1
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Sun D, Sun W, Gao SQ, Lehrer J, Naderi A, Wei C, Lee S, Schilb AL, Scheidt J, Hall RC, Traboulsi EI, Palczewski K, Lu ZR. Effective gene therapy of Stargardt disease with PEG-ECO/ pGRK1-ABCA4-S/MAR nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:823-835. [PMID: 36159595 PMCID: PMC9463552 DOI: 10.1016/j.omtn.2022.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew L. Schilb
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Elias I. Traboulsi
- Department of Pediatric Ophthalmology and Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, Departments of Physiology and Biophysics, Chemistry, and Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
|
4
|
Annamalai B, Parsons N, Nicholson C, Obert E, Jones B, Rohrer B. Subretinal Rather Than Intravitreal Adeno-Associated Virus-Mediated Delivery of a Complement Alternative Pathway Inhibitor Is Effective in a Mouse Model of RPE Damage. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 33830174 PMCID: PMC8039473 DOI: 10.1167/iovs.62.4.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The risk for age-related macular degeneration has been tied to an overactive complement system. Despite combined attempts by academia and industry to develop therapeutics that modulate the complement response, particularly in the late geographic atrophy form of advanced AMD, to date, there is no effective treatment. We have previously demonstrated that pathology in the smoke-induced ocular pathology (SIOP) model, a model with similarities to dry AMD, is dependent on activation of the alternative complement pathway and that a novel complement activation site targeted inhibitor of the alternative pathway can be delivered to ocular tissues via an adeno-associated virus (AAV). Methods Two different viral vectors for specific tissue targeting were compared: AAV5-VMD2-CR2-fH for delivery to the retinal pigment epithelium (RPE) and AAV2YF-smCBA-CR2-fH for delivery to retinal ganglion cells (RGCs). Efficacy was tested in SIOP (6 months of passive smoke inhalation), assessing visual function (optokinetic responses), retinal structure (optical coherence tomography), and integrity of the RPE and Bruch's membrane (electron microscopy). Protein chemistry was used to assess complement activation, CR2-fH tissue distribution, and CR2-fH transport across the RPE. Results RPE- but not RGC-mediated secretion of CR2-fH was found to reduce SIOP and complement activation in RPE/choroid. Bioavailability of CR2-fH in RPE/choroid could be confirmed only after AAV5-VMD2-CR2-fH treatment, and inefficient, adenosine triphosphate-dependent transport of CR2-fH across the RPE was identified. Conclusions Our results suggest that complement inhibition for AMD-like pathology is required basal to the RPE and argues in favor of AAV vector delivery to the RPE or outside the blood-retina barrier.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Crystal Nicholson
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bryan Jones
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
- Division of Research, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
5
|
Huang T, Li H, Zhang S, Liu F, Wang D, Xu J. Nrn1 Overexpression Attenuates Retinal Ganglion Cell Apoptosis, Promotes Axonal Regeneration, and Improves Visual Function Following Optic Nerve Crush in Rats. J Mol Neurosci 2020; 71:66-79. [DOI: 10.1007/s12031-020-01627-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
|
6
|
Sun D, Schur RM, Sears AE, Gao SQ, Sun W, Naderi A, Kern T, Palczewski K, Lu ZR. Stable Retinoid Analogue Targeted Dual pH-Sensitive Smart Lipid ECO/pDNA Nanoparticles for Specific Gene Delivery in the Retinal Pigment Epithelium. ACS APPLIED BIO MATERIALS 2020; 3:3078-3086. [PMID: 34327311 DOI: 10.1021/acsabm.0c00130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Rebecca M Schur
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Avery E Sears
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Timothy Kern
- Department of Ophthalmology, University of California Irvine, Irvine, CA 92697-7600
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of California Irvine, Irvine, CA 92697-7600
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
7
|
Simpson CP, Bolch SN, Zhu P, Weidert F, Dinculescu A, Lobanova ES. Systemic Delivery of Genes to Retina Using Adeno-Associated Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:109-112. [PMID: 31884597 DOI: 10.1007/978-3-030-27378-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in more than 80 genes lead to photoreceptor degeneration. Although subretinal delivery of genes to photoreceptor neurons using AAV vectors has proven itself as an efficient therapeutic and investigative tool in various mouse models, the surgical procedure itself could lead to loss of retinal function even in healthy animals, complicating the interpretation of experimental studies and requiring thoroughly designed controls. A noninvasive approach, such as a systemic delivery of genes with AAV through the bloodstream, may serve as a promising direction in tool development. Previous studies have established that AAV9 is capable of crossing the blood-brain and blood-retina barrier and even has a limited capacity to transduce photoreceptors. AAV-PHP.eB is a novel AAV9-based mutant capsid that crosses the blood-brain barrier and efficiently transduces central nervous system in the adult mice. Here, we investigated its ability to cross the blood-retina barrier and transduce retinal neurons. Control experiments demonstrated virtually nonexisting ability of this capsid to transduce retinal cells via intravitreal administration but high efficiency to transduce photoreceptors via subretinal route. Systemic delivery of AAV-PHP.eB in adult mice robustly transduced horizontal cells throughout the entire retina, but not photoreceptors. Our study suggests that AAV-PHP.eB crosses the intra-retinal blood-retinal barrier (IR-BRB), efficiently transduces horizontal cells located adjacent to IR-BRB, but has very limited ability to further penetrate retina and reach photoreceptors.
Collapse
Affiliation(s)
- Chiab P Simpson
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Susan N Bolch
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Ping Zhu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Frances Weidert
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Ekaterina S Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA. .,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Li Y, Struebing FL, Wang J, King R, Geisert EE. Different Effect of Sox11 in Retinal Ganglion Cells Survival and Axon Regeneration. Front Genet 2018; 9:633. [PMID: 30619460 PMCID: PMC6305287 DOI: 10.3389/fgene.2018.00633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose: The present study examines the role of Sox11 in the initial response of retinal ganglion cells (RGCs) to axon damage and in optic nerve regeneration in mouse. Methods: Markers of retinal injury were identified using the normal retina database and optic nerve crush (ONC) database on GeneNetwork2 (www.genenetwork.org). One gene, Sox11, was highly upregulated following ONC. We examined the role of this transcription factor, Sox11, following ONC and optic nerve regeneration in mice. In situ hybridization was performed using the Affymetrix 2-plex Quantigene View RNA In Situ Hybridization Tissue Assay System. Sox11 was partially knocked out by intravitreal injection of AAV2-CMV-Cre-GFP in Sox11 f/f mice. Optic nerve regeneration model used Pten knockdown. Mice were perfused and the retinas and optic nerves were dissected and examined for RGC survival and axon growth. Results: Sox11 was dramatically upregulated in the retina following ONC injury. The level of Sox11 message increased by approximately eightfold 2 days after ONC. In situ hybridization demonstrated low-level Sox11 message in RGCs and cells in the inner nuclear layer in the normal retina as well as a profound increase in Sox11 message within the ganglion cells following ONC. In Sox11 f/f retinas, partially knocking out Sox11 significantly increased RGC survival after ONC as compared to the AAV2-CMV-GFP control group; however, it had little effect on the ability of axon regeneration. Combinatorial downregulation of both Sox11 and Pten resulted in a significant increase in RGC survival as compared to Pten knockdown only. When Pten was knocked down there was a remarkable increase in the number and the length of regenerating axons. Partially knocking out Sox11 in combination with Pten deletion resulted in a fewer regenerating axons. Conclusion: Taken together, these data demonstrate that Sox11 is involved in the initial response of the retina to injury, playing a role in the early attempts of axon regeneration and neuronal survival. Downregulation of Sox11 aids in RGC survival following injury of optic nerve axons, while a partial knockout of Sox11 negates the axon regeneration stimulated by Pten knockdown.
Collapse
Affiliation(s)
- Ying Li
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Felix L Struebing
- Department of Ophthalmology, Emory University, Atlanta, GA, United States.,Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Munich, Germany.,Department for Translational Brain Research, German Center for Neurodegenerative Diseases, Munich, Germany
| | - Jiaxing Wang
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Rebecca King
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Smith CA, Chauhan BC. In vivo imaging of adeno-associated viral vector labelled retinal ganglion cells. Sci Rep 2018; 8:1490. [PMID: 29367685 PMCID: PMC5784170 DOI: 10.1038/s41598-018-19969-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
A defining characteristic of optic neuropathies, such as glaucoma, is progressive loss of retinal ganglion cells (RGCs). Current clinical tests only provide weak surrogates of RGC loss, but the possibility of optically visualizing RGCs and quantifying their rate of loss could represent a radical advance in the management of optic neuropathies. In this study we injected two different adeno-associated viral (AAV) vector serotypes in the vitreous to enable green fluorescent protein (GFP) labelling of RGCs in wild-type mice for in vivo and non-invasive imaging. GFP-labelled cells were detected by confocal scanning laser ophthalmoscopy 1-week post-injection and plateaued in density at 4 weeks. Immunohistochemical analysis 5-weeks post-injection revealed labelling specificity to RGCs to be significantly higher with the AAV2-DCX-GFP vector compared to the AAV2-CAG-GFP vector. There were no adverse functional or structural effects of the labelling method as determined with electroretinography and optical coherence tomography, respectively. The RGC-specific positive and negative scotopic threshold responses had similar amplitudes between control and experimental eyes, while inner retinal thickness was also unchanged after injection. As a positive control experiment, optic nerve transection resulted in a progressive loss of labelled RGCs. AAV vectors provide strong and long-lasting GFP labelling of RGCs without detectable adverse effects.
Collapse
Affiliation(s)
- Corey A Smith
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.,Retina and Optic Nerve Research Laboratory, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Balwantray C Chauhan
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada. .,Retina and Optic Nerve Research Laboratory, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, 1276 South Park Street, 2W Victoria, Halifax, Nova Scotia, B3H 2Y9, Canada.
| |
Collapse
|
10
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, Kwon YJ. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2017; 63:107-131. [PMID: 29097191 DOI: 10.1016/j.preteyeres.2017.10.004] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinopathy that affects about 2.5 million people worldwide. It is characterized with progressive loss of rods and cones and causes severe visual dysfunction and eventual blindness in bilateral eyes. In addition to more than 3000 genetic mutations from about 70 genes, a wide genetic overlap with other types of retinal dystrophies has been reported with RP. This diversity of genetic pathophysiology makes treatment extremely challenging. Although therapeutic attempts have been made using various pharmacologic agents (neurotrophic factors, antioxidants, and anti-apoptotic agents), most are not targeted to the fundamental cause of RP, and their clinical efficacy has not been clearly proven. Current therapies for RP in ongoing or completed clinical trials include gene therapy, cell therapy, and retinal prostheses. Gene therapy, a strategy to correct the genetic defects using viral or non-viral vectors, has the potential to achieve definitive treatment by replacing or silencing a causative gene. Among many clinical trials of gene therapy for hereditary retinal diseases, a phase 3 clinical trial of voretigene neparvovec (AAV2-hRPE65v2, Luxturna) recently showed significant efficacy for RPE65-mediated inherited retinal dystrophy including Leber congenital amaurosis and RP. It is about to be approved as the first ocular gene therapy biologic product. Despite current limitations such as limited target genes and indicated patients, modest efficacy, and the invasive administration method, development in gene editing technology and novel gene delivery carriers make gene therapy a promising therapeutic modality for RP and other hereditary retinal dystrophies in the future.
Collapse
Affiliation(s)
- Marina França Dias
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | | | - Se Joon Woo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl Res 2017; 188:40-57.e4. [PMID: 28754419 DOI: 10.1016/j.trsl.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/30/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Several approaches have been developed for gene therapy in RPE65-related Leber congenital amaurosis. To date, strategies that have reached the clinical stages rely on adeno-associated viral vectors and two of them documented limited long-term effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that efficiently restored protein expression and cone function in RPE65-deficient mice. In this study, we evaluated the ocular and systemic tolerances of this lentiviral-based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant systemic anti-inflammatory prophylaxis. For the first time, we describe the early kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in LV-RPE65-injected eyes compared to vehicle-injected eyes. Low- (n = 2) and high-dose (n = 2) LV-RPE65-injected eyes presented a reduction of the outer nuclear and photoreceptor outer segment layer thickness in the macula, that was more pronounced than in vehicle-injected eyes (n = 4). All LV-RPE65-injected eyes showed an initial perivascular reaction that resolved spontaneously within 14 days. Despite foveal structural changes, full-field electroretinography indicated that the overall retinal function was preserved over time and immunohistochemistry identified no difference in glial, microglial, or leucocyte ocular activation between low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65-injected animals did not show signs of vector shedding or extraocular targeting, confirming the safe ocular restriction of the vector. Our results evidence a limited ocular tolerance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory prophylaxis, with complications linked to this route of administration necessitating to block this transient inflammatory event.
Collapse
|
12
|
Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, Delacono C, Purvis A, Richards S, Le-Halpere A, Connelly J, Wadsworth SC, Varona R, Buggage R, Scaria A, Campochiaro PA. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet 2017; 390:50-61. [PMID: 28526489 DOI: 10.1016/s0140-6736(17)30979-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Long-term intraocular injections of vascular endothelial growth factor (VEGF)-neutralising proteins can preserve central vision in many patients with neovascular age-related macular degeneration. We tested the safety and tolerability of a single intravitreous injection of an AAV2 vector expressing the VEGF-neutralising protein sFLT01 in patients with advanced neovascular age-related macular degeneration. METHODS This was a phase 1, open-label, dose-escalating study done at four outpatient retina clinics in the USA. Patients were assigned to each cohort in order of enrolment, with the first three patients being assigned to and completing the first cohort before filling positions in the following treatment groups. Patients aged 50 years or older with neovascular age-related macular degeneration and a baseline best-corrected visual acuity score of 20/100 or less in the study eye were enrolled in four dose-ranging cohorts (cohort 1, 2 × 108 vector genomes (vg); cohort 2, 2 × 109 vg; cohort 3, 6 × 109 vg; and cohort 4, 2 × 1010 vg, n=3 per cohort) and one maximum tolerated dose cohort (cohort 5, 2 × 1010 vg, n=7) and followed up for 52 weeks. The primary objective of the study was to assess the safety and tolerability of a single intravitreous injection of AAV2-sFLT01, through the measurement of eye-related adverse events. This trial is registered with ClinicalTrials.gov, number NCT01024998. FINDINGS 19 patients with advanced neovascular age-related macular degeneration were enrolled in the study between May 18, 2010, and July 14, 2014. All patients completed the 52-week trial period. Two patients in cohort 4 (2 × 1010 vg) experienced adverse events that were possibly study-drug related: pyrexia and intraocular inflammation that resolved with a topical steroid. Five of ten patients who received 2 × 1010 vg had aqueous humour concentrations of sFLT01 that peaked at 32·7-112·0 ng/mL (mean 73·7 ng/mL, SD 30·5) by week 26 with a slight decrease to a mean of 53·2 ng/mL at week 52 (SD 17·1). At baseline, four of these five patients were negative for anti-AAV2 serum antibodies and the fifth had a very low titre (1:100) of anti-AAV2 antibodies, whereas four of the five non-expressers of sFLT01 had titres of 1:400 or greater. In 11 of 19 patients with intraretinal or subretinal fluid at baseline judged to be reversible, six showed substantial fluid reduction and improvement in vision, whereas five showed no fluid reduction. One patient in cohort 5 showed a large decrease in vision between weeks 26 and 52 that was not thought to be vector-related. INTERPRETATION Intravitreous injection of AAV2-sFLT01 seemed to be safe and well tolerated at all doses. Additional studies are needed to identify sources of variability in expression and anti-permeability activity, including the potential effect of baseline anti-AAV2 serum antibodies. FUNDING Sanofi Genzyme, Framingham, MA, USA.
Collapse
Affiliation(s)
| | - Saleema Kherani
- Departments of Ophthalmology and Neuroscience, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Shilpa Desai
- Ophthalmic Consultants of Boston, Boston, MA, USA
| | - Pravin Dugel
- Retinal Consultants of Arizona, Phoenix, AZ, USA
| | - Shalesh Kaushal
- University of Massachusetts Medical Center, Worcester, MA, USA
| | | | | | | | | | | | | | | | | | | | | | - Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
13
|
Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site. J Virol 2016; 90:5219-5230. [PMID: 26962225 DOI: 10.1128/jvi.00161-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/04/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The adeno-associated viruses (AAVs), which are being developed as gene delivery vectors, display differential cell surface glycan binding and subsequent tissue tropisms. For AAV serotype 1 (AAV1), the first viral vector approved as a gene therapy treatment, and its closely related AAV6, sialic acid (SIA) serves as their primary cellular surface receptor. Toward characterizing the SIA binding site(s), the structure of the AAV1-SIA complex was determined by X-ray crystallography to 3.0 Å. Density consistent with SIA was observed in a pocket located at the base of capsid protrusions surrounding icosahedral 3-fold axes. Site-directed mutagenesis substitution of the amino acids forming this pocket with structurally equivalent residues from AAV2, a heparan sulfate binding serotype, followed by cell binding and transduction assays, further mapped the critical residues conferring SIA binding to AAV1 and AAV6. For both viruses five of the six binding pocket residues mutated (N447S, V473D, N500E, T502S, and W503A) abolished SIA binding, whereas S472R increased binding. All six mutations abolished or decreased transduction by at least 50% in AAV1. Surprisingly, the T502S substitution did not affect transduction efficiency of wild-type AAV6. Furthermore, three of the AAV1 SIA binding site mutants-S472R, V473D, and N500E-escaped recognition by the anti-AAV1 capsid antibody ADK1a. These observations demonstrate that common key capsid surface residues dictate both virus binding and entry processes, as well as antigenic reactivity. This study identifies an important functional capsid surface "hot spot" dictating receptor attachment, transduction efficiency, and antigenicity which could prove useful for vector engineering. IMPORTANCE The adeno-associated virus (AAV) vector gene delivery system has shown promise in several clinical trials and an AAV1-based vector has been approved as the first gene therapy treatment. However, limitations still exist with respect to transduction efficiency and the detrimental effects of preexisting host antibodies. This study aimed to identify key capsid regions which can be engineered to overcome these limitations. A sialic glycan receptor recognition pocket was identified in AAV1 and its closely related AAV6, using X-ray crystallography. The site was confirmed by mutagenesis followed by cell binding and transduction assays. Significantly, residues controlling gene expression efficiency, as well as antibody escape variants, were also identified. This study thus provides, at the amino acid level, information for rational structural engineering of AAV vectors with improved therapeutic efficacy.
Collapse
|
14
|
Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 2014; 43:108-28. [PMID: 25124745 PMCID: PMC4241499 DOI: 10.1016/j.preteyeres.2014.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs' limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Agostina Puppo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
15
|
Carvalho LS, Vandenberghe LH. Promising and delivering gene therapies for vision loss. Vision Res 2014; 111:124-33. [PMID: 25094052 DOI: 10.1016/j.visres.2014.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/14/2022]
Abstract
The maturity in our understanding of the genetics and the pathogenesis of disease in degenerative retinal disorders has intersected in past years with a novel treatment paradigm in which a genetic intervention may lead to sustained therapeutic benefit, and in some cases even restoration of vision. Here, we review this prospect of retinal gene therapy, discuss the enabling technologies that have led to first-in-human demonstrations of efficacy and safety, and the road that led to this exciting point in time.
Collapse
Affiliation(s)
- Livia S Carvalho
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Harvard University, 20 Staniford Street, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Koch JC, Tönges L, Barski E, Michel U, Bähr M, Lingor P. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 2014; 5:e1225. [PMID: 24832597 PMCID: PMC4047920 DOI: 10.1038/cddis.2014.191] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 12/19/2022]
Abstract
The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy.
Collapse
Affiliation(s)
- J C Koch
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - L Tönges
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - E Barski
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - U Michel
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - M Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - P Lingor
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
17
|
D'Amico JM, Condliffe EG, Martins KJB, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci 2014; 8:36. [PMID: 24860447 PMCID: PMC4026713 DOI: 10.3389/fnint.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Elizabeth G Condliffe
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada ; Division of Physical Medicine and Rehabilitation, University of Alberta Edmonton, AB, Canada
| | - Karen J B Martins
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - David J Bennett
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Monica A Gorassini
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
18
|
Abstract
Ocular injection (intravitreal, subretinal, or into the anterior space) is an efficient approach to deliver many classes of drugs, cells, and other treatments to various cell types of the eye. In particular, subretinal injection is efficient since delivered agents accumulate as there is no dilution due to transport processes or diffusion and the volume of the interphotoreceptor space (IPS) is minimal (10-20 μl in the human eye, less than 1 μl in the mouse eye). We previously reported methods using subretinal injection and electroporation to deliver DNA to photoreceptor and retinal pigment epithelium cells in retinas of live mice (Johnson et al., 14:2211-2226; Nickerson et al. 884:53-69, 2012; Andrieu-Soler et al. 13:692-706, 2007). Here we detail further optimization of that approach and additionally report its use in delivering DNA expression plasmids to the corneal endothelium.
Collapse
|
19
|
Askou AL, Pournaras JAC, Pihlmann M, Svalgaard JD, Arsenijevic Y, Kostic C, Bek T, Dagnaes-Hansen F, Mikkelsen JG, Jensen TG, Corydon TJ. Reduction of choroidal neovascularization in mice by adeno-associated virus-delivered anti-vascular endothelial growth factor short hairpin RNA. J Gene Med 2013; 14:632-41. [PMID: 23080553 DOI: 10.1002/jgm.2678] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/04/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Strategies leading to the long-term suppression of inappropriate ocular angiogenesis are required to avoid the need for repetitive monthly injections for treatment of diseases of the eye, such as age-related macular degeneration (AMD). The present study aimed to develop a strategy for the sustained repression of vascular endothelial growth factor (VEGF), which is identified as the key player in exudative AMD. METHODS We have employed short hairpin (sh)RNAs combined with adeno-associated virus (AAV) delivery to obtain the targeted expression of potent gene-regulatory molecules. Anti-VEGF shRNAs were analyzed in human retinal pigment epithelial (RPE) cells using Renilla luciferase screening. For in vivo delivery of the most potent shRNA, self-complementary AAV vectors were packaged in serotype 8 capsids (scAAV2/8-hU6-sh9). In vivo efficacy was evaluated either by injection of scAAV2/8-hU6-sh9 into murine hind limb muscles or in a laser-induced murine model of choroidal neovascularization (CNV) following scAAV2/8-hU6-sh9 subretinal delivery. RESULTS Plasmids encoding anti-VEGF shRNAs showed efficient knockdown of human VEGF in RPEs. Intramuscular administration led to localized expression and 91% knockdown of endogenous murine (m)VEGF. Subsequently, the ability of AAV2/8-encoded shRNAs to impair vessel formation was evaluated in the murine model of CNV. In this model, the sizes of the CNV were significantly reduced (up to 48%) following scAAV2/8-hU6-sh9 subretinal delivery. CONCLUSIONS Using anti-VEGF vectors, we have demonstrated efficient silencing of endogenous mVEGF and showed that subretinal administration of scAAV2/8-hU6-sh9 has the ability to impair vessel formation in an AMD animal model. Thus, AAV-encoded shRNA can be used for the inhibition of neovascularization, leading to the development of sustained anti-VEGF therapy.
Collapse
|
20
|
McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res 2013; 161:241-54. [PMID: 23305707 PMCID: PMC3831157 DOI: 10.1016/j.trsl.2012.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 01/16/2023]
Abstract
Gene therapy strategies for the treatment of inherited retinal diseases have made major advances in recent years. This review focuses on adeno-associated viral (AAV) vector approaches to treat retinal degeneration and, thus, prevent or delay the onset of blindness. Data from human clinical trials of gene therapy for retinal disease show encouraging signs of safety and efficacy from AAV vectors. Recent progress in enhancing cell-specific targeting and transduction efficiency of the various retinal layers plus the use of AAV-delivered growth factors to augment the therapeutic effect and limit cell death suggest even greater success in future human trials is possible.
Collapse
Affiliation(s)
- Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
21
|
Koch JC, Solis GP, Bodrikov V, Michel U, Haralampieva D, Shypitsyna A, Tönges L, Bähr M, Lingor P, Stuermer CA. Upregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro. Neurobiol Dis 2013; 51:168-76. [DOI: 10.1016/j.nbd.2012.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/14/2012] [Accepted: 11/09/2012] [Indexed: 01/23/2023] Open
|
22
|
Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS One 2012; 7:e52189. [PMID: 23272225 PMCID: PMC3525534 DOI: 10.1371/journal.pone.0052189] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/13/2012] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a critical tool for the treatment of monogenic retinal diseases. However, the limited vector capacity of the current benchmark delivery strategy, adeno-associated virus (AAV), makes development of larger capacity alternatives, such as compacted DNA nanoparticles (NPs), critical. Here we conduct a side-by-side comparison of self-complementary AAV and CK30PEG NPs using matched ITR plasmids. We report that although AAVs are more efficient per vector genome (vg) than NPs, NPs can drive gene expression on a comparable scale and longevity to AAV. We show that subretinally injected NPs do not leave the eye while some of the AAV-injected animals exhibited vector DNA and GFP expression in the visual pathways of the brain from PI-60 onward. As a result, these NPs have the potential to become a successful alternative for ocular gene therapy, especially for the multitude of genes too large for AAV vectors.
Collapse
Affiliation(s)
- Zongchao Han
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Rasha Makkia
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Junjing Guo
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Mark J. Cooper
- Copernicus Therapeutics, Inc., Cleveland, Ohio, United States of America
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
23
|
Molday RS, Kellner U, Weber BHF. X-linked juvenile retinoschisis: clinical diagnosis, genetic analysis, and molecular mechanisms. Prog Retin Eye Res 2012; 31:195-212. [PMID: 22245536 PMCID: PMC3334421 DOI: 10.1016/j.preteyeres.2011.12.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/07/2023]
Abstract
X-linked juvenile retinoschisis (XLRS, MIM 312700) is a common early onset macular degeneration in males characterized by mild to severe loss in visual acuity, splitting of retinal layers, and a reduction in the b-wave of the electroretinogram (ERG). The RS1 gene (MIM 300839) associated with the disease encodes retinoschisin, a 224 amino acid protein containing a discoidin domain as the major structural unit, an N-terminal cleavable signal sequence, and regions responsible for subunit oligomerization. Retinoschisin is secreted from retinal cells as a disulphide-linked homo-octameric complex which binds to the surface of photoreceptors and bipolar cells to help maintain the integrity of the retina. Over 190 disease-causing mutations in the RS1 gene are known with most mutations occurring as non-synonymous changes in the discoidin domain. Cell expression studies have shown that disease-associated missense mutations in the discoidin domain cause severe protein misfolding and retention in the endoplasmic reticulum, mutations in the signal sequence result in aberrant protein synthesis, and mutations in regions flanking the discoidin domain cause defective disulphide-linked subunit assembly, all of which produce a non-functional protein. Knockout mice deficient in retinoschisin have been generated and shown to display most of the characteristic features found in XLRS patients. Recombinant adeno-associated virus (rAAV) mediated delivery of the normal RS1 gene to the retina of young knockout mice result in long-term retinoschisin expression and rescue of retinal structure and function providing a 'proof of concept' that gene therapy may be an effective treatment for XLRS.
Collapse
Affiliation(s)
- Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre of Macular Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C. V6T 1Z3, Canada.
| | | | | |
Collapse
|
24
|
Nickerson JM, Goodman P, Chrenek MA, Bernal CJ, Berglin L, Redmond TM, Boatright JH. Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods Mol Biol 2012; 884:53-69. [PMID: 22688698 DOI: 10.1007/978-1-61779-848-1_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Subretinal injection offers one of the best ways to deliver many classes of drugs, reagents, cells and treatments to the photoreceptor, Müller, and retinal pigment epithelium (RPE) cells of the retina. Agents delivered to this space are placed within microns of the intended target cell, accumulating to high concentrations because there is no dilution due to transport processes or diffusion. Dilution in the interphotoreceptor space (IPS) is minimal because the IPS volume is only 10-20 μl in the human eye and less than 1 μl in the mouse eye. For gene delivery purposes, we wished to transfect the cells adjacent to the IPS in adult mouse eyes. Others transfect these cells in neonatal rats to study the development of the retina. In both neonates and adults, electroporation is found to be effective. Here we describe the optimization of electroporation conditions for RPE cells in the adult mouse eye with naked plasmids. However, both techniques, subretinal injection and electroporation, present some technical challenges that require skill on the part of the surgeon to prevent untoward damage to the eye. Here we describe methods that we have used for the past 10 years (Johnson et al. Mol Vis 14: 2211-2226, 2008).
Collapse
Affiliation(s)
- John M Nickerson
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. ACTA ACUST UNITED AC 2011; 134:2134-48. [PMID: 21705428 DOI: 10.1093/brain/awr142] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Axonal regeneration and related functional recovery following axonal injury in the adult central nervous system are extremely limited, due to a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. As opposed to what occurs during nervous system development, a weak proregenerative gene expression programme contributes to the limited intrinsic capacity of adult injured central nervous system axons to regenerate. Here we show, in an optic nerve crush model of axonal injury, that adenoviral (cytomegalovirus promoter) overexpression of the acetyltransferase p300, which is regulated during retinal ganglion cell maturation and repressed in the adult, can promote axonal regeneration of the optic nerve beyond 0.5 mm. p300 acetylates histone H3 and the proregenerative transcription factors p53 and CCAAT-enhancer binding proteins in retinal ganglia cells. In addition, it directly occupies and acetylates the promoters of the growth-associated protein-43, coronin 1 b and Sprr1a and drives the gene expression programme of several regeneration-associated genes. On the contrary, overall increase in cellular acetylation using the histone deacetylase inhibitor trichostatin A, enhances retinal ganglion cell survival but not axonal regeneration after optic nerve crush. Therefore, p300 targets both the epigenome and transcription to unlock a post-injury silent gene expression programme that would support axonal regeneration.
Collapse
Affiliation(s)
- Perrine Gaub
- Centre for Neurology, Laboratory for NeuroRegeneration and Repair, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Mueller Strasse 27, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Calame M, Cachafeiro M, Philippe S, Schouwey K, Tekaya M, Wanner D, Sarkis C, Kostic C, Arsenijevic Y. Retinal degeneration progression changes lentiviral vector cell targeting in the retina. PLoS One 2011; 6:e23782. [PMID: 21901134 PMCID: PMC3161995 DOI: 10.1371/journal.pone.0023782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 07/27/2011] [Indexed: 11/19/2022] Open
Abstract
In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Collapse
Affiliation(s)
- Maritza Calame
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Maité Cachafeiro
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphanie Philippe
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Karine Schouwey
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Meriem Tekaya
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dana Wanner
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Chamsy Sarkis
- NewVectys SAS, Paris, France
- Team of Biotherapy and Biotechnology, CRICM, UPMC-Paris6 UMR_S 975, INSERM U975, CNRS UMR 7225, Paris, France
| | - Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Gene Therapy and Stem Cell Biology, Service of Ophthalmology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19:1220-9. [PMID: 21505421 DOI: 10.1038/mt.2011.69] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previous work established retinal expression of channelrhodopsin-2 (ChR2), an algal cation channel gated by light, restored physiological and behavioral visual responses in otherwise blind rd1 mice. However, a viable ChR2-based human therapy must meet several key criteria: (i) ChR2 expression must be targeted, robust, and long-term, (ii) ChR2 must provide long-term and continuous therapeutic efficacy, and (iii) both viral vector delivery and ChR2 expression must be safe. Here, we demonstrate the development of a clinically relevant therapy for late stage retinal degeneration using ChR2. We achieved specific and stable expression of ChR2 in ON bipolar cells using a recombinant adeno-associated viral vector (rAAV) packaged in a tyrosine-mutated capsid. Targeted expression led to ChR2-driven electrophysiological ON responses in postsynaptic retinal ganglion cells and significant improvement in visually guided behavior for multiple models of blindness up to 10 months postinjection. Light levels to elicit visually guided behavioral responses were within the physiological range of cone photoreceptors. Finally, chronic ChR2 expression was nontoxic, with transgene biodistribution limited to the eye. No measurable immune or inflammatory response was observed following intraocular vector administration. Together, these data indicate that virally delivered ChR2 can provide a viable and efficacious clinical therapy for photoreceptor disease-related blindness.
Collapse
|
28
|
Mohan RR, Sinha S, Tandon A, Gupta R, Tovey JCK, Sharma A. Efficacious and safe tissue-selective controlled gene therapy approaches for the cornea. PLoS One 2011; 6:e18771. [PMID: 21533273 PMCID: PMC3075266 DOI: 10.1371/journal.pone.0018771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022] Open
Abstract
Untargeted and uncontrolled gene delivery is a major cause of gene therapy failure. This study aimed to define efficient and safe tissue-selective targeted gene therapy approaches for delivering genes into keratocytes of the cornea in vivo using a normal or diseased rabbit model. New Zealand White rabbits, adeno-associated virus serotype 5 (AAV5), and a minimally invasive hair-dryer based vector-delivery technique were used. Fifty microliters of AAV5 titer (6.5×1012 vg/ml) expressing green fluorescent protein gene (GFP) was topically applied onto normal or diseased (fibrotic or neovascularized) rabbit corneas for 2-minutes with a custom vector-delivery technique. Corneal fibrosis and neovascularization in rabbit eyes were induced with photorefractive keratectomy using excimer laser and VEGF (630 ng) using micropocket assay, respectively. Slit-lamp biomicroscopy and immunocytochemistry were used to confirm fibrosis and neovascularization in rabbit corneas. The levels, location and duration of delivered-GFP gene expression in the rabbit stroma were measured with immunocytochemistry and/or western blotting. Slot-blot measured delivered-GFP gene copy number. Confocal microscopy performed in whole-mounts of cornea and thick corneal sections determined geometric and spatial localization of delivered-GFP in three-dimensional arrangement. AAV5 toxicity and safety were evaluated with clinical eye exam, stereomicroscopy, slit-lamp biomicroscopy, and H&E staining. A single 2-minute AAV5 topical application via custom delivery-technique efficiently and selectively transduced keratocytes in the anterior stroma of normal and diseased rabbit corneas as evident from immunocytochemistry and confocal microscopy. Transgene expression was first detected at day 3, peaked at day 7, and was maintained up to 16 weeks (longest tested time point). Clinical and slit-lamp eye examination in live rabbits and H&E staining did not reveal any significant changes between AAV5-treated and untreated control corneas. These findings suggest that defined gene therapy approaches are safe for delivering genes into keratocytes in vivo and has potential for treating corneal disorders in human patients.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Veterans Memorial Hospital, Columbia, Missouri, United States of America.
| | | | | | | | | | | |
Collapse
|
29
|
Wang S, Liu P, Song L, Lu L, Zhang W, Wu Y. Adeno-associated virus (AAV) based gene therapy for eye diseases. Cell Tissue Bank 2011; 12:105-10. [DOI: 10.1007/s10561-011-9243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/04/2011] [Indexed: 12/27/2022]
|
30
|
Kostic C, Crippa SV, Pignat V, Bemelmans AP, Samardzija M, Grimm C, Wenzel A, Arsenijevic Y. Gene therapy regenerates protein expression in cone photoreceptors in Rpe65(R91W/R91W) mice. PLoS One 2011; 6:e16588. [PMID: 21304899 PMCID: PMC3033393 DOI: 10.1371/journal.pone.0016588] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/21/2010] [Indexed: 12/22/2022] Open
Abstract
Cone photoreceptors mediate visual acuity under daylight conditions, so loss of cone-mediated central vision of course dramatically affects the quality of life of patients suffering from retinal degeneration. Therefore, promoting cone survival has become the goal of many ocular therapies and defining the stage of degeneration that still allows cell rescue is of prime importance. Using the Rpe65R91W/R91W mouse, which carries a mutation in the Rpe65 gene leading to progressive photoreceptor degeneration in both patients and mice, we defined stages of retinal degeneration that still allow cone rescue. We evaluated the therapeutic window within which cones can be rescued, using a subretinal injection of a lentiviral vector driving expression of RPE65 in the Rpe65R91W/R91W mice. Surprisingly, when applied to adult mice (1 month) this treatment not only stalls or slows cone degeneration but, actually, induces cone-specific protein expression that was previously absent. Before the intervention only part of the cones (40% of the number found in wild-type animals) in the Rpe65R91W/R91W mice expressed cone transducin (GNAT2); this fraction increased to 64% after treatment. Correct S-opsin localization is also recovered in the transduced region. In consequence these results represent an extended therapeutic window compared to the Rpe65-/- mice, implying that patients suffering from missense mutations might also benefit from a prolonged therapeutic window. Moreover, cones are not only rescued during the course of the degeneration, but can actually recover their initial status, meaning that a proportion of altered cones in chromophore deficiency-related disease can be rehabilitated even though they are severely affected.
Collapse
Affiliation(s)
- Corinne Kostic
- Unit of Gene Therapy and Stem Cell Biology, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Roy K, Stein L, Kaushal S. Ocular gene therapy: an evaluation of recombinant adeno-associated virus-mediated gene therapy interventions for the treatment of ocular disease. Hum Gene Ther 2011; 21:915-27. [PMID: 20384478 DOI: 10.1089/hum.2010.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Both gene replacement therapy and alteration of host gene expression are playing increasingly important roles in the treatment of ocular diseases. Ocular gene therapy may provide alternatives to current treatments for eye diseases that are either greatly invasive and thus run the risk of complications, that offer only short-term relief from disease symptoms, or that are unable to directly treat vision loss. The success of three separate phase I clinical trials investigating a gene therapy intervention for the treatment of the retinal degenerative disorder Leber's congenital amaurosis (LCA) has unveiled the therapeutic potential of gene therapy. Preliminary results have demonstrated ocular gene transfer, using nonpathogenic recombinant adeno-associated viral (rAAV) vectors specifically, to be a safe, effective, and long-term treatment for LCA, a previously untreatable disorder. Nonpathogenic rAAV vectors offer the potential for long-term treatment. Many of the genes implicated in human ocular diseases have been identified, and animal models for such diseases have been developed, which have greatly facilitated the application of experimental rAAV-mediated gene therapy. This review highlights the key features of rAAV-mediated gene therapy that make it the most suitable gene therapy treatment approach for ocular diseases. Furthermore, it summarizes the current progress of rAAV-mediated gene therapy interventions/applications for a wide variety of ophthalmologic disorders.
Collapse
Affiliation(s)
- Kamolika Roy
- Department of Ophthalmology, University of Massachusetts Medical School , Worcester, MA 01605, USA
| | | | | |
Collapse
|
32
|
Xie W, Liu S, Su H, Wang Z, Zheng Y, Fu Y. Ultrasound microbubbles enhance recombinant adeno-associated virus vector delivery to retinal ganglion cells in vivo. Acad Radiol 2010; 17:1242-8. [PMID: 20619698 DOI: 10.1016/j.acra.2010.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/08/2010] [Accepted: 05/10/2010] [Indexed: 01/10/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to investigate whether ultrasound-mediated microbubble destruction enhances the transduction efficiency of recombinant adeno-associated virus (rAAV)-mediated enhanced green fluorescent protein (EGFP) gene into retinal ganglion cells (RGCs) of rats and whether it causes relevant adverse effects. MATERIALS AND METHODS Thirty-two adult Sprague-Dawley rats were divided into four groups with different ultrasound powers, and retinal flat mounts and hematoxylin and eosin staining sections were made for optimization of parameters. A further 70 adult Sprague-Dawley rats were divided into four groups randomly. The first group (group A) was used as a normal control with 10 rats, and the remaining rats were evenly divided into groups B, C, and D. Each group included 20 rats. Groups B and C received rAAV-encoding EGFP gene (rAAV(2)-EGFP) in phosphate-buffered saline without and with ultrasound to the retina, respectively. Group D received microbubbles and rAAV(2)-EGFP mixture and ultrasound to the retina. The injection approach was intravitreal injection for all eyes. After 21 days, RGCs were labeled retrogradely with Fluoro-Gold. After 28 days, retinal flat mounts, frozen sections, and pathologic sections were assessed in each group. Expression of EGFP reporter gene was observed on laser confocal microscopy and evaluated according to average optical density and transfected RGC rate. To evaluate adverse effects with retinal flat mounts, labeled RGCs were counted, and retinal pathologic sections were examined. RESULTS When ultrasound parameters (frequency, 0.3 MHz; power, 0.5 W/cm(2); total time, 60 seconds [irradiation time, 5 seconds; interval time, 10 seconds; four times]) were selected, EGFP expression was stronger, and retinas were not damaged. In the second part of the experiment, RGCs were labeled with Fluoro-Gold successfully. Green fluorescence can be observed in labeled RGCs in groups B to D. While average optical density and transfected RGC rate in group D were the highest compared to the other groups, no significant reduction in RGC number was detected with retrograde labeling. No obvious damage was observed with pathologic sections. CONCLUSIONS Ultrasound-mediated microbubble destruction can effectively and safely enhance rAAV delivery to RGCs in rats, and it may represent a novel gene delivery method in gene therapy for glaucomatous optic neuroprotection.
Collapse
Affiliation(s)
- Wenyue Xie
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400010, China
| | | | | | | | | | | |
Collapse
|
33
|
Vetrini F, Ng P. Gene therapy with helper-dependent adenoviral vectors: current advances and future perspectives. Viruses 2010; 2:1886-1917. [PMID: 21994713 PMCID: PMC3186006 DOI: 10.3390/v2091886] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 11/21/2022] Open
Abstract
Recombinant Adenoviral vectors represent one of the best gene transfer platforms due to their ability to efficiently transduce a wide range of quiescent and proliferating cell types from various tissues and species. The activation of an adaptive immune response against the transduced cells is one of the major drawbacks of first generation Adenovirus vectors and has been overcome by the latest generation of recombinant Adenovirus, the Helper-Dependent Adenoviral (HDAd) vectors. HDAds have innovative features including the complete absence of viral coding sequences and the ability to mediate high level transgene expression with negligible chronic toxicity. This review summarizes the many aspects of HDAd biology and structure with a major focus on in vivo gene therapy application and with an emphasis on the unsolved issues that these vectors still presents toward clinical application.
Collapse
Affiliation(s)
| | - Philip Ng
- Author to whom correspondence should be addressed; Tel.: +1 7137984158; E-Mail:
| |
Collapse
|
34
|
Giove TJ, Sena-Esteves M, Eldred WD. Transduction of the inner mouse retina using AAVrh8 and AAVrh10 via intravitreal injection. Exp Eye Res 2010; 91:652-9. [PMID: 20723541 DOI: 10.1016/j.exer.2010.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/08/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Adeno-associated virus (AAV) is a proven, safe and effective vector for gene delivery in the retina. There are over 100 serotypes of AAV, and AAV2 through AAV9 have been evaluated in the retina. Each AAV serotype has different cell tropism and transduction efficiency. Intravitreal injections of AAV into the eye tend to transduce cells in the ganglion cell layer (GCL), while subretinal injections tend to transduce retinal pigment epithelium and photoreceptors. Efficient transduction of the inner retina beyond the GCL is not well established with the current methodologies and serotypes used to date. In this study, we compared the cellular tropism of AAVrh8 and AAVrh10 vectors encoding enhanced green fluorescent protein (EGFP) using intravitreal injections. We found that AAVrh8 largely transduced cells in the GCL and also amacrine cells in the inner nuclear layer (INL), as well as Müller and horizontal cells. Inner retinal transduction with AAVrh10 was similar to AAVrh8, but AAVrh10 appeared to also transduce bipolar cells. The transduction efficiency as measured by the intensity of EGFP signal was 3.5 fold higher in horizontal cells transduced with AAVrh10 than AAVrh8. Glial fibrillary accessory protein (GFAP) levels were increased in Müller cells in transduced areas for both serotypes. The results of this study suggest that AAVrh8 and AAVrh10 may be excellent vector candidates to deliver genetic material to the INL, particularly for amacrine and horizontal cells, however they may also cause cellular stress as shown by increased glial GFAP expression.
Collapse
Affiliation(s)
- Thomas J Giove
- Laboratory of Visual Neurobiology, Boston University, Department of Biology, 5 Cummington St, Boston, MA 02215, USA
| | | | | |
Collapse
|
35
|
Ivanova E, Hwang GS, Pan ZH, Troilo D. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci 2010; 51:5288-96. [PMID: 20484599 DOI: 10.1167/iovs.10-5389] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Converting inner retinal neurons to photosensitive cells by expressing channelrhodopsin-2 (ChR2) offers a novel approach for treating blindness caused by retinal degenerative diseases. In the present study, the recombinant adeno-associated virus serotype 2 (rAAV2)-mediated expression and function of a fusion construct of channelopsin-2 (Chop2) and green fluorescent protein (GFP) (Chop2-GFP) were evaluated in the inner retinal neurons in the common marmoset Callithrix jacchus. METHODS rAAV2 vectors carrying ubiquitous promoters were injected into the vitreous chamber. Expression of Chop2-GFP and functional properties of ChR2 were examined by immunocytochemical and electrophysiological methods 3 months after injection. RESULTS The percentage of Chop2-GFP-expressing cells in the ganglion cell layer was found to be retinal region- and animal age-dependent. The highest percentage was observed in the far-peripheral region. Chop2-GFP expression was also found in the foveal and parafoveal region. In the peripheral retina in young animals with high viral concentrations, the expression of Chop2-GFP was observed in all major classes of retinal neurons, including all major types of ganglion cells. The morphologic properties of Chop2-GFP-positive cells were normal for at least 3 months, and ChR2-mediated light responses were demonstrated by electrophysiological recordings. CONCLUSIONS The rAAV2-mediated expression of ChR2 was observed in the inner retinal neurons in the marmoset retina through intravitreal delivery. The marmoset could be a valuable nonhuman primate model for developing ChR2-based gene therapy for treating blinding retinal degenerative diseases.
Collapse
Affiliation(s)
- Elena Ivanova
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
36
|
Quantitative fine-tuning of photoreceptor cis-regulatory elements through affinity modulation of transcription factor binding sites. Gene Ther 2010; 17:1390-9. [PMID: 20463752 DOI: 10.1038/gt.2010.77] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Given the remarkable recent progress in gene therapy-based treatments for retinal disease, there is an urgent need for the development of new approaches to quantitative design and analysis of photoreceptor-specific promoters. In this study, we determined the relative binding affinity of all single-nucleotide variants of the consensus binding site of the mammalian photoreceptor transcription factor, Crx. We then showed that it is possible to use these data to accurately predict the relative binding affinity of Crx for all possible 8 bp sequences. By rationally adjusting the binding affinity of three Crx sites, we were able to fine-tune the expression of the rod-specific Rhodopsin promoter over a 225-fold range in living retinas. In addition, we showed that it is possible to fine-tune the activity of the rod-specific Gnat1 promoter over ∼275-fold range by modulating the affinity of a single Crx-binding site. We found that the action of individual binding sites depends on the precise promoter context of the site and that increasing binding affinity does not always equate with increased promoter output. Despite these caveats, this tuning approach permits quantitative engineering of photoreceptor-specific cis-regulatory elements, which can be used as drivers in gene therapy vectors for the treatment of blindness.
Collapse
|
37
|
Kong F, Li W, Li X, Zheng Q, Dai X, Zhou X, Boye SL, Hauswirth WW, Qu J, Pang JJ. Self-complementary AAV5 vector facilitates quicker transgene expression in photoreceptor and retinal pigment epithelial cells of normal mouse. Exp Eye Res 2010; 90:546-54. [PMID: 20138034 PMCID: PMC2854182 DOI: 10.1016/j.exer.2010.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/27/2022]
Abstract
To clarify whether transduction efficiency and cell type specificity of self-complementary (sc) AAV5 vectors are similar to those of standard, single-stranded AAV5 vectors in normal retina, one micro liter of scAAV5-smCBA-GFP vector (1 x 10(12) genome-containing particles/ml) and AAV5-smCBA-GFP vector (1 x 10(12) genome-containing particles/ml) were subretinally or intravitreally (in both cases through the cornea) injected into the right and left eyes of adult C57BL/6J mice, respectively. On post-injection day (PID) 1, 2, 5, 7, 10, 14, 21, 28 and 35, eyes were enucleated; retinal pigment epithelium (RPE) wholemounts, neuroretinal wholemounts and eyecup sections were prepared to evaluate green fluorescent protein (GFP) expression by fluorescent microscopy. GFP expression following trans-cornea subretinal injection of scAAV5-smCBA-GFP vector was first detected in RPE wholemounts around PID 1 and in neuroretinal wholemounts between PID 2 and 5; GFP expression peaked and stabilized between PID 10-14 in RPE wholemounts and between P14 and P21 in neuroretinal wholemounts with strong, homogeneous green fluorescence covering the entire wholemounts. The frozen sections supported the following findings from the wholemounts: GFP expression appeared first in RPE around PID 1-2 and soon spread to photoreceptors (PR) cells; by PID 7, moderate GFP expression was found mainly in PR and RPE layers; between PID 14 and 21, strong and homogenous GFP expression was observed in RPE and PR cells. GFP expression following subretinal injection of AAV5-smCBA-GFP was first detected in RPE wholemounts around PID 5-7 and in neuroretinal wholemounts around PID 7-10; ssAAV5-mediated GFP expression peaked at PID 21 in RPE wholemounts and around PID 28 in neuroretinal wholemounts; sections from AAV5 treated eyes also supported findings obtained from wholemounts: GFP expression was first detected in RPE and then spread to the PR cells. Peak GFP expression in RPE mediated by scAAV5 was similar to that mediated by AAV5. However, peak GFP expression mediated by scAAV5 in PR cells was stronger than that mediated by AAV5. No GFP fluorescence was detected in any retinal cells (RPE wholemounts, neuroretinal wholemounts and retinal sections) after trans-cornea intravitreal delivery of either scAAV5-GFP or AAV5-GFP. Neither scAAV5 nor AAV5 can transduce retinal cells following trans-cornea intravitreal injection. The scAAV5 vector used in this study directs an earlier onset of transgene expression than the matched AAV5 vector, and has stronger transgene expression in PR cells following subretinal injection. Our data confirm the previous reports that scAAV vectors have an earlier onset than the standard, single strand AAV vectors (Natkunarajah et al., 2008; Yokoi et al., 2007). scAAV5 vectors may be more useful than standard, single-stranded AAV vector when addressing certain RPE and/or PR cell-related models of retinal dystrophy, particularly for mouse models of human retinitis pigmentosa that require rapid and robust transgene expression to prevent early degeneration in PR cells.
Collapse
Affiliation(s)
- Fansheng Kong
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Wensheng Li
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Xia Li
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Qinxiang Zheng
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Xufeng Dai
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Xiangtian Zhou
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Sanford L. Boye
- Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - William W. Hauswirth
- Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Jia Qu
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
| | - Ji-jing Pang
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China 325027
- Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| |
Collapse
|
38
|
|
39
|
Zhang* SH, Wu* JH, Wu* XB, Dong XY, Liu XJ, Li CY. Distinctive Gene Transduction Efficiencies of Commonly Used Viral Vectors in the Retina. Curr Eye Res 2009; 33:81-90. [DOI: 10.1080/02713680701799408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ultrasound-targeted microbubble destruction enhances AAV-mediated gene transfection in human RPE cells in vitro and rat retina in vivo. Gene Ther 2009; 16:1146-53. [PMID: 19571889 DOI: 10.1038/gt.2009.84] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study was conducted to investigate the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-mediated rAAV2-CMV-EGFP transfection to cultured human retinal pigment epithelium (RPE) cells in vitro and to the rat retina in vivo. In the in vitro study, cultured human RPE cells were exposed to US under different conditions with or without MBs. Furthermore, the effect of UTMD on rAAV2-CMV-EGFP itself and on cells was evaluated. In the in vivo study, gene transfer was examined by injecting rAAV2-CMV-EGFP into the subretinal space of rats with or without MBs and then exposed to US. We investigated enhanced green fluorescent protein (EGFP) expression in vivo by stereomicroscopy and performed quantitative analysis using Axiovision 3.1 software. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage and location of the EGFP gene expression. In the in vitro study, the transfection efficiency of rAAV2-CMV-EGFP under optimal UTMD was significantly higher than that of the control group (P=0.000). Furthermore, there was almost no cytotoxicity to the cells and to rAAV2-CMV-EGFP itself. In the in vivo study, UTMD could be used safely to enhance and accelerate the transgene expression of the retina. Fluorescence expression was mainly located in the retinal layer. UTMD is a promising method for gene delivery to the retina.
Collapse
|
41
|
AAV-mediated local delivery of interferon-beta for the treatment of retinoblastoma in preclinical models. Neuromolecular Med 2009; 11:43-52. [PMID: 19306089 DOI: 10.1007/s12017-009-8059-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/27/2009] [Indexed: 12/28/2022]
Abstract
Interferon-beta (IFN-beta) has been found to have anti-tumor properties against a variety of malignancies through different mechanisms. However, clinical trials involving systemic administration of IFN-beta have been hampered by secondary toxicity and the short half-life of IFN-beta in the circulation. In order to circumvent these limitations, we have developed an adeno-associated viral (AAV) vector gene-therapy approach to deliver IFN-beta to tumors. In this study, we tested the efficacy of AAV-mediated local delivery of IFN-beta for the treatment of retinoblastoma in preclinical models. Retinoblastoma is an ideal candidate for gene-therapy-based anti-cancer treatment because target cell transduction and, therefore, IFN-beta delivery can be contained within the ocular environment, thereby minimizing systemic toxicity. We report here that retinoblastoma cell lines exhibit pleiotropic responses to IFN-beta consistent with previous studies on a variety of tumor cell lines. Intravitreal injection of AAV-IFN-beta resulted in efficient retinal infection and sustained IFN-beta production in the eye with minimal systemic exposure. Vector spread outside of the eye was not detected. Using our orthotopic xenograft model of retinoblastoma, we found that intravitreal injection of AAV-IFN-beta had a potent anti-tumor effect in vivo. These data suggest that AAV-mediated delivery of IFN-beta may provide a complementary approach to systemic chemotherapy which is the standard of care for retinoblastoma around the world.
Collapse
|
42
|
The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:573-83. [PMID: 19230850 DOI: 10.1016/j.bbalip.2009.02.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 12/26/2022]
Abstract
ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2,273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone-rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders.
Collapse
|
43
|
Harvey AR, Hellström M, Rodger J. Gene therapy and transplantation in the retinofugal pathway. PROGRESS IN BRAIN RESEARCH 2009; 175:151-61. [PMID: 19660654 DOI: 10.1016/s0079-6123(09)17510-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mature CNS has limited intrinsic capacity for repair after injury; therefore, strategies are needed to enhance the viability and regrowth of damaged neurons. Here we review gene therapy studies in the eye, aimed at improving the survival and regeneration of injured retinal ganglion cells (RGCs). To target RGCs most current methods use recombinant adeno-associated viral vectors (AAV), usually serotype-2 (AAV2), that are injected into the vitreal chamber of the eye. This vector provides long-term transduction of adult RGCs. Strong, constitutive promoters such as CMV and/or beta-actin are commonly used but cell-specific promoters have also been tested. Transgenes encoded by AAV have been selected to limit cell death, enhance growth factor expression, or promote growth cone responsiveness. We have assessed the effects of AAV vectors in adult rodent models (i) after optic nerve (ON) crush and (ii) after transplantation of peripheral nerve (PN) onto the cut ON, a procedure that induces injured RGCs to regenerate axons over longer distances. AAV-CNTF-GFP promotes RGC survival and axonal regrowth in mice after ON crush, and in rats after ON crush or PN transplantation. In rats, intravitreal injection of AAV-BDNF-GFP also increases RGC viability but does not promote regeneration. RGC viability and axonal regrowth is further enhanced when AAV-CNTF-GFP is injected into transgenic mice that over-express bcl-2. Reconstituted PN grafts containing Schwann cells that were transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of CNTF support RGC axonal regrowth, however grafts containing Schwann cells transduced with LV-BDNF or LV-GDNF are less successful. We have also quantified the transduction efficiency and tropism of different AAV vectors injected intravitreally. AAV 2/2 and AAV 2/6 showed highest levels of transduction, AAV 2/8 the lowest, and each serotype displayed different transduction profiles for retinal cells. We are also studying the long-term impact of AAV2-mediated CNTF or BDNF expression on the dendritic morphology of RGCs in normal and PN grafted retinas. Analysis of regenerating RGCs intracellularly injected with lucifer yellow indicates gene-specific changes in dendritic structure that likely impact upon visual function.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
44
|
The genomic response of the retinal pigment epithelium to light damage and retinal detachment. J Neurosci 2008; 28:9880-9. [PMID: 18815272 DOI: 10.1523/jneurosci.2401-08.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays an essential role in maintaining the health of the retina. The RPE is also the site of pathologic processes in a wide variety of retinal disorders including monogenic retinal dystrophies, age-related macular degeneration, and retinal detachment. Despite intense interest in the RPE, little is known about its molecular response to ocular damage or disease. We have conducted a comprehensive analysis of changes in transcript abundance (the "genomic response") in the murine RPE after light damage. Several dozen transcripts, many related to cell-cell signaling, show significant increases in abundance in response to bright light; transcripts encoding visual cycle proteins show a decrease in abundance. Similar changes are induced by retinal detachment. Environmental and genetic perturbations that modulate the RPE response to bright light suggest that this response is controlled by the retina. In contrast to the response to bright light, the RPE response to retinal detachment overrides these modulatory affects.
Collapse
|
45
|
Corbo JC. The role of cis-regulatory elements in the design of gene therapy vectors for inherited blindness. Expert Opin Biol Ther 2008; 8:599-608. [PMID: 18407764 DOI: 10.1517/14712598.8.5.599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hereditary retinal disease is currently known to involve nearly 200 different genetic loci. There has been remarkable recent progress in the treatment of retinal disease via gene therapy in animal models using virus-based vectors. The majority of retinal diseases affect one of several cell types. In order to target expression of a rescue transgene specifically to the cells in need of therapy, it is necessary to employ a cis-regulatory element (CRE) to drive expression of the transgene specifically in those cells. OBJECTIVE/METHODS This review discusses the repertoire of CREs currently available for use in gene therapy vectors for treatment of retinal disease and outlines the issues that must be taken into consideration in the development of novel CREs for the purpose of gene therapy in the retina. CONCLUSION There have been a number of important recent advances in the identification and characterization of retinal CREs and their utilization in gene therapy vectors. Nevertheless, future efforts to rationally manipulate existing CREs and design novel synthetic CREs for therapeutic purposes will require a better understanding of the cis-regulatory rules that govern CRE activity in vivo.
Collapse
Affiliation(s)
- Joseph C Corbo
- Washington University School of Medicine, Department of Pathology and Immunology, Campus Box 8118, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, Kim SR, Maguire A, Rex TS, Di Vicino U, Cutillo L, Sparrow JR, Williams DS, Bennett J, Auricchio A. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118:1955-64. [PMID: 18414684 DOI: 10.1172/jci34316] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/29/2008] [Indexed: 12/23/2022] Open
Abstract
Vectors derived from adeno-associated virus (AAV) are promising for human gene therapy, including treatment for retinal blindness. One major limitation of AAVs as vectors is that AAV cargo capacity has been considered to be restricted to 4.7 kb. Here we demonstrate that vectors with an AAV5 capsid (i.e., rAAV2/5) incorporated up to 8.9 kb of genome more efficiently than 6 other serotypes tested, independent of the efficiency of the rAAV2/5 production process. Efficient packaging of the large murine Abca4 and human MYO7A and CEP290 genes, which are mutated in common blinding diseases, was obtained, suggesting that this packaging efficiency is independent of the specific sequence packaged. Expression of proteins of the appropriate size and function was observed following transduction with rAAV2/5 carrying large genes. Intraocular administration of rAAV2/5 encoding ABCA4 resulted in protein localization to rod outer segments and significant and stable morphological and functional improvement of the retina in Abca4(-/-) mice. This use of rAAV2/5 may be a promising therapeutic strategy for recessive Stargardt disease, the most common form of inherited macular degeneration. The possibility of packaging large genes in AAV greatly expands the therapeutic potential of this vector system.
Collapse
|
47
|
Montana CL, Corbo JC. Inherited diseases of photoreceptors and prospects for gene therapy. Pharmacogenomics 2008; 9:335-47. [PMID: 18303969 DOI: 10.2217/14622416.9.3.335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The photoreceptor cells of the retina are subject to a wide range of genetic diseases. This review summarizes current knowledge regarding an important group of retinal diseases caused by mutations in photoreceptor-enriched genes. In addition, progress toward treatment of a variety of these diseases in animal models via adeno-associated virus gene therapy is described. Although no human trials have yet been initiated to treat diseases caused by mutations in photoreceptor-enriched genes, there is a great deal of optimism regarding the prospects of treating these diseases using adeno-associated virus gene therapy.
Collapse
Affiliation(s)
- Cynthia L Montana
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118; 660 South Euclid Ave. St. Louis, MO 63110, USA
| | | |
Collapse
|
48
|
Abstract
Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases. By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity, inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.
Collapse
|
49
|
Targeting gene expression to cones with human cone opsin promoters in recombinant AAV. Gene Ther 2008; 15:1049-55. [PMID: 18337838 DOI: 10.1038/gt.2008.32] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Specific cone-directed therapy is of high priority in the treatment of human hereditary retinal diseases. However, not much information exists about the specific targeting of photoreceptor subclasses. Three versions of the human red cone opsin promoter (PR0.5, 3LCR-PR0.5 and PR2.1), and the human blue cone opsin promoter HB569, were evaluated for their specificity and robustness in targeting green fluorescent protein (GFP) gene expression to subclasses of cones in the canine retina when used in recombinant adeno-associated viral vectors of serotype 5. The vectors were administered by subretinal injection. The promoter PR2.1 led to most effective and specific expression of GFP in the long- and medium-wavelength-absorbing cones (L/M cones) of normal and diseased retinas. The PR0.5 promoter was not effective. Adding three copies of the 35-bp LCR in front of PR0.5 lead to weak GFP expression in L/M cones. The HB569 promoter was not specific, and GFP was expressed in a few L/M cones, some rods and the retinal pigment epithelium. These results suggest that L/M cones, the predominant class of cone photoreceptors in the retinas of dogs and most mammalian species can be successfully targeted using the human red cone opsin promoter.
Collapse
|
50
|
Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48:353-9. [DOI: 10.1016/j.visres.2007.07.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 12/21/2022]
|