reducing it to water. They play a pivotal role in aerobic respiration and energy metabolism, adapting to diverse environmental and physiological needs across different organisms. This review summarizes the electrochemical properties of terminal oxidases from different organisms and reveals their high degree of adaptivity with redox potentials spanning more than 500 mV. The electrocatalytic response in direct electrochemical approaches is described giving insight into the rich and complex electron and proton transfer catalysed by these essential enzymes.
Collapse
Affiliation(s)
- Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioélectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France, Institut Universitaire de France (IUF).
| |
Collapse
|
9
|
Batista BB, de Lima VM, Will WR, Fang FC, da Silva Neto JF. A cytochrome bd repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in Chromobacterium violaceum. Appl Environ Microbiol 2025; 91:e0236024. [PMID: 39853125 PMCID: PMC11837568 DOI: 10.1128/aem.02360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Chromobacterium violaceum is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome bd that protects C. violaceum against multiple stresses. The two subunits of this cytochrome bd (CioAB) are encoded by the cioRAB operon, which also encodes a GbsR-type MarR family transcription factor (CioR). A ∆cioAB mutant strain was sensitive to iron and the iron-requiring antibiotic streptonigrin and showed a decrease in siderophore production. Growth curves and survival assays revealed that the ∆cioAB strain was also sensitive to zinc, hydrogen peroxide, nitric oxide, sulfide, and cyanide. Expression analysis showed that the promoter activity of the cioRAB operon and the transcript levels of the cioAB genes were increased in a ∆cioR mutant. CioR bound the promoter region of the cio operon in vitro, indicating that CioR is a direct repressor of its own operon. Expression of the cio operon increased at high cell density and was dependent on the quorum-sensing regulator CviR. As cyanide is also a signal for cio expression, and production of endogenous cyanide is known to be a quorum sensing-regulated trait in C. violaceum, we suggest that CioAB is a cyanide-insensitive terminal oxidase that allows respiration under cyanogenic growth conditions. Our findings indicate that the cytochrome bd CioAB protects C. violaceum against multiple stress agents that are potentially produced endogenously or during interactions with a host. IMPORTANCE The terminal oxidases of bacterial respiratory chains rely on heme-copper (heme-copper oxidases) or heme (cytochrome bd) to catalyze the reduction of molecular oxygen to water. Chromobacterium violaceum is a facultative anaerobic bacterium that uses oxygen and other electron acceptors for respiration under conditions of varying oxygen availability. The C. violaceum genome encodes multiple respiratory terminal oxidases, but their role and regulation remain unexplored. Here, we demonstrate that CioAB, the single cytochrome bd from C. violaceum, protects this bacterium against multiple stressors that are inhibitors of heme-copper oxidases, including nitric oxide, sulfide, and cyanide. CioAB also confers C. violaceum resistance to iron, zinc, and hydrogen peroxide. This cytochrome bd is encoded by the cioRAB operon, which is under direct repression by the MarR-type regulator CioR. In addition, the cioRAB operon responds to quorum sensing and to cyanide, suggesting a protective mechanism of increasing CioAB in the setting of high endogenous cyanide production.
Collapse
Affiliation(s)
- Bianca B. Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinicius M. de Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - W. Ryan Will
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ferric C. Fang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - José F. da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
10
|
van der Velden TT, Kayastha K, Waterham CYJ, Brünle S, Jeuken LJC. Menaquinone-specific turnover by Mycobacterium tuberculosis cytochrome bd is redox regulated by the Q-loop disulfide bond. J Biol Chem 2025; 301:108094. [PMID: 39706268 PMCID: PMC11786768 DOI: 10.1016/j.jbc.2024.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Cytochrome bd from Mycobacterium tuberculosis (Mtbd) is a menaquinol oxidase that has gained interest as an antibiotic target because of its importance in survival under infectious conditions. Mtbd contains a characteristic disulfide bond that has been hypothesized to allow for Mtbd activity regulation at the enzymatic level, possibly helping M. tuberculosis to rapidly adapt to the hostile environment of the phagosome. Here, the role of the disulfide bond and quinone specificity have been determined by reconstitution of a minimal respiratory chain and the single-particle cryo-EM structure in the disulfide-reduced form. Mtbd was shown to be specific for menaquinone, while regulation by reduction of the Q-loop disulfide bond decreased oxidase activity up to 90%. Structural analysis shows that a salt bridge unique to Mtbd keeps the Q-loop partially structured in its disulfide-reduced form, which could facilitate the rapid activation of Mtbd upon exposure to reactive oxygen species. We signify Mtbd as the first redox sensory terminal oxidase and propose that this helps M. tuberculosis in the defense against reactive oxygen species encountered during infection.
Collapse
Affiliation(s)
| | - Kanwal Kayastha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Steffen Brünle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Liang Y, Liu X, Chang H, Yap J, Sun W, Gao H. Inhibitory effects of nitrite and sulfite/peroxymonosulfate on bacteria are mediated respectively through respiration and intracellular GSH homeostasis. Microbiol Res 2025; 290:127962. [PMID: 39489134 DOI: 10.1016/j.micres.2024.127962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
As nitrite, sulfite has been used in food preservation for centuries but how it inhibits bacterial growth remains underexplored. To address this issue, in this study, we set out to test if cytochrome (cyt) c proteins protect bacteria from the damage of certain reactive sulfur species (RSS) because they do so in the case of reactive nitrogen species (RNS). We show that some reactive sulfur species, such as sulfite and peroxymonosulfate (PMS), inhibit growth of bacterial strains devoid of cytochrome (cyt) c proteins. Subsequent investigations link the inhibition of sulfite/PMS to activity of cbb3-type heme-copper oxidase (cbb3-HCO). However, in vitro comparative analysis rules out that either cbb3-HCO or cyt bd oxidase is the primary target of sulfite/PMS. Instead, we found that sulfite/PMS and the cbb3-HCO loss regulate intracellular redox status in a similar manner, by affecting GSH/GSSG homeostasis. The link between the GSH/GSSG homeostasis and sulfite/PMS is further substantiated by using the mutants with enhanced GSSG generation. Furthermore, we present the data to show that inhibitory effects of nitrite and sulfite/PMS are additive although the overall effects may vary depending on species. Our results open an avenue to control bacteria by developing more robust agents that modulating intracellular redox status, which may be used in combination with nitrite as a promising antimicrobial strategy.
Collapse
Affiliation(s)
- Yuxuan Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xinyue Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Jim Yap
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weining Sun
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Patil AV, Shirsath AM, Anand A. Dioxygen reductase heterogeneity is crucial for robust aerobic growth physiology of Escherichia coli. iScience 2024; 27:111498. [PMID: 39759019 PMCID: PMC11697609 DOI: 10.1016/j.isci.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
The development of a system to leverage molecular oxygen for energy-efficient pathways required several molecular adaptations. The enzymatic reduction of dioxygen to water is one such prominent evolutionary molecular trait. Microbes evolved several enzymes capable of reducing dioxygen and, interestingly, retained multiples of them in their genomes. While their structure and biochemical functions are well-studied, understanding their degeneracy and co-operativity in the system remains elusive. We used genetic engineering and evolutionary repair approaches to examine the impact of the high oxygen affinity cytochrome bd oxidase deficiency in Escherichia coli aerobic growth. We found a crucial role of cytochrome bd oxidases in the robustness of aerobic physiology. Evolutionary repair experiments alleviated growth defects in bd oxidase-deficient strains by ArcAB system dysregulation at the cost of impaired stress response pathways. Energy generation pathways are potential antimicrobial targets, and understanding collateral phenotypes is crucial in designing therapeutic approaches that reduce antimicrobial resistance development.
Collapse
Affiliation(s)
- Anjali V. Patil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Akshay M. Shirsath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
13
|
Grivennikova VG, Gladyshev GV, Zharova TV, Borisov VB. Proton-Translocating NADH-Ubiquinone Oxidoreductase: Interaction with Artificial Electron Acceptors, Inhibitors, and Potential Medicines. Int J Mol Sci 2024; 25:13421. [PMID: 39769185 PMCID: PMC11677225 DOI: 10.3390/ijms252413421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force (pmf) across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required. Due to complex I being a major electron entry point for oxidative metabolism, various mutations of the enzyme lead to the development of severe pathologies and/or are associated with human metabolic disorders and have been well documented. This review examines current information on the structure and subunit composition of complex I of eukaryotes and prokaryotes, reactions catalyzed by this enzyme, and ways to regulate them. The review also discusses biomedical aspects related to the enzyme in light of recent findings.
Collapse
Affiliation(s)
- Vera G. Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Grigory V. Gladyshev
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Tatyana V. Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (V.G.G.); (G.V.G.); (T.V.Z.)
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
14
|
Uribe-Ramírez D, Romero-Aguilar L, Vázquez-Meza H, Cristiani-Urbina E, Pardo JP. Modifications of the respiratory chain of Bacillus licheniformis as an alkalophilic and cyanide-degrading microorganism. J Bioenerg Biomembr 2024; 56:591-605. [PMID: 39496989 PMCID: PMC11624218 DOI: 10.1007/s10863-024-10041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
Bacillus licheniformis can use cyanide as a nitrogen source for its growth. However, it can also carry out aerobic respiration in the presence of this compound, a classic inhibitor of mammalian cytochrome c oxidase, indicating that B. licheniformis has a branched respiratory chain with various terminal oxidases. Here, we studied the modifications in the respiratory chain of B. licheniformis when cells were cultured in Nutrient Broth, an alkaline medium with ammonium, or an alkaline medium with cyanide. Then, we measured oxygen consumption in intact cells and membranes, enzyme activities, carried out 1D and 2D-BN-PAGE, followed by mass spectrometry analysis of BN-PAGE bands associated with NADH, NADPH, and succinate dehydrogenase activities. We found that cell growth was favored in a nutrient medium than in an alkaline medium with cyanide. In parallel, respiratory activity progressively decreased in cells cultured in the rich medium, alkaline medium with ammonium, and the lowest activity was in the cells growing in the alkaline medium with cyanide. B. licheniformis membranes contain NADH, NADPH, and succinate dehydrogenases, and the proteomic analysis detected the nitrate reductase and the bc, caa3, aa3, and bd complexes. The succinate dehydrogenase migrated with a molecular mass of 375 kDa, indicating its association with the nitrate reductase (115 kDa + 241 kDa, respectively). The NADH dehydrogenase of B. licheniformis forms aggregates of different molecular mass.
Collapse
Affiliation(s)
- Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, Ciudad de México, 07738, México
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, Ciudad de México, 07738, México
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México.
| |
Collapse
|
15
|
Janczak M, Vilhjálmsdóttir J, Ädelroth P. Proton transfer in cytochrome bd-I from E. coli involves Asp-105 in CydB. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149489. [PMID: 39009175 DOI: 10.1016/j.bbabio.2024.149489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Cytochrome bds are bacterial terminal oxidases expressed under low oxygen conditions, and they are important for the survival of many pathogens and hence potential drug targets. The largest subunit CydA contains the three redox-active cofactors heme b558, heme b595 and the active site heme d. One suggested proton transfer pathway is found at the interface between the CydA and the other major subunit CydB. Here we have studied the O2 reduction mechanism in E. coli cyt. bd-I using the flow-flash technique and focused on the mechanism, kinetics and pathway for proton transfer. Our results show that the peroxy (P) to ferryl (F) transition, coupled to the oxidation of the low-spin heme b558 is pH dependent, with a maximum rate constant (~104 s-1) that is slowed down at higher pH. We assign this behavior to rate-limitation by internal proton transfer from a titratable residue with pKa ~ 9.7. Proton uptake from solution occurs with the same P➔F rate constant. Site-directed mutagenesis shows significant effects on catalytic turnover in the CydB variants Asp58B➔Asn and Asp105B➔Asn variants consistent with them playing a role in proton transfer. Furthermore, in the Asp105B➔Asn variant, the reactions up to P formation occur essentially as in the wildtype bd-I, but the P➔F transition is specifically inhibited, supporting a direct and specific role for Asp105B in the functional proton transfer pathway in bd-I. We further discuss the possible identity of the high pKa proton donor, and the conservation pattern of the Asp-105B in the cyt. bd superfamily.
Collapse
Affiliation(s)
- M Janczak
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - J Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - P Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
16
|
Borisov VB, Giardina G, Pistoia G, Forte E. Cytochrome bd-type oxidases and environmental stressors in microbial physiology. Adv Microb Physiol 2024; 86:199-255. [PMID: 40404270 DOI: 10.1016/bs.ampbs.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Cytochrome bd is a tri-haem copper-free terminal oxidase of many respiratory chains of prokaryotes with unique structural and functional characteristics. As the other membrane-bound terminal oxidases, this enzyme couples the four-electron reduction of oxygen to water with the generation of a proton motive force used for ATP synthesis but the molecular mechanism does not include proton pumping. Beyond its bioenergetic role, cytochrome bd is involved in resistance to several stressors and affords protection against oxidative and nitrosative stress. These features agree with its expression in many bacterial pathogens. The importance for bacterial virulence and the absence of eukaryotic homologues make this enzyme an ideal target for new antimicrobial drugs. This review aims to provide an update on the current knowledge about cytochrome bd in light of recent advances in the structural characterisation of this enzyme, focussing on its reactivity with environmental stressors.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Pistoia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Borisov VB, Arutyunyan AM. The fully reduced terminal oxidase bd-I isolated from Escherichia coli binds cyanide. J Inorg Biochem 2024; 259:112653. [PMID: 38943845 DOI: 10.1016/j.jinorgbio.2024.112653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cytochrome bd-I from Escherichia coli belongs to the superfamily of prokaryotic bd-type oxygen reductases. It contains three hemes, b558, b595 and d, and couples oxidation of quinol by dioxygen with the generation of a proton-motive force. The enzyme exhibits resistance to various stressors and is considered as a target protein for next-generation antimicrobials. By using electronic absorption and MCD spectroscopy, this work shows that cyanide binds to heme d2+ in the isolated fully reduced cytochrome bd-I. Cyanide-induced difference absorption spectra display changes near the heme d2+ α-band, a minimum at 633 nm and a maximum around 600 nm, and a W-shaped response in the Soret region. Apparent dissociation constant (Kd) of the cyanide complex of heme d2+ is ∼0.052 M. Kinetics of cyanide binding is monophasic, indicating the presence of a single ligand binding site in the enzyme. Consistently, MCD data show that cyanide binds to heme d2+ but not to b5582+ or b5952+. This agrees with the published structural data that the enzyme's active site is not a di-heme site. The observed rate of binding (kobs) increases as the concentration of cyanide is increased, giving a second-order rate constant (kon) of ∼0.1 M-1 s-1.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
18
|
Wang X, Liu Y, Chen Z, Wang K, Liu G, Chen T, Zhang B. Genomic Functional Analysis of Novel Radiation-Resistant Species of Knollia sp. nov. S7-12 T from the North Slope of Mount Everest. Microorganisms 2024; 12:1748. [PMID: 39338423 PMCID: PMC11433714 DOI: 10.3390/microorganisms12091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation protection is an important field of study, as it relates to human health and environmental safety. Radiation-resistance mechanisms in extremophiles are a research hotspot, as this knowledge has great application value in bioremediation and development of anti-radiation drugs. Mount Everest, an extreme environment of high radiation exposure, harbors many bacterial strains resistant to radiation. However, owing to the difficulties in studying them because of the extreme terrain, many remain unexplored. In this study, a novel species (herein, S7-12T) was isolated from the moraine of Mount Everest, and its morphology and functional and genomic characteristics were analyzed. The strain S7-12T is white in color, smooth and rounded, non-spore-forming, and non-motile and can survive at a UV intensity of 1000 J/m2, showing that it is twice as resistant to radiation as Deinococcus radiodurans. Radiation-resistance genes, including IbpA and those from the rec and CspA gene families, were identified. The polyphasic taxonomic approach revealed that the strain S7-12T (=KCTC 59114T =GDMCC 1.3458T) is a new species of the genus Knoellia and is thus proposed to be named glaciei. The in-depth study of the genome of strain S7-12T will enable us to gain further insights into its potential use in radiation resistance. Understanding how microorganisms resist radiation damage could reveal potential biomarkers and therapeutic targets, leading to the discovery of potent anti-radiation compounds, thereby improving human resistance to the threat of radiation.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiyuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kexin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
19
|
Tu Z, Stevenson DM, McCaslin D, Amador-Noguez D, Huynh TN. The role of Listeria monocytogenes PstA in β-lactam resistance requires the cytochrome bd oxidase activity. J Bacteriol 2024; 206:e0013024. [PMID: 38995039 PMCID: PMC11340317 DOI: 10.1128/jb.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
c-di-AMP is an essential second messenger that binds and regulates several proteins of different functions within bacterial cells. Among those, PstA is a structurally conserved c-di-AMP-binding protein, but its function is largely unknown. PstA is structurally similar to PII signal transduction proteins, although it specifically binds c-di-AMP rather than other PII ligands such as ATP and α-ketoglutarate. In Listeria monocytogenes, we found that PstA increases β-lactam susceptibility at normal and low c-di-AMP levels, but increases β-lactam resistance upon c-di-AMP accumulation. Examining a PstA mutant defective for c-di-AMP binding, we found the apo form of PstA to be toxic for β-lactam resistance, and the c-di-AMP-bound form to be beneficial. Intriguingly, a role for PstA in β-lactam resistance is only prominent in aerobic cultures, and largely diminished under hypoxic conditions, suggesting that PstA function is linked to aerobic metabolism. However, PstA does not control aerobic growth rate, and has a modest influence on the tricarboxylic acid cycle and membrane potential-an indicator of cellular respiration. The regulatory role of PstA in β-lactam resistance is unrelated to reactive oxygen species or oxidative stress. Interestingly, during aerobic growth, PstA function requires the cytochrome bd oxidase (CydAB), a component of the respiratory electron transport chain. The requirement for CydAB might be related to its function in maintaining a membrane potential, or redox stress response activities. Altogether, we propose a model in which apo-PstA diminishes β-lactam resistance by interacting with an effector protein, and this activity can be countered by c-di-AMP binding or a by-product of redox stress. IMPORTANCE PstA is a structurally conserved c-di-AMP-binding protein that is broadly present among Firmicutes bacteria. Furthermore, PstA binds c-di-AMP at high affinity and specificity, indicating an important role in the c-di-AMP signaling network. However, the molecular function of PstA remains elusive. Our findings reveal contrasting roles of PstA in β-lactam resistance depending on c-di-AMP-binding status. We also define physiological conditions for PstA function during aerobic growth. Future efforts can exploit these conditions to identify PstA interaction partners under β-lactam stress.
Collapse
Affiliation(s)
- Zepeng Tu
- Food Science Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Darrel McCaslin
- Biophysics Instrumentation Facility, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - TuAnh N. Huynh
- Food Science Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Batista BB, Will WR, de Lima VM, Fang FC, da Silva Neto JF. A cytochrome bd repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in Chromobacterium violaceum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606881. [PMID: 39211195 PMCID: PMC11361195 DOI: 10.1101/2024.08.06.606881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chromobacterium violaceum is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome bd that protects C. violaceum against multiple stresses. The two subunits of this cytochrome bd (CioAB) are encoded by the cioRAB operon, which also encodes a GbsR-type MarR family transcription factor (CioR). A Δ cioAB mutant strain was sensitive to iron and the iron-requiring antibiotic streptonigrin and showed a decrease in siderophore production. Growth curves and survival assays revealed that the Δ cioAB strain was also sensitive to zinc, hydrogen peroxide, nitric oxide, sulfide, and cyanide. Expression analysis showed that the promoter activity of the cioRAB operon and the transcript levels of the cioAB genes were increased in a Δ cioR mutant. CioR bound the promoter region of the cio operon in vitro , indicating that CioR is a direct repressor of its own operon. Expression of the cio operon increased at high cell density and was dependent on the quorum-sensing regulator CviR. As cyanide is also a signal for cio expression, and production of endogenous cyanide is known to be a quorum sensing-regulated trait in C. violaceum , we suggest that CioAB is a cyanide-insensitive terminal oxidase that allow respiration under cyanogenic growth conditions. Our findings indicate that the cytochrome bd CioAB protects C. violaceum against multiple stress agents that are potentially produced endogenously or during interactions with a host. IMPORTANCE The terminal oxidases of bacterial respiratory chains rely on heme-copper (heme-copper oxidases) or heme (cytochrome bd ) to catalyze reduction of molecular oxygen to water. Chromobacterium violaceum is a facultative anaerobic bacterium that uses oxygen and other electron acceptors for respiration under conditions of varying oxygen availability. The C. violaceum genome encodes multiple respiratory terminal oxidases, but their role and regulation remain unexplored. Here, we demonstrate that CioAB, the single cytochrome bd from C. violaceum , protects this bacterium against multiple stressors that are inhibitors of heme-copper oxidases, including nitric oxide, sulfide, and cyanide. CioAB also confers C. violaceum resistance to iron, zinc, and hydrogen peroxide. This cytochrome bd is encoded by the cioRAB operon, which is under direct repression by the MarR-type regulator CioR. In addition, the cioRAB operon responds to quorum sensing and to cyanide, suggesting a protective mechanism of increasing CioAB in the setting of high endogenous cyanide production.
Collapse
|
21
|
Henry SA, Webster CM, Shaw LN, Torres NJ, Jobson ME, Totzke BC, Jackson JK, McGreig JE, Wass MN, Robinson GK, Shepherd M. Steroid Drugs Inhibit Bacterial Respiratory Oxidases and Are Lethal Toward Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2024; 230:e149-e158. [PMID: 39052707 PMCID: PMC11272085 DOI: 10.1093/infdis/jiad540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.
Collapse
Affiliation(s)
- Samantha A Henry
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Calum M Webster
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Lindsey N Shaw
- Department of Molecular Biosciences, University of South Florida, Tampa
| | | | | | - Brendan C Totzke
- Department of Molecular Biosciences, University of South Florida, Tampa
| | - Jessica K Jackson
- Department of Molecular Biosciences, University of South Florida, Tampa
| | - Jake E McGreig
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Gary K Robinson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
22
|
Mishra A, Chakraborty S, Jaiswal TP, Bhattacharjee S, Kesarwani S, Mishra AK, Singh SS. Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature. Extremophiles 2024; 28:31. [PMID: 39020126 DOI: 10.1007/s00792-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.
Collapse
Affiliation(s)
- Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shreya Kesarwani
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
23
|
Tetz V, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz G. Previously unknown regulatory role of extracellular RNA on bacterial directional migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603110. [PMID: 39026763 PMCID: PMC11257571 DOI: 10.1101/2024.07.11.603110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial directional migration plays a significant role in bacterial adaptation. However, the regulation of this process, particularly in young biofilms, remains unclear. Here, we demonstrated the critical role of extracellular RNA as part of the Universal Receptive System in bacterial directional migration using a multidisciplinary approach, including bacterial culture, biochemistry, and genetics. We found that the destruction or inactivation of extracellular RNA with RNase or RNA-specific antibodies in the presence of the chemoattractant triggered the formation of bacterial "runner cells» in what we call a "panic state" capable of directional migration. These cells quickly migrated even on the surface of 1.5% agar and formed evolved colonies that were transcriptionally and biochemically different from the ancestral cells. We have also shown that cell-free DNA from blood plasma can act as a potent bacterial chemoattractant. Our data revealed a previously unknown role of bacterial extracellular RNA in the regulation of bacterial migration and have shown that its destruction or inhibition triggered the directional migration of developing and mature biofilms towards the chemoattractant.
Collapse
|
24
|
Seitz C, Ahn SH, Wei H, Kyte M, Cook GM, Krause KL, McCammon JA. Targeting Tuberculosis: Novel Scaffolds for Inhibiting Cytochrome bd Oxidase. J Chem Inf Model 2024; 64:5232-5241. [PMID: 38874541 DOI: 10.1021/acs.jcim.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Discovered in the 1920s, cytochrome bd is a terminal oxidase that has received renewed attention as a drug target since its atomic structure was first determined in 2016. Only found in prokaryotes, we study it here as a drug target for Mycobacterium tuberculosis (Mtb). Most previous drug discovery efforts toward cytochrome bd have involved analogues of the canonical substrate quinone, known as Aurachin D. Here, we report six new cytochrome bd inhibitor scaffolds determined from a computational screen and confirmed on target activity through in vitro testing. These scaffolds provide new avenues for lead optimization toward Mtb therapeutics.
Collapse
Affiliation(s)
- Christian Seitz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Haixin Wei
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Matson Kyte
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kurt L Krause
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
25
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
26
|
McKay LS, Spandrio AR, Johnson RM, Sobran MA, Marlatt SA, Mote KB, Dedloff MR, Nash ZM, Julio SM, Cotter PA. Cytochrome oxidase requirements in Bordetella reveal insights into evolution towards life in the mammalian respiratory tract. PLoS Pathog 2024; 20:e1012084. [PMID: 38976749 PMCID: PMC11257404 DOI: 10.1371/journal.ppat.1012084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.
Collapse
Affiliation(s)
- Liliana S. McKay
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexa R. Spandrio
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Ashley Sobran
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara A. Marlatt
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katlyn B. Mote
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Margaret R. Dedloff
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Zachary M. Nash
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Steven M. Julio
- Department of Biology, Westmont College, Santa Barbara, California, United States of America
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
27
|
Bjerg CSB, Poehlein A, Bömeke M, Himmelbach A, Schramm A, Brüggemann H. Increased biofilm formation in dual-strain compared to single-strain communities of Cutibacterium acnes. Sci Rep 2024; 14:14547. [PMID: 38914744 PMCID: PMC11196685 DOI: 10.1038/s41598-024-65348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Cecilie Scavenius Brønnum Bjerg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
28
|
Rolando JL, Kolton M, Song T, Liu Y, Pinamang P, Conrad R, Morris JT, Konstantinidis KT, Kostka JE. Sulfur oxidation and reduction are coupled to nitrogen fixation in the roots of the salt marsh foundation plant Spartina alterniflora. Nat Commun 2024; 15:3607. [PMID: 38684658 PMCID: PMC11059160 DOI: 10.1038/s41467-024-47646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Heterotrophic activity, primarily driven by sulfate-reducing prokaryotes, has traditionally been linked to nitrogen fixation in the root zone of coastal marine plants, leaving the role of chemolithoautotrophy in this process unexplored. Here, we show that sulfur oxidation coupled to nitrogen fixation is a previously overlooked process providing nitrogen to coastal marine macrophytes. In this study, we recovered 239 metagenome-assembled genomes from a salt marsh dominated by the foundation plant Spartina alterniflora, including diazotrophic sulfate-reducing and sulfur-oxidizing bacteria. Abundant sulfur-oxidizing bacteria encode and highly express genes for carbon fixation (RuBisCO), nitrogen fixation (nifHDK) and sulfur oxidation (oxidative-dsrAB), especially in roots stressed by sulfidic and reduced sediment conditions. Stressed roots exhibited the highest rates of nitrogen fixation and expression level of sulfur oxidation and sulfate reduction genes. Close relatives of marine symbionts from the Candidatus Thiodiazotropha genus contributed ~30% and ~20% of all sulfur-oxidizing dsrA and nitrogen-fixing nifK transcripts in stressed roots, respectively. Based on these findings, we propose that the symbiosis between S. alterniflora and sulfur-oxidizing bacteria is key to ecosystem functioning of coastal salt marshes.
Collapse
Affiliation(s)
- J L Rolando
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - M Kolton
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - T Song
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - Y Liu
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- The Pennsylvania State University, Department of Civil & Environmental Engineering, University Park, PA, 16802, USA
| | - P Pinamang
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - R Conrad
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
| | - J T Morris
- Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC, 29201, USA
| | - K T Konstantinidis
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta, GA, 30332, USA
| | - J E Kostka
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, 30332, USA.
- Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA, 30332, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Tunsakul N, Wongsaroj L, Janchot K, Pongpirul K, Somboonna N. Non-significant influence between aerobic and anaerobic sample transport materials on gut (fecal) microbiota in healthy and fat-metabolic disorder Thai adults. PeerJ 2024; 12:e17270. [PMID: 38650647 PMCID: PMC11034497 DOI: 10.7717/peerj.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
Background The appropriate sample handling for human fecal microbiota studies is essential to prevent changes in bacterial composition and quantities that could lead to misinterpretation of the data. Methods This study firstly identified the potential effect of aerobic and anaerobic fecal sample collection and transport materials on microbiota and quantitative microbiota in healthy and fat-metabolic disorder Thai adults aged 23-43 years. We employed metagenomics followed by 16S rRNA gene sequencing and 16S rRNA gene qPCR, to analyze taxonomic composition, alpha diversity, beta diversity, bacterial quantification, Pearson's correlation with clinical factors for fat-metabolic disorder, and the microbial community and species potential metabolic functions. Results Our study successfully obtained microbiota results in percent and quantitative compositions. Each sample exhibited quality sequences with a >99% Good's coverage index, and a relatively plateau rarefaction curve. Alpha diversity indices showed no statistical difference in percent and quantitative microbiota OTU richness and evenness, between aerobic and anaerobic sample transport materials. Obligate and facultative anaerobic species were analyzed and no statistical difference was observed. Supportively, the beta diversity analysis by non-metric multidimensional scale (NMDS) constructed using various beta diversity coefficients showed resembling microbiota community structures between aerobic and anaerobic sample transport groups (P = 0.86). On the other hand, the beta diversity could distinguish microbiota community structures between healthy and fat-metabolic disorder groups (P = 0.02), along with Pearson's correlated clinical parameters (i.e., age, liver stiffness, GGT, BMI, and TC), the significantly associated bacterial species and their microbial metabolic functions. For example, genera such as Ruminococcus and Bifidobacterium in healthy human gut provide functions in metabolisms of cofactors and vitamins, biosynthesis of secondary metabolites against gut pathogens, energy metabolisms, digestive system, and carbohydrate metabolism. These microbial functional characteristics were also predicted as healthy individual biomarkers by LEfSe scores. In conclusion, this study demonstrated that aerobic sample collection and transport (<48 h) did not statistically affect the microbiota and quantitative microbiota analyses in alpha and beta diversity measurements. The study also showed that the short-term aerobic sample collection and transport still allowed fecal microbiota differentiation between healthy and fat-metabolic disorder subjects, similar to anaerobic sample collection and transport. The core microbiota were analyzed, and the findings were consistent. Moreover, the microbiota-related metabolic potentials and bacterial species biomarkers in healthy and fat-metabolic disorder were suggested with statistical bioinformatics (i.e., Bacteroides plebeius).
Collapse
Affiliation(s)
- Naruemon Tunsakul
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lampet Wongsaroj
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kantima Janchot
- Center of Excellence in Preventive and Integrative Medicine (CE-PIM) and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Krit Pongpirul
- Center of Excellence in Preventive and Integrative Medicine (CE-PIM) and Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
30
|
Willner DL, Paudel S, Halleran AD, Solini GE, Gray V, Saha MS. Transcriptional dynamics during Rhodococcus erythropolis infection with phage WC1. BMC Microbiol 2024; 24:107. [PMID: 38561651 PMCID: PMC10986025 DOI: 10.1186/s12866-024-03241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Belonging to the Actinobacteria phylum, members of the Rhodococcus genus thrive in soil, water, and even intracellularly. While most species are non-pathogenic, several cause respiratory disease in animals and, more rarely, in humans. Over 100 phages that infect Rhodococcus species have been isolated but despite their importance for Rhodococcus ecology and biotechnology applications, little is known regarding the molecular genetic interactions between phage and host during infection. To address this need, we report RNA-Seq analysis of a novel Rhodococcus erythopolis phage, WC1, analyzing both the phage and host transcriptome at various stages throughout the infection process. RESULTS By five minutes post-infection WC1 showed upregulation of a CAS-4 family exonuclease, putative immunity repressor, an anti-restriction protein, while the host showed strong upregulation of DNA replication, SOS repair, and ribosomal protein genes. By 30 min post-infection, WC1 DNA synthesis genes were strongly upregulated while the host showed increased expression of transcriptional and translational machinery and downregulation of genes involved in carbon, energy, and lipid metabolism pathways. By 60 min WC1 strongly upregulated structural genes while the host showed a dramatic disruption of metal ion homeostasis. There was significant expression of both host and phage non-coding genes at all time points. While host gene expression declined over the course of infection, our results indicate that phage may exert more selective control, preserving the host's regulatory mechanisms to create an environment conducive for virion production. CONCLUSIONS The Rhodococcus genus is well recognized for its ability to synthesize valuable compounds, particularly steroids, as well as its capacity to degrade a wide range of harmful environmental pollutants. A detailed understanding of these phage-host interactions and gene expression is not only essential for understanding the ecology of this important genus, but will also facilitate development of phage-mediated strategies for bioremediation as well as biocontrol in industrial processes and biomedical applications. Given the current lack of detailed global gene expression studies on any Rhodococcus species, our study addresses a pressing need to identify tools and genes, such as F6 and rpf, that can enhance the capacity of Rhodococcus species for bioremediation, biosynthesis and pathogen control.
Collapse
Affiliation(s)
- Dana L Willner
- Data Science Program, William & Mary, Williamsburg, VA, USA
| | - Sudip Paudel
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Wyss Institute, Harvard University, Cambridge, MA, USA
| | - Andrew D Halleran
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Atalaya Capital Management, New York, NY, USA
| | - Grace E Solini
- Department of Biology, William & Mary, Williamsburg, VA, USA
- California Institute of Technology, Pasadena, CA, USA
| | - Veronica Gray
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Margaret S Saha
- Department of Biology, William & Mary, Williamsburg, VA, USA.
| |
Collapse
|
31
|
Freeman J, Firrincieli A, Baker D, Doty S. Curtobacterium salicis sp. nov., isolated from willow tree stems in Washington state. Antonie Van Leeuwenhoek 2024; 117:62. [PMID: 38551700 DOI: 10.1007/s10482-024-01956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
Curtobacterium sp. strain WW7 is a Gram-positive, non-motile, orange rod-shaped bacterium isolated from branches of wild willow (Salix sitchensis) trees. The WW7T strain has optimum growth in the temperature range between 25 and 30 °C, a pH range of 6-7.7, and tolerates up to 5.5% (w/v) of NaCl. The genome sequencing of strain WW7T revealed a genome size of approximately 3.8 Mbp and a G + C content of 71.3 mol%. The phylogenomic analyses support the WW7T affiliation to a novel Curtobacterium lineage, with Curtobacterium herbarum being the closest type-strain. Chemotaxonomic analysis indicates that the carbon sources assimilation profile of strain WW7T was similar to the type strains, i.e. Curtobacterium luteum, Curtobacterium albidum, and Curtobacterium flaccumfaciens, while no assimilation of the organic acids succinate, alpha-ketobutyrate, mono methyl-succinate, and lactate was observed. Finally, fatty acid methyl ester analysis identifies anteiso-C15:0 and anteiso-C17:0 as major cellular fatty acids which is a common feature for members of the Curtobacterium genus. Based on the results of phylogenomic and chemotaxonomic analyses, strain WW7T represents a novel Curtobacterium lineage, for which the name Curtobacterium salicis sp. nov. is proposed. The type strain is WW7T (DSM 34805T-NRRL B-68078T).
Collapse
Affiliation(s)
- John Freeman
- Intrinsyx Bio, 1237 Midas Way, Sunnyvale, CA, USA.
| | | | | | | |
Collapse
|
32
|
Mandel CG, Sanchez SE, Monahan CC, Phuklia W, Omsland A. Metabolism and physiology of pathogenic bacterial obligate intracellular parasites. Front Cell Infect Microbiol 2024; 14:1284701. [PMID: 38585652 PMCID: PMC10995303 DOI: 10.3389/fcimb.2024.1284701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/01/2024] [Indexed: 04/09/2024] Open
Abstract
Bacterial obligate intracellular parasites (BOIPs) represent an exclusive group of bacterial pathogens that all depend on invasion of a eukaryotic host cell to reproduce. BOIPs are characterized by extensive adaptation to their respective replication niches, regardless of whether they replicate within the host cell cytoplasm or within specialized replication vacuoles. Genome reduction is also a hallmark of BOIPs that likely reflects streamlining of metabolic processes to reduce the need for de novo biosynthesis of energetically costly metabolic intermediates. Despite shared characteristics in lifestyle, BOIPs show considerable diversity in nutrient requirements, metabolic capabilities, and general physiology. In this review, we compare metabolic and physiological processes of prominent pathogenic BOIPs with special emphasis on carbon, energy, and amino acid metabolism. Recent advances are discussed in the context of historical views and opportunities for discovery.
Collapse
Affiliation(s)
- Cameron G. Mandel
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Savannah E. Sanchez
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Colleen C. Monahan
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Weerawat Phuklia
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Anders Omsland
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
33
|
Nastasi MR, Caruso L, Giordano F, Mellini M, Rampioni G, Giuffrè A, Forte E. Cyanide Insensitive Oxidase Confers Hydrogen Sulfide and Nitric Oxide Tolerance to Pseudomonas aeruginosa Aerobic Respiration. Antioxidants (Basel) 2024; 13:383. [PMID: 38539916 PMCID: PMC10968556 DOI: 10.3390/antiox13030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 07/31/2024] Open
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Lorenzo Caruso
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Francesca Giordano
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| | - Marta Mellini
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy (M.M.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandro Giuffrè
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (M.R.N.); (F.G.)
| |
Collapse
|
34
|
Ma ZX, Feng CX, Song YZ, Sun J, Shao Y, Song SZ, Wan B, Zhang C, Fan H, Bao K, Yang S. Engineering photo-methylotrophic Methylobacterium for enhanced 3-hydroxypropionic acid production during non-growth stage fermentation. BIORESOURCE TECHNOLOGY 2024; 393:130104. [PMID: 38008225 DOI: 10.1016/j.biortech.2023.130104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.
Collapse
Affiliation(s)
- Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Chen-Xi Feng
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Ya-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Jing Sun
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yi Shao
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Shu-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Bin Wan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Huan Fan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, People's Republic of China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
35
|
Nastasi MR, Borisov VB, Forte E. Membrane-Bound Redox Enzyme Cytochrome bd-I Promotes Carbon Monoxide-Resistant Escherichia coli Growth and Respiration. Int J Mol Sci 2024; 25:1277. [PMID: 38279276 PMCID: PMC10815991 DOI: 10.3390/ijms25021277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.
Collapse
Affiliation(s)
- Martina R. Nastasi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
36
|
Diaz A, Dixit AR, Khodadad CL, Hummerick ME, Justiano-Velez YA, Li W, O'Rourke A. Biofilm formation is correlated with low nutrient and simulated microgravity conditions in a Burkholderia isolate from the ISS water processor assembly. Biofilm 2023; 5:100110. [PMID: 36922940 PMCID: PMC10009688 DOI: 10.1016/j.bioflm.2023.100110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
The International Space Station (ISS) Water Processor Assembly (WPA) experiences intermittent dormancy in the WPA wastewater tank during water recycling events which promotes biofilm formation within the system. In this work we aimed to gain a deeper understanding of the impact of nutrient limitation on bacterial growth and biofilm formation under microgravity in support of biofilm mitigation efforts in exploration water recovery systems. A representative species of bacteria that is commonly cultured from the ISS WPA was cultured in an WPA influent water ersatz formulation tailored for microbiological studies. An isolate of Burkholderia contaminans was cultured under a simulated microgravity (SμG) treatment in a vertically rotating high-aspect rotating vessel (HARV) to create the low shear modeled microgravity (LSMMG) environment on a rotating wall vessel (RWV), with a rotating control (R) in the horizontal plane at the predetermined optimal rotation per minute (rpm) speed of 20. Over the course of the growth curve, the bacterial culture in ersatz media was harvested for bacterial counts, and transcriptomic and nutrient content analyses. The cultures under SμG treatment showed a transcriptomic signature indicative of nutrient stress and biofilm formation as compared to the R control treatment. Further analysis of the WPA ersatz over the course of the growth curve suggests that the essential nutrients of the media were consumed faster in the early stages of growth for the SμG treatment and thus approached a nutrient limited growth condition earlier than in the R control culture. The observed limited nutrient response may serve as one element to explain a moderate enhancement of adherent biofilm formation in the SμG treatment after 24 h. While nutrients levels can be modulated, one implication of this investigation is that biofilm mitigation in the ISS environment could benefit from methods such as mixing or the maintenance of minimum flow within a dormant water system in order to force convection and offset the response of microbes to the secondary effects of microgravity.
Collapse
Affiliation(s)
- Angie Diaz
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Anirudha R Dixit
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Mary E Hummerick
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Wenyan Li
- Amentum Services, Inc, LASSO, NASA Kennedy Space Center, Merritt Island, FL, USA
| | - Aubrie O'Rourke
- Exploration Research and Technology, NASA Kennedy Space Center, Merritt Island, FL, USA
| |
Collapse
|
37
|
Abbondio M, Tanca A, De Diego L, Sau R, Bibbò S, Pes GM, Dore MP, Uzzau S. Metaproteomic assessment of gut microbial and host functional perturbations in Helicobacter pylori-infected patients subjected to an antimicrobial protocol. Gut Microbes 2023; 15:2291170. [PMID: 38063474 PMCID: PMC10730194 DOI: 10.1080/19490976.2023.2291170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
The impact of therapeutic interventions on the human gut microbiota (GM) is a clinical issue of paramount interest given the strong interconnection between microbial dynamics and human health. Orally administered antibiotics are known to reduce GM biomass and modify GM taxonomic profile. However, the impact of antimicrobial therapies on GM functions and biochemical pathways has scarcely been studied. Here, we characterized the fecal metaproteome of 10 Helicobacter pylori-infected patients before (T0) and after 10 days (T1) of a successful quadruple therapy (bismuth, tetracycline, metronidazole, and rabeprazole) and 30 days after therapy cessation (T2), to investigate how GM and host functions change during the eradication and healing processes. At T1, the abundance ratio between microbial and host proteins was reversed compared with that at T0 and T2. Several pathobionts (including Klebsiella, Proteus, Enterococcus, Muribaculum, and Enterocloster) were increased at T1. Therapy reshaped the relative contributions of the functions required to produce acetate, propionate, and butyrate. Proteins related to the uptake and processing of complex glycans were increased. Microbial cross-feeding with sialic acid, fucose, and rhamnose was enhanced, whereas hydrogen sulfide production was reduced. Finally, microbial proteins involved in antibiotic resistance and inflammation were more abundant after therapy. Moreover, a reduction in host proteins with known roles in inflammation and H. pylori-mediated carcinogenesis was observed. In conclusion, our results support the use of metaproteomics to monitor drug-induced remodeling of GM and host functions, opening the way for investigating new antimicrobial therapies aimed at preserving gut environmental homeostasis.
Collapse
Affiliation(s)
- Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Laura De Diego
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rosangela Sau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Bibbò
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giovanni Mario Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Maria Pina Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
38
|
Aronson HS, Clark CE, LaRowe DE, Amend JP, Polerecky L, Macalady JL. Sulfur disproportionating microbial communities in a dynamic, microoxic-sulfidic karst system. GEOBIOLOGY 2023; 21:791-803. [PMID: 37721188 DOI: 10.1111/gbi.12574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Biogeochemical sulfur cycling in sulfidic karst systems is largely driven by abiotic and biological sulfide oxidation, but the fate of elemental sulfur (S0 ) that accumulates in these systems is not well understood. The Frasassi Cave system (Italy) is intersected by a sulfidic aquifer that mixes with small quantities of oxygen-rich meteoric water, creating Proterozoic-like conditions and supporting a prolific ecosystem driven by sulfur-based chemolithoautotrophy. To better understand the cycling of S0 in this environment, we examined the geochemistry and microbiology of sediments underlying widespread sulfide-oxidizing mats dominated by Beggiatoa. Sediment populations were dominated by uncultivated relatives of sulfur cycling chemolithoautotrophs related to Sulfurovum, Halothiobacillus, Thiofaba, Thiovirga, Thiobacillus, and Desulfocapsa, as well as diverse uncultivated anaerobic heterotrophs affiliated with Bacteroidota, Anaerolineaceae, Lentimicrobiaceae, and Prolixibacteraceae. Desulfocapsa and Sulfurovum populations accounted for 12%-26% of sediment 16S rRNA amplicon sequences and were closely related to isolates which carry out autotrophic S0 disproportionation in pure culture. Gibbs energy (∆Gr ) calculations revealed that S0 disproportionation under in situ conditions is energy yielding. Microsensor profiles through the mat-sediment interface showed that Beggiatoa mats consume dissolved sulfide and oxygen, but a net increase in acidity was only observed in the sediments below. Together, these findings suggest that disproportionation is an important sink for S0 generated by microbial sulfide oxidation in this oxygen-limited system and may contribute to the weathering of carbonate rocks and sediments in sulfur-rich environments.
Collapse
Affiliation(s)
- Heidi S Aronson
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Christian E Clark
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Jan P Amend
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jennifer L Macalady
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
39
|
Borisov VB. Generation of Membrane Potential by Cytochrome bd. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1504-1512. [PMID: 38105020 DOI: 10.1134/s0006297923100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 12/19/2023]
Abstract
An overview of current notions on the mechanism of generation of a transmembrane electric potential difference (Δψ) during the catalytic cycle of a bd-type triheme terminal quinol oxidase is presented in this work. It is suggested that the main contribution to Δψ formation is made by the movement of H+ across the membrane along the intra-protein hydrophilic proton-conducting pathway from the cytoplasm to the active site for oxygen reduction of this bacterial enzyme.
Collapse
Affiliation(s)
- Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
40
|
González D, Morales-Olavarria M, Vidal-Veuthey B, Cárdenas JP. Insights into early evolutionary adaptations of the Akkermansia genus to the vertebrate gut. Front Microbiol 2023; 14:1238580. [PMID: 37779688 PMCID: PMC10540074 DOI: 10.3389/fmicb.2023.1238580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Akkermansia, a relevant mucin degrader from the vertebrate gut microbiota, is a member of the deeply branched Verrucomicrobiota, as well as the only known member of this phylum to be described as inhabitants of the gut. Only a few Akkermansia species have been officially described so far, although there is genomic evidence addressing the existence of more species-level variants for this genus. This niche specialization makes Akkermansia an interesting model for studying the evolution of microorganisms to their adaptation to the gastrointestinal tract environment, including which kind of functions were gained when the Akkermansia genus originated or how the evolutionary pressure functions over those genes. In order to gain more insight into Akkermansia adaptations to the gastrointestinal tract niche, we performed a phylogenomic analysis of 367 high-quality Akkermansia isolates and metagenome-assembled genomes, in addition to other members of Verrucomicrobiota. This work was focused on three aspects: the definition of Akkermansia genomic species clusters and the calculation and functional characterization of the pangenome for the most represented species; the evolutionary relationship between Akkermansia and their closest relatives from Verrucomicrobiota, defining the gene families which were gained or lost during the emergence of the last Akkermansia common ancestor (LAkkCA) and; the evaluation of the evolutionary pressure metrics for each relevant gene family of main Akkermansia species. This analysis found 25 Akkermansia genomic species clusters distributed in two main clades, divergent from their non-Akkermansia relatives. Pangenome analyses suggest that Akkermansia species have open pangenomes, and the gene gain/loss model indicates that genes associated with mucin degradation (both glycoside hydrolases and peptidases), (micro)aerobic metabolism, surface interaction, and adhesion were part of LAkkCA. Specifically, mucin degradation is a very ancestral innovation involved in the origin of Akkermansia. Horizontal gene transfer detection suggests that Akkermansia could receive genes mostly from unknown sources or from other Gram-negative gut bacteria. Evolutionary metrics suggest that Akkemansia species evolved differently, and even some conserved genes suffered different evolutionary pressures among clades. These results suggest a complex evolutionary landscape of the genus and indicate that mucin degradation could be an essential feature in Akkermansia evolution as a symbiotic species.
Collapse
Affiliation(s)
- Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Mauricio Morales-Olavarria
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Boris Vidal-Veuthey
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
41
|
Hay Mele B, Monticelli M, Leone S, Bastoni D, Barosa B, Cascone M, Migliaccio F, Montemagno F, Ricciardelli A, Tonietti L, Rotundi A, Cordone A, Giovannelli D. Oxidoreductases and metal cofactors in the functioning of the earth. Essays Biochem 2023; 67:653-670. [PMID: 37503682 PMCID: PMC10423856 DOI: 10.1042/ebc20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Life sustains itself using energy generated by thermodynamic disequilibria, commonly existing as redox disequilibria. Metals are significant players in controlling redox reactions, as they are essential components of the engine that life uses to tap into the thermodynamic disequilibria necessary for metabolism. The number of proteins that evolved to catalyze redox reactions is extraordinary, as is the diversification level of metal cofactors and catalytic domain structures involved. Notwithstanding the importance of the topic, the relationship between metals and the redox reactions they are involved in has been poorly explored. This work reviews the structure and function of different prokaryotic organometallic-protein complexes, highlighting their pivotal role in controlling biogeochemistry. We focus on a specific subset of metal-containing oxidoreductases (EC1 or EC7.1), which are directly involved in biogeochemical cycles, i.e., at least one substrate or product is a small inorganic molecule that is or can be exchanged with the environment. Based on these inclusion criteria, we select and report 59 metalloenzymes, describing the organometallic structure of their active sites, the redox reactions in which they are involved, and their biogeochemical roles.
Collapse
Affiliation(s)
- Bruno Hay Mele
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Monticelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- National Research Council - Institute of Biomolecular Chemistry - CNR-ICB, Pozzuoli, Italy
| | - Serena Leone
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton. Dohrn, Napoli, Italy
| | - Deborah Bastoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Bernardo Barosa
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Martina Cascone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Flavia Migliaccio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Luca Tonietti
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Alessandra Rotundi
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, U.S.A
- Marine Chemistry and Geochemistry Department - Woods Hole Oceanographic Institution, MA, U.S.A
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
42
|
Djoko KY. Control of nutrient metal availability during host-microbe interactions: beyond nutritional immunity. J Biol Inorg Chem 2023:10.1007/s00775-023-02007-z. [PMID: 37464157 PMCID: PMC10368554 DOI: 10.1007/s00775-023-02007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The control of nutrient availability is an essential ecological function of the host organism in host-microbe systems. Although often overshadowed by macronutrients such as carbohydrates, micronutrient metals are known as key drivers of host-microbe interactions. The ways in which host organisms control nutrient metal availability are dictated by principles in bioinorganic chemistry. Here I ponder about the actions of metal-binding molecules from the host organism in controlling nutrient metal availability to the host microbiota. I hope that these musings will encourage new explorations into the fundamental roles of metals in the ecology of diverse host-microbe systems.
Collapse
Affiliation(s)
- Karrera Y Djoko
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
43
|
Makarchuk I, Kägi J, Gerasimova T, Wohlwend D, Friedrich T, Melin F, Hellwig P. pH-dependent kinetics of NO release from E. coli bd-I and bd-II oxidase reveals involvement of Asp/Glu58 B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148952. [PMID: 36535430 DOI: 10.1016/j.bbabio.2022.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7. Likewise, the pH dependence of NO release from the reduced active site, an essential property of bd oxidases, differed between the two oxidases as detected by UV/vis spectroscopy. Both findings may be attributed to differences in the proton channel leading to the active site heme d. The channel comprises a titratable residue (Asp58B in bd-I and Glu58B in bd-II). Conservative mutations at this position drastically altered NO release demonstrating its contribution to the process.
Collapse
Affiliation(s)
- Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Tatjana Gerasimova
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France; Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr 21, 79104 Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France.
| |
Collapse
|
44
|
Azarkina NV, Borisov VB, Oleynikov IP, Sudakov RV, Vygodina TV. Interaction of Terminal Oxidases with Amphipathic Molecules. Int J Mol Sci 2023; 24:ijms24076428. [PMID: 37047401 PMCID: PMC10095113 DOI: 10.3390/ijms24076428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The review focuses on recent advances regarding the effects of natural and artificial amphipathic compounds on terminal oxidases. Terminal oxidases are fascinating biomolecular devices which couple the oxidation of respiratory substrates with generation of a proton motive force used by the cell for ATP production and other needs. The role of endogenous lipids in the enzyme structure and function is highlighted. The main regularities of the interaction between the most popular detergents and terminal oxidases of various types are described. A hypothesis about the physiological regulation of mitochondrial-type enzymes by lipid-soluble ligands is considered.
Collapse
Affiliation(s)
- Natalia V Azarkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Ilya P Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Roman V Sudakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Tatiana V Vygodina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| |
Collapse
|
45
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
46
|
Narra HP, Alsing J, Sahni A, Montini M, Zafar Y, Sahni SK. A Small Non-Coding RNA Mediates Transcript Stability and Expression of Cytochrome bd Ubiquinol Oxidase Subunit I in Rickettsia conorii. Int J Mol Sci 2023; 24:4008. [PMID: 36835430 PMCID: PMC9960880 DOI: 10.3390/ijms24044008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Small regulatory RNAs (sRNAs) are now widely recognized for their role in the post-transcriptional regulation of bacterial virulence and growth. We have previously demonstrated the biogenesis and differential expression of several sRNAs in Rickettsia conorii during interactions with the human host and arthropod vector, as well as the in vitro binding of Rickettsia conorii sRNA Rc_sR42 to bicistronic cytochrome bd ubiquinol oxidase subunits I and II (cydAB) mRNA. However, the mechanism of regulation and the effect of sRNA binding on the stability of the cydAB bicistronic transcript and the expression of the cydA and cydB genes are still unknown. In this study, we determined the expression dynamics of Rc_sR42 and its cognate target genes, cydA and cydB, in mouse lung and brain tissues during R. conorii infection in vivo and employed fluorescent and reporter assays to decode the role of sRNA in regulating cognate gene transcripts. Quantitative RT-PCR revealed significant changes in the expression of sRNA and its cognate target gene transcripts during R. conorii infection in vivo, and a greater abundance of these transcripts was observed in the lungs compared to brain tissue. Interestingly, while Rc_sR42 and cydA exhibited similar patterns of change in their expression, indicating the influence of sRNA on the mRNA target, the expression of cydB was independent of sRNA expression. Further, we constructed reporter plasmids of sRNA and cydAB bicistronic mRNA to decipher the role of sRNA on CydA and CydB expression. We observed increased expression of CydA in the presence of sRNA but detected no change in CydB expression in the presence or absence of sRNA. In sum, our results demonstrate that the binding of Rc_sR42 is required for the regulation of cydA but not cydB. Further studies on understanding the influence of this interaction on the mammalian host and tick vector during R. conorii infection are in progress.
Collapse
Affiliation(s)
- Hema P. Narra
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | - Sanjeev K. Sahni
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
47
|
Jeffreys L, Ardrey A, Hafiz TA, Dyer LA, Warman AJ, Mosallam N, Nixon GL, Fisher NE, Hong WD, Leung SC, Aljayyoussi G, Bibby J, Almeida DV, Converse PJ, Fotouhi N, Berry NG, Nuermberger EL, Upton AM, O’Neill PM, Ward SA, Biagini GA. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:221-238. [PMID: 36606559 PMCID: PMC9926492 DOI: 10.1021/acsinfecdis.2c00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.
Collapse
Affiliation(s)
- Laura
N. Jeffreys
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Alison Ardrey
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Taghreed A. Hafiz
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Lauri-Anne Dyer
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Ashley J. Warman
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Nada Mosallam
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Gemma L. Nixon
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Nicholas E. Fisher
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - W. David Hong
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Suet C. Leung
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Ghaith Aljayyoussi
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Jaclyn Bibby
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Deepak V. Almeida
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Paul J. Converse
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Nader Fotouhi
- Global
Alliance for TB Drug Development, New York, New York10005, United States
| | - Neil G. Berry
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Eric L. Nuermberger
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Anna M. Upton
- Global
Alliance for TB Drug Development, New York, New York10005, United States
- Evotec
(US) Inc., 303B College Road East, Princeton, New Jersey08540, United States
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Stephen A. Ward
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Giancarlo A. Biagini
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| |
Collapse
|
48
|
Grund TN, Kabashima Y, Kusumoto T, Wu D, Welsch S, Sakamoto J, Michel H, Safarian S. The cryoEM structure of cytochrome bd from C. glutamicum provides novel insights into structural properties of actinobacterial terminal oxidases. Front Chem 2023; 10:1085463. [PMID: 36688035 PMCID: PMC9846854 DOI: 10.3389/fchem.2022.1085463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Cytochromes bd are essential for microaerobic respiration of many prokaryotes including a number of human pathogens. These enzymes catalyze the reduction of molecular oxygen to water using quinols as electron donors. Their importance for prokaryotic survival and the absence of eukaryotic homologs make these enzyme ideal targets for antimicrobial drugs. Here, we determined the cryoEM structure of the menaquinol-oxidizing cytochrome bd-type oxygen reductase of the facultative anaerobic Actinobacterium Corynebacterium glutamicum at a resolution of 2.7 Å. The obtained structure adopts the signature pseudosymmetrical heterodimeric architecture of canonical cytochrome bd oxidases formed by the core subunits CydA and CydB. No accessory subunits were identified for this cytochrome bd homolog. The two b-type hemes and the oxygen binding heme d are organized in a triangular geometry with a protein environment around these redox cofactors similar to that of the closely related cytochrome bd from M. tuberculosis. We identified oxygen and a proton conducting channels emerging from the membrane space and the cytoplasm, respectively. Compared to the prototypical enzyme homolog from the E. coli, the most apparent difference is found in the location and size of the proton channel entry site. In canonical cytochrome bd oxidases quinol oxidation occurs at the highly flexible periplasmic Q-loop located in the loop region between TMHs six and seven. An alternative quinol-binding site near heme b 595 was previously identified for cytochrome bd from M. tuberculosis. We discuss the relevance of the two quinol oxidation sites in actinobacterial bd-type oxidases and highlight important differences that may explain functional and electrochemical differences between C. glutamicum and M. tuberculosis. This study expands our current understanding of the structural diversity of actinobacterial and proteobacterial cytochrome bd oxygen reductases and provides deeper insights into the unique structural and functional properties of various cytochrome bd variants from different phylae.
Collapse
Affiliation(s)
- Tamara N. Grund
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Yoshiki Kabashima
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Tomoichirou Kusumoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Di Wu
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Junshi Sakamoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Schara Safarian
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany,Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Frankfurt, Frankfurt, Germany,*Correspondence: Schara Safarian,
| |
Collapse
|
49
|
Wickham-Smith C, Malys N, Winzer K. Improving carbon monoxide tolerance of Cupriavidus necator H16 through adaptive laboratory evolution. Front Bioeng Biotechnol 2023; 11:1178536. [PMID: 37168609 PMCID: PMC10164946 DOI: 10.3389/fbioe.2023.1178536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Background: The toxic gas carbon monoxide (CO) is abundantly present in synthesis gas (syngas) and certain industrial waste gases that can serve as feedstocks for the biological production of industrially significant chemicals and fuels. For efficient bacterial growth to occur, and to increase productivity and titres, a high resistance to the gas is required. The aerobic bacterium Cupriavidus necator H16 can grow on CO2 + H2, although it cannot utilise CO as a source of carbon and energy. This study aimed to increase its CO resistance through adaptive laboratory evolution. Results: To increase the tolerance of C. necator to CO, the organism was continually subcultured in the presence of CO both heterotrophically and autotrophically. Ten individual cultures were evolved heterotrophically with fructose in this manner and eventually displayed a clear growth advantage over the wild type strain. Next-generation sequencing revealed several mutations, including a single point mutation upstream of a cytochrome bd ubiquinol oxidase operon (cydA2B2), which was present in all evolved isolates. When a subset of these mutations was engineered into the parental H16 strain, only the cydA2B2 upstream mutation enabled faster growth in the presence of CO. Expression analysis, mutation, overexpression and complementation suggested that cydA2B2 transcription is upregulated in the evolved isolates, resulting in increased CO tolerance under heterotrophic but not autotrophic conditions. However, through subculturing on a syngas-like mixture with increasing CO concentrations, C. necator could also be evolved to tolerate high CO concentrations under autotrophic conditions. A mutation in the gene for the soluble [NiFe]-hydrogenase subunit hoxH was identified in the evolved isolates. When the resulting amino acid change was engineered into the parental strain, autotrophic CO resistance was conferred. A strain constitutively expressing cydA2B2 and the mutated hoxH gene exhibited high CO tolerance under both heterotrophic and autotrophic conditions. Conclusion: C. necator was evolved to tolerate high concentrations of CO, a phenomenon which was dependent on the terminal respiratory cytochrome bd ubiquinol oxidase when grown heterotrophically and the soluble [NiFe]-hydrogenase when grown autotrophically. A strain exhibiting high tolerance under both conditions was created and presents a promising chassis for syngas-based bioproduction processes.
Collapse
|
50
|
Kägi J, Makarchuk I, Wohlwend D, Melin F, Friedrich T, Hellwig P. E. coli cytochrome bd-I requires Asp58 in the CydB subunit for catalytic activity. FEBS Lett 2022; 596:2418-2424. [PMID: 36029102 DOI: 10.1002/1873-3468.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
The reduction of oxygen to water is crucial to life and a central metabolic process. To fulfill this task, prokaryotes use among other enzymes cytochrome bd oxidases (Cyt bds) that also play an important role in bacterial virulence and antibiotic resistance. To fight microbial infections by pathogens, an in-depth understanding of the enzyme mechanism is required. Here, we combine bioinformatics, mutagenesis, enzyme kinetics and FTIR spectroscopy to demonstrate that proton delivery to the active site contributes to the rate limiting steps in Cyt bd-I and involves Asp58 of subunit CydB. Our findings reveal a previously unknown catalytic function of subunit CydB in the reaction of Cyt bd-I.
Collapse
Affiliation(s)
- Jan Kägi
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstr 21, 79104, Freiburg, Germany
| | - Iryna Makarchuk
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081, Strasbourg, France
| | - Daniel Wohlwend
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstr 21, 79104, Freiburg, Germany
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081, Strasbourg, France
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstr 21, 79104, Freiburg, Germany
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081, Strasbourg, France
| |
Collapse
|