1
|
Hlusicka J, Loster T, Lischkova L, Vaneckova M, Diblik P, Urban P, Navratil T, Kacer P, Kacerova T, Zakharov S. Reactive carbonyl compounds, carbonyl stress, and neuroinflammation in methyl alcohol intoxication. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02429-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
2
|
Zakharov S, Hlusicka J, Nurieva O, Kotikova K, Lischkova L, Kacer P, Kacerova T, Urban P, Vaneckova M, Seidl Z, Diblik P, Kuthan P, Heissigerova J, Lesovsky J, Rulisek J, Vojtova L, Hubacek JA, Navratil T. Neuroinflammation markers and methyl alcohol induced toxic brain damage. Toxicol Lett 2018; 298:60-69. [DOI: 10.1016/j.toxlet.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/22/2018] [Accepted: 05/03/2018] [Indexed: 12/29/2022]
|
3
|
Zakharov S, Kotikova K, Nurieva O, Hlusicka J, Kacer P, Urban P, Vaneckova M, Seidl Z, Diblik P, Kuthan P, Navratil T, Pelclova D. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning. Clin Toxicol (Phila) 2017; 55:249-259. [DOI: 10.1080/15563650.2017.1284332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sergey Zakharov
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Toxicological Information Centre, General University Hospital, Prague, Czech Republic
| | - Katerina Kotikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Nurieva
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Hlusicka
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Toxicological Information Centre, General University Hospital, Prague, Czech Republic
| | - Petr Kacer
- Institute of Chemical Technology, Prague, Czech Republic
| | - Pavel Urban
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Centre for Industrial Hygiene and Occupational Medicine, National Institute of Public Health, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenek Seidl
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Diblik
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Kuthan
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Navratil
- Toxicological Information Centre, General University Hospital, Prague, Czech Republic
- Department of Biomimetic Electrochemistry, J. Heyrovský Institute of Physical Chemistry of the AS CR, v.v.i, Prague, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Toxicological Information Centre, General University Hospital, Prague, Czech Republic
| |
Collapse
|
4
|
Hsu Y, Tran M, Linninger AA. Dynamic regulation of aquaporin-4 water channels in neurological disorders. Croat Med J 2016; 56:401-21. [PMID: 26526878 PMCID: PMC4655926 DOI: 10.3325/cmj.2015.56.401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution.
Collapse
Affiliation(s)
| | | | - Andreas A Linninger
- Andreas Linninger, 851 S Morgan St., SEO 218, MC 063, Chicago, IL 60607, USA,
| |
Collapse
|
5
|
Fleck J, Temp FR, Marafiga JR, Jesse AC, Milanesi LH, Rambo LM, Mello CF. Montelukast reduces seizures in pentylenetetrazol-kindled mice. Braz J Med Biol Res 2016; 49:e5031. [PMID: 26909785 PMCID: PMC4792507 DOI: 10.1590/1414-431x20155031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022] Open
Abstract
Cysteinyl leukotrienes (CysLTs) have been implicated in seizures and kindling; however, the effect of CysLT receptor antagonists on seizure frequency in kindled animals and changes in CysLT receptor expression after pentylenetetrazol (PTZ)-induced kindling have not been investigated. In this study, we evaluated whether the CysLT1 inverse agonist montelukast, and a classical anticonvulsant, phenobarbital, were able to reduce seizures in PTZ-kindled mice and alter CysLT receptor expression. Montelukast (10 mg/kg, sc) and phenobarbital (20 mg/kg, sc) increased the latency to generalized seizures in kindled mice. Montelukast increased CysLT1 immunoreactivity only in non-kindled, PTZ-challenged mice. Interestingly, PTZ challenge decreased CysLT2 immunoreactivity only in kindled mice. CysLT1 antagonists appear to emerge as a promising adjunctive treatment for refractory seizures. Nevertheless, additional studies are necessary to evaluate the clinical implications of this research.
Collapse
Affiliation(s)
- J Fleck
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - F R Temp
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - J R Marafiga
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - A C Jesse
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L H Milanesi
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L M Rambo
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - C F Mello
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
6
|
Corser-Jensen CE, Goodell DJ, Freund RK, Serbedzija P, Murphy RC, Farias SE, Dell'Acqua ML, Frey LC, Serkova N, Heidenreich KA. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Exp Neurol 2014; 256:7-16. [PMID: 24681156 DOI: 10.1016/j.expneurol.2014.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/14/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in the brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arm water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits.
Collapse
Affiliation(s)
- Chelsea E Corser-Jensen
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dayton J Goodell
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald K Freund
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Predrag Serbedzija
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert C Murphy
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santiago E Farias
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren C Frey
- Department of Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natalie Serkova
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kim A Heidenreich
- Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Birnie M, Morrison R, Camara R, Strauss KI. Temporal changes of cytochrome P450 (Cyp) and eicosanoid-related gene expression in the rat brain after traumatic brain injury. BMC Genomics 2013; 14:303. [PMID: 23642095 PMCID: PMC3658912 DOI: 10.1186/1471-2164-14-303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) induces arachidonic acid (ArA) release from cell membranes. ArA metabolites form a class of over 50 bioactive eicosanoids that can induce both adaptive and/or maladaptive brain responses. The dynamic metabolism of ArA to eicosanoids, and how they affect the injured brain, is poorly understood due to their diverse activities, trace levels, and short half-lives. The eicosanoids produced in the brain postinjury depend upon the enzymes present locally at any given time. Eicosanoids are synthesized by heme-containing enzymes, including cyclooxygenases, lipoxygenases, and arachidonate monoxygenases. The latter comprise a subset of the cytochrome P450 "Cyp" gene family that metabolize fatty acids, steroids, as well as endogenous and exogenous toxicants. However, for many of these genes neither baseline neuroanatomical nor injury-related temporal expression have been studied in the brain.In a rat model of parietal cortex TBI, Cyp and eicosanoid-related mRNA levels were determined at 6 h, 24 h, 3d, and 7d postinjury in parietal cortex and hippocampus, where dynamic changes in eicosanoids have been observed. Quantitative real-time polymerase chain reaction with low density arrays were used to assay 62 rat Cyps, 37 of which metabolize ArA or other unsaturated fatty acids; 16 eicosanoid-related enzymes that metabolize ArA or its metabolites; 8 eicosanoid receptors; 5 other inflammatory- and recovery-related genes, plus 2 mouse Cyps as negative controls and 3 highly expressed "housekeeping" genes. RESULTS Sixteen arachidonate monoxygenases, 17 eicosanoid-related genes, and 12 other Cyps were regulated in the brain postinjury (p < 0.05, Tukey HSD). Discrete tissue levels and distinct postinjury temporal patterns of gene expression were observed in hippocampus and parietal cortex. CONCLUSIONS The results suggest complex regulation of ArA and other lipid metabolism after TBI. Due to the temporal nature of brain injury-induced Cyp gene induction, manipulation of each gene (or its products) at a given time after TBI will be required to assess their contributions to secondary injury and/or recovery. Moreover, a better understanding of brain region localization and cell type-specific expression may be necessary to deduce the role of these eicosanoid-related genes in the healthy and injured brain.
Collapse
Affiliation(s)
- Matthew Birnie
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ryan Morrison
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Ramatoulie Camara
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
| | - Kenneth I Strauss
- University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 515, 45267 Cincinnati, OH, USA
- Present Address: Michigan State University College of Human Medicine, 333 Bostwick Ave NE, 49503 Grand Rapids, MI, USA
| |
Collapse
|
8
|
Kumar A, Prakash A, Pahwa D, Mishra J. Montelukast potentiates the protective effect of rofecoxib against kainic acid-induced cognitive dysfunction in rats. Pharmacol Biochem Behav 2013; 103:43-52. [PMID: 22878042 DOI: 10.1016/j.pbb.2012.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/16/2012] [Accepted: 07/26/2012] [Indexed: 01/18/2023]
Abstract
There is an evolving consensus that mild cognitive impairment (MCI) serves as a prodrome to Alzheimer's disease. Antioxidants and COX-2 (cyclo-oxygenase-2) inhibitors have also been reported to have beneficial effects against conditions of memory impairment. Newer drugs like cysteinyl leukotriene inhibitors have shown neuroprotective effect in animal models of ischemia. Thus, the present study purports to explore the potential role of montelukast (a cysteinyl leukotriene inhibitor) in concert with rofecoxib (COX-2 inhibitor) and caffeic acid (a 5-LOX inhibitor and potent antioxidant) against kainic acid induced cognitive dysfunction in rats. In the experimental protocol, kainic acid (0.4 μg/2 μl) in artificial cerebrospinal fluid (ACSF) was given intrahippocampally (CA3 region) to induce a condition similar to MCI. Memory performance was measured on days 10-14 and the locomotor activity was measured on days 1, 7 and 14. For estimation of biochemical, mitochondrial and histopathological parameters, animals were sacrificed on day 14, stored at -80 °C and the estimation was done on the 15th day. The treatment groups consisting of montelukast (0.5 and 1 mg/kg), rofecoxib (5 and 10 mg/kg) and caffeic acid (5 and 10 mg/kg) showed significant improvement in memory performance, oxidative stress parameters and mitochondrial function as compared to that of control (kainic acid treated), however, combination of montelukast with rofecoxib showed significant improvement in their protective effect. Thus the present study emphasizes the positive modulation of cysteinyl leukotriene receptor inhibition on COX (cyclooxygenase) and LOX (lipoxygenase) pathways in the control of the neuroinflammation in kainic acid induced cognitive dysfunction in rats.
Collapse
Affiliation(s)
- Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh-160014, India.
| | | | | | | |
Collapse
|
9
|
Härtig W, Michalski D, Seeger G, Voigt C, Donat CK, Dulin J, Kacza J, Meixensberger J, Arendt T, Schuhmann MU. Impact of 5-lipoxygenase inhibitors on the spatiotemporal distribution of inflammatory cells and neuronal COX-2 expression following experimental traumatic brain injury in rats. Brain Res 2012; 1498:69-84. [PMID: 23268351 DOI: 10.1016/j.brainres.2012.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/17/2012] [Indexed: 02/05/2023]
Abstract
The inflammatory response following traumatic brain injury (TBI) contributes to neuronal death with poor outcome. Although anti-inflammatory strategies were beneficial in the experimental TBI, clinical translations mostly failed, probably caused by the complexity of involved cells and mediators. We recently showed in a rat model of controlled cortical impact (CCI) that leukotriene inhibitors (LIs) attenuate contusion growth and improve neuronal survival. This study focuses on spatiotemporal characteristics of macrophages and granulocytes, typically involved in inflammatory processes, and neuronal COX-2 expression. Effects of treatment with LIs (Boscari/MK-886), started prior trauma, were evaluated by quantifying CD68(+), CD43(+) and COX-2(+) cells 24h and 72 h post-CCI in the parietal cortex (PC), CA3 region, dentate gyrus (DG) and visual/auditory cortex (v/aC). Correlations were applied to identify intercellular relationships. At 24h, untreated animals showed granulocyte invasion in all regions, decreasing towards 72 h. Macrophages increased from 24h to 72 h post-CCI in PC and v/aC. COX-2(+) neurones showed no temporal changes, except of an increase in the CA3 region at 72 h. Treatment reduced granulocytes at 24h in the pericontusional zone and hippocampus, and macrophages at 72 h in the PC and v/aC. COX-2 expression remained unaffected by LIs, except of time-specific changes in the DG (increase/decrease at 24/72 h). Interrelations confirmed concomitant cellular reactions beyond the initial trauma site. In conclusion, LIs attenuated the cellular inflammatory response following CCI. Future studies have to clarify region-specific effects and explore the potential of a clinically more relevant therapeutic approach applying LIs after CCI.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Gudrun Seeger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Cornelia Voigt
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Cornelius K Donat
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Leipzig-Site, Permoserstr. 15, 04318 Leipzig, Germany
| | - Julia Dulin
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Johannes Kacza
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Jürgen Meixensberger
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Thomas Arendt
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Martin U Schuhmann
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Voigt C, Donat CK, Hartig W, Förschler A, Skardelly M, Stichtenoth D, Arendt T, Meixensberger J, Schuhmann MU. Effect of leukotriene inhibitors on evolution of experimental brain contusions. Neuropathol Appl Neurobiol 2012; 38:354-66. [DOI: 10.1111/j.1365-2990.2011.01211.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Farias S, Frey LC, Murphy RC, Heidenreich KA. Injury-related production of cysteinyl leukotrienes contributes to brain damage following experimental traumatic brain injury. J Neurotrauma 2010; 26:1977-86. [PMID: 19886806 DOI: 10.1089/neu.2009.0877] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury.
Collapse
Affiliation(s)
- Santiago Farias
- Department of Pharmacology, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
12
|
Farias SE, Zarini S, Precht T, Murphy RC, Heidenreich KA. Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells. J Neurochem 2007; 103:1310-8. [PMID: 17711426 DOI: 10.1111/j.1471-4159.2007.04830.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukotrienes are mediators of inflammation that belong to a family of lipids derived from arachidonic acid by the action of 5-lipoxygenase. Leukotrienes have been detected in the central nervous system in association with different pathological events, but little is known about their biosynthesis or function in the brain. When rat neurons and glial cells in primary culture were stimulated with the calcium ionophore, no significant biosynthesis of leukotrienes was detected using liquid chromatography/mass spectrometry (LC/MS) techniques. However, when exogenous LTA(4) was added to these cultured cells, both neurons and glia were able to synthesize LTC(4). Activated neutrophils are known to supply LTA(4) to other cells for transcellular biosynthesis of cysteinyl-leukotrienes. Since neutrophils can infiltrate brain tissue after stroke or traumatic brain injury, we examined whether neutrophils play a similar role in the central nervous system. When peripheral blood neutrophils were co-cultured with rat neurons, glia cells, and then stimulated with calcium ionophore, a robust production of LTC(4), LTD(4), and LTE(4) was observed, revealing that neurons and glia can participate in the transcellular mechanism of leukotriene biosynthesis. The formation of LTC(4) through this mechanism may be relevant in the genesis and progression of the inflammatory response as a result of brain injury.
Collapse
Affiliation(s)
- Santiago E Farias
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, and the Denver VA Medical Center, Denver, Colorado, USA
| | | | | | | | | |
Collapse
|
13
|
Ding Q, Fang SH, Zhou Y, Zhang LH, Zhang WP, Chen Z, Wei EQ. Cysteinyl leukotriene receptor 1 partially mediates brain cryoinjury in mice. Acta Pharmacol Sin 2007; 28:945-52. [PMID: 17588329 DOI: 10.1111/j.1745-7254.2007.00576.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM To determine whether the cysteinyl leukotriene receptor 1 (CysLT1 receptor) modulates brain cryoinjury and whether the CysLT1 receptor antagonist pranlukast exerts a time-dependent protective effect on cryoinjury in mice. METHODS Brain cryoinjury was induced by applying a liquid nitrogen-cooled metal probe to the surface of the skull for 30 s. Brain lesion, neuron density, and endogenous IgG exudation were observed 24 h after cryoinjury. Transcription and the expression of the CysLT1 receptor were detected by RT-PCR and immunoblotting, and the localization of the receptor protein by double immunofluorescence. RESULTS The mRNA and protein expressions of the CysLT1 receptor were upregulated in the brain 6-24 h after cryoinjury, and the CysLT1 receptor protein was primarily localized in the neurons, not in the astrocytes or microglia. Pre-injury treatments with multi-doses and a single dose of pranlukast (0.1 mg/kg) attenuated cryoinjury; postinjury single dose (0.1 mg/kg) at 30 min (not 1 h) after cryoinjury was also effective. CONCLUSION The CysLT1 receptor modulates cryoinjury in mice at least partly, and postinjury treatment with its antagonist pranlukast exerts the protective effect with a therapeutic window of 30 min.
Collapse
Affiliation(s)
- Qian Ding
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang YJ, Zhang L, Ye YL, Fang SH, Zhou Y, Zhang WP, Lu YB, Wei EQ. Cysteinyl leukotriene receptors CysLT1 and CysLT2 are upregulated in acute neuronal injury after focal cerebral ischemia in mice. Acta Pharmacol Sin 2006; 27:1553-60. [PMID: 17112408 DOI: 10.1111/j.1745-7254.2006.00458.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM To determine whether cysteinyl leukotriene receptors (CysLT1 and CysLT2) are upregulated in acute neuronal injury after focal cerebral ischemia in mice, and to confirm CysLT1 receptor localization. METHODS After permanent focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO), neurological deficits and neuron loss were determined at various time points within 48 h. The mRNA expressions of CysLT1 and CysLT2 receptors in the brain were analyzed by RT-PCR. CysLT1 receptor localization was detected by double immunofluorescence. RESULTS Neurological deficits and neuron loss were found 6, 24 and 48 h after MCAO. The mRNA expressions of both CysLT1 and CysLT2 receptors were upregulated in the ischemic hemisphere 1, 24, and 48 h after MCAO with peaks at 24 h. The CysLT1 receptor was selectively localized in neurons 24 h after MCAO. CONCLUSION CysLT1 and CysLT2 receptors are upregulated in acute neuronal injury after focal cerebral ischemia, and the CysLT1 receptor is localized in neurons after ischemia.
Collapse
Affiliation(s)
- Yan-jun Zhang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
16
|
Fang SH, Wei EQ, Zhou Y, Wang ML, Zhang WP, Yu GL, Chu LS, Chen Z. Increased expression of cysteinyl leukotriene receptor-1 in the brain mediates neuronal damage and astrogliosis after focal cerebral ischemia in rats. Neuroscience 2006; 140:969-79. [PMID: 16650938 DOI: 10.1016/j.neuroscience.2006.02.051] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 02/15/2006] [Accepted: 02/23/2006] [Indexed: 12/29/2022]
Abstract
Cysteinyl leukotrienes are potent pro-inflammatory mediators. Cysteinyl leukotriene receptor 1 is one of the two cysteinyl leukotriene receptors cloned. We recently reported that cysteinyl leukotriene receptor 1 antagonists protected against cerebral ischemic injury, and an inducible expression of cysteinyl leukotriene receptor 1 was found in neuron- and glial-appearing cells after traumatic injury in human brain. To determine the role of cysteinyl leukotriene receptor 1 in ischemic brain injury, we investigated the temporal and spatial profile of cysteinyl leukotriene receptor 1 expression in rat brain from 3 h to 14 days after 30 min of middle cerebral artery occlusion, and observed the effect of pranlukast, a cysteinyl leukotriene receptor 1 antagonist, on the ischemic injury. We found that cysteinyl leukotriene receptor 1 mRNA expression was up-regulated in the ischemic core both 3-12 h and 7-14 days, and in the boundary zone 7-14 days after reperfusion. In the ischemic core, cysteinyl leukotriene receptor 1 was primarily localized in neurons 24 h, and in macrophage/microglia 14 days after reperfusion; while in the boundary zone it was localized in proliferated astrocytes 14 days after reperfusion. Pranlukast attenuated neurological deficits, reduced infarct volume and ameliorated neuron loss in the ischemic core 24 h after reperfusion; it reduced infarct volume, ameliorated neuron loss and inhibited astrocyte proliferation in the boundary zone 14 days after reperfusion. Thus, we conclude that cysteinyl leukotriene receptor 1 mediates acute neuronal damage and subacute/chronic astrogliosis after focal cerebral ischemia.
Collapse
Affiliation(s)
- S H Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, 353 Yanan Road, Hangzhou 310031, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Zhang WP, Hu H, Wang ML, Sheng WW, Yao HT, Ding W, Chen Z, Wei EQ. Expression patterns of 5-lipoxygenase in human brain with traumatic injury and astrocytoma. Neuropathology 2006; 26:99-106. [PMID: 16708542 DOI: 10.1111/j.1440-1789.2006.00658.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Lipoxygenase (5-LOX) is a key enzyme in the metabolism of arachidonic acid to leukotrienes. The levels of leukotrienes increase after brain injury and when tumors are present. It has been reported that 5-LOX is widely expressed in the brain and that 5-LOX inhibition provides neuroprotection. However, there is still no information available for the expression patterns of 5-LOX in human brain following trauma or with astrocytomas. We investigated its expression patterns by immunohistochemistry. We found that 5-LOX is normally expressed in neurons and glial cells. In neurons, it was expressed in two patterns: in the cytosol and nucleus or only in the cytosol. In traumatic brain injury, 5-LOX expression increased in glial cells and neutrophils. Double-labeling immunohistochemistry showed that part of the 5-LOX-positive glial cells were GFAP positive. No 5-LOX expression was found in brain microvessel endothelia, except in the regenerated endothelia of a patient 8 days following brain trauma. Furthermore, 5-LOX expression increased and showed a granular pattern in high-grade (grade III/IV) astrocytoma. These results indicate that 5-LOX has multiple expression patterns, and can be induced by brain injury, which implies that 5-LOX might have pathophysiological roles in the human brain.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, the Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schuhmann MU, Mokhtarzadeh M, Stichtenoth DO, Skardelly M, Klinge PM, Gutzki FM, Samii M, Brinker T. Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol Res 2003; 25:481-91. [PMID: 12866196 DOI: 10.1179/016164103101201896] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The post-traumatic changes of leukotrienes LTC4, LTD4, LTE4, and LTB4 in cerebrospinal fluid of rats from 10 min to 7 days were investigated after controlled cortical impact in relation to brain edema and cellular inflammatory response. LTC4 increased five-fold at 4 h, normalized at 24 h, and showed another four-fold increase at 7 days. The same pattern was observed for LTD4 and LTE4. LTB4 however, behaved differently: concentrations were lower and levels peaked two-fold at 24 h. Edema in the injured hemisphere increased continuously up to 24 h without change contralaterally. Leukocyte infiltration, macrophage presence and microglia activation were most prominent at 24 h, 7 days and 24 h respectively. Leukotriene changes in CSF seem to reflect those in the affected tissue, with a time delay and in lower concentrations, and were not linearly correlated to brain edema. The initially high leukotriene levels are rather likely to contribute to the cytotoxic edema than to enhance a vasogenic edema component. The profile of LTB4 was parallel to the time course of leukocyte infiltration, indicating initiation of infiltration as well as prolonged production by leukocytes themselves. The second leukotriene peak at 7 days is likely to follow a different pathway and might be related to a production in macrophages or activated glia.
Collapse
|
19
|
Prasad RM, Doubinskaia I, Singh DK, Campbell G, Mace D, Fletcher A, Dendle P, Yurek DM, Scheff SW, Kraemer PJ. Effects of binge ethanol administration on the behavioral outcome of rats after lateral fluid percussion brain injury. J Neurotrauma 2001; 18:1019-29. [PMID: 11686489 DOI: 10.1089/08977150152693719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study examined the effects of 4 weeks of binge ethanol administration (BEAn) on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were intragastrically given 7.5 mL/kg of either 40% ethanol in 5% glucose solution (3 g ethanol/kg; binge ethanol group), or 5% glucose solution (vehicle group), twice on Thursday and Friday of 3 consecutive weeks. Then rats from both groups were subjected to either lateral FP brain injury of moderate severity (1.8 atm) or to sham operation. Postinjury behavioral measurements revealed that brain injury caused significant spatial learning disability in both groups. There were no significant differences in mean search latencies in the sham animals between the vehicle and binge ethanol groups. On the other hand, the mean search latency of the binge ethanol group was significantly higher than that of the vehicle group in trial blocks 2 and 4. There were no significant differences in the target visits (expressed as mean zone difference [MZD]) during the probe trial between the injured animals of binge ethanol and vehicle groups. However, there was only a minor trend towards worsened MZD score in the binge-injured animals. Histologic analysis of injured animals from both injured ethanol and vehicle groups revealed similar extents of ipsilateral cortical and observable hippocampal damage. These results suggest that 4 weeks of binge ethanol treatment followed by ethanol intoxication at the time of injury worsens some aspects of the spatial learning ability of rats. This worsening is probably caused by subtle, undetectable morphologic damage by binge ethanol administration.
Collapse
Affiliation(s)
- R M Prasad
- Department of Surgery, University of Kentucky Chandler Medical Center, University of Kentucky, Lexington 40536-0084, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dhillon HS, Dong GX, Yurek DM, Estus S, Rangnekar VM, Dendle P, Prasad RM. Regional expression of Par-4 mRNA and protein after fluid percussion brain injury in the rat. Exp Neurol 2001; 170:140-8. [PMID: 11421591 DOI: 10.1006/exnr.2001.7685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regional levels of prostate apoptosis response-4 (Par-4) protein and mRNA were measured after lateral fluid percussion (FP) brain injury in rats. Immunochemical studies indicated that Par-4 immunoreactivity (ir) is present in cortical neurons and hippocampal CA1-CA3 pyramidal neurons in uninjured rats. Increases of Par-4-ir were observed in the CA3 neurons of the ipsilateral hippocampus (IH), but not in injured left cortex (IC) at 48 h after FP brain injury. Levels of the Par-4 mRNA measured by RT-PCR assay and protein measured by Western blot procedure were significantly increased in the injured IC and IH, but not in the contralateral right cortex and hippocampus after brain injury. Levels of both Par-4 protein and mRNA were significantly increased in the IC and IH as early as 2 h and stayed elevated at 24 and 48 h after injury. These data show that the induction of proapoptotic Par-4 mRNA and protein occurs only in the IC and IH that have been observed to undergo apoptosis and neuronal cell loss after lateral FP brain injury. Because increased expression of Par-4 has been observed to contribute to apoptosis and cell death in cultured neurons, the present temporal pattern of Par-4 expression is consistent with a role for Par-4 in apoptosis and neuronal cell death after traumatic brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Dong GX, Singh DK, Dendle P, Prasad RM. Regional expression of Bcl-2 mRNA and mitochondrial cytochrome c release after experimental brain injury in the rat. Brain Res 2001; 903:45-52. [PMID: 11382386 DOI: 10.1016/s0006-8993(01)02379-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regional levels of anti-apoptotic Bcl-2 mRNA and the cytosolic cytochrome c protein were measured after lateral fluid percussion (FP) brain injury in rats. Levels of Bcl-2 mRNA were significantly decreased in the injured left cortex (IC) and ipsilateral hippocampus (IH), but not in the contralateral right cortex (CC) and hippocampus (CH) after brain injury. Levels of Bcl-2 mRNA were significantly decreased as early as 2 h and stayed decreased as long as 48 h in the IC and IH after injury. Levels of the cytosolic cytochrome c protein were significantly increased in the IC and IH, but not in the CC and CH after brain injury. Levels of cytosolic cytochrome c were significantly increased in the IC at 30 min, 48 and 72 h, and in the IH at 2 h and as long as 72 h after injury. The increase of cytosolic cytochrome c suggests that the mitochondrial release of cytochrome is increased in the IC and IH after lateral FP brain injury. These data show that the reduction of anti-apoptotic Bcl-2 and increases of mitochondrial release of cytochrome c protein occur only in the IC and IH, regions which have been observed to undergo apoptosis and neuronal cell loss after lateral FP brain injury. Therefore, it is likely that the reduction of Bcl-2 and the increased cytochrome c protein in the cytosol contribute to the observed apoptosis and neuronal cell death in the IC and IH after lateral FP brain injury in rats.
Collapse
Affiliation(s)
- G X Dong
- Division of Neurosurgery, Department of Surgery and Sanders Brown Center on Aging, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | |
Collapse
|
22
|
Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma 2001; 18:141-62. [PMID: 11229708 DOI: 10.1089/08977150150502587] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study was designed to determine the regional and temporal profile of 45calcium (45Ca2+) accumulation following mild lateral fluid percussion (LFP) injury and how this profile differs when traumatic brain injury occurs early in life. Thirty-six postnatal day (P) 17, thirty-four P28, and 17 adult rats were subjected to a mild (approximately 2.75 atm) LFP or sham injury and processed for 45Ca2+ autoradiography immediately, 6 h, and 1, 2, 4, 7, and 14 days after injury. Optical densities were measured bilaterally within 16 regions of interest. 45Ca2+ accumulation was evident diffusely within the ipsilateral cerebral cortex immediately after injury (18-64% increase) in all ages, returning to sham levels by 2-4 days in P17s, 1 day in P28s, and 4 days in adults. While P17s showed no further 45Ca2+ accumulation, P28 and adult rats showed an additional delayed, focal accumulation in the ipsilateral thalamus beginning 2-4 days postinjury (12-49% increase) and progressing out to 14 days (26-64% increase). Histological analysis of cresyl violet-stained, fresh frozen tissue indicated little evidence of neuronal loss acutely (in all ages), but considerable delayed cell death in the ipsilateral thalamus of the P28 and adult animals. These data suggest that two temporal patterns of 45Ca2+ accumulation exist following LFP: acute, diffuse calcium flux associated with the injury-induced ionic cascade and blood brain barrier breakdown and delayed, focal calcium accumulation associated with secondary cell death. The age-dependency of posttraumatic 45Ca2+ accumulation may be attributed to differential biomechanical consequences of the LFP injury and/or the presence or lack of secondary cell death.
Collapse
Affiliation(s)
- C L Osteen
- Department of Physiological Science, UCLA, Los Angeles, California 90024-7039, USA.
| | | | | | | |
Collapse
|
23
|
Masse J, Billings B, Dhillon HS, Mace D, Hicks R, Barron S, Kraemer PJ, Dendle P, Prasad RM. Three months of chronic ethanol administration and the behavioral outcome of rats after lateral fluid percussion brain injury. J Neurotrauma 2000; 17:421-30. [PMID: 10833061 DOI: 10.1089/neu.2000.17.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study examined the effects of 3 months of chronic ethanol administration (CEAn) on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 3 months. Then, rats from both diet groups were subjected to either lateral FP brain injury of moderate severity (1.8 atm) or to sham operation. Postinjury behavioral measurements revealed that brain injury caused significant spatial learning disability in both diet groups. There were no significant differences in spatial learning ability in the sham or brain-injured animals between the control and ethanol diets. However, a trend towards cognitive impairment in the sham animals and a trend towards reduced deficits in the brain-injured animals were observed in the ethanol diet group. Histologic analysis of injured animals from both diet groups revealed similar extents of ipsilateral cortical and hippocampal CA3 damage. These results, in general, suggest that 3 months of CEAn does not significantly alter the behavioral and morphologic outcome of experimental brain injury.
Collapse
Affiliation(s)
- J Masse
- Department of Surgery, University of Kentucky Chandler Medical Center, University of Kentucky, Lexington 40536-0084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dhillon HS, Carman HM, Zhang D, Scheff SW, Prasad MR. Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus. J Neurotrauma 1999; 16:455-69. [PMID: 10391363 DOI: 10.1089/neu.1999.16.455] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lactate and free fatty acids (FFAs) were extracted from the cortices and hippocampi of rats subjected to sham operation, or mild (1.25 atm) or moderate (2.0 atm) fluid percussion (FP) injury, and their total tissue concentrations were measured. The elevation of lactate in the injured left cortex (IC) and ipsilateral hippocampus (IH) was significantly greater in the moderate-injury than in the mild-injury group at most test times between 5 min and 48 h after injury. Levels of total FFAs were elevated in the IC and IH to a greater extent and for a longer period after injury in the moderate-injury (up to 48 h) than in the mild-injury group (up to 20 min). In general, the extent and duration of the elevation of most of the individual FFAs (palmitic, stearic, oleic, and arachidonic acids) in the IC and IH were also greater in the moderate-injury group than in the mild-injury group. In the contralateral cortex (CC) and hippocampus (CH), the elevation of lactate and total FFAs (and individual stearic and arachidonic acids) were also greater in the moderate-injury group than in the low-injury group at 5 min after injury. The extravasation of Evans blue in the IC and IH from 3 to 6 h after injury was also the greatest in the moderate-injury group. The hippocampal CA3 neuronal cell loss, but not cortical lesion volume, also increased with the severity of injury. These findings suggest that certain neurochemical, physiological (blood-brain barrier permeability), and morphologic responses increase with the severity of FP brain injury, and such relationships are consistent with the increased behavioral deficits observed with the increase of severity of brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | | | | | | | |
Collapse
|
25
|
Dhillon HS, Carman HM, Prasad RM. Regional activities of phospholipase C after experimental brain injury in the rat. Neurochem Res 1999; 24:751-5. [PMID: 10447458 DOI: 10.1023/a:1020779413122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 microM concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLCbeta, PLCgamma, and PLCdelta) after FP brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | | | |
Collapse
|
26
|
Zhang L, Maki A, Dhillon HS, Barron S, Clerici WJ, Hicks R, Kraemer PJ, Butcher J, Prasad RM. Effects of six weeks of chronic ethanol administration on the behavioral outcome of rats after lateral fluid percussion brain injury. J Neurotrauma 1999; 16:243-54. [PMID: 10195472 DOI: 10.1089/neu.1999.16.243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined the effects of 6 weeks of chronic ethanol administration on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet-groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 6 weeks. After 6 weeks, the ethanol diet was discontinued for the ethanol diet rats and they were then given the control sucrose diet for 2 days. During those 2 days, the rats were trained to perform a beam-walking task and subjected to either lateral FP brain injury of low to moderate severity (1.8 atm) or to sham operation. In both the control diet and the ethanol diet groups, lateral FP brain injury caused beam-walking impairment on days 1 and 2 and spatial learning disability on days 7 and 8 after brain injury. There were no significant differences in beam-walking performance and spatial learning disability between brain injured animals from the control and ethanol diet groups. However, a trend towards greater behavioral deficits was observed in brain injured animals in the ethanol diet group. Histologic analysis of both diet groups after behavioral assessment revealed comparable ipsilateral cortical damage and observable CA3 neuronal loss in the ipsilateral hippocampus. These results only suggest that chronic ethanol administration, longer than six weeks of administration, may worsen behavioral outcome following lateral FP brain injury. For more significant behavioral and/or morphological change to occur, we would suggest that the duration of chronic ethanol administration must be increased.
Collapse
Affiliation(s)
- L Zhang
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carman HM, Dhillon HS, Zhang D, Geddes JW, Prasad RM. Regional levels of phospholipase Cgamma after fluid percussion brain injury in the rat. Brain Res 1998; 808:116-9. [PMID: 9795178 DOI: 10.1016/s0006-8993(98)00824-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Levels of PLCgamma, a phospholipase C (PLC) isozyme, were significantly increased in the cytosol in the injured left cortex (LC) at 5, 30 and 120 min after brain injury. In the same site, although levels of membrane PLCgamma did not alter at 5 and 30 min, they were found to be decreased at 2 h after brain injury. In general, the levels of both cytosolic and membrane PLCgamma were unaltered in the contralateral right cortex (RC), ipsilateral left hippocampus (LH) and contralateral right hippocampus (RH) between 5 and 120 min after brain injury. These results suggest that, in addition to well-proposed excitatory neurotransmitter-receptor systems, increased levels of PLCgamma may also contribute to alterations in PIP2 signal transduction pathway, particularly in the greatest injury site (LC) after lateral FP brain injury.
Collapse
Affiliation(s)
- H M Carman
- Department of Surgery, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0084, USA
| | | | | | | | | |
Collapse
|
28
|
McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998; 15:731-69. [PMID: 9814632 DOI: 10.1089/neu.1998.15.731] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanisms underlying secondary or delayed cell death following traumatic brain injury are poorly understood. Recent evidence from experimental models suggests that widespread neuronal loss is progressive and continues in selectively vulnerable brain regions for months to years after the initial insult. The mechanisms underlying delayed cell death are believed to result, in part, from the release or activation of endogenous "autodestructive" pathways induced by the traumatic injury. The development of sophisticated neurochemical, histopathological and molecular techniques to study animal models of TBI have enabled researchers to begin to explore the cellular and genomic pathways that mediate cell damage and death. This new knowledge has stimulated the development of novel therapeutic agents designed to modify gene expression, synthesis, release, receptor or functional activity of these pathological factors with subsequent attenuation of cellular damage and improvement in behavioral function. This article represents a compendium of recent studies suggesting that modification of post-traumatic neurochemical and cellular events with targeted pharmacotherapy can promote functional recovery following traumatic injury to the central nervous system.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, University of Pennsylvania, Philadelphia 19104-6316, USA
| | | | | |
Collapse
|
29
|
Prasad RM, Laabich A, Dhillon HS, Zhang L, Maki A, Clerici WJ, Hicks R, Butcher J, Barron S. Effects of six weeks of chronic ethanol administration on lactic acid accumulation and high energy phosphate levels after experimental brain injury in rats. J Neurotrauma 1997; 14:919-30. [PMID: 9475373 DOI: 10.1089/neu.1997.14.919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effects of 6 weeks of chronic ethanol administration on the lateral fluid percussion (FP) brain injury-induced regional accumulation of lactate and on the levels of total high-energy phosphates were examined in rats. In both the chronic ethanol diet (ethanol diet) and pair-fed isocaloric sucrose control diet (control diet) groups, tissue concentrations of lactate were elevated in the cortices and hippocampi of both the ipsilateral and contralateral hemispheres at 5 min after brain injury. In both diet groups, concentrations of lactate were elevated only in the injured left cortex and the ipsilateral hippocampus at 20 min after FP brain injury. No significant differences were found in the levels of lactate in the cortices and hippocampi of sham animals and brain-injured animals between the ethanol and control diet groups at 5 min and 20 min after injury. In the ethanol and control diet groups, tissue concentrations of total high-energy phosphates (ATP + PCr) were not affected in the cortices and hippocampi at 5 min and 20 min after lateral FP brain injury. No significant differences were found in the levels of total high-energy phosphates in the cortices and hippocampi of the sham and brain-injured animals between the ethanol and control diet groups at 5 min and 20 min after injury. Histologic studies revealed a similar extent of damage in the cortex and in the CA3 region of the ipsilateral hippocampus in both diet groups at 14 days after lateral FP brain injury. These findings suggest that 6 weeks of chronic ethanol administration does not alter brain injury-induced accumulation of lactate, levels of total high energy phosphates, and extent of morphological damage.
Collapse
Affiliation(s)
- R M Prasad
- Department of Surgery, University of Kentucky Chandler Medical Center, University of Kentucky, Lexington 40536-0084, USA
| | | | | | | | | | | | | | | | | |
Collapse
|