1
|
Guo Y, Yang B, Zhou X, Gong Z, Wang E, Pan Y, Zhao Y, Liu H. Proteomic Analysis Reveals the Phenotypic Heterogeneity and Tolerance Mechanisms of Halophilic Vibrio parahaemolyticus Under Dual Stress of Low Salinity and Bile Salts in the Human Intestine. Biomolecules 2025; 15:518. [PMID: 40305270 PMCID: PMC12024522 DOI: 10.3390/biom15040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Vibrio parahaemolyticus, a halophilic Gram-negative bacterium commonly found in aquatic products, can colonize the human small intestine, causing gastroenteritis and potentially leukemia. As a major intestinal pathogen, it poses a significant threat to public health. This study aims to investigate the phenotypic heterogeneity of V. parahaemolyticus in the low-salinity and bile salt environments of the human intestinal tract and to elucidate its mechanisms of tolerance and pathogenicity using proteomics. The experimental results indicated that under the low salinity and bile salts conditions of the human intestinal environment, the growth, motility, and biofilm formation of the strains were significantly inhibited. Proteomics analysis revealed that, under these conditions, the energy metabolism, chemotaxis system, flagellar motor, and ribosome-related proteins of V. parahaemolyticus were significantly affected, thereby influencing its growth, motility, and biofilm formation. Furthermore, the activation of the secretion system, particularly the T2SS, enhanced the virulence of secreted factors on host cells. Additionally, the activation of the β-lactam resistance pathway increased resistance to the intestinal environment, thereby enhancing the pathogenicity of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yingying Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
| | - Bing Yang
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd., Shanghai 201318, China;
| | - Xiaoyan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
| | - Zhangxi Gong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
| | - Enxiao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (Y.G.); (X.Z.); (Z.G.); (E.W.); (Y.P.)
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
- Food Industry Chain Ecological Recycling Research Institute, Food Science and Technology College, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Zhou Y, Gu X, Ji S, Yang Y, Zhao Y, Liu H. Antibiofilm mechanism of mouse gastrointestinal stimulation against Vibrio parahaemolyticus under bile salt culture. Microb Pathog 2025; 200:107339. [PMID: 39880136 DOI: 10.1016/j.micpath.2025.107339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Bile salts are crucial microbe-selective inhibitors present in the intestinal tracts of humans and other animals. Environmental and clinical strains of Vibrio parahaemolyticus (V. parahaemolyticus) exhibited different biofilm-forming abilities under bile salt incubation. In order to find an effective way to eliminate biofilm, in this study, environmental strains were subjected to mouse gastrointestinal (GI) stimulation and cultured in medium containing 0.06 % bile salts. The effects of GI stimulation on V. parahaemolyticus biofilm formation were evaluated by biofilm cells assay, atomic force microscopy (AFM) assay, confocal laser scanning microscopy (CLSM) assay, extracellular polysaccharide (EPS) assay, and salmon surface biofilm formation assay. The results showed that GI stimulation diminished the ability of V. parahaemolyticus to form biofilm, significantly reduced biofilm cells, decreased the level of EPS, and destroyed the biofilm structure. For the biofilm formed by V. parahaemolyticus after GI stimulation, AFM observed that the appearance of the biofilm became inhomogeneous and rough, and CLSM observed that the 3D structure of the biofilm became dispersed and sparse. GI stimulation reduced the ability of V. parahaemolyticus to form biofilms on the surface of salmon containing 0.06 % bile salts at both 12 h and 24 h, as evidenced by a decrease in the number of adherent cells. Comparing biofilms formed by tdh-positive V. parahaemolyticus before and after undergoing GI stimulation, a total of 1169 differentially expressed genes (DEGs) were identified by RNA sequencing. And 10 of the biofilm-related genes displayed significant down-regulation after GI stimulation. Enrichment analysis of DEGs revealed that affecting the switch between succinate and fumarate in the TCA cycle could inhibit biofilm formation. This study offers new insights into strategies for preventing biofilm formation by foodborne pathogens.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Xin Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Shiying Ji
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Yao Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China.
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, China; Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Che J, Hu S, Fang Q, Liu B, Liu Z, Hu C, Wang L, Li L, Bao B. Construction and characterization of different hemolysin gene deletion strains in Vibrio parahaemolyticus (ΔhlyA, ΔhlyIII) and evaluation of their virulence. J Invertebr Pathol 2024; 207:108210. [PMID: 39343130 DOI: 10.1016/j.jip.2024.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Vibrio parahaemolyticus, a halophilic food-borne pathogen, possesses an arsenal of virulence factors. The pathogenicity of V. parahaemolyticus results from a combination of various virulence factors. HlyA and hlyIII genes are presumed to function in hemolysis, in addition to tdh and trh in V. parahaemolyticus. To confirm the hemolytic function of genes hlyA and hlyIII, ΔhlyA and ΔhlyIII strains of V. parahaemolyticus were separately constructed via homologous recombination. The cytotoxicity and pathogenicity of the ΔhlyA and ΔhlyIII strains were evaluated using a Tetrahymena-Vibrio co-culture model and an immersion challenge in Litopenaeus vannamei. Results indicated that the hemolytic activity of the ΔhlyA and ΔhlyIII strains decreased by approximately 31.4 % and 24.9 % respectively, compared to the WT strain. Both ΔhlyA and ΔhlyIII exhibited reduced cytotoxicity towards Tetrahymena. Then shrimp infection experiments showed LD50 values for ΔhlyA and ΔhlyIII of 3.06 × 108 CFU/mL and 1.23 × 108 CFU/mL, respectively, both higher than the WT strain's value of 2.57 × 107 CFU/mL. Histopathological observations revealed that hepatopancreas from shrimps challenged with ΔhlyA and ΔhlyIII exhibited mild symptoms, whereas those challenged with the WT strain displayed severe AHPND. These findings indicate that the ΔhlyA and ΔhlyIII strains are significantly less virulent than the WT strain. In conclusion, both hlyA and hlyIII are vital virulence genes involved in hemolytic and cytotoxic of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jinyuan Che
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaojie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qitong Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Binghong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhuochen Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Cunjie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang 332000, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
4
|
Bai Y, Yang Q, Sun Y, Li F, Sun J, Yang S, Yang D, Peng Z, Yang B, Xu J, Dong Y, Yan S, Li N. Antimicrobial susceptibility and genomic characterization of Vibrio parahaemolyticus isolated from aquatic foods in 15 provinces, China, 2020. Int J Food Microbiol 2024; 418:110737. [PMID: 38749264 DOI: 10.1016/j.ijfoodmicro.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
Prevalent in marine, estuarine and coastal environments, Vibrio parahaemolyticus is one of the major foodborne pathogens which can cause acute gastroenteritis through consumption of contaminated food. This study encompassed antimicrobial resistance, molecular characteristics and phylogenetic relationships of 163 V. parahaemolyticus isolated from aquatic foods across 15 provinces in China. The isolates showed high resistance rates against ampicillin (90.80 %, 148/163) and cefazolin (72.39 %, 118/163). Only 5 isolates demonstrated multi-drug resistance (MDR) phenotypes. A total of 37 different antibiotic resistance genes (ARGs) in correlation with seven antimicrobial categories were identified. tet(34) and tet(35) were present in all 163 isolates. Other most prevalent ARGs were those conferring resistance to β-lactams, with prevalence rate around 18.40 % (30/163). The virulence genes tdh and trh were found in 17 (10.43 %) and 9 (5.52 %) isolates, respectively. Totally 121 sequence types (STs) were identified through whole genome analysis, among which 60 were novel. The most prevalent sequence type was ST3 (9.20 %, 15/163), which shared the same genotype profile of trh_, tdh+ and blaCARB-22+. Most of the tdh+V. parahaemolyticus isolates was clustered into a distinctive clade by the phylogenetic analysis. Our study showed that the antimicrobial resistance of V. parahaemolyticus in aquatic foods in China was moderate. However, the emerging of MDR isolates implicate strengthened monitoring is needed for the better treatment of human V. parahaemolyticus infections. High genetic diversity and virulence potential of the isolates analyzed in this study help better understanding and evaluating the risk of V. parahaemolyticus posed to public health.
Collapse
Affiliation(s)
- Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Yanan Sun
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China; School of Public Health, Shandong University, Shandong 250012, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China.
| | - Ning Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
5
|
Yang L, Yu P, Wang J, Zhao T, Zhao Y, Pan Y, Chen L. Genomic and Transcriptomic Analyses Reveal Multiple Strategies for Vibrio parahaemolyticus to Tolerate Sub-Lethal Concentrations of Three Antibiotics. Foods 2024; 13:1674. [PMID: 38890902 PMCID: PMC11171697 DOI: 10.3390/foods13111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Vibrio parahaemolyticus can cause acute gastroenteritis, wound infections, and septicemia in humans. The overuse of antibiotics in aquaculture may lead to a high incidence of the multidrug-resistant (MDR) pathogen. Nevertheless, the genome evolution of V. parahaemolyticus in aquatic animals and the mechanism of its antibiotic tolerance remain to be further deciphered. Here, we investigated the molecular basis of the antibiotic tolerance of V. parahaemolyticus isolates (n = 3) originated from shellfish and crustaceans using comparative genomic and transcriptomic analyses. The genome sequences of the V. parahaemolyticus isolates were determined (5.0-5.3 Mb), and they contained 4709-5610 predicted protein-encoding genes, of which 823-1099 genes were of unknown functions. Comparative genomic analyses revealed a number of mobile genetic elements (MGEs, n = 69), antibiotic resistance-related genes (n = 7-9), and heavy metal tolerance-related genes (n = 2-4). The V. parahaemolyticus isolates were resistant to sub-lethal concentrations (sub-LCs) of ampicillin (AMP, 512 μg/mL), kanamycin (KAN, 64 μg/mL), and streptomycin (STR, 16 μg/mL) (p < 0.05). Comparative transcriptomic analyses revealed that there were significantly altered metabolic pathways elicited by the sub-LCs of the antibiotics (p < 0.05), suggesting the existence of multiple strategies for antibiotic tolerance in V. parahaemolyticus. The results of this study enriched the V. parahaemolyticus genome database and should be useful for controlling the MDR pathogen worldwide.
Collapse
Affiliation(s)
- Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juanjuan Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taixia Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yong Zhao
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingjie Pan
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China; (L.Y.); (P.Y.)
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Padovan AC, Turnbull AR, Nowland SJ, Osborne MWJ, Kaestli M, Seymour JR, Gibb KS. Growth of V. parahaemolyticus in Tropical Blacklip Rock Oysters. Pathogens 2023; 12:834. [PMID: 37375524 DOI: 10.3390/pathogens12060834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The opportunistic pathogen Vibrio parahaemolyticus poses a significant food safety risk worldwide, and understanding its growth in commercially cultivated oysters, especially at temperatures likely to be encountered post-harvest, provides essential information to provide the safe supply of oysters. The Blacklip Rock Oyster (BRO) is an emerging commercial species in tropical northern Australia and as a warm water species, it is potentially exposed to Vibrio spp. In order to determine the growth characteristics of Vibrio parahaemolyticus in BRO post-harvest, four V. parahaemolyticus strains isolated from oysters were injected into BROs and the level of V. parahaemolyticus was measured at different time points in oysters stored at four temperatures. Estimated growth rates were -0.001, 0.003, 0.032, and 0.047 log10 CFU/h at 4 °C, 13 °C, 18 °C, and 25 °C, respectively. The highest maximum population density of 5.31 log10 CFU/g was achieved at 18 °C after 116 h. There was no growth of V. parahaemolyticus at 4 °C, slow growth at 13 °C, but notably, growth occurred at 18 °C and 25 °C. Vibrio parahaemolyticus growth at 18 °C and 25 °C was not significantly different from each other but were significantly higher than at 13 °C (polynomial GLM model, interaction terms between time and temperature groups p < 0.05). Results support the safe storage of BROs at both 4 °C and 13 °C. This V. parahaemolyticus growth data will inform regulators and assist the Australian oyster industry to develop guidelines for BRO storage and transport to maximise product quality and safety.
Collapse
Affiliation(s)
- Anna C Padovan
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| | - Alison R Turnbull
- Institute of Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia
| | - Samantha J Nowland
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
- Aquaculture Unit, Department of Industry, Tourism and Trade, Northern Territory Government, Darwin, NT 0801, Australia
| | - Matthew W J Osborne
- Aquaculture Unit, Department of Industry, Tourism and Trade, Northern Territory Government, Darwin, NT 0801, Australia
| | - Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Karen S Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|
7
|
Stratev D, Fasulkova R, Krumova-Valcheva G. Incidence, virulence genes and antimicrobial resistance of Vibrio parahaemolyticus isolated from seafood. Microb Pathog 2023; 177:106050. [PMID: 36842516 DOI: 10.1016/j.micpath.2023.106050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/28/2023]
Abstract
The objective of the study was to establish the incidence, pathogenic factors and antimicrobial resistance of Vibrio parahaemolyticus in seafood from retail shops in Bulgaria. A hundred and eighty samples of sea fish, mussels, oysters, veined rapa whelks, shrimps and squids were included in the study. PCR methods were used to identify V. parahaemolyticus and prove tdh and trh genes. Antimicrobial resistance was established by disc diffusion method, and MAR index was calculated. The results proved the presence of V. parahaemolyticus in 24% (44/180) of the seafood samples. tdh-positive V. parahaemolyticus was not found, while the trh gene was detected in one veined rapa whelk isolate. All isolates were susceptible to Sulfamethoxazole/trimethoprim, Tetracycline, Gentamycin, Amoxicillin-clavulanic acid, Amikacin, Ciprofloxacin, and Levofloxacin. Intermediate resistance was found to Ampicillin (25%; 11/44), Cefepime (16%; 7/44), and Ceftazidime (2%; 1/44). The results showed that 16% (7/44) of the isolates were resistant to Cefepime, 9% (4/44) to Ampicillin, and 5% (2/44) to Ceftazidime. MAR-index values ranged from 0.10 to 0.30. The incidence of pathogenic and multidrug-resistant V. parahaemolyticus strains in seafood offered on the market poses a risk to consumer health.
Collapse
Affiliation(s)
- Deyan Stratev
- Department of Food Quality and Safety and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria.
| | - Rumyana Fasulkova
- Department of Food Quality and Safety and Veterinary Legislation, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Gergana Krumova-Valcheva
- National Diagnostic Research Veterinary Institute, Bulgarian Food Safety Agency, Sofia, Bulgaria
| |
Collapse
|
8
|
Sudan P, Tyagi A, Dar RA, Sharma C, Singh P, B T NK, Chandra M, Arora AK. Prevalence and antimicrobial resistance of food safety related Vibrio species in inland saline water shrimp culture farms. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023:10.1007/s10123-023-00323-7. [PMID: 36609954 DOI: 10.1007/s10123-023-00323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
This study evaluated the potential pathogenicity and antimicrobial resistance (AMR) of Vibrio species isolated from inland saline shrimp culture farms. Out of 200 Vibrio isolates obtained from 166 shrimp/water samples, 105 isolates were identified as V. parahaemolyticus and 31 isolates were identified as V. alginolyticus and V. cholerae, respectively. During PCR screening of virulence-associated genes, the presence of the tlh gene was confirmed in 70 and 19 isolates of V. parahaemolyticus and V. alginolyticus, respectively. Besides, 10 isolates of V. parahaemolyticus were also found positive for trh gene. During antibiotic susceptibility testing (AST), very high resistance to cefotaxime (93.0%), amoxiclav (90.3%), ampicillin (88.2%), and ceftazidime (73.7%) was observed in all Vibrio species. Multiple antibiotic resistance (MAR) index values of Vibrio isolates ranged from 0.00 to 0.75, with 90.1% of isolates showing resistance to ≥ 3 antibiotics. The AST and MAR patterns did not significantly vary sample-wise or Vibrio species-wise. During the minimum inhibitory concentration (MIC) testing of various antibiotics against Vibrio isolates, the highest MIC values were recorded for amoxiclav followed by kanamycin. These results indicated that multi-drug resistant Vibrio species could act as the reservoirs of antibiotic resistance genes in the shrimp culture environment. The limited host range of 12 previously isolated V. parahaemolyticus phages against V. parahaemolyticus isolates from this study indicated that multiple strains of V. parahaemolyticus were prevalent in inland saline shrimp culture farms. The findings of the current study emphasize that routine monitoring of emerging aquaculture areas is critical for AMR pathogen risk assessment.
Collapse
Affiliation(s)
- Prapti Sudan
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - Rouf Ahmad Dar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Chetna Sharma
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Prabjeet Singh
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Naveen Kumar B T
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - Mudit Chandra
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| | - A K Arora
- College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India
| |
Collapse
|
9
|
Zha F, Pang R, Huang S, Zhang J, Wang J, Chen M, Xue L, Ye Q, Wu S, Yang M, Gu Q, Ding Y, Zhang H, Wu Q. Evaluation of the pathogenesis of non-typical strain with α-hemolysin, Vibrio parahaemolyticus 353, isolated from Chinese seafood through comparative genome and transcriptome analysis. MARINE POLLUTION BULLETIN 2023; 186:114276. [PMID: 36437125 DOI: 10.1016/j.marpolbul.2022.114276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/21/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Vibrio parahaemolyticus outbreaks frequently occur, causing gastrointestinal sickness owing to the consumption of aquatic foods by various virulence factors; however, the mechanism of pathogenesis is still unknown. In this study, a non-typical strain of V. parahaemolyticus, named VP353, was isolated from shrimp in China. Its comparative genome and transcriptome after infection with Caco-2 cells were examined to illustrate the mechanisms of its pathogenesis. VP353 was a tdh-trh- strain but uncommonly manifested robust cytotoxicity towards Caco-2 cells. Compared with the standard strain RIMD2210633, VP353 harbored alpha-hemolysins (hlyA, hlyB, hlyC, and hlyD) was first reported in V. parahaemolyticus and showed high diversity in the T3SS2 gene cluster. Moreover, the expression of flagella, T2SS, quorum sensing-related genes, hlyA, hlyC were up-regulated, and hlyB, hlyD were down-regulated. In summary, our results demonstrate that some novel virulence factors contribute to the pathogenesis of V. parahaemolyticus infection.
Collapse
Affiliation(s)
- Fei Zha
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Shixuan Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
10
|
Xiang X, Diao E, Shang Y, Song M, He Y. Rapid quantitative detection of Vibrio parahaemolyticus via high-fidelity target-based microfluidic identification. Food Res Int 2022; 162:112032. [PMID: 36461252 DOI: 10.1016/j.foodres.2022.112032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022]
Abstract
With the rapid development of logistics, a growing number of pathogenic microorganisms has the means to spread worldwide using food as a carrier; thus, there is an urgent need to develop effective detection strategies to ensure food safety. By combining novel markers identified by pan-genome analysis and a digital recombinase-aided amplification (RAA) detection method based on a microfluidic chip, a strategy of high-fidelity target-based microfluidic identification (HFTMI) has been developed. Herein, a proof-of-concept study of HFTMI for rapid pathogen detection of V. parahaemolyticus was investigated. Specific primers designed for the gene group_41170 identified in the pan-genome analysis showed high sensitivity and a broad spectrum for the detection of V. parahaemolyticus. Different power systems were investigated to increase the partition rate on specifically designed chamber-based digital chips. The performance of HFTMI was greatly improved compared with qPCR. Collectively, this novel HFTMI system provides more reliable guidance for food safety testing.
Collapse
Affiliation(s)
- Xinran Xiang
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Enjie Diao
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Science, Huaiyin Normal University, Huai'an 223300, China
| | - Yuting Shang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Minghui Song
- Hainan Hospital of Chinese PLA General Hospital, Sanya 572000, China.
| | - Yinglong He
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
11
|
Almejhim M, Aljeldah M, Elhadi N. Improved isolation and detection of toxigenic Vibrio parahaemolyticus from coastal water in Saudi Arabia using immunomagnetic enrichment. PeerJ 2021; 9:e12402. [PMID: 34760388 PMCID: PMC8559605 DOI: 10.7717/peerj.12402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background Vibrio parahaemolyticus is recognized globally as a cause of foodborne gastroenteritis and its widely disseminated in marine and coastal environment throughout the world. The main aim of this study was conducted to investigate the presence of toxigenic V. parahaemolyticus in costal water in the Eastern Province of Saudi Arabia by using immunomagnetic separation (IMS) in combination with chromogenic Vibrio agar medium and PCR targeting toxR gene of species level and virulence genes. Methods A total of 192 seawater samples were collected from five locations and enriched in alkaline peptone water (APW) broth. One-milliliter portion from enriched samples in APW were mixed with an immunomagnetic beads (IMB) coated with specific antibodies against V. parahaemolyticus polyvalent K antisera and separated beads with captured bacteria streaked on thiosulfate citrate bile salts sucrose (TCBS) agar and CHROMagar Vibrio (CaV) medium. Results Of the 192 examined seawater samples, 38 (19.8%) and 44 (22.9%) were positive for V. parahaemolyticus, producing green and mauve colonies on TCBS agar and CaV medium, respectively. Among 120 isolates of V. parahaemolyticus isolated in this study, 3 (2.5%) and 26 (21.7%) isolates of V. parahaemolyticus isolated without and with IMB treatment tested positive for the toxin regulatory (toxR) gene, respectively. Screening of the confirmed toxR gene-positive isolates revealed that 21 (17.5%) and 3 (2.5%) were positive for the thermostable direct hemolysin (tdh) encoding gene in strains isolated with IMB and without IMB treatment, respectively. None of the V. parahaemolyticus strains tested positive for the thermostable related hemolysin (trh) gene. In this study, we found that the CaV medium has no advantage over TCBS agar if IMB concentration treatment is used during secondary enrichment steps of environmental samples. The enterobacterial repetitive intergenic consensus (ERIC)-PCR DNA fingerprinting analysis revealed high genomic diversity, and 18 strains of V. parahaemolyticus were grouped and identified into four identical ERIC clonal group patterns. Conclusions The presented study reports the first detection of tdh producing V. parahaemolyticus in coastal water in the Eastern Province of Saudi Arabia.
Collapse
Affiliation(s)
- Mariam Almejhim
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
12
|
Distribution of Vibrio parahaemolyticus in Farmed Shrimp Penaeus vannamei, Farm Water and Sediment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The halophilic marine bacterium Vibrio parahaemolyticus is a zoonotic pathogen associated with wild-caught and farmed shrimp. The bacterium is an important cause of gastroenteritis associated with the consumption of raw or undercooked seafood. In the present study, the prevalence and human pathogenic potential of Vibrio parahaemolyticus in Penaeus vannamei (tissue and hepatopancreas) and the farm environment (water and sediment) was investigated by conventional culture and molecular techniques. The total Vibrio counts of P. vannamei ranged from <1 CFU/mL in hemolymph to 7.61 log CFU/g in the hepatopancreas. The sediment samples consistently showed the counts of 6-7 log CFU/g, while the pond water had Vibrio counts in the range of 2-3 log CFU/ml. Of 120 Vibrio isolates identified, 87 were confirmed as V. parahaemolyticus based on the toxR and tlh gene-specific PCR. The virulence marker gene tdh was not detected in any of the isolates, while the trh gene was detected in 3 (3.6%) isolates. Although the incidence of pathogenic V. parahaemolyticus in farmed P. vannamei is low, the high numbers of total vibrios and V. parahaemolyticus demand constant monitoring of animals and the farm environment for human pathogenic strains of V. parahaemolyticus.
Collapse
|
13
|
Wang R, Hu X, Deng Y, Gooneratne R. Effect of Food Matrix Type on Growth Characteristics of and Hemolysin Production by Vibrio alginolyticus. J Food Prot 2021; 84:1411-1420. [PMID: 33836066 DOI: 10.4315/jfp-20-490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The growth of and hemolysin production by two V. alginolyticus strains (HY9901 and ATCC 17749T) at 30°C were investigated in briny tilapia, shrimp, scallop, oyster, pork, chicken, freshwater fish, and egg fried rice. Bacteria were enumerated by plate counting. Hemolysin production was evaluated with blood agar and hemolytic titer tests. The two V. alginolyticus strains had similar growth and hemolysin production patterns in all tested foods. Based on the goodness-of-fit primary model statistics (coefficient of determination, mean square error, bias factor, and accuracy factor), the modified Gompertz model was a better fit than the logistic model to V. alginolyticus growth in foods. Growth kinetic parameters of V. alginolyticus had a higher μmax and shorter λ in the following order: briny tilapia > shrimp > freshwater fish > egg fried rice > scallop > oyster > chicken > pork. V. alginolyticus levels were similar at the stationary phase, with no significant growth difference between raw and cooked foods. Significantly higher thermostable direct hemolysin activity (P < 0.05) was found for V. alginolyticus in the following order: briny tilapia > freshwater fish > shrimp > chicken > egg fried rice > scallop > oyster > pork. However, the hemolytic titer was not consistent with the thermostable direct hemolysin activity and was significantly higher (P < 0.05) in the following order: briny tilapia > egg fried rice > shrimp > freshwater fish > chicken > scallop > oyster > pork. Contrary to current belief, V. alginolyticus produced more hemolysin in some nonseafoods (freshwater fish, egg fried rice, and chicken) than in scallops or oysters. This report is the first on the growth and toxicity of V. alginolyticus in different food matrices and confirms that some nonseafoods can be contaminated with pathogenic V. alginolyticus. These results should increase awareness of nonseafood safety issues and improve the accuracy of V. alginolyticus risk assessments. HIGHLIGHTS
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, People's Republic of China
| | - Xiaojun Hu
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, People's Republic of China
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| |
Collapse
|
14
|
Vazquez-Morado LE, Robles-Zepeda RE, Ochoa-Leyva A, Arvizu-Flores AA, Garibay-Escobar A, Castillo-Yañez F, Lopez-Zavala AA. Biochemical characterization and inhibition of thermolabile hemolysin from Vibrio parahaemolyticus by phenolic compounds. PeerJ 2021; 9:e10506. [PMID: 33505784 PMCID: PMC7796666 DOI: 10.7717/peerj.10506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Vibrio parahaemolyticus (Vp), a typical microorganism inhabiting marine ecosystems, uses pathogenic virulence molecules such as hemolysins to cause bacterial infections of both human and marine animals. The thermolabile hemolysin VpTLH lyses human erythrocytes by a phospholipase B/A2 enzymatic activity in egg-yolk lecithin. However, few studies have been characterized the biochemical properties and the use of VpTLH as a molecular target for natural compounds as an alternative to control Vp infection. Here, we evaluated the biochemical and inhibition parameters of the recombinant VpTLH using enzymatic and hemolytic assays and determined the molecular interactions by in silico docking analysis. The highest enzymatic activity was at pH 8 and 50 °C, and it was inactivated by 20 min at 60 °C with Tm = 50.9 °C. Additionally, the flavonoids quercetin, epigallocatechin gallate, and morin inhibited the VpTLH activity with IC50 values of 4.5 µM, 6.3 µM, and 9.9 µM, respectively; while phenolics acids were not effective inhibitors for this enzyme. Boltzmann and Arrhenius equation analysis indicate that VpTLH is a thermolabile enzyme. The inhibition of both enzymatic and hemolytic activities by flavonoids agrees with molecular docking, suggesting that flavonoids could interact with the active site’s amino acids. Future research is necessary to evaluate the antibacterial activity of flavonoids against Vp in vivo.
Collapse
Affiliation(s)
- Luis E Vazquez-Morado
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico.,Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ramon E Robles-Zepeda
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | - Alonso A Lopez-Zavala
- Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| |
Collapse
|
15
|
Ndraha N, Wong HC, Hsiao HI. Managing the risk of Vibrio parahaemolyticus infections associated with oyster consumption: A review. Compr Rev Food Sci Food Saf 2020; 19:1187-1217. [PMID: 33331689 DOI: 10.1111/1541-4337.12557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative bacterium that is naturally present in the marine environment. Oysters, which are water filter feeders, may accumulate this pathogen in their soft tissues, thus increasing the risk of V. parahaemolyticus infection among people who consume oysters. In this review, factors affecting V. parahaemolyticus accumulation in oysters, the route of the pathogen from primary production to consumption, and the potential effects of climate change were discussed. In addition, intervention strategies for reducing accumulation of V. parahaemolyticus in oysters were presented. A literature review revealed the following information relevant to the present study: (a) managing the safety of oysters (for human consumption) from primary production to consumption remains a challenge, (b) there are multiple factors that influence the concentration of V. parahaemolyticus in oysters from primary production to consumption, (c) climate change could possibly affect the safety of oysters, both directly and indirectly, placing public health at risk, (d) many intervention strategies have been developed to control and/or reduce the concentration of V. parahaemolyticus in oysters to acceptable levels, but most of them are mainly focused on the downstream steps of the oyster supply chain, and (c) although available regulation and/or guidelines governing the safety of oyster consumption are mostly available in developed countries, limited food safety information is available in developing countries. The information provided in this review may serve as an early warning for managing the future effects of climate change on the safety of oyster consumption.
Collapse
Affiliation(s)
- Nodali Ndraha
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| | - Hin-Chung Wong
- Department of Microbiology, Soochow University, Taipei, Taiwan (R.O.C.)
| | - Hsin-I Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.).,Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan (R.O.C.)
| |
Collapse
|
16
|
Detection and Quantification of Total and Pathogenic Vibrio parahaemolyticus in Anadara subcrenata in the Zhoushan Archipelago. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2019; 2019:5481935. [PMID: 31885752 PMCID: PMC6899326 DOI: 10.1155/2019/5481935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the prevalence of total and pathogenic Vibrio parahaemolyticus in Anadara subcrenata sampled from aquafarms and retail markets in the Zhoushan islands during June 2013 to March 2015, using the most probable number-polymerase chain reaction (MPN-PCR) method. Total V. parahaemolyticus was detected in 265 (83.86%) samples with the density 0.3 to 2400 MPN/g. In total, 30.70% and 17.41% of the samples exceeded 100 MPN/g and 1,000 MPN/g, respectively. Both highest positive rate (98.99%) and highest prevalence (median = 210.0 MPN/g) were recorded in summer. Samples from aquafarms had a higher positive rate and median than those from retail markets. Pathogenic V. parahaemolyticus was detected both in aquafarms and retail markets in all seasons but not in winter. Among the 265 tlh-positive samples, 20 (7.55%) of the samples harbored tdh, and 5 (1.89%) of the samples harbored both tdh and trh. These results indicate that the Zhoushan archipelago is severely contaminated with V. parahaemolyticus in Anadara subcrenata; these results are applicable in risk assessment and to control the risk of food-borne disease caused by V. parahaemolyticus.
Collapse
|
17
|
Fan Y, Li Z, Li Z, Li X, Sun H, Li J, Lu X, Liang W, Kan B. Nonhemolysis of epidemic El Tor biotype strains of Vibrio cholerae is related to multiple functional deficiencies of hemolysin A. Gut Pathog 2019; 11:38. [PMID: 31338129 PMCID: PMC6626427 DOI: 10.1186/s13099-019-0316-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Hemolysis of bacteria is an important phenotype used for typing and characterizing strains with specific biomarkers and even a virulence factor in bacterial pathogenesis. In Vibrio cholerae, hemolysin HlyA is responsible for hemolysis of sheep red blood cells, and this hemolytic phenotype is used as a biotyping indicator and considered one of the virulence factors. At the beginning of the seventh cholera pandemic, the El Tor biotype strains of serogroup O1 were distinguished by hemolysis from the sixth pandemic O1 classical biotype strains, whereas during the following epidemics, nonhemolytic El Tor strains appeared, suggesting phenotypic and genetic variations in these strains. This study aimed to investigate the possible mechanisms involved in nonhemolysis of El Tor strains. Results Five sequence types of hlyA genes were found in the studied O1 El Tor strains isolated during the seventh pandemic. A 4-base deletion in hlyA caused the HlyA protein mutation and non-hemolytic phenotype. Some strains carry wildtype hlyA genes but are still non-hemolytic, and greatly reduced hlyA transcription and blocked secretion of hemolysin were observed in hemolysis tests of the subcellular components and transcription/expression analysis of hlyA. Conclusions Mechanisms responsible for nonhemolysis of the epidemic O1 El Tor strains are complex and not only confined to gene mutation but also deficiencies of transcription and extracellular transport of HlyA. Mutations in gene regulation and protein secretion systems of HlyA in the nonhemolytic V. cholerae strains should be areas of concern in future studies.
Collapse
Affiliation(s)
- Yufeng Fan
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhenpeng Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhe Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xu Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huihui Sun
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jie Li
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xin Lu
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Weili Liang
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Biao Kan
- 1State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping, Beijing, 102206 China.,2Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
18
|
Rapid subtyping of pathogenic and nonpathogenic Vibrio parahaemolyticus by fourier transform infrared spectroscopy with chemometric analysis. J Microbiol Methods 2018; 155:70-77. [PMID: 30414402 DOI: 10.1016/j.mimet.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus which naturally inhabits marine and estuarine environment represents pathogenic strains (virulence genes tdh or trh positive) and non-pathogenic strains (virulence genes negative). In this study, a rapid method for subtyping pathogenic and non-pathogenic V. parahaemolyticus was established using fourier transform infrared (FTIR) spectroscopy with chemometric analysis. This method targeted three strains of genotypes of V. parahaemolyticus including tdh positive, trh positive and virulence gene-negative (nonpathogenic) V. parahaemolyticus. The FTIR absorption spectra between 1800 and 900 cm-1 highlighted the most distinctive variations and were the most useful for characterizing the three bacteria. The successful differentiation and identification of the three bacteria could be accomplished in less than 1 h by FTIR using principal component analysis (PCA), or another cluster model of hierarchical cluster analysis (HCA). The method was verified by analyzing spiked V. parahaemolyticus fish samples. Furthermore, all of ten clinical isolates of V. parahaemolyticus were identified as tdh-positive, none of the clinical isolates were trh-positive, and all of ten environmental isolates were identified as non-pathogenic by the subtyping method, which were confirmed by PCR assays. All data demonstrated that the newly established subtyping method by FTIR is practical, time-saving, labor-saving, specific and cost-effective, especially suitable for the basic laboratories of CDC and port quarantine departments to perform suiveillance and epidemiological traceability of pathogenic V. parahaemolyticus.
Collapse
|
19
|
Cai Q, Zhang Y. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Microb Pathog 2018; 123:242-245. [PMID: 30031890 DOI: 10.1016/j.micpath.2018.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/25/2023]
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-associated bacterial gastroenteritis. The pathogen produces the thermostable direct hemolysin (TDH), which is the sole cause of the Kanagawa phenomenon (KP), a special β-type haemolysis in the Wagatsuma agar. TDH also exerts several other biological activities, the major includes lethal toxicity, cytotoxicity, and enterotoxicity. The structure and roles of TDH and the transcriptional regulation of tdh genes, are summarized in this review, which will give a better understanding of the pathogenesis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qin Cai
- The Fourth People 's Hospital of Zhenjiang, Zhenjiang, 212001, Jiangsu, PR China; School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| |
Collapse
|
20
|
Development of a rapid immunochromatographic assay to detect contamination of raw oysters with enteropathogenic Vibrio parahaemolyticus. Int J Food Microbiol 2018; 264:16-24. [DOI: 10.1016/j.ijfoodmicro.2017.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022]
|
21
|
Comparison of Different Methods to Identify tdh-Positive Pathogenic Vibrio parahaemolyticus Isolates. Curr Microbiol 2017; 75:1-5. [DOI: 10.1007/s00284-017-1332-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/10/2017] [Indexed: 10/18/2022]
|
22
|
Ghenem L, Elhadi N, Alzahrani F, Nishibuchi M. Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2017; 5:93-103. [PMID: 30787765 PMCID: PMC6298368 DOI: 10.4103/sjmms.sjmms_30_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium isolated from marine environments globally. After the consumption of contaminated seafood, V. parahaemolyticus causes acute gastroenteritis. To initiate infection, a wide range of virulence factors are required. A complex group of genes is known to participate in the pathogenicity of V. parahaemolyticus; however, to understand the full mechanism of infection, extensive research is yet required. V. parahaemolyticus has become the leading cause of seafood-related gastroenteritis in Japan, the United States and several other parts of the world. In addition, outbreaks caused by the pandemic clone of this organism are escalating and spreading universally. To minimize the risk of V. parahaemolyticus infection and warrant the safety of seafood, collaboration between governments and scientists is required. We herein provide an updated review of the pathogenicity determinants and distribution of V. parahaemolyticus to deliver a better understanding of the significance of V. parahaemolyticus and its host-pathogen interactions.
Collapse
Affiliation(s)
- Lubna Ghenem
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Nasreldin Elhadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Faisal Alzahrani
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Dammam, 31441 Dammam, Kingdom of Saudi Arabia
| | - Mitsuaki Nishibuchi
- Center for Southeast Asian Studies, Kyoto University, 46 Shomoadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Trh (tdh−/trh+) gene analysis of clinical, environmental and food isolates of Vibrio parahaemolyticus as a tool for investigating pathogenicity. Int J Food Microbiol 2016; 225:43-53. [DOI: 10.1016/j.ijfoodmicro.2016.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/28/2023]
|