1
|
Pandey P, Khan F, Ramniwas S, Saeed M, Ahmad I. A mechanistic review of the pharmacological potential of narirutin: a dietary flavonoid. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5449-5461. [PMID: 38457040 DOI: 10.1007/s00210-024-03022-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Flavanones, a type of polyphenol, are found in substantial amounts in citrus fruits. When high- or moderate-dose orange juice consumption occurs, flavanones make up a significant portion of the total polyphenols in plasma. Disaccharide derivative narirutin, mainly dihydroxy flavanone, is found in citrus fruits. The substantial chemotherapeutic potential of narirutin has been amply demonstrated by numerous experimental studies. Consequently, the purpose of this study is to compile the research that has already been done showing narirutin to be a promising anticancer drug, with its mechanism of action being documented in treatment plans for various cancer forms. Narirutin functions in a variety of cancer cells by regulating several pathways that include cell cycle arrest, apoptosis, antiangiogenic, antimetastatic, and DNA repair. Narirutin has been shown to modify many molecular targets linked to the development of cancer, including drug transporters, cell cycle mediators, transcription factors, reactive oxygen species, reactive nitrogen species, and inflammatory cytokines. Taken together, these reviews offer important new information about narirutin's potential as a potent and promising drug candidate for use in medicines, functional foods, dietary supplements, nutraceuticals, and other products targeted at improving the treatment of cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- University Centre for Research and Development, University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Kim MG, Kim S, Boo KH, Kim JH, Kim CS. Anti-inflammatory effects of immature Citrus unshiu fruit extracts via suppression of NF-κB and MAPK signal pathways in LPS-induced RAW264.7 macrophage cells. Food Sci Biotechnol 2024; 33:903-911. [PMID: 38371697 PMCID: PMC10866848 DOI: 10.1007/s10068-023-01390-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
This study examined the anti-inflammatory effects of 70% ethanol crude extract of immature Citrus unshiu fruits (ICE) and its solvent fractions in LPS-stimulated RAW 264.7 cells. In addition, we analyzed the active compounds related to suppression of inflammation. It was found that the ethyl acetate (EtOAc) fraction showed the highest level of inhibition of NO production, and this inhibitory activity was concentration-dependent. Moreover, the EtOAc fraction not only inhibited TNF-α and IL-6 production but also inhibited iNOS and COX-2 protein expression. Furthermore, inhibition of NF-κB activity and MAPK phosphorylation was also observed. In addition, β-sitosterol, campesterol and isoferulic acid were identified as major anti-inflammatory components in the EtOAc fraction. These results suggested that the EtOAc fraction of immature C. unshiu fruit extract exerts anti-inflammatory effects by inhibiting NF-κB and MAPK signaling pathways, and that this fruit could be used as a natural anti-inflammatory material.
Collapse
Affiliation(s)
- Min Gun Kim
- Faculty of Biotechnology, Jeju National University, Jeju, 63243 Republic of Korea
| | - Sojin Kim
- Faculty of Biotechnology, Jeju National University, Jeju, 63243 Republic of Korea
| | - Kyung-Hwan Boo
- Faculty of Biotechnology, Jeju National University, Jeju, 63243 Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243 Republic of Korea
| | - Jae-Hoon Kim
- Faculty of Biotechnology, Jeju National University, Jeju, 63243 Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243 Republic of Korea
| | - Chang Sook Kim
- Faculty of Biotechnology, Jeju National University, Jeju, 63243 Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243 Republic of Korea
| |
Collapse
|
3
|
Lee SH, Seo D, Lee KH, Park SJ, Park S, Kim H, Kim T, Joo IH, Park JM, Kang YH, Lim GH, Kim DH, Yang JY. Biometabolites of Citrus unshiu Peel Enhance Intestinal Permeability and Alter Gut Commensal Bacteria. Nutrients 2023; 15:nu15020319. [PMID: 36678190 PMCID: PMC9862503 DOI: 10.3390/nu15020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Flavanones in Citrus unshiu peel (CUP) have been used as therapeutic agents to reduce intestinal inflammation; however, the anti-inflammatory effects of their biometabolites remain ambiguous. Here, we identified aglycone-type flavanones, such as hesperetin and naringenin, which were more abundant in the bioconversion of the CUP than in the ethanol extracts of the CUP. We found that the bioconversion of the CUP induced the canonical nuclear factor-κB pathway via degradation of IκB in Caco-2 cells. To check the immune suppressive capacity of the aglycones of the CUP in vivo, we orally administered the bioconversion of the CUP (500 mg/kg) to mice for two weeks prior to the 3% dextran sulfate sodium treatment. The CUP-pretreated group showed improved body weight loss, colon length shortage, and intestinal inflammation than the control mice. We also found a significant decrease in the population of lamina propria Th17 cells in the CUP-pretreated group following dextran sodium sulfate (DSS) treatment and an increase in mRNA levels of occludin in CUP-treated Caco-2 cells. Pyrosequencing analysis revealed a decreased abundance of Alistipes putredinis and an increased abundance of Muribaculum intestinale in the feces of the CUP-pretreated mice compared to those of the control mice. Overall, these findings suggest that the pre-administration of CUP biometabolites may inhibit the development of murine colitis by modulating intestinal permeability and the gut microbiome.
Collapse
Affiliation(s)
- Se-Hui Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Dongju Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Kang-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - So-Jung Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sun Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeyun Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Taekyung Kim
- Department of Biology Education, Pusan National University, Busan 46241, Republic of Korea
| | - In Hwan Joo
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jong-Min Park
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yun-Hwan Kang
- Department of Industry Promotion, National Institute for Korean Medicine Development, Geongsan 38540, Republic of Korea
| | - Gah-Hyun Lim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Hee Kim
- Department of Pathology, College of Korean Medicine, Daejeon University, Daejeon 34520, Republic of Korea
| | - Jin-Young Yang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-2286; Fax: +82-51-581-2962
| |
Collapse
|
4
|
Malik P, Bernela M, Seth M, Kaushal P, Mukherjee TK. Recent Progress in the Hesperetin Delivery Regimes: Significance of Pleiotropic Actions and Synergistic Anticancer Efficacy. Curr Pharm Des 2023; 29:2954-2976. [PMID: 38173051 DOI: 10.2174/0113816128253609231030070414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND In the plant kingdom, flavonoids are widely distributed with multifunctional immunomodulatory actions. Hesperetin (HST) remains one of the well-studied compounds in this domain, initially perceived in citrus plants as an aglycone derivative of hesperidin (HDN). OBSERVATIONS Natural origin, low in vivo toxicity, and pleiotropic functional essence are the foremost fascinations for HST use as an anticancer drug. However, low aqueous solubility accompanied with a prompt degradation by intestinal and hepatocellular enzymes impairs HST physiological absorption. MOTIVATION Remedies attempted herein comprise the synthesis of derivatives and nanocarrier (NC)-mediated delivery. As the derivative synthesis aggravates the structural complexity, NC-driven HST delivery has emerged as a sustainable approach for its sustained release. Recent interest in HST has been due to its significant anticancer potential, characterized via inhibited cell division (proliferation), new blood vessel formation (angiogenesis), forceful occupation of neighboring cell's space (invasion), migration to erstwhile physiological locations (metastasis) and apoptotic induction. The sensitization of chemotherapeutic drugs (CDs) by HST is driven via stoichiometrically regulated synergistic actions. Purpose and Conclusion: This article sheds light on HST structure-function correlation and pleiotropic anticancer mechanisms, in unaided and NC-administered delivery in singular and with CDs synergy. The discussion could streamline the HST usefulness and long-term anticancer efficacy.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143001, India
| | - Mahima Seth
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | - Priya Kaushal
- Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, India
| | | |
Collapse
|
5
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Mitra S, Lami MS, Uddin TM, Das R, Islam F, Anjum J, Hossain MJ, Emran TB. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed Pharmacother 2022; 150:112932. [PMID: 35413599 DOI: 10.1016/j.biopha.2022.112932] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based phytochemicals are now being used to treat plenty of physiological diseases. Herbal drugs have gained popularity in recent years because of their strength, purity, and cheap cost-effectiveness. Citrus fruits contain significant amounts of flavanones, which falls to the category of polyphenols. Flavanones occupy a major fraction of the total polyphenols present in the plasma when orange juice is taken highly or in moderate states. Narirutin is a disaccharide derivative available in citrus fruits, primarily dihydroxy flavanone. From a pharmacological viewpoint, narirutin is a bioactive phytochemical with therapeutic efficacy. Many experimental researches were published on the use of narirutin. Anticancer activity, neuroprotection, stress relief, hepatoprotection, anti-allergic activity, antidiabetic activity, anti-adipogenic activity, anti-obesity action, and immunomodulation are a couple of the primary pharmacological properties. Narirutin also has antioxidant, and anti-inflammatory activities. The ultimate goal of this review is to provide the current scenario of pharmacological research with narirutin; to make a better understanding for therapeutic potential of narirutin, as well as its biosynthesis strategies and side effects. Extensive literature searches and studies were undertaken to determine the pharmacological properties of narirutin.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| |
Collapse
|
7
|
Triantafillidis JK, Triantafyllidi E, Sideris M, Pittaras T, Papalois AE. Herbals and Plants in the Treatment of Pancreatic Cancer: A Systematic Review of Experimental and Clinical Studies. Nutrients 2022; 14:619. [PMID: 35276978 PMCID: PMC8839014 DOI: 10.3390/nu14030619] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Pancreatic cancer represents the most lethal malignancy among all digestive cancers. Despite the therapeutic advances achieved during recent years, the prognosis of this neoplasm remains disappointing. An enormous amount of experimental (mainly) and clinical research has recently emerged referring to the effectiveness of various plants administered either alone or in combination with chemotherapeutic agents. Apart from Asian countries, the use of these plants and herbals in the treatment of digestive cancer is also increasing in a number of Western countries as well. The aim of this study is to review the available literature regarding the efficacy of plants and herbals in pancreatic cancer. METHODS The authors have reviewed all the experimental and clinical studies published in Medline and Embase, up to June 2021. RESULTS More than 100 plants and herbals were thoroughly investigated. Favorable effects concerning the inhibition of cancer cell lines in the experimental studies and a favorable clinical outcome after combining various plants with established chemotherapeutic agents were observed. These herbals and plants exerted their activity against pancreatic cancer via a number of mechanisms. The number and severity of side-effects are generally of a mild degree. CONCLUSION A quite high number of clinical and experimental studies confirmed the beneficial effect of many plants and herbals in pancreatic cancer. More large, double-blind clinical studies assessing these natural products, either alone or in combination with chemotherapeutic agents should be conducted.
Collapse
Affiliation(s)
- John K. Triantafillidis
- GI Department, Metropolitan General Hospital, 15562 Holargos, Greece;
- Hellenic Society of Gastrointestinal Oncology, 354, Iera Odos Street, Haidari, 12461 Athens, Greece;
| | - Eleni Triantafyllidi
- Hellenic Society of Gastrointestinal Oncology, 354, Iera Odos Street, Haidari, 12461 Athens, Greece;
| | - Michail Sideris
- Women’s Health Research Unit, Queen Mary University of London, London E1 2AB, UK;
| | - Theodoros Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Apostolos E. Papalois
- Hellenic Society of Gastrointestinal Oncology, 354, Iera Odos Street, Haidari, 12461 Athens, Greece;
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 60 El. Venizelou Street, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
8
|
KESIKA P, SIVAMARUTHI BS, CHAIYASUT C. Health promoting effects of fermented foods against cancer: an updated concise review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Gupta S, Kumar A, Tejavath KK. A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is studied as one of the most lethal cancers with currently no control of its lethality, mainly due to its late diagnosis and lack of foolproof treatment processes. Despite continuous efforts being made in looking for therapies to deal with cancer, it keeps on being a labyrinth for the researchers. Efforts like discovering new treatment options, repurposing existing drugs, are continuously made to deal with this cancer.
Main body
With the urge to get answers and the fact that nature has all roots of therapeutics, efforts are made in the direction of finding those answers for providing ministrations for pancreatic cancer from plant products. Plant products are used as treatment options either directly in the form of extracts or an alternative to them is individual phytochemicals that are either isolated from the plants or are commercially synthesized for various purposes. In this review, we put forward such pharmacognostic initiatives made in combating pancreatic cancer, focusing mainly on plant extracts and various phytochemicals; along with the mechanisms which they triggered to fulfill the need for cytotoxicity to pancreatic cancer cells (in vitro and in vivo).
Conclusion
This study will thus provide insights into new combination therapy that can be used and also give a clue on which plant product and phytoconstituent can be used in dealing with pancreatic cancer.
Graphical abstract
Collapse
|
10
|
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, Rapisarda A, Cirmi S, Navarra M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021; 26:5991. [PMID: 34641535 PMCID: PMC8512617 DOI: 10.3390/molecules26195991] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Citrus fruits (CF) are among the most widely cultivated fruit crops throughout the world and their production is constantly increasing along with consumers' demand. Therefore, huge amounts of waste are annually generated through CF processing, causing high costs for their disposal, as well as environmental and human health damage, if inappropriately performed. According to the most recent indications of an economic, environmental and pharmaceutical nature, CF processing residues must be transformed from a waste to be disposed to a valuable resource to be reused. Based on a circular economy model, CF residues (i.e., seeds, exhausted peel, pressed pulp, secondary juice and leaves) have increasingly been re-evaluated to also obtain, but not limited to, valuable compounds to be employed in the food, packaging, cosmetic and pharmaceutical industries. However, the use of CF by-products is still limited because of their underestimated nutritional and economic value, hence more awareness and knowledge are needed to overcome traditional approaches for their disposal. This review summarizes recent evidence on the pharmacological potential of CF waste to support the switch towards a more environmentally sustainable society.
Collapse
Affiliation(s)
- Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Fondazione “Prof. Antonio Imbesi”, 98123 Messina, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Laura Musumeci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| | - Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (A.M.); (G.E.L.); (L.M.); (D.B.); (A.R.)
| |
Collapse
|
11
|
Goji berry juice fermented by probiotics attenuates dextran sodium sulfate-induced ulcerative colitis in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Singh N, Yarla NS, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Features, Pharmacological Chemistry, Molecular Mechanism and Health Benefits of Lemon. Med Chem 2021; 17:187-202. [DOI: 10.2174/1573406416666200909104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Citrus limon, a Mediterranean-grown citrus species of plants belonging to
the Rutaceae family, occupies a place of an impressive range of food and medicinal uses with considerable
value in the economy of the fruit of the country. Citrus fruits are economically important with
large-scale production of both the fresh fruits and industrially processed products. The extracts and
phytochemicals obtained from all parts of C. limon have shown immense therapeutic potential because
of their anticancer, anti-tumor and anti-inflammatory nature, and also serve as an important
ingredient in the formulation of several ethnic herbal medicines. These properties are mediated by the
presence of different phytochemicals, vitamins and nutrients in the citrus fruits.
Material and Methods:
The methods involved in the preparation of the present article included the
collection of information from various scientific databases, indexed periodicals, and search engines
such as Medline Scopus google scholar PubMed, PubMed central web of science, and science direct.
Results:
This communication presents an updated account of different pharmacological aspects of C.
limon associated with its anti-oxidative, antiulcer, antihelmintic, insecticidal, anticancer, cytotoxic,
and estrogenic activities. In addition, C. limon extracts possess hepatoprotective, anti-hyperglycemic,
and antimicrobial properties. The present article includes the structure and function of different key
chemical constituents from different parts of C. limon. Also, the possible molecular mechanisms of
actions of bioactive compounds from C. limon are displayed.
Conclusion:
The traditional and ethno-medicinal literature revealed that C. limon is very effective in
different pathologies. Most of these compounds possessing antioxidant properties would be implicated
in offering health benefits by acting as potential nutraceuticals to humans with special reference to
disease management of health and disease.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| | - Nagendra Sastry Yarla
- Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, King Saud University, Faculty of Science, Riyadh, Saudi Arabia
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
13
|
Nishad J, Dutta A, Saha S, Rudra SG, Varghese E, Sharma RR, Tomar M, Kumar M, Kaur C. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chem 2020; 334:127561. [PMID: 32711272 DOI: 10.1016/j.foodchem.2020.127561] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Grapefruit (Citrus paradisi) peel (GP) is rich in flavonoids and phenolics which have several proven pharmacological effects. However, their chemical instability towards oxygen, light and heat limits its applications in food industries. In the present study, we evaluated the feasibility of fabricating grapefruit-peel-phenolic (GPP) nano-emulsion in mustard oil using ultrasonication. Response surface methodology (RSM) optimization revealed that sonication time of 9.5 min at 30% amplitude and 0.52% Span-80 produced the stable GPP nano-emulsion with a droplet size of 29.73 ± 1.62 nm. Results indicate that both ultrasonication and Span-80 can assist the fabrication of a stabilized nano-emulsion. This study is one of its kind where nano-encapsulation of GPP into W/O emulsion was done to stabilize the active compound inside mustard oil and then the nano-emulsion was used to extend oxidative stability of mustard oil. Findings provide a basic guideline to formulate stable nano-emulsions for their use in active food packaging, oils, and pharmaceuticals.
Collapse
Affiliation(s)
- Jyoti Nishad
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shalini G Rudra
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Eldho Varghese
- ICAR-Central Marine Fisheries Research Institute, Ernakulam, Kochi 682 018, India
| | - R R Sharma
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Maharishi Tomar
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Manoj Kumar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
14
|
Lee J, Lee J, Kim JH. Association of Jagged1 expression with malignancy and prognosis in human pancreatic cancer. Cell Oncol (Dordr) 2020; 43:821-834. [PMID: 32483746 DOI: 10.1007/s13402-020-00527-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Pancreatic cancer is one of the most aggressive cancers. Preclinical and clinical data indicate that Notch 1 ligand jagged1 (JAG1) plays a pro-oncogenic role in several malignant cancers. As yet, however, the role of JAG1 in pancreatic cancer is poorly understood. The objective of the present study was to investigate JAG1 as a therapeutic target in human pancreatic cancer. METHODS Expression levels of Notch signaling molecules were assessed using GEO datasets and Western blot analysis, respectively. Anti-tumor effects following JAG1 silencing were evaluated using in vitro and in vivo assays. Prognostic implications were assessed using GEO datasets. RESULTS Using GEO datasets and Western blot analysis we detected significantly higher JAG1 mRNA and protein expression levels in pancreatic cancer compared to normal pancreatic tissues. JAG1 silencing significantly restrained the growth, migration and invasion of pancreatic cancer cells through the induction of apoptosis and blockade of various kinases independent of the Notch1 pathway. Combined JAG1 silencing and gemcitabine treatment showed synergistic anti-viability effects in human pancreatic cancer cells. JAG1 silencing also resulted in significant anti-cancer effects in vivo and high JAG1 expression was found to be associated with an adverse prognosis in pancreatic cancer patients. CONCLUSIONS From our data we conclude that JAG1 may be a promising therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, SARI, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae Hoon Kim
- Department of Applied Life Science, SARI, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea. .,Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do, 63243, Republic of Korea.
| |
Collapse
|
15
|
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan MA, Sethi G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med (Maywood) 2020; 245:486-497. [PMID: 32050794 PMCID: PMC7082885 DOI: 10.1177/1535370220903671] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hesperidin belongs to flavanones class of flavonoids and is known to possess broad-spectrum applicability to prevent dreadful diseases such as cardiovascular disease, neurodegeneration, and cancer. The reported anticancer effects of hesperidin have been found to be associated with its anti-oxidant and anti-inflammatory activities. Hesperidin interacts with numerous recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, evidence has suggested its promising role in inhibiting tumor cell metastasis, angiogenesis, and chemoresistance. The present mini-review highlights the ongoing development to identify hesperidin targets in cancer. Furthermore, the potential of nano technology-based hesperidin combinations and delivery systems will also be discussed. Overall, this review highlights all the possible molecular targets affected by hesperidin in tumor cells on a single platform. IMPACT STATEMENT Experimental findings from numerous studies have demonstrated the anticancer effects of hesperidin (Hesp) to be associated with anti-oxidant and anti-inflammatory activities along with its potential role in inhibiting the tumor cell metastasis and angiogenesis. Additionally, Hesp can also reverse drug resistance of cancer cells, which make it a promising candidate to be used in combination with existing anti-cancer drugs. This review will be helpful for upcoming researchers and scientific community to find out complete capsular package about cancer drug targets of Hesp and its role in modulating various important hallmarks of cancer.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Saumya Srivastava
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | - Anjana Pandey
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
16
|
Tahaghoghi-Hajghorbani S, Ebrahimzadeh MA, Rafiei A, Golpour M, Hosseini-Khah Z, Akhtari J. Improvement of chemotherapy through reducing of cachexia by using Citrus unshiu peel extract. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:111929. [PMID: 31054317 DOI: 10.1016/j.jep.2019.111929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
.Colorectal cancer (CRC) is now one the fourth cause of mortality and morbidity due to cancer throughout the globe. Cachexia is more prevalent in patients with this cancer and has a negative effect on response to chemotherapy and radiotherapy. Inflammatory cytokines such as TNF-α, IL-1β, and IL-6 could play a key role in cachexia. Moreover strong chemotherapy medications such as doxorubicin have complications such as toxicity and cachexia. Citrus unshiu Peel have been used as traditional herbal drugs for the treatment of cancer in traditional oriental medicine (TOM). Since its main components have anti-inflammatory effects, we evaluated the anti-cachexia activity in order to support the traditional usage of Citrus unshiu peel. Aim of the study; We aimed to assess the preventive or therapeutic effect of Citrus unshiu Peel Extract (CUPE) on cachexia by reducing of inflammatory cytokines in mice bearing C26 tumor. Also the contribution role of CUPE has evaluated on improvement of chemotherapy through reducing of inflammatory cytokines. Materials and Methods; The CUPE was prepared by Soxhlet extractor and quantitative and qualitative analysis of aqua extract was performed by high performance liquid chromatography (HPLC). C26 tumor bearing BALB/c male mice were immunized with different formulation of oral Prophylactic-therapeutic CUPE and/or intraperitoneal doxorubicin and then were monitored for weight gain, food intake and tumor size throughout the study. On the 32nd day after tumor injection, inflammatory cytokines levels, IL6, TNF-α and IL-1β were evaluated by Enzyme-linked Immunosorbent Assay (ELISA) and Malondialdehyde- Thiobarbituric acid (MDA) levels were measured by standard method. Results; Oral administration of CUPE in both prophylactic and therapeutic formulation to C26 adenocarcinoma bearing mice reduced the weight loss, tumor volume, and serum MDA levels compared with untreated tumor-bearing mice and Doxorubicin (Dox) groups. Also, the combination therapy of (CUPE + Dox) leads to reducing the levels of serum IL-6, TNF-α, IL-1β and tumor volume compared with untreated tumor-bearing mice and Dox groups. Serum MDA levels were considerably reduced by combination therapy of (CUPE + Dox) compared with Dox groups. Conclusions; These findings confirm the safety and efficacy of CUPE on C26 adenocarcinoma bearing mice as pure and adjuvant therapy, the results of which might be used in further human studies as a valuable natural anticancer agent alone or in combination with chemotherapy. Also the results showed that simultaneous application of CUPE and Dox leads to significant reduction of cachexia from the Dox chemotherapy.
Collapse
Affiliation(s)
- S Tahaghoghi-Hajghorbani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M A Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - A Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - M Golpour
- Molecular and Cell Biology Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Z Hosseini-Khah
- Molecular and Cell Biology Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - J Akhtari
- Department of Medical Nanotechnology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Choi EO, Lee H, HwangBo H, Kwon DH, Kim MY, Ji SY, Hong SH, Kim GY, Park C, Hwang HJ, Moon SK, Yun SJ, Kim WJ, Choi YH. Citrus unshiu peel suppress the metastatic potential of murine melanoma B16F10 cells in vitro and in vivo. Phytother Res 2019; 33:3228-3241. [PMID: 31486124 PMCID: PMC6916627 DOI: 10.1002/ptr.6497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
The peel of Citrus unshiu Marcow. fruits (CU) has long been used as a traditional medicine that has therapeutic effects against pathogenic diseases, including asthma, vomiting, dyspepsia, blood circulation disorders, and various types of cancer. In this study, we investigated the effect of CU peel on metastatic melanoma, a highly aggressive skin cancer, in B16F10 melanoma cells, and in B16F10 cells inoculated‐C57BL/6 mice. Our results show that ethanol extracts of CU (EECU) inhibited cell growth and increased the apoptotic cells in B16F10 cells. EECU also stimulated the induction of mitochondria‐mediated intrinsic pathway, with reduced mitochondrial membrane potential and increased generation of intracellular reactive oxygen species. Furthermore, EECU suppressed the migration, invasion, and colony formation of B16F10 cells. In addition, the oral administration of EECU reduced serum lactate dehydrogenase activity without weight loss, hepatotoxicity, nor nephrotoxicity in B16F10 cell‐inoculated mice. Moreover, EECU markedly suppressed lung hypertrophy, the number and expression of metastatic tumor nodules, and the expression of inflammatory tumor necrosis factor‐alpha in lung tissue. In conclusion, our findings suggest that the inhibitory effect of EECU on the metastasis of melanoma indicates that it may be regarded as a potential therapeutic herbal drug for melanoma.
Collapse
Affiliation(s)
- Eun Ok Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Hyun HwangBo
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-eui University, Busan, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, College of Biotechnology & Natural Resource, Chung-Ang University, Anseong, Republic of Korea
| | - Seok-Joong Yun
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Wun-Jae Kim
- Personalized Tumor Engineering Research Center, Department of Urology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, Republic of Korea.,Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
18
|
Lee J, Lee J, Kim JH. Scattered DUSP28 is a novel biomarker responsible for aggravating malignancy via the autocrine and paracrine signaling in metastatic pancreatic cancer. Cancer Lett 2019; 456:1-12. [PMID: 30902562 DOI: 10.1016/j.canlet.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
Abstract
Pancreatic cancer remains one of the most dangerous cancers with a grave prognosis. We have reported that dual specificity phosphatise 28 (DUSP28) could be secreted in pancreatic cancer cells. However, its biological function is poorly understood. Here, we distinguish the function of scattered DUSP28 in human pancreatic cancer. DUSP28 was specifically secreted to cultured medium in metastatic pancreatic cancer cells. Treatment with recombinant DUSP28 significantly increased the migration, invasion, and viability of metastatic pancreatic cancer cells through the activation of CREB, AKT, and ERK1/2 signaling pathways. In addition, administration of recombinant DUSP28 elicited pro-angiogenic effects in human umbilical vein endothelial cells. Injection of recombinant DUSP28 also produced tumor growth in vivo. Of interest, DUSP28 formed an autocrine loop with integrin α1 (ITGα1) by transcriptional regulation and recombinant DUSP28 acted as an oncogenic reagent through the interaction with ITGα1. Notably, scattered DUSP28 could be detected in whole blood samples of pancreatic cancer patients by accessible immunoassay. These results provide the basis for DUSP28 as a promising therapeutic target and a biomarker for metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea; Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jae-Hoon Kim
- Department of Applied Life Science, SARI, Jeju National University, Jeju-do, 63243, Republic of Korea; Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju-do, 63243, Republic of Korea.
| |
Collapse
|
19
|
Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anti-cancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152762. [PMID: 31005717 DOI: 10.1016/j.phymed.2018.11.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND We have previously reported the functional anti-cancer effects of the products of enzymatic hydrolysis of Citrus unshiu peel (εCUP) and fermented extraction of Citrus unshiu peel (ƒCUP) in human pancreatic cancer. Despite their different characteristics and effects, the underlying mechanism remains elusive. PURPOSE In this study, we further demonstrate the impact of ingredient contents of Citrus unshiu peel on the cancer's natural features. METHODS Anti-pancreatic cancer activities following combined treatment of naringenin and hesperetin were demonstrated in vitro and in vivo experiments. RESULTS Combined treatment with naringenin and hesperetin inhibited the growth of human pancreatic cancer cells (εCUP mimic condition, p < 0.001 for Miapaca-2 cells) through induction of caspase-3 cleavage compared to separate treatment with naringenin or hesperetin. Combined treatment with naringenin and hesperetin also inhibited the migration (εCUP mimic condition, p < 0.001 for Panc-1 cells) of human pancreatic cancer cells. The εCUP mimic condition had the most effective anti-cancer features; in contrast, which had no inhibitory effect on growth and migration of normal cells (HUVECs and Detroit551 cells). In addition, εCUP mimic condition inhibited the phosphorylation of focal adhesion kinase (FAK) and p38 signaling compared with separate treatment with naringenin or hesperetin. Of note, εCUP mimic condition showed a prominent anti-growth effect (p < 0.001) compared with control or ƒCUP mimic condition in vivo xenograft models. CONCLUSION These results suggest that combined treatment with naringenin and hesperetin might be a promising anti-cancer strategy for pancreatic cancers without eliciting toxicity on normal cells.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Da-Hye Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea; Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
20
|
Gumushan Aktas H, Akgun T. Naringenin inhibits prostate cancer metastasis by blocking voltage-gated sodium channels. Biomed Pharmacother 2018; 106:770-775. [DOI: 10.1016/j.biopha.2018.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/30/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
|