1
|
Alieva IB, Shakhov AS, Dayal AA, Churkina AS, Parfenteva OI, Minin AA. Unique Role of Vimentin in the Intermediate Filament Proteins Family. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:726-736. [PMID: 38831508 DOI: 10.1134/s0006297924040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024]
Abstract
Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.
Collapse
Affiliation(s)
- Irina B Alieva
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anton S Shakhov
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Alexander A Dayal
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksandra S Churkina
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Olga I Parfenteva
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexander A Minin
- Institute of Protein Research, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Chen W, Li Z, Zhong R, Sun W, Chu M. Expression profiles of oviductal mRNAs and lncRNAs in the follicular phase and luteal phase of sheep (Ovis aries) with 2 fecundity gene (FecB) genotypes. G3 (BETHESDA, MD.) 2023; 14:jkad270. [PMID: 38051961 PMCID: PMC10755197 DOI: 10.1093/g3journal/jkad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
FecB (also known as BMPR1B) is a crucial gene in sheep reproduction, which has a mutation (A746G) that was found to increase the ovulation rate and litter size. The FecB mutation is associated with reproductive endocrinology, such mutation can control external estrous characteristics and affect follicle-stimulating hormone during the estrous cycle. Previous researches showed that the FecB mutation can regulate the transcriptomic profiles in the reproductive-related tissues including hypothalamus, pituitary, and ovary during the estrous cycle of small-tailed Han (STH) sheep. However, little research has been reported on the correlation between FecB mutation and the estrous cycle in STH sheep oviduct. To investigate the coding and noncoding transcriptomic profiles involved in the estrous cycle and FecB in the sheep oviduct, RNA sequencing was performed to analyze the transcriptomic profiles of mRNAs and long noncoding RNAs (lncRNAs) in the oviduct during the estrous cycle of STH sheep with mutant (FecBBB) and wild-type (FecB++) genotypes. In total, 21,863 lncRNAs and 43,674 mRNAs were screened, the results showed that mRNAs had significantly higher expression levels than the lncRNAs, and the expression levels of these screened transcripts were lower in the follicular phase than they were in the luteal phase. Among them, the oviductal glycoprotein gene (OVGP1) had the highest expression level. In the comparison between the follicular and luteal phases, 57 differentially expressed (DE) lncRNAs and 637 DE mRNAs were detected, including FSTL5 mRNA and LNC_016628 lncRNA. In the comparison between the FecBBB and FecB++ genotypes, 26 DE lncRNAs and 421 DE mRNAs were detected, including EEF1D mRNA and LNC_006270 lncRNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis indicated that the DE mRNAs were enriched mainly in terms related to reproduction such as the tight junction, SAGA complex, ATP-binding cassette, nestin, and Hippo signaling pathway. The interaction network between DE lncRNAs and DE mRNAs indicated that LNC_018420 may be the key regulator in sheep oviduct. Together, our results can provide novel insights into the oviductal transcriptomic function against a FecB mutation background in sheep reproduction.
Collapse
Affiliation(s)
- Weihao Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhifeng Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Cozzolino F, Canè L, Gatto MC, Iacobucci I, Sacchettino L, De Biase D, Di Napoli E, Paciello O, Avallone L, Monti M, d’Angelo D, Napolitano F. Proteomic signature profiling in the cortex of dairy cattle unravels the physiology of brain aging. Front Aging Neurosci 2023; 15:1277546. [PMID: 38131010 PMCID: PMC10733460 DOI: 10.3389/fnagi.2023.1277546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Aging is a physiological process occurring in all living organisms. It is characterized by a progressive deterioration of the physiological and cognitive functions of the organism, accompanied by a gradual impairment of mechanisms involved in the regulation of tissue and organ homeostasis, thus exacerbating the risk of developing pathologies, including cancer and neurodegenerative disorders. Methods In the present work, for the first time, the influence of aging has been investigated in the brain cortex of the Podolica cattle breed, through LC-MS/MS-based differential proteomics and the bioinformatic analysis approach (data are available via ProteomeXchange with identifier PXD044108), with the aim of identifying potential aging or longevity markers, also associated with a specific lifestyle. Results and discussion We found a significant down-regulation of proteins involved in cellular respiration, dendric spine development, synaptic vesicle transport, and myelination. On the other hand, together with a reduction of the neurofilament light chain, we observed an up-regulation of both GFAP and vimentin in the aged samples. In conclusion, our data pave the way for a better understanding of molecular mechanisms underlying brain aging in grazing cattle, which could allow strategies to be developed that are aimed at improving animal welfare and husbandry practices of dairy cattle from intensive livestock.
Collapse
Affiliation(s)
- Flora Cozzolino
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Luisa Canè
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Claudia Gatto
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
| | - Ilaria Iacobucci
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Evaristo Di Napoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Maria Monti
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesco Napolitano
- CEINGE-Biotecnologie Avanzate “Franco Salvatore”-Via G. Salvatore, Naples, Italy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Scabicidal Potential of Coconut Seed Extract in Rabbits via Downregulating Inflammatory/Immune Cross Talk: A Comprehensive Phytochemical/GC-MS and In Silico Proof. Antibiotics (Basel) 2022; 12:antibiotics12010043. [PMID: 36671243 PMCID: PMC9854674 DOI: 10.3390/antibiotics12010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Scabies is an invasive skin condition caused by Sarcoptes scabiei mites. The present study investigates the antiscabies potential of coconut seed extract (CSE) in rabbits. GC-MS analysis of the seed oil identified 17 known compounds, while CSE phytochemical investigation afforded 4 known ones. The topical application of seed extract improved all signs of infection, and the improvement started 3 days post application. However, in vitro application of the extract caused 99% mortality of mites 1 day post application. Histopathological examination revealed the absence of inflammatory infiltration and hyperkeratosis of the epidermis, compared with ivermectin-treated groups which revealed less improvement. The mRNA gene expression results revealed a suppression of IL-1β, IL-6, IL-10, MMP-9, VEGF, and MCP-1, and an upregulation of I-CAM-1, KGF as well as TIMP-1. The docking analysis emphasized a strong binding of gondoic acid with IL-1β, IL-6, and VEGF with high binding scores of -5.817, -5.291, and -8.362 kcal/mol, respectively, and a high binding affinity of 3″(1‴-O-β-D-glucopyranosyl)-sucrose with GST with -7.24 kcal/mol. Accordingly, and for the first time, our results highlighted the scabicidal potential of coconut seed extract, which opens the gate for an efficient, cost-effective as well as herbal-based alternative for the control of scabies in rabbits.
Collapse
|
5
|
Lyamzaev KG, Knorre DA, Chernyak BV. Mitoptosis, Twenty Years After. BIOCHEMISTRY (MOSCOW) 2021; 85:1484-1498. [PMID: 33705288 DOI: 10.1134/s0006297920120020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In 1999 V. P. Skulachev proposed the term "mitoptosis" to refer to the programmed elimination of mitochondria in living cells. According to the initial thought, mitoptosis serves to protect cells from malfunctioning of the damaged mitochondria. At the same time, a new mechanism of the complete mitochondria elimination was found under the conditions of massive mitochondrial damage associated with oxidative stress. In this experimental model, mitochondrial cluster formation in the perinuclear region leads to the formation of "mitoptotic body" surrounded by a single-layer membrane and subsequent release of mitochondria from the cell. Later, it was found that mitoptosis plays an important role in various normal and pathological processes that are not necessarily associated with the mitochondrial damage. It was found that mitoptosis takes place during cell differentiation, self-maintenance of hematopoietic stem cells, metabolic remodelling, and elimination of the paternal mitochondria in organisms with the maternal inheritance of the mitochondrial DNA. Moreover, the associated with mitoptosis release of mitochondrial components into the blood may be involved in the transmission of signals between cells, but also leads to the development of inflammatory and autoimmune diseases. Mitoptosis can be attributed to the asymmetric inheritance of mitochondria in the division of yeast and some animal cells, when the defective mitochondria are transferred to one of the newly formed cells. Finally, a specific form of mitoptosis appears to be selective elimination of mitochondria with deleterious mutations in whole follicular ovarian cells in mammals. During formation of the primary follicle, the mitochondrial DNA copy number is significantly reduced. After division, the cells that receive predominantly mitochondria with deleterious mutations in their mtDNA die, thereby reducing the likelihood of transmission of these mutations to offspring. Further study of the mechanisms of mitoptosis in normal and pathological conditions is important both for understanding the processes of development and aging, and for designing therapeutic approaches for inflammatory, neurodegenerative and other diseases.
Collapse
Affiliation(s)
- K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
7
|
Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K, Kaambre T. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 2019; 316:C657-C667. [PMID: 30811221 DOI: 10.1152/ajpcell.00303.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria perform a central role in life and death of the eukaryotic cell. They are major players in the generation of macroergic compounds and function as integrated signaling pathways, including the regulation of Ca2+ signals and apoptosis. A growing amount of evidence is demonstrating that mitochondria of muscle cells use cytoskeletal proteins (both microtubules and intermediate filaments) not only for their movement and proper cellular positioning, but also to maintain their biogenesis, morphology, function, and regulation of energy fluxes through the outer mitochondrial membrane (MOM). Here we consider the known literature data concerning the role of tubulin, plectin, desmin and vimentin in bioenergetic function of mitochondria in striated muscle cells, as well as in controlling the permeability of MOM for adenine nucleotides (ADNs). This is of great interest since dysfunctionality of these cytoskeletal proteins has been shown to result in severe myopathy associated with pronounced mitochondrial dysfunction. Further efforts are needed to uncover the pathways by which the cytoskeleton supports the functional capacity of mitochondria and transport of ADN(s) across the MOM (through voltage-dependent anion channel).
Collapse
Affiliation(s)
- Kati Mado
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| |
Collapse
|
8
|
Zhang Y, Jin L, Xu J, Yu Y, Shen L, Gao J, Ye A. Dynamic characterization of drug resistance and heterogeneity of the gastric cancer cell BGC823 using single-cell Raman spectroscopy. Analyst 2018; 143:164-174. [PMID: 29165440 DOI: 10.1039/c7an01287j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drug resistance and heterogeneous characteristics of human gastric carcinoma cells (BGC823) under the treatment of paclitaxel (PTX) were investigated using single-cell Raman spectroscopy (RS). RS of normal and drug-resistant BGC823 cells (DR-BGC823) were collected and analyzed using arithmetic, statistic and individual spectrum analysis. The dynamic effects of paclitaxel (PTX) in normal and DR-BGC823 cells were evaluated dynamically. The RS intensity changed with PTX over time and produced distinct different results for the two types of cells. The average RS intensities of the normal BGC823 cells initially decreased and then increased under PTX treatment after 24 hours. In contrast, upon exposure to PTX, the average intensity of the DR-BGC823 cells initially increased within 12 hours and then gradually decreased and approached a steady state. The temporal variation of the typical component in the cells was analyzed by comparing the ratios between Raman bands. More importantly, the heterogeneous characteristics of the BGC823 cells under PTX treatment were quantified and clustered using hierarchical trees combined with RS intensity changes. The 'outlier' cells related to drug resistance were discriminated. The heterogeneity of the normal BGC823 cells under drug treatment gradually appeared over time, and was evaluated with the eigenvalues of principal component analysis (PCA). Our study indicates that single-cell RS may be useful in systematically and dynamically characterizing the drug response of cancer cells at the single-cell level.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics Engineering and Computer Science, Peking University, No. 5 Yiheyuan Road, Beijing, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
10
|
Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. Cells 2016; 5:cells5030030. [PMID: 27399781 PMCID: PMC5040972 DOI: 10.3390/cells5030030] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases.
Collapse
|
11
|
Behrens J, Solga R, Ziemann A, Rastetter RH, Berwanger C, Herrmann H, Noegel AA, Clemen CS. Coronin 1C-free primary mouse fibroblasts exhibit robust rearrangements in the orientation of actin filaments, microtubules and intermediate filaments. Eur J Cell Biol 2016; 95:239-51. [PMID: 27178841 DOI: 10.1016/j.ejcb.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023] Open
Abstract
Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments.
Collapse
Affiliation(s)
- Juliane Behrens
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Roxana Solga
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Raphael H Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany
| | - Carolin Berwanger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
12
|
Castellone MD, Langella A, Cantara S, Laurila JP, Laatikainen LE, Bellelli R, Pacini F, Salvatore M, Laukkanen MO. Extracellular superoxide dismutase induces mouse embryonic fibroblast proliferative burst, growth arrest, immortalization, and consequent in vivo tumorigenesis. Antioxid Redox Signal 2014; 21:1460-74. [PMID: 24328532 DOI: 10.1089/ars.2013.5475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS Rat sarcoma virus (RAS)-induced tumorigenesis has been suggested to follow a three-stage model consisting of an initial RAS activation, senescence induction, and evasion of p53-dependent senescence checkpoints. While reactive oxygen species act as second messengers in RAS-induced senescence, they are also involved in oncogenic transformation by inducing proliferation and promoting mutations. In the current work, we investigated the role of extracellular superoxide dismutase (SOD3) in RAS-induced senescence and immortalization in vitro and in vivo. We used a mouse embryonic fibroblast (MEF) primary cell model along with immortalized and transformed human cell lines derived from papillary and anaplastic thyroid cancer. RESULTS Based on our data, sod3 RNA interference in H-RasV12-transduced cells markedly inhibited cell growth, while sod3 over-expression in MEFs initially caused a proliferative burst followed by the activation of DNA damage checkpoints, induction of p53-p21 signal transduction, and senescence. Subsequently, sod3-transduced MEF cells developed co-operative p21-p16 down-regulation and acquired transformed cell characteristics such as increased telomerase activity, loss of contact inhibition, growth in low-nutrient conditions, and in vivo tumorigenesis. Interestingly, as previously reported with RAS, we showed a dose-dependent response to SOD3 in vitro and in vivo involving transcriptional and non-transcriptional regulatory mechanisms. INNOVATION SOD3 may mediate H-RasV12-induced initiation of primary cell immortalization. CONCLUSIONS Our results indicate that SOD3 influences growth signaling in primary and cancer cells downstream of the ras oncogene and could serve as a therapy target at an early tumorigenesis phase.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- 1 Department of Molecular Medicine and Medical Biotechnologies, Institute of Experimental Endocrinology and Oncology (CNR), University of Naples Federico II , Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The Localization of Cytokeratin 19 and Vimentin in Sprague Dawley Albino Rat Skin Tissue. Appl Microsc 2014. [DOI: 10.9729/am.2014.44.1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
James LR, Le C, Doherty H, Kim HS, Maeda N. Connective tissue growth factor (CTGF) expression modulates response to high glucose. PLoS One 2013; 8:e70441. [PMID: 23950936 PMCID: PMC3741286 DOI: 10.1371/journal.pone.0070441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) is an important mediator of fibrosis; emerging evidence link changes in plasma and urinary CTGF levels to diabetic kidney disease. To further ascertain the role of CTGF in responses to high glucose, we assessed the consequence of 4 months of streptozotocin-induced diabetes in wild type (+/+) and CTGF heterozygous (+/−) mice. Subsequently, we studied the influence of glucose on gene expression and protein in mice embryonic fibroblasts (MEF) cells derived from wildtype and heterozygous mice. At study initiation, plasma glucose, creatinine, triglyceride and cholesterol levels were similar between non-diabetic CTGF+/+ and CTGF+/− mice. In the diabetic state, plasma glucose levels were increased in CTGF+/+ and CTGF+/− mice (28.2 3.3 mmol/L vs 27.0 3.1 mmol/L), plasma triglyceride levels were lower in CTGF+/− mice than in CTGF+/+ (0.7 0.2 mmol/L vs 0.5 0.1 mmol/L, p<0.05), but cholesterol was essentially unchanged in both groups. Plasma creatinine was higher in diabetic CTGF+/+ group (11.7±1.2 vs 7.9±0.6 µmol/L p<0.01), while urinary albumin excretion and mesangial expansion were reduced in diabetic CTGF+/− animals. Cortices from diabetic mice (both CTGF +/+ and CTGF +/−) manifested higher expression of CTGF and thrombospondin 1 (TSP1). Expression of nephrin was reduced in CTGF +/+ animals; this reduction was attenuated in CTGF+/− group. In cultured MEF from CTGF+/+ mice, glucose (25 mM) increased expression of pro-collagens 1, IV and XVIII as well as fibronectin and thrombospondin 1 (TSP1). In contrast, activation of these genes by high glucose was attenuated in CTGF+/− MEF. We conclude that induction of Ctgf mediates expression of extracellular matrix proteins in diabetic kidney. Thus, genetic variability in CTGF expression directly modulates the severity of diabetic nephropathy.
Collapse
Affiliation(s)
- Leighton R James
- Department of Medicine, University of Florida, Jacksonville, Florida, USA.
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
16
|
Nekrasova OE, Mendez MG, Chernoivanenko IS, Tyurin-Kuzmin PA, Kuczmarski ER, Gelfand VI, Goldman RD, Minin AA. Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell 2011; 22:2282-9. [PMID: 21562225 PMCID: PMC3128530 DOI: 10.1091/mbc.e10-09-0766] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 04/19/2011] [Accepted: 05/05/2011] [Indexed: 12/17/2022] Open
Abstract
Interactions with vimentin intermediate filaments (VimIFs) affect the motility, distribution, and anchorage of mitochondria. In cells lacking VimIFs or in which VimIF organization is disrupted, the motility of mitochondria is increased relative to control cells that express normal VimIF networks. Expression of wild-type VimIF in vimentin-null cells causes mitochondrial motility to return to normal (slower) rates. In contrast, expressing vimentin with mutations in the mid-region of the N-terminal non-α-helical domain (deletions of residues 41-96 or 45-70, or substitution of Pro-57 with Arg) did not inhibit mitochondrial motility even though these mutants retain their ability to assemble into VimIFs in vivo. It was also found that a vimentin peptide consisting of residues 41-94 localizes to mitochondria. Taken together, these data suggest that VimIFs bind directly or indirectly to mitochondria and anchor them within the cytoplasm.
Collapse
Affiliation(s)
- Oxana E. Nekrasova
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
| | - Melissa G. Mendez
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Ivan S. Chernoivanenko
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
- Koltsov's Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Pyotr A. Tyurin-Kuzmin
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
| | - Edward R. Kuczmarski
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Vladimir I. Gelfand
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Alexander A. Minin
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
| |
Collapse
|
17
|
Matveeva EA, Chernoivanenko IS, Minin AA. Vimentin intermediate filaments protect mitochondria from oxidative stress. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s199074781004001x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Bo H, Zhang Y, Ji LL. Redefining the role of mitochondria in exercise: a dynamic remodeling. Ann N Y Acad Sci 2010; 1201:121-8. [PMID: 20649548 DOI: 10.1111/j.1749-6632.2010.05618.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise induced adaptations in muscle are highly specific and dependent upon the type of exercise, as well as its frequency, intensity, and duration. Mitochondria are highly dynamic organelles. Fusion and fission reactions lead to a continuous remodeling of the mitochondrial network, which range from reticulum of elongated and branched filaments to collections of individual organelles. Mitochondrial network dynamics are sensitive to various physiological and pathological stimuli, and mitochondrial morphological changes are no epiphenomena, but central to cell function and survival. There is a strong correlation between mitochondrial network morphology, dynamic-related protein, and energy metabolism. It is expected that alteration in cellular energy status during exercise can also be achieved through mitochondrial network dynamics. In this review, we describe mitochondrial network remodeling response to acute and endurance exercise, which is accompanied by bioenergetics and redox regulation. In addition, potential mechanisms for metabolic and redox signaling involved in mitochondrial dynamic regulation are also reviewed.
Collapse
Affiliation(s)
- Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | | | | |
Collapse
|
19
|
Lin YC, Broedersz CP, Rowat AC, Wedig T, Herrmann H, Mackintosh FC, Weitz DA. Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. J Mol Biol 2010; 399:637-44. [PMID: 20447406 DOI: 10.1016/j.jmb.2010.04.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 01/30/2023]
Abstract
Intermediate filament networks in the cytoplasm and nucleus are critical for the mechanical integrity of metazoan cells. However, the mechanism of crosslinking in these networks and the origins of their mechanical properties are not understood. Here, we study the elastic behavior of in vitro networks of the intermediate filament protein vimentin. Rheological experiments reveal that vimentin networks stiffen with increasing concentrations of Ca(2+) and Mg(2+), showing that divalent cations act as crosslinkers. We quantitatively describe the elastic response of vimentin networks over five decades of applied stress using a theory that treats the divalent cations as crosslinkers: at low stress, the behavior is entropic in origin, and increasing stress pulls out thermal fluctuations from single filaments, giving rise to a nonlinear response; at high stress, enthalpic stretching of individual filaments significantly modifies the nonlinearity. We investigate the elastic properties of networks formed by a series of protein variants with stepwise tail truncations and find that the last 11 amino acids of the C-terminal tail domain mediate crosslinking by divalent ions. We determined the single-filament persistence length, l(P) approximately 0.5 mum, and Young's modulus, Y approximately 9 MPa; both are consistent with literature values. Our results provide insight into a crosslinking mechanism for vimentin networks and suggest that divalent ions may help regulate the cytoskeletal structure and mechanical properties of cells.
Collapse
Affiliation(s)
- Yi-Chia Lin
- Department of Physics, Harvard University, Pierce 231, 29 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
21
|
Davison EJ, Pennington K, Hung CC, Peng J, Rafiq R, Ostareck-Lederer A, Ostareck DH, Ardley HC, Banks RE, Robinson PA. Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. Proteomics 2009; 9:4284-97. [PMID: 19725078 DOI: 10.1002/pmic.200900126] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Parkin is an ubiquitin-protein ligase (E3), mutations of which cause juvenile onset - autosomal recessive Parkinson's disease, and result in reduced enzymic activity. In contrast, increased levels are protective against mitochondrial dysfunction and neurodegeneration, the mechanism of which is largely unknown. In this study, 2-DE and MS proteomic techniques were utilised to investigate the effects of increased Parkin levels on protein expression in whole cell lysates using in an inducible Parkin expression system in HEK293 cells, and also to isolate potential interactants of Parkin using tandem affinity purification and MS. Nine proteins were significantly differentially expressed (+/-2-fold change; p<0.05) using 2-DE analysis. MS revealed the identity of these proteins to be ACAT2, HNRNPK, HSPD1, PGK1, PRDX6, VCL, VIM, TPI1, and IMPDH2. The first seven of these were reduced in expression. Western blot analysis confirmed the reduction in one of these proteins (HNRNPK), and that its levels were dependent on 26S proteasomal activity. Tandem affinity purification/MS revealed 14 potential interactants of Parkin; CKB, DBT, HSPD1, HSPA9, LRPPRC, NDUFS2, PRDX6, SLC25A5, TPI1, UCHL1, UQCRC1, VCL, YWHAZ, YWHAE. Nine of these are directly involved in mitochondrial energy metabolism and glycolysis; four were also identified in the 2-DE study (HSP60, PRDX6, TPI1, and VCL). This study provides further evidence for a role for Parkin in regulating mitochondrial activity within cells.
Collapse
Affiliation(s)
- Eleanor J Davison
- Section of Ophthalmology and Neuroscience, Leeds Institute for Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Buckmaster R, Asphahani F, Thein M, Xu J, Zhang M. Detection of drug-induced cellular changes using confocal Raman spectroscopy on patterned single-cell biosensors. Analyst 2009; 134:1440-6. [PMID: 19562213 DOI: 10.1039/b900420c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on a cell-based biosensor application that utilizes patterned single-cell arrays combined with confocal Raman spectroscopy to observe the time-dependent drug response of individual cells in real time. The patterned single-cell platform enables individual cells to be easily located and continuously addressable for Raman spectroscopy characterization of biochemical compositional changes in a non-destructive, quantitative manner so that discrete cellular behavior and cell-to-cell variations are preserved. In this study, human medulloblastoma (DAOY) cells were exposed to the common chemotherapeutic agent etoposide, and Raman spectra from patterned cells were recorded over 48 hours. It was found that 87.5% of the cells monitored exhibited a sharp decrease in DNA and protein associated peaks 48 hours after drug exposure, corresponding to cell death. The remaining 12.5% of the cells showed little to no reduction in key Raman biomarkers, indicating their drug resistance. Furthermore, the patterned cell population showed a very similar response to etoposide as confluent cell cultures, as confirmed by flow cytometry. Finally, patterned cells were assessed with TUNEL assay for apoptosis due to DNA fragmentation after etoposide exposure. The results agree well with those from the Raman spectroscopy analysis. This combined biosensor-Raman platform provides a quick, simple way to assess cell responses to chemical and biological agents with high throughput and can be potentially used for a wide variety of biomedical applications such as pharmaceutical drug discovery, toxin tests, and biothreat detection.
Collapse
Affiliation(s)
- Ryan Buckmaster
- Department of Materials Science & Engineering, University of Washington, 302L Roberts Hall, Seattle, WA 98195-2120, USA
| | | | | | | | | |
Collapse
|
23
|
Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 2009; 41:2051-61. [PMID: 19703661 DOI: 10.1016/j.biocel.2009.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
Abstract
Glutamine is a multifaceted amino acid that plays key roles in many metabolic pathways and also fulfils essential signaling functions. Although classified as non-essential, recent evidence suggests that glutamine is a conditionally essential amino acid in several physiological situations. Glutamine homeostasis must therefore be exquisitely regulated and mitochondria represent a major site of glutamine metabolism in numerous cell types. Glutaminolysis is mostly a mitochondrial process with repercussions in organelle structure and dynamics suggesting a tight and mutual control between mitochondrial form and cell bioenergetics. In this review we describe an updated account focused on the critical involvement of glutamine in oxidative stress, mitochondrial dysfunction and tumour cell proliferation, with special emphasis in the initial steps of mitochondrial glutamine pathways: transport into the organelle and hydrolytic deamidation through glutaminase enzymes. Some controversial issues about glutamine catabolism within mitochondria are also reviewed.
Collapse
|
24
|
Lyamzaev KG, Nepryakhina OK, Saprunova VB, Bakeeva LE, Pletjushkina OY, Chernyak BV, Skulachev VP. Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): Formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:817-25. [DOI: 10.1016/j.bbabio.2008.03.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/04/2008] [Accepted: 03/26/2008] [Indexed: 11/25/2022]
|