1
|
Ikram M, Park HY, Ali T, Kim MO. Melatonin as a Potential Regulator of Oxidative Stress, and Neuroinflammation: Mechanisms and Implications for the Management of Brain Injury-Induced Neurodegeneration. J Inflamm Res 2021; 14:6251-6264. [PMID: 34866924 PMCID: PMC8637421 DOI: 10.2147/jir.s334423] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
This review covers the preclinical and clinical literature supporting the role of melatonin in the management of brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration, and reviews the past and current therapeutic strategies. Traumatic brain injury (TBI) is a neurodegenerative condition, unpredictably and potentially progressing into chronic neurodegeneration, with permanent cognitive, neurologic, and motor dysfunction, having no standard therapies. Due to its complex and multi-faceted nature, the TBI has highly heterogeneous pathophysiology, characterized by the highest mortality and disability worldwide. Mounting evidence suggests that the TBI induces oxidative and nitrosative stress, which is involved in the progression of chronic and acute neurodegenerative diseases. Defenses against such conditions are mostly dependent on the usage of antioxidant compounds, the majority of whom are ingested as nutraceuticals or as dietary supplements. A large amount of literature is available regarding the efficacy of antioxidant compounds to counteract the TBI-associated damage in animal and cellular models of the TBI and several clinical studies. Collectively, the studies have suggested that TBI induces oxidative stress, by suppressing the endogenous antioxidant system, such as nuclear factor erythroid 2–related factor-2 (Nrf-2) increasing the lipid peroxidation and elevation of oxidative damage. Moreover, elevated oxidative stress may induce neuroinflammation by activating the microglial cells, releasing and activating the inflammatory cytokines and inflammatory mediators, and energy dyshomeostasis. Thus, melatonin has shown regulatory effects against the TBI-induced autophagic dysfunction, regulation of mitogen-activated protein kinases, such as ERK, activation of the NLRP-3 inflammasome, and release of the inflammatory cytokines. The collective findings strongly suggest that melatonin may regulate TBI-induced neurodegeneration, although further studies should be conducted to better facilitate future therapeutic windows.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, 6202 AZ, the Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, Maastricht, 6229 ER, the Netherlands
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Alz-Dementia Korea Co., Jinju, 52828, Republic of Korea
| |
Collapse
|
2
|
Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. J Mol Neurosci 2021; 71:1725-1742. [PMID: 33956297 DOI: 10.1007/s12031-021-01841-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) causes brain damage, which involves primary and secondary injury mechanisms. Primary injury causes local brain damage, while secondary damage begins with inflammatory activity followed by disruption of the blood-brain barrier (BBB), peripheral blood cells infiltration, brain edema, and the discharge of numerous immune mediators including chemotactic factors and interleukins. TBI alters molecular signaling, cell structures, and functions. Besides tissue damage such as axonal damage, contusions, and hemorrhage, TBI in general interrupts brain physiology including cognition, decision-making, memory, attention, and speech capability. Regardless of the deep understanding of the pathophysiology of TBI, the underlying mechanisms still need to be assessed with a desired therapeutic agent to control the consequences of TBI. The current review gives a brief outline of the pathophysiological mechanism of TBI and various biochemical pathways involved in brain injury, pharmacological treatment approaches, and novel targets for therapy.
Collapse
|
3
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 457] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Peptide Pharmacological Approaches to Treating Traumatic Brain Injury: a Case for Arginine-Rich Peptides. Mol Neurobiol 2016; 54:7838-7857. [PMID: 27844291 DOI: 10.1007/s12035-016-0287-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) has a devastating effect on victims and their families, and has profound negative societal and economic impacts, a situation that is further compounded by the lack of effective treatments to minimise injury after TBI. The current strategy for managing TBI is partly through preventative measures and partly through surgical and rehabilitative interventions. Secondary brain damage remains the principal focus for the development of a neuroprotective therapeutic. However, the complexity of TBI pathophysiology has meant that single-action pharmacological agents have been largely unsuccessful in combatting the associated brain injury cascades, while combination therapies to date have proved equally ineffective. Peptides have recently emerged as promising lead agents for the treatment of TBI, especially those rich in the cationic amino acid, arginine. Having been shown to lessen the impact of ischaemic stroke in animal models, there are reasonable grounds to believe that arginine-rich peptides may have neuroprotective therapeutic potential in TBI. Here, we review a range of peptides previously examined as therapeutic agents for TBI. In particular, we focus on cationic arginine-rich peptides -- a new class of agents that growing evidence suggests acts through multiple neuroprotective mechanisms.
Collapse
|
5
|
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel) 2013; 6:788-812. [PMID: 24276315 PMCID: PMC3816709 DOI: 10.3390/ph6070788] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC) antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i). These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.
Collapse
Affiliation(s)
- Gene Gurkoff
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
- NSF Center for Biophotonics Science and Technology, Suite 2700 Stockton Blvd, Suite 1400, Sacramento, CA, 95817, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-530-754-7501; Fax: +1-530-754-5125
| | - Kiarash Shahlaie
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Bruce Lyeth
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Robert Berman
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| |
Collapse
|
6
|
Neal MT, Wilson JL, Hsu W, Powers AK. Concussions: What a neurosurgeon should know about current scientific evidence and management strategies. Surg Neurol Int 2012; 3:16. [PMID: 22439107 PMCID: PMC3307233 DOI: 10.4103/2152-7806.92930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/22/2011] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There has been a tremendous amount of interest focused on the topic of concussions over the past few decades. Neurosurgeons are frequently consulted to manage patients with mild traumatic brain injuries (mTBI) that have radiographic evidence of cerebral injury. These injuries share significant overlap with concussions, injuries that typically do not reveal radiographic evidence of structural injury, in the realms of epidemiology, pathophysiology, outcomes, and management. Further, neurosurgeons often manage patients with extracranial injuries that have concomitant concussions. In these cases, neurosurgeons are often the only "concussion experts" that patients encounter. RESULTS The literature has been reviewed and data have been synthesized on the topic including sections on historical background, epidemiology, pathophysiology, diagnostic advances, clinical sequelae, and treatment suggestions, with neurosurgeons as the intended target audience. CONCLUSIONS Neurosurgeons should have a fundamental knowledge of the scientific evidence that has developed regarding concussions and be prepared to guide patients with treatment plans.
Collapse
Affiliation(s)
- Matthew T. Neal
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jonathan L. Wilson
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alexander K. Powers
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
7
|
Shahlaie K, Lyeth BG, Gurkoff GG, Muizelaar JP, Berman RF. Neuroprotective effects of selective N-type VGCC blockade on stretch-injury-induced calcium dynamics in cortical neurons. J Neurotrauma 2010; 27:175-87. [PMID: 19772476 DOI: 10.1089/neu.2009.1003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute elevation in intracellular calcium ([Ca(2+)](i)) following traumatic brain injury (TBI) can trigger cellular mechanisms leading to neuronal dysfunction and death. The mechanisms underlying these processes are not completely understood, but calcium influx through N-type voltage-gated calcium channels (VGCCs) appears to play a central role. The present study examined the time course of [Ca(2+)](i) flux, glutamate release, and loss of cell viability following injury using an in vitro neuronal-glial cortical cell-culture model of TBI. The effects of N-channel blockade with SNX-185 (e.g. omega-conotoxin TVIA) before or after injury were also examined. Neuronal injury produced a transient elevation in [Ca(2+)](i), increased glutamate release, and resulted in neuronal and glial death. SNX-185 administered before or immediately after cell injury reduced glutamate release and increased the survival of neurons and astrocytes, whereas delayed treatment did not improve cell survival but significantly facilitated the return of [Ca(2+)](i) to baseline levels. The new findings that N-type VGCCs are critically involved in injury-induced glutamate release and recovery of [Ca(2+)](i) argue for continued investigation of this treatment strategy for the clinical management of TBI. In particular, SNX-185 may represent an effective class of drugs that can significantly protect injured neurons from the secondary insults that commonly occur after TBI.
Collapse
Affiliation(s)
- Kiarash Shahlaie
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|
8
|
Morales-Garcia JA, Luna-Medina R, Martinez A, Santos A, Perez-Castillo A. Anticonvulsant and neuroprotective effects of the novel calcium antagonist NP04634 on kainic acid-induced seizures in rats. J Neurosci Res 2009; 87:3687-96. [DOI: 10.1002/jnr.22165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Abstract
BACKGROUND This review summarizes promising approaches for the treatment of traumatic brain injury (TBI) that are in either preclinical or clinical trials. OBJECTIVE The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. METHODS A literature review of preclinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. RESULTS/CONCLUSION Nearly all Phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials that seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI.
Collapse
Affiliation(s)
- Ye Xiong
- Henry Ford Health System, Department of Neurosurgery, Detroit, MI 48202, USA
| | | | | |
Collapse
|
10
|
Mirzayan MJ, Klinge PM, Ude S, Hotop A, Samii M, Brinker T, Korkmaz Z, Meyer GJ, Knapp WH, Samii A. Modified calcium accumulation after controlled cortical impact under cyclosporin A treatment: a 45Ca autoradiographic study. Neurol Res 2009; 30:476-9. [PMID: 18953738 DOI: 10.1179/174313208x276916] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE As a neuroprotective drug, cyclosporin A (CsA) has been subject of multiple experimental works in traumatic brain injury (TBI) research. It is well known that CsA inhibits calcium (Ca2+) induced mitochondrial permeability transition (mPT). The aim of this study was to investigate the influence of CsA on the alteration of Ca2+ homeostasis after experimental brain injury. METHODS Sprague-Dawley male rats (n = 36) with a mean weight of 330 g (280-350 g) were general anesthetized with isofluran through gas mask. The anesthetized animals (n = 24) were subjected to a controlled cortical impact (CCI) over the left parietotemporal cortex using round-tip impounder with a 5 mm diameter at a velocity of approximately 3.7 m/s and a penetration depth of 2 mm. The sham group (n = 12) underwent anesthesia and craniotomy without CCI. In the CCI groups, CsA (n = 12) or vehicle (n = 12) was administered 15 minutes post-injury with a subsequent i.p. injection after 24 hours. Thirty-three hours after injury or sham craniotomy, 45calcium (45Ca) suspended in physiologic saline solution was injected in the left femoral vein. Five hours after isotope administration, animals were killed and the brain was quickly removed and placed in powdered dry ice. Coronal plane sections (20 microm thick) taken every 400 microm from the frontal cortex through the occipital cortex, were exposed to cyclotron films for 14 days at -18 degrees C. Relative optical density was utilized to provide a relative measure of 45Ca accumulation within seven different structures. RESULTS The difference of 45Ca accumulation (measured by relative optical density) in the CsA group was greater by 30-70% in the following structures compared to vehicle treated traumatized animals: temporal cortex, CA1, anteromedial and posteromedial thalamus (p < 0.05). CONCLUSION Post-traumatic 45Ca accumulation is modified under CsA. The crucial neuroprotective effect of CsA might be unrelated to a reduction of post-traumatic Ca2+ accumulation, especially with regard to the importance of Ca2+ as an intracellular messenger governing a large number of cellular functions.
Collapse
Affiliation(s)
- M Javad Mirzayan
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mirzayan MJ, Probst C, Krettek C, Samii M, Pape HC, van Griensven M, Samii A. Systemic effects of isolated brain injury: an experimental animal study. Neurol Res 2008; 30:457-460. [DOI: 10.1179/174313208x276907] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Cater HL, Gitterman D, Davis SM, Benham CD, Morrison B, Sundstrom LE. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels. J Neurochem 2007; 101:434-47. [PMID: 17250683 DOI: 10.1111/j.1471-4159.2006.04379.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.
Collapse
Affiliation(s)
- Heather L Cater
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Biasca N, Maxwell WL. Minor traumatic brain injury in sports: a review in order to prevent neurological sequelae. PROGRESS IN BRAIN RESEARCH 2007; 161:263-91. [PMID: 17618984 DOI: 10.1016/s0079-6123(06)61019-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Minor traumatic brain injury (mTBI) is caused by inertial effects, which induce sudden rotation and acceleration forces to and within the brain. At less severe levels of injury, for example in mTBI, there is probably only transient disturbance of ionic homeostasis with short-term, temporary disturbance of brain function. With increased levels of severity, however, studies in animal models of TBI and in humans have demonstrated focal intra-axonal alterations within the subaxolemmal, neurofilament and microtubular cytoskeletal network together with impairment of axoplasmic transport. These changes have, until very recently, been thought to lead to progressive axonal swelling, axonal detachment or even cell death over a period of hours or days, the so-called process of "secondary axotomy". However, recent evidence has suggested that there may be two discrete pathologies that may develop in injured nerve fibers. In the TBI scenario, disturbances of ionic homeostasis, acute metabolic changes and alterations in cerebral blood flow compromise the ability of neurons to function and render cells of the brain increasingly vulnerable to the development of pathology. In ice hockey, current return-to-play guidelines do not take into account these new findings appropriately, for example allow returning to play in the same game. It has recently been hypothesized that the processes summarized above may predispose brain cells to assume a vulnerable state for an unknown period after mild injury (mTBI). Therefore, we recommend that any confused player with or without amnesia should be taken off the ice and not be permitted to play again for at least 72h.
Collapse
Affiliation(s)
- Nicola Biasca
- Clinic of Orthopaedic, Sports Medicine and Traumatology, Department of Surgery, Spital Oberengadin, CH-7503 Samedan/St. Moritz, Switzerland.
| | | |
Collapse
|
14
|
Marklund N, Salci K, Ronquist G, Hillered L. Energy metabolic changes in the early post-injury period following traumatic brain injury in rats. Neurochem Res 2006; 31:1085-93. [PMID: 16909313 DOI: 10.1007/s11064-006-9120-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2006] [Indexed: 12/18/2022]
Abstract
Impaired cerebral energy metabolism may be a major contributor to the secondary injury cascade that occurs following traumatic brain injury (TBI). To estimate the cortical energy metabolic state following mild and severe controlled cortical contusion (CCC) TBI in rats, ipsi-and contralateral cortical tissues were frozen in situ at 15 and 40 min post-injury and adenylate (ATP, ADP, AMP) levels were analyzed using high-performance liquid chromatography (HPLC) and the energy charge (EC) was calculated. At 15 min post-injury, mildly brain-injured animals showed a 43% decrease in cortical ATP levels and a 2.4-fold increase in AMP levels (P < 0.05), and there was a significant reduction of the ipsilateral cortical EC when compared to sham-injured animals (P < 0.05). At 40 min post-injury, the ipsilateral adenylate levels and EC had recovered to the values observed in the sham-injury group. In the severe CCC group, there was a 51% decrease in ipsilateral cortical ATP levels and a 5.3-fold increase in AMP levels with a significant reduction of cortical EC at 15 min post-injury (P < 0.05). At 40 min post-injury, a 2.6-fold ipsilateral increase in AMP levels and an 11% and 44% decrease in EC and ATP levels, respectively, remained (P < 0.05). A 37-38% reduction of the total adenylate pool was observed ipsilaterally in both CCC severity groups at the early time-point, and a 19% and 28% decrease remained in the mild and severe CCC groups, respectively, at 40 min post-injury. Significant contralateral ATP and EC changes were only observed in the severe CCC group at 40 min post-injury (P < 0.05). The energy-requiring secondary injury cascades that occur early post-injury do not challenge the brain tissue to the extent of ATP depletion and may provide a window of opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, SE-75185 Uppsala, Sweden.
| | | | | | | |
Collapse
|
15
|
Geddes-Klein DM, Serbest G, Mesfin MN, Cohen AS, Meaney DF. Pharmacologically induced calcium oscillations protect neurons from increases in cytosolic calcium after trauma. J Neurochem 2006; 97:462-74. [PMID: 16539664 DOI: 10.1111/j.1471-4159.2006.03761.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increases in cytosolic calcium ([Ca(2+)](i)) following mechanical injury are often considered a major contributing factor to the cellular sequelae in traumatic brain injury (TBI). However, very little is known on how developmental changes may affect the calcium signaling in mechanically injured neurons. One key feature in the developing brain that may directly impact its sensitivity to stretch is the reduced inhibition which results in spontaneous [Ca(2+)](i) oscillations. In this study, we examined the mechanism of stretch-induced [Ca(2+)](i) transients in 18-days in vitro (DIV) neurons exhibiting bicuculline-induced [Ca(2+)](i) oscillations. We used an in vitro model of mechanical trauma to apply a defined uniaxial strain to cultured cortical neurons and used increases in [Ca(2+)](i) as a measure of the neuronal response to the stretch insult. We found that stretch-induced increases in [Ca(2+)](i) in 18-DIV neurons were inhibited by pretreatment with either the NMDA receptor antagonist, APV [D(-)-2-Amino-5-phosphonopentanoic acid], or by depolymerizing the actin cytoskeleton prior to stretch. Blocking synaptic NMDA receptors prior to stretch significantly attenuated most of the [Ca(2+)](i) transient. In comparison, cultures with pharmacologically induced [Ca(2+)](i) oscillations showed a substantially reduced [Ca(2+)](i) peak after stretch. We provide evidence showing that a contributing factor to this mechanical desensitization from induced [Ca(2+)](i) oscillations is the PKC-mediated uncoupling of NMDA receptors (NMDARs) from spectrin, an actin-associated protein, thereby rendering neurons insensitive to stretch. These results provide novel insights into how the [Ca(2+)](i) response to stretch is initiated, and how reduced inhibition - a feature of the developing brain - may affect the sensitivity of the immature brain to trauma.
Collapse
Affiliation(s)
- Donna M Geddes-Klein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | | | | | |
Collapse
|
16
|
Bartnik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM. Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotrauma 2006; 22:1052-65. [PMID: 16238483 DOI: 10.1089/neu.2005.22.1052] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The metabolic fate of [1,2 13C]-labeled glucose was determined in male control and unilateral controlled cortical impact (CCI) injured rats at 3.5 and 24 h after surgery. The concentration of 13C-labeled glucose, lactate, glutamate and glutamine were measured in the injured and contralateral cortex. CCI animals showed a 145% increase in 13C lactate in the injured cortex at 3.5 h, but not at 24 h after injury, indicating increased glycolysis in neurons and/or astrocytes ipsilateral to CCI. Total levels of 13C glutamate in cortical tissue extracts did not differ between groups. However, 13C glutamine increased by 40% in the left and 98% in the right cortex at 3.5 h after injury, most likely resulting from an increase in astrocytic metabolism of glutamate. Levels of 13C incorporation into the glutamine isotopomers had returned to control levels by 24 h after CCI. The singlet to doublet ratio of the lactate C3 resonances was calculated to estimate the flux of glucose through the pentose phosphate pathway (PPP). CCI resulted in bilateral increases (9-12%) in the oxidation of glucose via the PPP, with the largest increase occurring at 24 h. Since an increase in PPP activity is associated with NADPH generation, the data suggest that there was an increasing need for reducing equivalents after CCI. Furthermore, 13C was incorporated into glutamate and glutamine isotopomers associated with multiple turns of the tricarboxylic acid (TCA) cycle, indicating that oxidative phosphorylation of glucose was maintained in the injured cortex at 3.5 and 24 h after a moderate to severe CCI injury.
Collapse
Affiliation(s)
- Brenda L Bartnik
- Division of Neurosurgery, Department of Surgery, Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 92354, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Osteen CL, Giza CC, Hovda DA. Injury-induced alterations in N-methyl-D-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience 2004; 128:305-22. [PMID: 15350643 DOI: 10.1016/j.neuroscience.2004.06.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Cells that survive traumatic brain injury are exposed to changes in their neurochemical environment. One of these changes is a prolonged (48 h) uptake of calcium which, by itself, is not lethal. The N-methyl-D-aspartate receptor (NMDAR) is responsible for the acute membrane flux of calcium following trauma; however, it is unclear if it is involved in a flux lasting 2 days. We proposed that traumatic brain injury induced a molecular change in the NMDAR by modifying the concentrations of its corresponding subunits (NR1 and NR2). Changing these subunits could result in a receptor being more sensitive to glutamate and prolong its opening, thereby exposing cells to a sustained flux of calcium. To test this hypothesis, adult rats were subjected to a lateral fluid percussion brain injury and the NR1, NR2A and NR2B subunits measured within different regions. Although little change was seen in NR1, both NR2 subunits decreased nearly 50% compared with controls, particularly within the ipsilateral cerebral cortex. This decrease was sustained for 4 days with levels returning to control values by 2 weeks. However, this decrease was not the same for both subunits, resulting in a decrease (over 30%) in the NR2A:NR2B ratio indicating that the NMDAR had temporarily become more sensitive to glutamate and would remain open longer once activated. Combining these regional and temporal findings with 45calcium autoradiographic studies revealed that the degree of change in the subunit ratio corresponded to the extent of calcium accumulation. Finally, utilizing a combination of NMDAR and NR2B-specific antagonists it was determined that as much at 85% of the long term NMDAR-mediated calcium flux occurs through receptors whose subunits favor the NR2B subunit. These data indicate that TBI induces molecular changes within the NMDAR, contributing to the cells' post-injury vulnerability to glutamatergic stimulation.
Collapse
Affiliation(s)
- C L Osteen
- Brain Injury Research Center, Division of Neurosurgery/Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7039, USA
| | | | | |
Collapse
|
18
|
Abstract
Hypothermia has been shown to be cerebroprotective in traumatized brains. Although a large number of traumatic brain injury (TBI) studies in animals have shown that hypothermia is effective in suppressing a variety of damaging mechanisms, clinical investigations have shown less consistent results. The complexity of damaging mechanisms in human TBI may contribute to these discrepancies. In particular, secondary injuries such as hypotension and hypoxemia may promote poor outcome. However, few experimental TBI studies have employed complex models that included such secondary injuries to clarify the efficacy of hypothermia. This review discusses the effects of hypothermia in various TBI models addressing primary and acute secondary injuries. Included are recently published clinical data using hypothermia as a therapeutic tool for preventing or reducing the detrimental posttraumatic secondary injuries and neurobehavioral deficits. Also discussed are recent successful applications of hypothermia from outside the TBI realm. Based on all available data, some general considerations for the application of hypothermia in TBI patients are given.
Collapse
Affiliation(s)
- Harald G Fritz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Jena, Germany.
| | | |
Collapse
|
19
|
Abstract
Successful treatment strategies for patients with traumatic brain injury (TBI) remain elusive despite standardised clinical treatment guidelines, improved understanding of mechanisms of cellular response to trauma, and a decade of clinical trials aimed at identifying therapeutic agents targeted at mediators of secondary injury. The information explosion relative to mechanisms of secondary injury has identified several potential targets for intervention. Depending on the type of injury to the brain and the intensity and the success of resuscitation, necrosis, apoptosis, inflammatory and excitotoxic cellular damage can be seen. These same processes may continue postinjury, depending on the adequacy of clinical care. Each of these mechanisms of cellular damage can initiate a cascade of events mediated by endogenous signals that lead to secondary neurological injury. Several factors contributed to the failure of earlier clinical trials. Now that these have been recognised, a positive impact on future drug development in TBI has been realised. Both the US and Europe have organised brain injury consortiums where experts in the treatment of TBI provide insight into study design, implementation, conduct and oversight in conjunction with the pharmaceutical industry. Consequently, future clinical trials of new investigational treatments have greater potential for identifying therapies of merit in specific populations of patients with TBI. Pharmacological strategies under investigation are targeting sites involved in the secondary cascade that contribute to overall poor outcome following the primary injury. These treatments include ion channel antagonists including calcium channel antagonists, growth factors, antioxidants, stem cells, apoptosis inhibitors, and inhibitors of other signal modulators. In conclusion, the complexity of TBI pathology and the mechanisms contributing to secondary injury present unique therapeutic challenges. Appropriate research targets for intervention continue to be investigated, however, the likelihood of improving outcomes with a single approach is extremely small. There is a need for collaborative efforts to investigate the optimal time for drug administration and the logical sequence or combination of treatments that will ultimately lead to improved neurological outcomes in this population.
Collapse
Affiliation(s)
- J Hatton
- Division of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington 40536-0084, USA.
| |
Collapse
|
20
|
Laurer HL, Bareyre FM, Lee VM, Trojanowski JQ, Longhi L, Hoover R, Saatman KE, Raghupathi R, Hoshino S, Grady MS, McIntosh TK. Mild head injury increasing the brain's vulnerability to a second concussive impact. J Neurosurg 2001; 95:859-70. [PMID: 11702878 DOI: 10.3171/jns.2001.95.5.0859] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECT Mild, traumatic repetitive head injury (RHI) leads to neurobehavioral impairment and is associated with the early onset of neurodegenerative disease. The authors developed an animal model to investigate the behavioral and pathological changes associated with RHI. METHODS Adult male C57BL/6 mice were subjected to a single injury (43 mice), repetitive injury (two injuries 24 hours apart; 49 mice), or no impact (36 mice). Cognitive function was assessed using the Morris water maze test, and neurological motor function was evaluated using a battery of neuroscore, rotarod, and rotating pole tests. The animals were also evaluated for cardiovascular changes, blood-brain barrier (BBB) breakdown, traumatic axonal injury, and neurodegenerative and histopathological changes between 1 day and 56 days after brain trauma. No cognitive dysfunction was detected in any group. The single-impact group showed mild impairment according to the neuroscore test at only 3 days postinjury, whereas RHI caused pronounced deficits at 3 days and 7 days following the second injury. Moreover, RHI led to functional impairment during the rotarod and rotating pole tests that was not observed in any animal after a single impact. Small areas of cortical BBB breakdown and axonal injury. observed after a single brain injury, were profoundly exacerbated after RHI. Immunohistochemical staining for microtubule-associated protein-2 revealed marked regional loss of immunoreactivity only in animals subjected to RHI. No deposits of beta-amyloid or tau were observed in any brain-injured animal. CONCLUSIONS On the basis of their results, the authors suggest that the brain has an increased vulnerability to a second traumatic insult for at least 24 hours following an initial episode of mild brain trauma.
Collapse
Affiliation(s)
- H L Laurer
- The Head Injury Center, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104-6316, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chung YH, Shin CM, Kim MJ, Shin DH, Yoo YB, Cha CI. Spatial and temporal distribution of N-type Ca(2+) channels in gerbil global cerebral ischemia. Brain Res 2001; 902:294-300. [PMID: 11384625 DOI: 10.1016/s0006-8993(01)02443-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, we have investigated the spatial and temporal distribution of voltage-gated calcium channels in the gerbil model of global cerebral ischemia using immunohistochemistry. Distinct localizations of P-type (alpha(1A)), N-type (alpha(1B)), and L-type (alpha(1C) and alpha(1D)) Ca(2+) channels were observed in the hippocampus at days 1-5 after ischemic injury. However, increased expression of N-type Ca(2+) channels was detectable in brain regions vulnerable to ischemia only at days 2 and 3 after ischemic injury. The pyramidal cell bodies of CA1-3 areas and the granule cell bodies of the dentate gyrus were intensely stained at days 2 and 3 following ischemic injury. Transient changes in N-type Ca(2+) channel expression were also observed in the affected cerebral cortex and striatum at days 2 and 3 after ischemic injury. Although the present study has not addressed the multiple mechanisms contributing to the intracellular free Ca(2+) concentration ([Ca(2+)](i)) increase in the ischemic brain, the first demonstration of the transient increase in N-type Ca(2+) channels may prove useful for future investigations.
Collapse
Affiliation(s)
- Y H Chung
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, 110-799, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The role of neuroprotection in traumatic brain injury (TBI) is reviewed. Basic research and experimental investigations have identified many different compounds with potential neuroprotective effect. However, none of the Phase III trials performed in TBI have been successful in convincingly demonstrating efficacy in the overall population. A common misconception is that consequently these agents are ineffective. The negative results as reported in the overall population may in part be caused by specific aspects of the head injury population as well as by aspects of clinical trial design and analysis. The heterogeneity of the TBI population causes specific problems, such as a risk of imbalances between placebo and treated groups but also causes problems when a possible treatment effect is evaluated in relation to the prognostic effect present. Trials of neuroprotective agents should be targeted first of all to a population in which the mechanism at which the agent is directed is likely to be present and secondly to a population in which the chances of demonstrating efficacy are realistic, e.g., to patients with an intermediate prognosis. The possibilities for concomitant or sequential administration of different neuroprotective agents at different times deserve consideration. The potential for neuroprotection in TBI remains high and we should not be discouraged by recent failures obtained up until now. Rather, prior to initiating new trials, careful consideration of experimental evidence is required in order to optimise chances for mechanistic targeting and lessons learned from previous experience need to be taken to heart in the design of future studies.
Collapse
Affiliation(s)
- A I Maas
- Erasmus University Medical Center Rotterdam, Department of Neurosurgery, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Bailey P, Wilce J. Venom as a source of useful biologically active molecules. EMERGENCY MEDICINE (FREMANTLE, W.A.) 2001; 13:28-36. [PMID: 11476408 DOI: 10.1046/j.1442-2026.2001.00174.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the specialty area of venomology, emergency physicians traditionally have been most interested in the description of a variety of envenomation syndromes and, subsequent to this, the most appropriate investigative and therapeutic strategies to employ when envenomation is present. Taking an alternative viewpoint, in this paper we have reviewed a selection of interesting areas of biomedical research in which venom components are being investigated for their potential as novel therapeutic agents, pesticides and ion-channel probes. In addition, we describe the molecular imaging tools of X-ray crystallography and nuclear magnetic resonance spectroscopy, key techniques in the development of rationally designed therapeutic agents.
Collapse
Affiliation(s)
- P Bailey
- Department of Biochemistry, University of Western Australia, Australia.
| | | |
Collapse
|
24
|
Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma 2001; 18:141-62. [PMID: 11229708 DOI: 10.1089/08977150150502587] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study was designed to determine the regional and temporal profile of 45calcium (45Ca2+) accumulation following mild lateral fluid percussion (LFP) injury and how this profile differs when traumatic brain injury occurs early in life. Thirty-six postnatal day (P) 17, thirty-four P28, and 17 adult rats were subjected to a mild (approximately 2.75 atm) LFP or sham injury and processed for 45Ca2+ autoradiography immediately, 6 h, and 1, 2, 4, 7, and 14 days after injury. Optical densities were measured bilaterally within 16 regions of interest. 45Ca2+ accumulation was evident diffusely within the ipsilateral cerebral cortex immediately after injury (18-64% increase) in all ages, returning to sham levels by 2-4 days in P17s, 1 day in P28s, and 4 days in adults. While P17s showed no further 45Ca2+ accumulation, P28 and adult rats showed an additional delayed, focal accumulation in the ipsilateral thalamus beginning 2-4 days postinjury (12-49% increase) and progressing out to 14 days (26-64% increase). Histological analysis of cresyl violet-stained, fresh frozen tissue indicated little evidence of neuronal loss acutely (in all ages), but considerable delayed cell death in the ipsilateral thalamus of the P28 and adult animals. These data suggest that two temporal patterns of 45Ca2+ accumulation exist following LFP: acute, diffuse calcium flux associated with the injury-induced ionic cascade and blood brain barrier breakdown and delayed, focal calcium accumulation associated with secondary cell death. The age-dependency of posttraumatic 45Ca2+ accumulation may be attributed to differential biomechanical consequences of the LFP injury and/or the presence or lack of secondary cell death.
Collapse
Affiliation(s)
- C L Osteen
- Department of Physiological Science, UCLA, Los Angeles, California 90024-7039, USA.
| | | | | | | |
Collapse
|
25
|
Bergsneider M, Hovda DA, Lee SM, Kelly DF, McArthur DL, Vespa PM, Lee JH, Huang SC, Martin NA, Phelps ME, Becker DP. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 2000; 17:389-401. [PMID: 10833058 DOI: 10.1089/neu.2000.17.389] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Utilizing [18F]fluorodeoxyglucose positron emission tomography (FDG-PET), we studied the correlation between CMRglc and the level of consciousness within the first month following human traumatic brain injury. Forty-three FDG-PET scans obtained on 42 mild to severely head-injured patients were quantitatively analyzed for the determination of regional cerebral metabolic rate of glucose (CMRglc). Reduction of cerebral glucose utilization, defined as a CMRglc of < or =4.9 mg/100 g/min, was present regionally in 88% of the studies. The prevalence of global cortical CMRglc reduction was higher in severely head-injured patients (86% versus 67% mild-moderate), although the absolute magnitude was similar across the injury severity spectrum (mean CMRglc 3.9 +/- 0.6 mg/100 g/min). The level of consciousness, as measured by the Glasgow Coma Scale, correlated poorly with the global cortical CMRglc value (r = 0.08; p = 0.63). With regards to severity of head injury, this correlation was worst for the severely injured (r = -0.11; p = 0.58) and better for the mildly injured patients (r = 0.50; p = 0.07). In most cases, intraparenchymal hemorrhagic lesions were associated with either focal CMRglc reduction or elevation. It is concluded that the etiologies of CMRglc reduction are likely multifactorial given the complex nature of traumatic brain injury and that the reduction of CMRglc represents a fundamental pathobiologic state following head injury that is not tightly coupled to level of consciousness.
Collapse
Affiliation(s)
- M Bergsneider
- UCLA Division of Neurosurgery, Harbor-UCLA Medical Center, UCLA Brain Research Institute, Los Angeles, California 90095-7039, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|