1
|
Zhang Q, Niu Y, Li Y, Xia C, Chen Z, Chen Y, Feng H. Meningeal lymphatic drainage: novel insights into central nervous system disease. Signal Transduct Target Ther 2025; 10:142. [PMID: 40320416 PMCID: PMC12050339 DOI: 10.1038/s41392-025-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, increasing evidence has suggested that meningeal lymphatic drainage plays a significant role in central nervous system (CNS) diseases. Studies have indicated that CNS diseases and conditions associated with meningeal lymphatic drainage dysfunction include neurodegenerative diseases, stroke, infections, traumatic brain injury, tumors, functional cranial disorders, and hydrocephalus. However, the understanding of the regulatory and damage mechanisms of meningeal lymphatics under physiological and pathological conditions is currently limited. Given the importance of a profound understanding of the interplay between meningeal lymphatic drainage and CNS diseases, this review covers seven key aspects: the development and structure of meningeal lymphatic vessels, methods for observing meningeal lymphatics, the function of meningeal lymphatics, the molecular mechanisms of meningeal lymphatic injury, the relationships between meningeal lymphatic vessels and CNS diseases, potential regulatory mechanisms of meningeal lymphatics, and conclusions and outstanding questions. We will explore the relationship between the development, structure, and function of meningeal lymphatics, review current methods for observing meningeal lymphatic vessels in both animal models and humans, and identify unresolved key points in meningeal lymphatic research. The aim of this review is to provide new directions for future research and therapeutic strategies targeting meningeal lymphatics by critically analyzing recent advancements in the field, identifying gaps in current knowledge, and proposing innovative approaches to address these gaps.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 961st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingpei Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenyang Xia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Jones R, Cirovic S, Rusbridge C. A review of cerebrospinal fluid circulation with respect to Chiari-like malformation and syringomyelia in brachycephalic dogs. Fluids Barriers CNS 2025; 22:25. [PMID: 40065427 PMCID: PMC11895204 DOI: 10.1186/s12987-025-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cerebrospinal fluid (CSF) plays a crucial role in maintaining brain homeostasis by facilitating the clearance of metabolic waste and regulating intracranial pressure. Dysregulation of CSF flow can lead to conditions like syringomyelia, and hydrocephalus. This review details the anatomy of CSF flow, examining its contribution to waste clearance within the brain and spinal cord. The review integrates data from human, canine, and other mammalian studies, with a particular focus on brachycephalic dogs. Certain dog breeds exhibit a high prevalence of CSF-related conditions due to artificial selection for neotenous traits, making them valuable models for studying analogous human conditions, such as Chiari-like malformation and syringomyelia associated with craniosynostosis. This review discusses the anatomical features specific to some brachycephalic breeds and the impact of skull and cranial cervical conformation on CSF flow patterns, providing insights into the pathophysiology and potential modelling approaches for these conditions.
Collapse
Affiliation(s)
- Ryan Jones
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK.
| | - Srdjan Cirovic
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Clare Rusbridge
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK
- Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-On-Tees, UK
| |
Collapse
|
3
|
Sankarappan K, Shetty AK. Promise of mesenchymal stem cell-derived extracellular vesicles for alleviating subarachnoid hemorrhage-induced brain dysfunction by neuroprotective and antiinflammatory effects. Brain Behav Immun Health 2024; 40:100835. [PMID: 39165307 PMCID: PMC11334735 DOI: 10.1016/j.bbih.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Subarachnoid hemorrhage (SAH), accounting for ∼5% of all strokes, represents a catastrophic subtype of cerebrovascular accident. SAH predominantly results from intracranial aneurysm ruptures and affects ∼30,000 individuals annually in the United States and ∼6 individuals per 100,000 people worldwide. Recent studies have implicated that administering mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be beneficial in inducing neuroprotective and antiinflammatory effects following SAH. EVs are nanosized particles bound by a lipid bilayer. MSC-EVs comprise a therapeutic cargo of nucleic acids, lipids, and proteins, having the promise to ease SAH-induced long-term brain impairments. This review evaluated the findings of published studies on the therapeutic efficacy of MSC-EVs in the context of SAH. A growing body of evidence points out the therapeutic potential of MSC-EVs for improving brain function in animal models of SAH. Specifically, studies demonstrated their ability to reduce neuronal apoptosis and neuroinflammation and enhance neurological recovery through neuroprotective and antiinflammatory mechanisms. Such outcomes reported in various studies suggest that MSC-EVs hold great potential as a novel and minimally invasive approach to ameliorate SAH-induced neurological damage and improve patient outcomes. The review also discusses the limitations of EV therapy and the required future research efforts toward harnessing the full potential of MSC-EVs in treating SAH.
Collapse
Affiliation(s)
- Kiran Sankarappan
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University Health Science Center School of Medicine, College Station, TX, USA
| |
Collapse
|
4
|
Mehta RI, Mehta RI. Understanding central nervous system fluid networks: Historical perspectives and a revised model for clinical neurofluid imaging. NMR IN BIOMEDICINE 2024; 37:e5149. [PMID: 38584002 PMCID: PMC11531858 DOI: 10.1002/nbm.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
The central nervous system (CNS) lacks traditionally defined lymphatic vasculature. However, CNS tissues and barriers compartmentalize the brain, spinal cord, and adjacent spaces, facilitating the transmittal of fluids, metabolic wastes, immune cells, and vital signals, while more conventional lymphatic pathways in the meninges, cervicofacial and paraspinal regions transmit efflux fluid and molecules to peripheral lymph and lymph nodes. Thus, a unique and highly organized fluid circulation network encompassing intraparenchymal, subarachnoid, dural, and extradural segments functions in unison to maintain CNS homeostasis. Pathways involved in this system have been under investigation for centuries and continue to be the source of considerable interest and debate. Modern imaging and microscopy technologies have led to important breakthroughs pertaining to various elements of CNS fluid circuitry and exchange over the past decade, thus enhancing knowledge on mechanisms of mammalian CNS maintenance and disease. Yet, to better understand precise anatomical routes, the physiology and clinical significance of these CNS pathways, and potential therapeutic targets in humans, fluid conduits, flow-regulating factors, and tissue effects must be analyzed systematically and in a global manner in persons across age, demographical factors, and disease states. Here, we illustrate the system-wide nature of intermixing CNS fluid networks, summarize historical and clinical studies, and discuss anatomical and physiological similarities and differences that are relevant for translation of evidence from mice to humans. We also review Cushing's classical model of cerebrospinal fluid flow and present a new framework of this "third circulation" that emphasizes previously unexplained complexities of CNS fluid circulation in humans. Finally, we review future directions in the field, including emerging theranostic techniques and MRI studies required in humans.
Collapse
Affiliation(s)
- Rupal I. Mehta
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 PMCID: PMC11560121 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Çavdar S, Altınöz D, Dilan Demir T, Ali Gürses İ, Özcan G. Extracranial transport of brain lymphatics via cranial nerve in human. Neurosci Lett 2024; 827:137737. [PMID: 38519013 DOI: 10.1016/j.neulet.2024.137737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Extracranial waste transport from the brain interstitial fluid to the deep cervical lymph node (dCLN) is not extensively understood. The present study aims to show the cranial nerves that have a role in the transport of brain lymphatics vessels (LVs), their localization, diameter, and number using podoplanin (PDPN) and CD31 immunohistochemistry (IHC) and Western blotting. Cranial nerve samples from 6 human cases (3 cadavers, and 3 autopsies) were evaluated for IHC and 3 autopsies for Western blotting. The IHC staining showed LVs along the optic, olfactory, oculomotor, trigeminal, facial, glossopharyngeal, accessory, and vagus nerves. However, no LVs present along the trochlear, abducens, vestibulocochlear, and hypoglossal nerves. The LVs were predominantly localized at the endoneurium of the cranial nerve that has motor components, and LVs in the cranial nerves that had sensory components were present in all 3 layers. The number of LVs accompanying the olfactory, optic, and trigeminal nerves was classified as numerous; oculomotor, glossopharyngeal, vagus, and accessory was moderate; and facial nerves was few. The largest diameter of LVs was in the epineurium and the smallest one was in the endoneurium. The majority of Western blotting results correlated with the IHC. The present findings suggest that specific cranial nerves with variable quantities provide a pathway for the transport of wastes from the brain to dCLN. Thus, the knowledge of the transport of brain lymphatics along cranial nerves may help understand the pathophysiology of various neurological diseases.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey.
| | - Damlasu Altınöz
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - Tevriz Dilan Demir
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifener Yolu, Istanbul, Turkey
| | - İlke Ali Gürses
- Department of Anatomy, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| | - Gülnihal Özcan
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifener Yolu, Istanbul, Turkey; Department of Medical Pharmacology, Koç University, School of Medicine, Rumelifener Yolu, Istanbul, Turkey
| |
Collapse
|
7
|
Colman BD, Boonstra F, Nguyen MN, Raviskanthan S, Sumithran P, White O, Hutton EJ, Fielding J, van der Walt A. Understanding the pathophysiology of idiopathic intracranial hypertension (IIH): a review of recent developments. J Neurol Neurosurg Psychiatry 2024; 95:375-383. [PMID: 37798095 DOI: 10.1136/jnnp-2023-332222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Idiopathic intracranial hypertension (IIH) is a condition of significant morbidity and rising prevalence. It typically affects young people living with obesity, mostly women of reproductive age, and can present with headaches, visual abnormalities, tinnitus and cognitive dysfunction. Raised intracranial pressure without a secondary identified cause remains a key diagnostic feature of this condition, however, the underlying pathophysiological mechanisms that drive this increase are poorly understood. Previous theories have focused on cerebrospinal fluid (CSF) hypersecretion or impaired reabsorption, however, the recent characterisation of the glymphatic system in many other neurological conditions necessitates a re-evaluation of these hypotheses. Further, the impact of metabolic dysfunction and hormonal dysregulation in this population group must also be considered. Given the emerging evidence, it is likely that IIH is triggered by the interaction of multiple aetiological factors that ultimately results in the disruption of CSF dynamics. This review aims to provide a comprehensive update on the current theories regarding the pathogenesis of IIH.
Collapse
Affiliation(s)
- Blake D Colman
- Department of Neuroscience, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Frederique Boonstra
- Department of Neuroscience, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
| | - Minh Nl Nguyen
- Department of Neuroscience, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | | | - Priya Sumithran
- Department of Surgery, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
- Department of Endocrinology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Owen White
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Neuroscience, Monash University Central Clinical School, Clayton, Victoria, Australia
| | - Elspeth J Hutton
- Department of Neuroscience, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Joanne Fielding
- Department of Neuroscience, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Monash University Faculty of Medicine Nursing and Health Sciences, Clayton, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Pan S, Koleske JP, Koller GM, Halupnik GL, Alli AHO, Koneru S, DeFreitas D, Ramagiri S, Strahle JM. Postnatal meningeal CSF transport is primarily mediated by the arachnoid and pia maters and is not altered after intraventricular hemorrhage-posthemorrhagic hydrocephalus. Fluids Barriers CNS 2024; 21:4. [PMID: 38191402 PMCID: PMC10773070 DOI: 10.1186/s12987-023-00503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND CSF has long been accepted to circulate throughout the subarachnoid space, which lies between the arachnoid and pia maters of the meninges. How the CSF interacts with the cellular components of the developing postnatal meninges including the dura, arachnoid, and pia of both the meninges at the surface of the brain and the intracranial meninges, prior to its eventual efflux from the cranium and spine, is less understood. Here, we characterize small and large CSF solute distribution patterns along the intracranial and surface meninges in neonatal rodents and compare our findings to meningeal CSF solute distribution in a rodent model of intraventricular hemorrhage-posthemorrhagic hydrocephalus. We also examine CSF solute interactions with the tela choroidea and its pial invaginations into the choroid plexuses of the lateral, third, and fourth ventricles. METHODS 1.9-nm gold nanoparticles, 15-nm gold nanoparticles, or 3 kDa Red Dextran Tetramethylrhodamine constituted in aCSF were infused into the right lateral ventricle of P7 rats to track CSF circulation. 10 min post-1.9-nm gold nanoparticle and Red Dextran Tetramethylrhodamine injection and 4 h post-15-nm gold nanoparticle injection, animals were sacrificed and brains harvested for histologic analysis to identify CSF tracer localization in the cranial and spine meninges and choroid plexus. Spinal dura and leptomeninges (arachnoid and pia) wholemounts were also evaluated. RESULTS There was significantly less CSF tracer distribution in the dura compared to the arachnoid and pia maters in neonatal rodents. Both small and large CSF tracers were transported intracranially to the arachnoid and pia mater of the perimesencephalic cisterns and tela choroidea, but not the falx cerebri. CSF tracers followed a similar distribution pattern in the spinal meninges. In the choroid plexus, there was large CSF tracer distribution in the apical surface of epithelial cells, and small CSF tracer along the basolateral surface. There were no significant differences in tracer intensity in the intracranial meninges of control vs. intraventricular hemorrhage-posthemorrhagic hydrocephalus (PHH) rodents, indicating preserved meningeal transport in the setting of PHH. CONCLUSIONS Differential CSF tracer handling by the meninges suggests that there are distinct roles for CSF handling between the arachnoid-pia and dura maters in the developing brain. Similarly, differences in apical vs. luminal choroid plexus CSF handling may provide insight into particle-size dependent CSF transport at the CSF-choroid plexus border.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Gretchen M Koller
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Grace L Halupnik
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Abdul-Haq O Alli
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Shriya Koneru
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Dakota DeFreitas
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
9
|
Laaker C, Baenen C, Kovács KG, Sandor M, Fabry Z. Immune cells as messengers from the CNS to the periphery: the role of the meningeal lymphatic system in immune cell migration from the CNS. Front Immunol 2023; 14:1233908. [PMID: 37662908 PMCID: PMC10471710 DOI: 10.3389/fimmu.2023.1233908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.
Collapse
Affiliation(s)
- Collin Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, WI, United States
| | - Cameron Baenen
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Kristóf G. Kovács
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, United States
| |
Collapse
|
10
|
Attaluri S, Jaimes Gonzalez J, Kirmani M, Vogel AD, Upadhya R, Kodali M, Madhu LN, Rao S, Shuai B, Babu RS, Huard C, Shetty AK. Intranasally administered extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells quickly incorporate into neurons and microglia in 5xFAD mice. Front Aging Neurosci 2023; 15:1200445. [PMID: 37424631 PMCID: PMC10323752 DOI: 10.3389/fnagi.2023.1200445] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) released by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) have robust antiinflammatory and neurogenic properties due to therapeutic miRNAs and proteins in their cargo. Hence, hiPSC-NSC-EVs are potentially an excellent biologic for treating neurodegenerative disorders, including Alzheimer's disease (AD). Methods This study investigated whether intranasally (IN) administered hiPSC-NSC-EVs would quickly target various neural cell types in the forebrain, midbrain, and hindbrain regions of 3-month-old 5xFAD mice, a model of β-amyloidosis and familial AD. We administered a single dose of 25 × 109 hiPSC-NSC-EVs labeled with PKH26, and different cohorts of naïve and 5xFAD mice receiving EVs were euthanized at 45 min or 6 h post-administration. Results At 45 min post-administration, EVs were found in virtually all subregions of the forebrain, midbrain, and hindbrain of naïve and 5xFAD mice, with predominant targeting and internalization into neurons, interneurons, and microglia, including plaque-associated microglia in 5xFAD mice. EVs also came in contact with the plasma membranes of astrocytic processes and the soma of oligodendrocytes in white matter regions. Evaluation of CD63/CD81 expression with the neuronal marker confirmed that PKH26 + particles found within neurons were IN administered hiPSC-NSC-EVs. At 6 h post-administration, EVs persisted in all cell types in both groups, with the distribution mostly matching what was observed at 45 min post-administration. Area fraction (AF) analysis revealed that, in both naïve and 5xFAD mice, higher fractions of EVs incorporate into forebrain regions at both time points. However, at 45 min post-IN administration, AFs of EVs within cell layers in forebrain regions and within microglia in midbrain and hindbrain regions were lower in 5xFAD mice than naïve mice, implying that amyloidosis reduces EV penetrance. Discussion Collectively, the results provide novel evidence that IN administration of therapeutic hiPSC-NSC-EVs is an efficient avenue for directing such EVs into neurons and glia in all brain regions in the early stage of amyloidosis. As pathological changes in AD are observed in multiple brain areas, the ability to deliver therapeutic EVs into various neural cells in virtually every brain region in the early stage of amyloidosis is attractive for promoting neuroprotective and antiinflammatory effects.
Collapse
|
11
|
Spera I, Cousin N, Ries M, Kedracka A, Castillo A, Aleandri S, Vladymyrov M, Mapunda JA, Engelhardt B, Luciani P, Detmar M, Proulx ST. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine 2023; 91:104558. [PMID: 37043871 PMCID: PMC10119713 DOI: 10.1016/j.ebiom.2023.104558] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.
Collapse
Affiliation(s)
- Irene Spera
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Nikola Cousin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Anna Kedracka
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Alina Castillo
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Vera Quesada CL, Rao SB, Torp R, Eide PK. Immunohistochemical visualization of lymphatic vessels in human dura mater: methodological perspectives. Fluids Barriers CNS 2023; 20:23. [PMID: 36978127 PMCID: PMC10044429 DOI: 10.1186/s12987-023-00426-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Despite greatly renewed interest concerning meningeal lymphatic function over recent years, the lymphatic structures of human dura mater have been less characterized. The available information derives exclusively from autopsy specimens. This study addressed methodological aspects of immunohistochemistry for visualization and characterization of lymphatic vessels in the dura of patients. METHODS Dura biopsies were obtained from the right frontal region of the patients with idiopathic normal pressure hydrocephalus (iNPH) who underwent shunt surgery as part of treatment. The dura specimens were prepared using three different methods: Paraformaldehyde (PFA) 4% (Method #1), paraformaldehyde (PFA) 0.5% (Method #2), and freeze-fixation (Method #3). They were further examined with immunohistochemistry using the lymphatic cell marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and as validation marker we used podoplanin (PDPN). RESULTS The study included 30 iNPH patients who underwent shunt surgery. The dura specimens were obtained average 16.1 ± 4.5 mm lateral to the superior sagittal sinus in the right frontal region (about 12 cm posterior to glabella). While lymphatic structures were seen in 0/7 patients using Method #1, it was found in 4/6 subjects (67%) with Method #2, while in 16/17 subjects (94%) using Method #3. To this end, we characterized three types of meningeal lymphatic vessels: (1) Lymphatic vessels in intimate contact with blood vessels. (2) Lymphatic vessels without nearby blood vessels. (3) Clusters of LYVE-1-expressing cells interspersed with blood vessels. In general, highest density of lymphatic vessels were observed towards the arachnoid membrane rather than towards the skull. CONCLUSIONS The visualization of meningeal lymphatic vessels in humans seems to be highly sensitive to the tissue processing method. Our observations disclosed most abundant lymphatic vessels towards the arachnoid membrane, and were seen either in close association with blood vessels or remote from blood vessels.
Collapse
Affiliation(s)
- César Luis Vera Quesada
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, PB 4950 Nydalen, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shreyas Balachandra Rao
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, PB 4950 Nydalen, Oslo, 0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Development of early diagnosis of Parkinson's disease on animal models based on the intranasal administration of α-methyl-p-tyrosine methyl ester in a gel system. Biomed Pharmacother 2022; 150:112944. [PMID: 35405394 DOI: 10.1016/j.biopha.2022.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
The fight against neurodegenerative diseases, including Parkinson's disease (PD), is a global challenge of this century. The effectiveness of current PD therapy is limited, since it is diagnosed many years after the onset, following the death of most nigrostriatal dopaminergic neurons regulating motor function. PD treatment could be greatly improved if it was started at an early (preclinical) stage. For this purpose, it is necessary to develop an early diagnosis of PD, which is the goal of our study. We have developed an early diagnosis of PD on animal models using a provocative test by intranasal administration of α-methyl-p-tyrosine methyl ester (αMPTME), a reversible inhibitor of dopamine synthesis. First, we produced the provocative agent, αMPTME in gel, and showed its safety and penetration into the brain bypassing the blood-brain barrier. Then, the optimal dose of αMPTME and time after administration were selected, at which the level of dopamine in the striatum of intact animals decreases, but does not reach the 30% threshold for the appearance of motor disorders in PD patients. Finally, we proved on animal models that intranasal administration of αMPTME can serve as a diagnostic test for preclinical PD. Indeed, intranasal administration of αMPTME to mice in a model of PD at the preclinical stage reversibly reduced the dopamine level in the striatum to the 30% threshold causing short-term motor disorders. Thus, using animal models of PD, we have developed a provocative test for the preclinical diagnosis of PD, a fundamentally new technology in neurology.
Collapse
|
14
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
15
|
Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. Int J Mol Sci 2021; 22:ijms22179486. [PMID: 34502395 PMCID: PMC8431165 DOI: 10.3390/ijms22179486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022] Open
Abstract
Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood–brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.
Collapse
|
16
|
Bothwell SW, Omileke D, Hood RJ, Pepperall DG, Azarpeykan S, Patabendige A, Spratt NJ. Altered Cerebrospinal Fluid Clearance and Increased Intracranial Pressure in Rats 18 h After Experimental Cortical Ischaemia. Front Mol Neurosci 2021; 14:712779. [PMID: 34434088 PMCID: PMC8380845 DOI: 10.3389/fnmol.2021.712779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Oedema-independent intracranial pressure (ICP) rise peaks 20-22-h post-stroke in rats and may explain early neurological deterioration. Cerebrospinal fluid (CSF) volume changes may be involved. Cranial CSF clearance primarily occurs via the cervical lymphatics and movement into the spinal portion of the cranio-spinal compartment. We explored whether impaired CSF clearance at these sites could explain ICP rise after stroke. We recorded ICP at baseline and 18-h post-stroke, when we expect changes contributing to peak ICP to be present. CSF clearance was assessed in rats receiving photothrombotic stroke or sham surgery by intraventricular tracer infusion. Tracer concentration was quantified in the deep cervical lymph nodes ex vivo and tracer transit to the spinal subarachnoid space was imaged in vivo. ICP rose significantly from baseline to 18-h post-stroke in stroke vs. sham rats [median = 5 mmHg, interquartile range (IQR) = 0.1-9.43, n = 12, vs. -0.3 mmHg, IQR = -1.9-1.7, n = 10], p = 0.03. There was a bimodal distribution of rats with and without ICP rise. Tracer in the deep cervical lymph nodes was significantly lower in stroke with ICP rise (0 μg/mL, IQR = 0-0.11) and without ICP rise (0 μg/mL, IQR = 0-4.47) compared with sham rats (4.17 μg/mL, IQR = 0.74-8.51), p = 0.02. ICP rise was inversely correlated with faster CSF transit to the spinal subarachnoid space (R = -0.59, p = 0.006, Spearman's correlation). These data suggest that reduced cranial clearance of CSF via cervical lymphatics may contribute to post-stroke ICP rise, partially compensated via increased spinal CSF outflow.
Collapse
Affiliation(s)
- Steven W Bothwell
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rebecca J Hood
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Debbie-Gai Pepperall
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sara Azarpeykan
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil J Spratt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Hunter New England Local Health District, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Fahmy LM, Chen Y, Xuan S, Haacke EM, Hu J, Jiang Q. All Central Nervous System Neuro- and Vascular-Communication Channels Are Surrounded With Cerebrospinal Fluid. Front Neurol 2021; 12:614636. [PMID: 34220663 PMCID: PMC8247447 DOI: 10.3389/fneur.2021.614636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Recent emerging evidence has highlighted the potential critical role of cerebrospinal fluid (CSF) in cerebral waste clearance and immunomodulation. It is already very well-established that the central nervous system (CNS) is completely submerged in CSF on a macro-level; but to what extent is this true on a micro-level? Specifically, within the peri-neural and peri-vascular spaces within the CNS parenchyma. Therefore, the objective of this study was to use magnetic resonance imaging (MRI) to simultaneously map the presence of CSF within all peri-neural (cranial and spinal nerves) and peri-vascular spaces in vivo in humans. Four MRI protocols each with five participants were used to image the CSF in the brain and spinal cord. Our findings indicated that all CNS neuro- and vascular-communication channels are surrounded with CSF. In other words, all peri-neural spaces surrounding the cranial and spinal nerves as well as all peri-vascular spaces surrounding MRI-visible vasculature were filled with CSF. These findings suggest that anatomically, substance exchange between the brain parenchyma and outside tissues including lymphatic ones can only occur through CSF pathways and/or vascular pathways, warranting further investigation into its implications in cerebral waste clearance and immunity.
Collapse
Affiliation(s)
- Lara M Fahmy
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Stephanie Xuan
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
18
|
de Melo IS, Sabino-Silva R, Cunha TM, Goulart LR, Reis WL, Jardim ACG, Shetty AK, de Castro OW. Hydroelectrolytic Disorder in COVID-19 patients: Evidence Supporting the Involvement of Subfornical Organ and Paraventricular Nucleus of the Hypothalamus. Neurosci Biobehav Rev 2021; 124:216-223. [PMID: 33577841 PMCID: PMC7872848 DOI: 10.1016/j.neubiorev.2021.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Multiple neurological problems have been reported in coronavirus disease-2019 (COVID-19) patients because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely spreads to the central nervous system (CNS) via olfactory nerves or through the subarachnoid space along olfactory nerves into the brain's cerebrospinal fluid and then into the brain's interstitial space. We hypothesize that SARS-CoV-2 enters the subfornical organ (SFO) through the above routes and the circulating blood since circumventricular organs (CVOs) such as the SFO lack the blood-brain barrier, and infection of the SFO causes dysfunction of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), leading to hydroelectrolytic disorder. SARS-CoV-2 can readily enter SFO-PVN-SON neurons because these neurons express angiotensin-converting enzyme-2 receptors and proteolytic viral activators, which likely leads to neurodegeneration or neuroinflammation in these regions. Considering the pivotal role of SFO-PVN-SON circuitry in modulating hydroelectrolyte balance, SARS-CoV-2 infection in these regions could disrupt the neuroendocrine control of hydromineral homeostasis. This review proposes mechanisms by which SARS-CoV-2 infection of the SFO-PVN-SON pathway leads to hydroelectrolytic disorder in COVID-19 patients.
Collapse
Affiliation(s)
- Igor Santana de Melo
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Robinson Sabino-Silva
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlândia, MG, Brazil.
| | - Thúlio Marquez Cunha
- Department of Pulmonology, School of Medicine, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Wagner Luis Reis
- Department of Physiological, Sciences Biological Sciences Centre Federal University of Santa Catarina (UFSC) Florianopolis, Santa Catarina, Brazil
| | - Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, 77843, USA.
| | - Olagide Wagner de Castro
- Department of Physiology, Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
19
|
The Need for Head Space: Brachycephaly and Cerebrospinal Fluid Disorders. Life (Basel) 2021; 11:life11020139. [PMID: 33673129 PMCID: PMC7918167 DOI: 10.3390/life11020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Brachycephalic dogs remain popular, despite the knowledge that this head conformation is associated with health problems, including airway compromise, ocular disorders, neurological disease, and other co-morbidities. There is increasing evidence that brachycephaly disrupts cerebrospinal fluid movement and absorption, predisposing ventriculomegaly, hydrocephalus, quadrigeminal cistern expansion, Chiari-like malformation, and syringomyelia. In this review, we focus on cerebrospinal fluid physiology and how this is impacted by brachycephaly, airorhynchy, and associated craniosynostosis.
Collapse
|
20
|
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci 2021; 78:2429-2457. [PMID: 33427948 PMCID: PMC8004496 DOI: 10.1007/s00018-020-03706-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Cerebrospinal fluid (CSF) is produced by the choroid plexuses within the ventricles of the brain and circulates through the subarachnoid space of the skull and spinal column to provide buoyancy to and maintain fluid homeostasis of the brain and spinal cord. The question of how CSF drains from the subarachnoid space has long puzzled scientists and clinicians. For many decades, it was believed that arachnoid villi or granulations, outcroppings of arachnoid tissue that project into the dural venous sinuses, served as the major outflow route. However, this concept has been increasingly challenged in recent years, as physiological and imaging evidence from several species has accumulated showing that tracers injected into the CSF can instead be found within lymphatic vessels draining from the cranium and spine. With the recent high-profile rediscovery of meningeal lymphatic vessels located in the dura mater, another debate has emerged regarding the exact anatomical pathway(s) for CSF to reach the lymphatic system, with one side favoring direct efflux to the dural lymphatic vessels within the skull and spinal column and another side advocating for pathways along exiting cranial and spinal nerves. In this review, a summary of the historical and contemporary evidence for the different outflow pathways will be presented, allowing the reader to gain further perspective on the recent advances in the field. An improved understanding of this fundamental physiological process may lead to novel therapeutic approaches for a wide range of neurological conditions, including hydrocephalus, neurodegeneration and multiple sclerosis.
Collapse
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Intranasally Administered Human MSC-Derived Extracellular Vesicles Pervasively Incorporate into Neurons and Microglia in both Intact and Status Epilepticus Injured Forebrain. Int J Mol Sci 2019; 21:ijms21010181. [PMID: 31888012 PMCID: PMC6981466 DOI: 10.3390/ijms21010181] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) derived from human bone marrow mesenchymal stem cells (hMSCs) have great promise as biologics to treat neurological and neurodegenerative conditions due to their robust antiinflammatory and neuroprotective properties. Besides, intranasal (IN) administration of EVs has caught much attention because the procedure is noninvasive, amenable for repetitive dispensation, and leads to a quick penetration of EVs into multiple regions of the forebrain. Nonetheless, it is unknown whether brain injury-induced signals are essential for the entry of IN-administered EVs into different brain regions. Therefore, in this study, we investigated the distribution of IN-administered hMSC-derived EVs into neurons and microglia in the intact and status epilepticus (SE) injured rat forebrain. Ten billion EVs labeled with PKH26 were dispensed unilaterally into the left nostril of naïve rats, and rats that experienced two hours of kainate-induced SE. Six hours later, PKH26 + EVs were quantified from multiple forebrain regions using serial brain sections processed for different neural cell markers and confocal microscopy. Remarkably, EVs were seen bilaterally in virtually all regions of intact and SE-injured forebrain. The percentage of neurons incorporating EVs were comparable for most forebrain regions. However, in animals that underwent SE, a higher percentage of neurons incorporated EVs in the hippocampal CA1 subfield and the entorhinal cortex, the regions that typically display neurodegeneration after SE. In contrast, the incorporation of EVs by microglia was highly comparable in every region of the forebrain measured. Thus, unilateral IN administration of EVs is efficient for delivering EVs bilaterally into neurons and microglia in multiple regions in the intact or injured forebrain. Furthermore, incorporation of EVs by neurons is higher in areas of brain injury, implying that injury-related signals likely play a role in targeting of EVs into neurons, which may be beneficial for EV therapy in various neurodegenerative conditions including traumatic brain injury, stroke, multiple sclerosis, and Alzheimer's disease.
Collapse
|
22
|
Esposito E, Ahn BJ, Shi J, Nakamura Y, Park JH, Mandeville ET, Yu Z, Chan SJ, Desai R, Hayakawa A, Ji X, Lo EH, Hayakawa K. Brain-to-cervical lymph node signaling after stroke. Nat Commun 2019; 10:5306. [PMID: 31757960 PMCID: PMC6876639 DOI: 10.1038/s41467-019-13324-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/27/2019] [Indexed: 12/24/2022] Open
Abstract
After stroke, peripheral immune cells are activated and these systemic responses may amplify brain damage, but how the injured brain sends out signals to trigger systemic inflammation remains unclear. Here we show that a brain-to-cervical lymph node (CLN) pathway is involved. In rats subjected to focal cerebral ischemia, lymphatic endothelial cells proliferate and macrophages are rapidly activated in CLNs within 24 h, in part via VEGF-C/VEGFR3 signalling. Microarray analyses of isolated lymphatic endothelium from CLNs of ischemic mice confirm the activation of transmembrane tyrosine kinase pathways. Blockade of VEGFR3 reduces lymphatic endothelial activation, decreases pro-inflammatory macrophages, and reduces brain infarction. In vitro, VEGF-C/VEGFR3 signalling in lymphatic endothelial cells enhances inflammatory responses in co-cultured macrophages. Lastly, surgical removal of CLNs in mice significantly reduces infarction after focal cerebral ischemia. These findings suggest that modulating the brain-to-CLN pathway may offer therapeutic opportunities to ameliorate systemic inflammation and brain injury after stroke.
Collapse
Affiliation(s)
- Elga Esposito
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Bum Ju Ahn
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Jingfei Shi
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0004 0369 153Xgrid.24696.3fChina-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yoshihiko Nakamura
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0004 0594 9821grid.411556.2Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Jonan, Fukuoka Japan
| | - Ji Hyun Park
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Emiri T. Mandeville
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Zhanyang Yu
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Su Jing Chan
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA ,0000 0001 2180 6431grid.4280.eDepartment of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Rakhi Desai
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Ayumi Hayakawa
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Xunming Ji
- 0000 0004 0369 153Xgrid.24696.3fChina-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Eng H. Lo
- 0000 0004 0386 9924grid.32224.35Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
23
|
An undescribed venous pathway intervening between the olfactory fossa and nasal vestibule. Surg Radiol Anat 2019; 41:485-490. [PMID: 30783738 DOI: 10.1007/s00276-019-02208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE A curvilinear pathway intervening between the olfactory fossa and nasal vestibule has not been well documented. Therefore, the aim of this study was to examine its structure using magnetic resonance imaging (MRI). METHODS In total, 84 patients underwent thin-sliced, contrast MRI. Among these patients, 31 underwent additional thin-sliced, sagittal T2-weighted imaging. RESULTS A curvilinear pathway intervening between the olfactory fossa and nasal vestibule was delineated on sagittal and coronal imaging in 98% and 82% of patients, respectively. All of these pathways demonstrated communication with the lower limit of the superior sagittal sinus (SSS) or fine venous channels connecting to the SSS in the vicinity of the crista galli. The pathway was identified in the parasagittal regions on both sides with varying lengths, diameters, and curvatures. In 94% of the patients who underwent sagittal T2-weighted imaging, the pathways appeared as linear high-intensity signals. Most pathways were delineated as a single channel coursing extracranially adjacent to the olfactory fossa. In 38% of the patients, post-contrast sagittal images showed variable filling defects between the olfactory bulb and floor of the olfactory fossa, furthermore traversing the venous pathway. Additionally, in 73% of the patients, post-contrast images identified diploic venous channels, variably in the nasal bone and communicating with the venous pathway. CONCLUSIONS A curvilinear pathway intervening between the olfactory fossa and nasal vestibule is a consistent venous structure and may function as an extracranial route of cerebrospinal fluid drainage.
Collapse
|
24
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
25
|
Mechanism of intranasal drug delivery directly to the brain. Life Sci 2018; 195:44-52. [DOI: 10.1016/j.lfs.2017.12.025] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
|
26
|
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8:1434. [PMID: 29127332 PMCID: PMC5681558 DOI: 10.1038/s41467-017-01484-6] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
Cerebrospinal fluid (CSF) has been commonly accepted to drain through arachnoid projections from the subarachnoid space to the dural venous sinuses. However, a lymphatic component to CSF outflow has long been known. Here, we utilize lymphatic-reporter mice and high-resolution stereomicroscopy to characterize the anatomical routes and dynamics of outflow of CSF. After infusion into a lateral ventricle, tracers spread into the paravascular spaces of the pia mater and cortex of the brain. Tracers also rapidly reach lymph nodes using perineural routes through foramina in the skull. Using noninvasive imaging techniques that can quantify the transport of tracers to the blood and lymph nodes, we find that lymphatic vessels are the major outflow pathway for both large and small molecular tracers in mice. A significant decline in CSF lymphatic outflow is found in aged compared to young mice, suggesting that the lymphatic system may represent a target for age-associated neurological conditions.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
27
|
Goffin C, Leonhardt S, Radermacher K. The Role of a Dynamic Craniospinal Compliance in NPH—A Review and Future Challenges. IEEE Rev Biomed Eng 2017; 10:310-322. [DOI: 10.1109/rbme.2016.2620493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res 2016; 366:667-677. [PMID: 27599481 PMCID: PMC5121175 DOI: 10.1007/s00441-016-2493-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Histological studies of the lymphatic vascular system in adult mice are hampered because bones cannot be sectioned properly. Here, we decalcified the heads of 14-day-old mice, embedded them in paraffin and stained resultant serial sections with the lymphendothelial-specific antibodies Lyve-1 and Podoplanin. We show that the tissues with the highest lymphatic vascular density are the dermis and the oral mucous membranes. In contrast, the nasal mucous membrane is devoid of lymphatics, except for its most basal parts below the vomeronasal organ. The inferior nasal turbinate contains numerous lymphatics and is connected to the nasolacrimal duct (NLD), which is ensheathed by a dense network of lymphatics. The lymphatics of the eye lids and conjunctiva are connected to those of the inferior nasal turbinate. We suggest that cerebro-spinal fluid (CSF) can drain via the optic nerve and NLD lymphatics, whereas CSF drained via the Fila olfactoria into the nasal mucous membrane is used for moisturization of the respiratory air. Tongue, palatine and buccal mucous membranes possess numerous lymphatics, whereas the dental pulp has none. Lymphatics are present in the maxillary gland and close to the temporomandibular joint, suggesting the augmentation of lymph flow by chewing and yawning. Lymphatics can also be found in the dura mater and in the dural septae entering into deeper parts of the brain. Our findings are discussed with regard to CSF drainage and potential routes for ocular tumor dissemination.
Collapse
Affiliation(s)
- Melanie Lohrberg
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
29
|
Mogk S, Boßelmann CM, Mudogo CN, Stein J, Wolburg H, Duszenko M. African trypanosomes and brain infection - the unsolved question. Biol Rev Camb Philos Soc 2016; 92:1675-1687. [PMID: 27739621 DOI: 10.1111/brv.12301] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
African trypanosomes induce sleeping sickness. The parasites are transmitted during the blood meal of a tsetse fly and appear primarily in blood and lymph vessels, before they enter the central nervous system. During the latter stage, trypanosomes induce a deregulation of sleep-wake cycles and some additional neurological disorders. Historically, it was assumed that trypanosomes cross the blood-brain barrier and settle somewhere between the brain cells. The brain, however, is a strictly controlled and immune-privileged area that is completely surrounded by a dense barrier that covers the blood vessels: this is the blood-brain barrier. It is known that some immune cells are able to cross this barrier, but this requires a sophisticated mechanism and highly specific cell-cell interactions that have not been observed for trypanosomes within the mammalian host. Interestingly, trypanosomes injected directly into the brain parenchyma did not induce an infection. Likewise, after an intraperitoneal infection of rats, Trypanosoma brucei brucei was not observed within the brain, but appeared readily within the cerebrospinal fluid (CSF) and the meninges. Therefore, the parasite did not cross the blood-brain barrier, but the blood-CSF barrier, which is formed by the choroid plexus, i.e. the part of the ventricles where CSF is produced from blood. While there is no question that trypanosomes are able to invade the brain to induce a deadly encephalopathy, controversy exists about the pathway involved. This review lists experimental results that support crossing of the blood-brain barrier and of the blood-CSF barrier and discuss the implications that either pathway would have on infection progress and on the survival strategy of the parasite. For reasons discussed below, we prefer the latter pathway and suggest the existence of an additional distinct meningeal stage, from which trypanosomes could invade the brain via the Virchow-Robin space thereby bypassing the blood-brain barrier. We also consider healthy carriers, i.e. people living symptomless with the disease for up to several decades, and discuss implications the proposed meningeal stage would have for new anti-trypanosomal drug development. Considering the re-infection of blood, a process called relapse, we discuss the likely involvement of the newly described glymphatic connection between the meningeal space and the lymphatic system, that seems also be important for other infectious diseases.
Collapse
Affiliation(s)
- Stefan Mogk
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Christian M Boßelmann
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Celestin N Mudogo
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany.,Department of Basic Sciences, School of Medicine, University of Kinshasa, BP 834 KIN XI, Kinshasa, D.R. Congo
| | - Jasmin Stein
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany
| | - Hartwig Wolburg
- Medical Department, Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, 72076, Liebermeister Str. 8, Germany
| | - Michael Duszenko
- Department of Natural Sciences, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, 72076, Hoppe-Seyler-Str. 4, Germany.,Medical Department, School of Medicine, Tongji University, 1239 Siping Road, Shanghai, P.R. China
| |
Collapse
|
30
|
Wolf DA, Hesterman JY, Sullivan JM, Orcutt KD, Silva MD, Lobo M, Wellman T, Hoppin J, Verma A. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery. JCI Insight 2016; 1:e85311. [PMID: 27699254 DOI: 10.1172/jci.insight.85311] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders.
Collapse
Affiliation(s)
- Daniel A Wolf
- Experimental Medicine, Biogen Inc., Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | - Ajay Verma
- Experimental Medicine, Biogen Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Fung PCW, Kong RKC. The Integrative Five-Fluid Circulation System in the Human Body. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojmip.2016.64005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Skjolding AD, Holst AV, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol 2015; 39:179-91. [PMID: 22497211 DOI: 10.1111/j.1365-2990.2012.01275.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Aquaporin-4 (AQP4) is the most abundant cellular water channel in brain and could be a molecular basis for a cerebrospinal fluid absorption route additional to the arachnoid villi. In the search for 'alternative' cerebrospinal fluid absorption pathways it is important to compare experimental findings with human pathophysiology. This study compares expression of AQP4 in hydrocephalic human brain with human controls and hydrocephalic rat brain. METHODS Cortical biopsies from patients with chronic hydrocephalus (n = 29) were sampled secondary to planned surgical intervention. AQP4 in human hydrocephalic cortex relative to controls was quantified by Western blotting (n = 28). A second biopsy (n = 13) was processed for immunohistochemistry [glial fibrillary acidic protein (GFAP), CD68, CD34 and AQP4] and double immunofluorescence (AQP4 + GFAP and AQP4 + CD34). Brain tissue from human controls and kaolin-induced hydrocephalic rats was processed in parallel. Immunohistochemistry and immunofluorescence were assessed qualitatively. RESULTS Western blotting showed that AQP4 abundance was significantly increased (P < 0.05) in hydrocephalic human brain compared with controls. AQP4 immunoreactivity was present in both white and grey matter. In human brain (hydrocephalic and controls) AQP4 immunoreactivity was found on the entire astrocyte membrane, unlike hydrocephalic rat brain where pronounced endfeet polarization was present. Endothelial AQP4 immunoreactivity was not observed. CONCLUSIONS This study shows a significant increase in astrocytic AQP4 in human hydrocephalic cortex compared with control. Cell type specific expression in astrocytes is conserved between rat and human, although differences of expression in specific membrane domains are seen. This study addresses direct translational aspects from rat to human, hereby emphasizing the relevance and use of models in hydrocephalus research.
Collapse
Affiliation(s)
- A D Skjolding
- University Clinic of NeurosurgeryLaboratory of Neuropathology, Copenhagen University Hospital, RigshopitaletDepartment of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A V Holst
- University Clinic of NeurosurgeryLaboratory of Neuropathology, Copenhagen University Hospital, RigshopitaletDepartment of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Broholm
- University Clinic of NeurosurgeryLaboratory of Neuropathology, Copenhagen University Hospital, RigshopitaletDepartment of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Laursen
- University Clinic of NeurosurgeryLaboratory of Neuropathology, Copenhagen University Hospital, RigshopitaletDepartment of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Juhler
- University Clinic of NeurosurgeryLaboratory of Neuropathology, Copenhagen University Hospital, RigshopitaletDepartment of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kleine TO. Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: Revealed with the New Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 2015; 87:227-43. [DOI: 10.1002/cyto.a.22589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Tilmann O. Kleine
- Department of Laboratory Medicine and Molecular Diagnostics of the University Hospital Marburg. Dependance: Cerebrospinal-Fluid References Labor, Baldingerstraße; 35043 Marburg Germany
| |
Collapse
|
34
|
Kim H, Moore SA, Johnston MG. Potential for intranasal drug delivery to alter cerebrospinal fluid outflow via the nasal turbinate lymphatics. Fluids Barriers CNS 2014; 11:4. [PMID: 24528926 PMCID: PMC3927830 DOI: 10.1186/2045-8118-11-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/10/2014] [Indexed: 12/02/2022] Open
Abstract
Background Cerebrospinal fluid absorption (CSF) at the cribriform plate is mediated by direct extracranial connections to the lymphatic system. Given the accessibility of these pharmacologically responsive vessels we hypothesized that the rate of CSF outflow can be modulated via the intranasal delivery of drugs known to affect lymphatic contractile activity. Findings Fluid was infused into the lateral ventricle of anesthetized sheep and inflow rate and CSF pressure measured during intranasal administration of pharmacological agents. CSF absorption was calculated at steady-state CSF pressures. The ability of a pharmacological agent to alter CSF absorption was related to the steady-state intracranial pressure (ICP), the concentration and the class of pharmacological agent delivered. An increase in drug concentration correlated with an increase in CSF absorption at high ICP (45 cm H2O, r = 0.42, p = 0.0058). Specifically, the delivery of NG-monomethyl L-arginine (L-NMMA) significantly increased CSF absorption by 2.29 fold over no treatment (2.29 ± 0.34 mL/min), while the thromboxane A2 analogue U46619 resulted in a 2.44 fold increase in CSF absorption over no treatment (2.44 ± 0.55 mL/min). Saline delivery did not significantly increase CSF absorption (0.88 ± 0.097 mL/min). A trend of increased CSF absorption upon noradrenaline delivery was observed: however, this did not reach statistical significance. Increasing drug concentrations inversely correlated with CSF outflow resistance across all drug classes (r = -0.26, p = 0.046). Conclusions The administration of nebulized pharmacological agents intranasally has the potential to provide an alternate method to non-invasively modulate CSF absorption and outflow resistance.
Collapse
Affiliation(s)
- Harold Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto and Sunnybrook Research Institute, Toronto, Canada.
| | | | | |
Collapse
|
35
|
Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37:1445-65. [PMID: 23648680 PMCID: PMC7112651 DOI: 10.1016/j.neubiorev.2013.04.012] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The mechanisms behind the effects of IN-applied substances need more attention. The mechanisms involved in the brain-distribution of IN-OT are completely unexplored. The possibly cascading effects of IN-OT on the intrinsic OT-system require serious investigation. IN-OT induces clear and specific changes in neural activation. IN-OT is a promising approach to treat certain clinical symptoms.
The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. ‘Direct-access-pathways’ from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral ‘prosocial’ effects: from social relations and ‘trust’ to treatment of ‘autism’. Only very recently in a microdialysis study in rats and mice, the ‘direct-nose-brain-pathways’ of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the ‘intrinsic’ OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.
Collapse
Affiliation(s)
- Jan G Veening
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands; Department of Anatomy (109), Radboud University of Medical Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
36
|
Biceroglu H, Albayram S, Ogullar S, Hasiloglu ZI, Selcuk H, Yuksel O, Karaaslan B, Yildiz C, Kiris A. Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 2012; 16:394-401. [PMID: 22243405 DOI: 10.3171/2011.12.spine11108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT For nearly 100 years it has been believed that the main reabsorption of CSF occurs in arachnoid projections into the superior sagittal sinus, but a significant number of experiments and cases conflict with this hypothesis. According to recently published studies, CSF is permanently produced and absorbed in the whole CSF system. Clusters of arachnoidal villi, which are speculated to have a role in the reabsorption of CSF, have recently been revealed in the dorsal root of the spinal nerves. Huge absorptive surface areas of microvessels have been suggested to serve a putative role in reabsorption. The authors' aim was to observe direct venous connections between the subarachnoid space and the perispinal veins. METHODS Eleven adult (6 months old) New Zealand white male rabbits weighing approximately 3.0 kg each were used in this experiment. After obtaining precontrast MR cisternography images, subarachnoid access was gained percutaneously via a cisternal approach by using a 20-gauge intravenous indwelling cannula. One rabbit died as a result of brainstem trauma during percutaneous cannulation before contrast administration, but contrast agent was still injected to see the possible MR imaging results of spinal CSF reabsorption after death. Magnetic resonance imaging was performed at 15, 60, 120, and 180 minutes after the administration of contrast agent. After intramuscular injections of anesthetic, 2 rabbits died 120 and 150 minutes after contrast injection, but the MR imaging study at 180 minutes after contrast injection was still performed. RESULTS Direct connections between the subarachnoid space and the perispinal veins were observed in all rabbits during serial MR cisternography. The enhancement power was not affected by the amount of injected contrast agent or by cervical or lumbar penetration but was increased at higher contrast concentrations or upon seizure (physical activity). CONCLUSIONS Extracranial reabsorption of CSF has been finally proved with direct radiological confirmation of spinal venous reabsorption of CSF using serial MR cisternography. The authors believe that this study can help to develop a more accurate model of CSF dynamics, which will allow understanding of many CSF-related diseases, as well as the development of new strategies for treatment.
Collapse
Affiliation(s)
- Huseyin Biceroglu
- Department of Neurosurgery, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thiebaud N, Menetrier F, Belloir C, Minn AL, Neiers F, Artur Y, Le Bon AM, Heydel JM. Expression and differential localization of xenobiotic transporters in the rat olfactory neuro-epithelium. Neurosci Lett 2011; 505:180-5. [PMID: 22015764 DOI: 10.1016/j.neulet.2011.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 02/05/2023]
Abstract
Transporters, such as multidrug resistance P-glycoproteins (MDR), multidrug resistance-related proteins (MRP) and organic anion transporters (OATs), are involved in xenobiotic metabolism, particularly the cellular uptake or efflux of xenobiotics (and endobiotics) or their metabolites. The olfactory epithelium is exposed to both inhaled xenobiotics and those coming from systemic circulation. This tissue has been described as a pathway for xenobiotics to the brain via olfactory perineural space. Thereby, olfactory transporters and xenobiotic metabolizing enzymes, dedicated to the inactivation and the elimination of xenobiotics, have been involved in the toxicological protection of the brain, the olfactory epithelium itself and the whole body. These proteins could also have a role in the preservation of the olfactory sensitivity by inactivation and clearance of the excess of odorant molecules from the perireceptor space. The goal of the present study was to increase our understanding of the expression and the localization of transporters in this tissue. For most of the studied transporters, we observed an opposite mRNA expression pattern (RT-PCR) in the olfactory epithelium compared to the liver, which is considered to be the main metabolic organ. Olfactory epithelium mainly expressed efflux transporters (MRP, MDR). However, a similar pattern was observed between the olfactory epithelium and the olfactory bulb. We also demonstrate distinct cellular immunolocalization of the transporters in the olfactory epithelium. As previously reported, Mrp1 was mainly found in the supranuclear portions of supporting cells. In addition, Mrp3 and Mrp5 proteins, which were detected for the first time in olfactory epithelium, were localized to the olfactory neuron layer, while Mdr1 was localized to the capillary endothelium of lymphatic vessels in the subepithelial region. The pattern of expression and the distinct localization of the olfactory transporters showed in this work may highlight on their specific function in the whole olfactory epithelium.
Collapse
Affiliation(s)
- Nicolas Thiebaud
- Centre des Sciences du Goût et de l'Alimentation, UMR1324 INRA, UMR6265 CNRS, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
|
40
|
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5:e14034. [PMID: 21124975 PMCID: PMC2987801 DOI: 10.1371/journal.pone.0014034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
Collapse
|
41
|
Shevtsova Z, Garrido M, Weishaupt J, Saftig P, Bähr M, Lühder F, Kügler S. CNS-expressed cathepsin D prevents lymphopenia in a murine model of congenital neuronal ceroid lipofuscinosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:271-9. [PMID: 20489146 DOI: 10.2353/ajpath.2010.091267] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deficiency in Cathepsin D (CtsD), the major cellular lysosomal aspartic proteinase, causes the congenital form of neuronal ceroid lipofuscinoses (NCLs). CtsD-deficient mice show severe visceral lesions like lymphopenia in addition to their central nervous system (CNS) phenotype of ceroid accumulation, microglia activation, and seizures. Here we demonstrate that re-expression of CtsD within the CNS but not re-expression of CtsD in visceral organs prevented both central and visceral pathologies of CtsD(-/-) mice. Our results suggest that CtsD was substantially secreted from CNS neurons and drained from CNS to periphery via lymphatic routes. Through this drainage, CNS-expressed CtsD acts as an important modulator of immune system maintenance and peripheral tissue homeostasis. These effects depended on enzymatic activity and not on proposed functions of CtsD as an extracellular ligand. Our results furthermore demonstrate that the prominent accumulation of ceroid/lipofuscin and activation of microglia in brains of CtsD(-/-) are not lethal factors but can be tolerated by the rodent CNS.
Collapse
Affiliation(s)
- Zinayida Shevtsova
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Clapham R, O'Sullivan E, Weller RO, Carare RO. Cervical lymph nodes are found in direct relationship with the internal carotid artery: significance for the lymphatic drainage of the brain. Clin Anat 2010; 23:43-7. [PMID: 19918869 DOI: 10.1002/ca.20887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The brain has no conventional lymphatics, but solutes injected into it drain along artery walls and reach lymph nodes in the neck. This study seeks to identify cervical lymph nodes related to the human internal carotid artery (ICA) that could act as the first regional lymph nodes for the brain. Bilateral dissections were carried out on four embalmed human heads, from the level of the carotid bifurcation in the neck, to the base of the skull. Lymph nodes from every specimen were processed for histological examination. A total of 51 deep cervical lymph nodes were identified: 12 lymph nodes (confirmed by histological examination) were observed to be in direct relationship with the ICA. These lymph nodes were found within the carotid sheath and had average diameters of 13.5 x 4.8 mm. Solutes and interstitial fluid from the brain may drain along the walls of cerebral arteries and reach these lymph nodes. They may be sites of stimulation of immune responses against antigens from the brain.
Collapse
Affiliation(s)
- R Clapham
- Centre for Learning Anatomical Sciences, School of Medicine, University of Southampton, United Kingdom
| | | | | | | |
Collapse
|
43
|
Furukawa M, Shimoda H, Kajiwara T, Kato S, Yanagisawa S. Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. ACTA ACUST UNITED AC 2009; 29:289-96. [PMID: 19129672 DOI: 10.2220/biomedres.29.289] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distribution and fine structure of lymphatic vessels associated with nerves was studied by immunohistochemistry in the murine craniofacial region. The tissue sections and blocks were immunostained for LYVE-1, protein gene product 9.5, CD34 and aquaporin-1 to demonstrate the lymphatic vessels, nerves, blood vessels and water channel protein, respectively. Transmission electron microscopic examination was also performed to investigate the relationship between the lymphatics and nerves. In the nasal area, the lymphatics were found in dura mater on the cribriform plate and beneath the nasal mucosa, this supposedly supplying the cerebrospinal fluid drainage route along the olfactory nerves. The proximal portions of the cranial nerves were equipped with the lymphatics in the epineurium. In the distal portions of the nerves, the lymphatics were distributed in close proximity of the perineural sheath, and thus might contribute to maintenance of microenvironment suitable for the nerves by an absorptive activity of the lymphatic endothelial cells. The present findings suggest that the lymphatic system associated with the cranial nerves provides the pathway for transport of cerebrospinal fluid, tissue fluid, and free cells involved in immune response and tumor metastasis in the craniofacial region.
Collapse
Affiliation(s)
- Masahide Furukawa
- Department of Oncological Science, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita, Japan.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Spontaneous intracranial hypotension (SIH) was described nearly 70 years ago, and for years it was essentially equated with post dural puncture headaches (PDPH) (1). The interest in this entity substantially increased after the magnetic resonance imaging (MRI) abnormalities of this disorder were recognized in the early 1990s (2-6), and consequently many more patients were diagnosed than before and a far broader clinical spectrum of this disorder began to become apparent. It also came to be recognized that the overwhelming majority if not all cases of SIH result from spontaneous cerebrospinal (CSF) leaks and that the independent pathogenic parameter is loss of CSF volume (7).
Collapse
Affiliation(s)
- B Mokri
- Mayo Clinic and Mayo College of Medicine, Rochester, MN, USA
| |
Collapse
|
45
|
Rammling M, Madan M, Paul L, Behnam B, Pattisapu JV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res 2008; 5:15. [PMID: 18925964 PMCID: PMC2572581 DOI: 10.1186/1743-8454-5-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 10/16/2008] [Indexed: 11/26/2022] Open
Abstract
Background There is mounting evidence that spinal fluid absorption takes place not only at the arachnoid villi, but also at several extracranial sites, which might serve as a reserve mechanism for, or be primarily involved in the absorption of CSF in hydrocephalus. Methods We compared the nasal lymphatic pathway in congenital Hydrocephalus-Texas (H-Tx) rats in unaffected and affected hydrocephalic (HC) siblings with that of control Sprague Dawley (SD) rat pups. The animals were examined after immediate post mortem injection of Evan's blue dye into the cisterna magna at 6 and 10 days of age. The specimens were evaluated for amount of dye penetration into the nasal passages. Results We found more dye visualization in the olfactory regions of control SD (14/16 at P6, 14/16 at P10) and unaffected H-Tx (13/17 at P6, 13/16 at P10) compared with HC animals (0/14 at P6, 3/15 at P10). This difference was more pronounced at 10 days of age. The dye was not visualized in the cervical lymph nodes or venous channels in these acute experiments. Conclusion The results of this study suggest that nasal lymphatic cerebrospinal fluid absorption is reduced in the H-Tx rat hydrocephalus model.
Collapse
Affiliation(s)
- Matthias Rammling
- Hydrocephalus Research Laboratory, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | | | | | | | | |
Collapse
|
46
|
Kapoor KG, Katz SE, Grzybowski DM, Lubow M. Cerebrospinal fluid outflow: an evolving perspective. Brain Res Bull 2008; 77:327-34. [PMID: 18793703 DOI: 10.1016/j.brainresbull.2008.08.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 08/08/2008] [Indexed: 11/16/2022]
Abstract
Cerebrospinal fluid (CSF) serves numerous important functions in the central nervous system. Despite numerous reports characterizing CSF and its circulation in the subarachnoid space, our understanding of CSF outflow remains limited. Although initial work suggested that both arachnoid granulations and lymphatic capillaries shared in the role of CSF outflow, predominant work since then has focused on the arachnoid granulations. A growing body of recent evidence not only suggests the importance of both arachnoid granulations and lymphatic capillaries, but also additional contributions through transependymal passage likely share in the role of CSF outflow. Consideration of all mechanisms and pathways will help us to better understand the significance of CSF outflow, in health and disease. Here we review how the present concept of CSF outflow has evolved, including a historical review of significant findings and a discussion of the latest innovative developments.
Collapse
Affiliation(s)
- Kapil G Kapoor
- Department of Ophthalmology, Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
47
|
Kapoor KG. Do patients with idiopathic intracranial hypertension suffer from hyposmia? Med Hypotheses 2008; 71:816-7. [PMID: 18584972 DOI: 10.1016/j.mehy.2008.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/07/2008] [Accepted: 04/23/2008] [Indexed: 11/25/2022]
|
48
|
Nagra G, Li J, McAllister JP, Miller J, Wagshul M, Johnston M. Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1752-9. [PMID: 18305019 DOI: 10.1152/ajpregu.00748.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been assumed that the pathogenesis of hydrocephalus includes a cerebrospinal fluid (CSF) absorption deficit. Because a significant portion of CSF absorption occurs into extracranial lymphatics located in the olfactory turbinates, the purpose of this study was to determine whether CSF transport was compromised at this location in a kaolin-induced communicating (extraventricular) hydrocephalus model in rats. Under 1-3% halothane anesthesia, kaolin (n = 10) or saline (n = 9) was introduced into the basal cisterns of Sprague-Dawley rats, and the development of hydrocephalus was assessed 1 wk later using MRI. After injection of human serum albumin ((125)I-HSA) into a lateral ventricle, the tracer enrichment in the olfactory turbinates 30 min postinjection provided an estimate of CSF transport through the cribriform plate into nasal lymphatics. Lateral ventricular volumes in the kaolin group (0.073 +/- 0.014 ml) were significantly greater than those in the saline-injected animals (0.016 +/- 0.001 ml; P = 0.0014). The CSF tracer enrichment in the olfactory turbinates (expressed as percent injected/g tissue) in the kaolin rats averaged 0.99 +/- 0.39 and was significantly lower than that measured in the saline controls (5.86 +/- 0.32; P < 0.00001). The largest degree of ventriculomegaly was associated with the lowest levels of lymphatic CSF uptake with lateral ventricular expansion occurring only when almost all of the lymphatic CSF transport capacity had been compromised. We conclude that lymphatic CSF absorption is impaired in a kaolin-communicating hydrocephalus model and that the degree of this impediment may contribute to the severity of the induced disease.
Collapse
Affiliation(s)
- G Nagra
- Neuroscience Program, Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
|