1
|
Pharmacodynamic Effects of Standard versus High Caffeine Doses in the Developing Brain of Neonatal Rats Exposed to Intermittent Hypoxia. Int J Mol Sci 2021; 22:ijms22073473. [PMID: 33801707 PMCID: PMC8037517 DOI: 10.3390/ijms22073473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Caffeine citrate, at standard doses, is effective for reducing the incidence of apnea of prematurity (AOP) and may confer neuroprotection and decrease neonatal morbidities in extremely low gestational age neonates (ELGANs) requiring oxygen therapy. We tested the hypothesis that high-dose caffeine (HiC) has no adverse effects on the neonatal brain. (2) Methods: Newborn rat pups were randomized to room air (RA), hyperoxia (Hx) or neonatal intermittent hypoxia (IH), from birth (P0) to P14 during which they received intraperitoneal injections of LoC (20 mg/kg on P0; 5 mg/kg/day on P1-P14), HiC (80 mg/kg; 20 mg/kg), or equivalent volume saline. Blood gases, histopathology, myelin and neuronal integrity, and adenosine receptor reactivity were assessed. (3) Results: Caffeine treatment in Hx influenced blood gases more than treatment in neonatal IH. Exposure to neonatal IH resulted in hemorrhage and higher brain width, particularly in layer 2 of the cerebral cortex. Both caffeine doses increased brain width in RA, but layer 2 was increased only with HiC. HiC decreased oxidative stress more effectively than LoC, and both doses reduced apoptosis biomarkers. In RA, both caffeine doses improved myelination, but the effect was abolished in Hx and neonatal IH. Similarly, both doses inhibited adenosine 1A receptor in all oxygen environments, but adenosine 2A receptor was inhibited only in RA and Hx. (4) Conclusions: Caffeine, even at high doses, when administered in normoxia, can confer neuroprotection, evidenced by reductions in oxidative stress, hypermyelination, and increased Golgi bodies. However, varying oxygen environments, such as Hx or neonatal IH, may alter and modify pharmacodynamic actions of caffeine and may even override the benefits caffeine.
Collapse
|
2
|
Beitchman JA, Lifshitz J, Harris NG, Thomas TC, Lafrenaye AD, Hånell A, Dixon CE, Povlishock JT, Rowe RK. Spatial Distribution of Neuropathology and Neuroinflammation Elucidate the Biomechanics of Fluid Percussion Injury. Neurotrauma Rep 2021; 2:59-75. [PMID: 34223546 PMCID: PMC8240834 DOI: 10.1089/neur.2020.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffuse brain injury is better described as multi-focal, where pathology can be found adjacent to seemingly uninjured neural tissue. In experimental diffuse brain injury, pathology and pathophysiology have been reported far more lateral than predicted by the impact site. We hypothesized that local thickening of the rodent skull at the temporal ridges serves to focus the intracranial mechanical forces experienced during brain injury and generate predictable pathology. We demonstrated local thickening of the skull at the temporal ridges using contour analysis on magnetic resonance imaging. After diffuse brain injury induced by midline fluid percussion injury (mFPI), pathological foci along the anterior-posterior length of cortex under the temporal ridges were evident acutely (1, 2, and 7 days) and chronically (28 days) post-injury by deposition of argyophilic reaction product. Area CA3 of the hippocampus and lateral nuclei of the thalamus showed pathological change, suggesting that mechanical forces to or from the temporal ridges shear subcortical regions. A proposed model of mFPI biomechanics suggests that injury force vectors reflect off the skull base and radiate toward the temporal ridge, thereby injuring ventral thalamus, dorsolateral hippocampus, and sensorimotor cortex. Surgically thinning the temporal ridge before injury reduced injury-induced inflammation in the sensorimotor cortex. These data build evidence for temporal ridges of the rodent skull to contribute to the observed pathology, whether by focusing extracranial forces to enter the cranium or intracranial forces to escape the cranium. Pre-clinical investigations can take advantage of the predicted pathology to explore injury mechanisms and treatment efficacy.
Collapse
Affiliation(s)
- Joshua A. Beitchman
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Midwestern University, Glendale, Arizona, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Arizona State University, Tempe, Arizona, USA
- Phoenix VA Health Care System, Phoenix, Arizona, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, and Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Theresa Currier Thomas
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Arizona State University, Tempe, Arizona, USA
- Phoenix VA Health Care System, Phoenix, Arizona, USA
| | | | - Anders Hånell
- Virginia Commonwealth University, Richmond, Virginia, USA
- Uppsala University Hospital, Uppsala, Sweden
| | | | | | - Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona, USA
- Phoenix VA Health Care System, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
4
|
Chen YH, Kuo TT, Huang EYK, Hoffer BJ, Kao JH, Chou YC, Chiang YH, Miller J. Nicotine-Induced Conditional Place Preference Is Affected by Head Injury: Correlation with Dopamine Release in the Nucleus Accumbens Shell. Int J Neuropsychopharmacol 2018; 21:949-961. [PMID: 29905798 PMCID: PMC6165954 DOI: 10.1093/ijnp/pyy055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Traumatic brain injury is known to impact dopamine-mediated reward pathways, but the underlying mechanisms have not been fully established. METHODS Nicotine-induced conditional place preference was used to study rats exposed to a 6-psi fluid percussion injury with and without prior exposure to nicotine. Preference was quantified as a score defined as (C1 - C2) / (C1 + C2), where C1 is time in the nicotine-paired compartment and C2 is time in the saline-paired compartment. Subsequent fast-scan cyclic voltammetry was used to analyze the impact of nicotine infusion on dopamine release in the shell portion of the nucleus accumbens. To further determine the influence of brain injury on nicotine withdrawal, nicotine infusion was administered to the rats after fluid percussion injury. The effects of fluid percussion injury on conditional place preference after prior exposure to nicotine and abstinence or withdrawal from nicotine were also assessed. RESULTS After traumatic brain injury, dopamine release was reduced in the nucleus accumbens shell, and nicotine-induced conditional place preference preference was significantly impaired. Preference scores of control, sham-injured, and fluid percussion injury groups were 0.1627±0.04204, 0.1515±0.03806, and -0.001300±0.04286, respectively. Nicotine-induced conditional place preference was also seen in animals after nicotine pretreatment, with a conditional place preference score of 0.07805±0.02838. Nicotine preexposure substantially increased tonic dopamine release in sham-injured animals, but it did not change phasic release; nicotine exposure after fluid percussion injury enhanced phasic release, though not to the same levels seen in sham-injured rats. Conditioned preference was related not only to phasic dopamine release (r=0.8110) but also to the difference between tonic and phasic dopamine levels (r=0.9521). CONCLUSIONS Traumatic brain injury suppresses dopamine release from the shell portion of the nucleus accumbens, which in turn significantly alters reward-seeking behavior. These results have important implications for tobacco and drug use after traumatic brain injury.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C,Correspondence: Yuan-Hao Chen, MD, PhD, 4F, No. 325, 2nd Sec., Cheng-Kung Rd., Neihu Dist., Taipei City, 114, Taiwan, R.O.C.()
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C,Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, Taipei, Taiwan, R.O.C,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jen-Hsin Kao
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Yung-Hsiao Chiang
- Graduate Program on Neuroregeneration, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Jonathan Miller
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
Chen YH, Huang EYK, Kuo TT, Hoffer BJ, Miller J, Chou YC, Chiang YH. Dopamine release in the nucleus accumbens is altered following traumatic brain injury. Neuroscience 2017; 348:180-190. [DOI: 10.1016/j.neuroscience.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/07/2023]
|
6
|
Lyeth BG. Historical Review of the Fluid-Percussion TBI Model. Front Neurol 2016; 7:217. [PMID: 27994570 PMCID: PMC5133434 DOI: 10.3389/fneur.2016.00217] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern worldwide. Laboratory studies utilizing animal models of TBI are essential for addressing pathological mechanisms of brain injury and development of innovative treatments. Over the past 75 years, pioneering head injury researchers have devised and tested a number of fluid percussive methods to reproduce the concussive clinical syndrome in animals. The fluid-percussion brain injury technique has evolved from early investigations that applied a generalized loading of the brain to more recent computer-controlled systems. Of the many preclinical TBI models, the fluid-percussion technique is one of the most extensively characterized and widely used models. Some of the most important advances involved the development of the Stalhammer device to produce concussion in cats and the later characterization of this device for application in rodents. The goal of this historical review is to provide readers with an appreciation for the time and effort expended by the pioneering researchers who have led to today's state of the art fluid-percussion animal models of TBI.
Collapse
Affiliation(s)
- Bruce G. Lyeth
- Department of Neurological Surgery, University of California Davis, Davis, CA, USA
| |
Collapse
|
7
|
Chang CZ, Wu SC, Kwan AL, Lin CL. Magnesium Lithospermate B Implicates 3'-5'-Cyclic Adenosine Monophosphate/Protein Kinase A Pathway and N-Methyl-d-Aspartate Receptors in an Experimental Traumatic Brain Injury. World Neurosurg 2015; 84:954-63. [PMID: 26093361 DOI: 10.1016/j.wneu.2015.05.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. METHODS A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. RESULTS Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. CONCLUSIONS This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Huang EYK, Tsai TH, Kuo TT, Tsai JJ, Tsui PF, Chou YC, Ma HI, Chiang YH, Chen YH. Remote effects on the striatal dopamine system after fluid percussion injury. Behav Brain Res 2014; 267:156-72. [DOI: 10.1016/j.bbr.2014.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/25/2023]
|
9
|
Takeuchi S, Wada K, Nawashiro H, Uozumi Y, Otani N, Osada H, Nagatani K, Kobayashi H, Suzuki T, Shima K. Adiponectin and traumatic brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:111-4. [PMID: 23564114 DOI: 10.1007/978-3-7091-1434-6_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Adiponectin, a circulating adipose-derived hormone regulating inflammation and energy metabolism, has beneficial actions on cardiovascular disorders. Recent studies have suggested that adiponectin might be a potential molecular target for ischemic stroke therapy; however, little is known about the effects of adiponectin on traumatic brain injury. The present study examined the immunoactivity of adiponectin.Adult male Sprague-Dawley rats were subjected to lateral fluid percussion injury using the Dragonfly device. Immuno-histochemical studies showed that the adiponectin expression was increased in the cerebral cortex at 24 h after injury and in the hippocampus at 72 h after injury. Our findings suggest that adiponectin might participate in the pathophysiological process occurring after traumatic brain injury.
Collapse
Affiliation(s)
- Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feng JF, Gurkoff GG, Van KC, Song M, Lowe DA, Zhou J, Lyeth BG. NAAG peptidase inhibitor reduces cellular damage in a model of TBI with secondary hypoxia. Brain Res 2012; 1469:144-52. [PMID: 22750589 DOI: 10.1016/j.brainres.2012.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) leads to a rapid and excessive glutamate elevation in the extracellular milieu, resulting in neuronal degeneration and astrocyte damage. Posttraumatic hypoxia is a clinically relevant secondary insult that increases the magnitude and duration of glutamate release following TBI. N-acetyl-aspartyl glutamate (NAAG), a prevalent neuropeptide in the CNS, suppresses presynaptic glutamate release by its action at the mGluR3 (a group II metabotropic glutamate receptor). However, extracellular NAAG is rapidly converted into NAA and glutamate by the catalytic enzyme glutamate carboxypeptidase II (GCPII) reducing presynaptic inhibition. We previously reported that the GCPII inhibitor ZJ-43 and its prodrug di-ester PGI-02776 reduce the deleterious effects of excessive extracellular glutamate when injected systemically within the first 30 min following injury. We now report that PGI-02776 (10mg/kg) is neuroprotective when administered 30 min post-injury in a model of TBI plus 30 min of hypoxia (FiO(2)=11%). 24h following TBI with hypoxia, significant increases in neuronal cell death in the CA1, CA2/3, CA3c, hilus and dentate gyrus were observed in the ipsilateral hippocampus. Additionally, there was a significant reduction in the number of astrocytes in the ipsilateral CA1, CA2/3 and in the CA3c/hilus/dentate gyrus. Administration of PGI-02776 immediately following the cessation of hypoxia significantly reduced neuronal and astrocytic cell death across all regions of the hippocampus. These findings indicate that NAAG peptidase inhibitors administered post-injury can significantly reduce the deleterious effects of TBI combined with a secondary hypoxic insult.
Collapse
Affiliation(s)
- Jun-Feng Feng
- Department of Neurological Surgery, University of California at Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Feng JF, Zhao X, Gurkoff GG, Van KC, Shahlaie K, Lyeth BG. Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. J Neurotrauma 2012; 29:1167-79. [PMID: 22191636 DOI: 10.1089/neu.2011.1867] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypoxia frequently occurs in patients with traumatic brain injury (TBI) and is associated with increased morbidity and mortality. This study examined the effects of immediate or delayed post-traumatic hypoxia (fraction of inspired oxygen [FiO(2)] 11%) on acute neuronal degeneration and long-term neuronal survival in hippocampal fields after moderate fluid percussion injury in rats. In Experiment 1, hypoxia was induced for 15 or 30 min alone or immediately following TBI. In Experiments 2 and 3, 30 min of hypoxia was induced immediately after TBI or delayed until 60 min after TBI. In Experiment 1, acute neurodegeneration was evaluated in the hippocampal fields 24 h after insults using Fluoro-Jade staining and stereological quantification. During hypoxia alone, or in combination with TBI, mean arterial blood pressure was significantly reduced by approximately 30%, followed by a rapid return to normal values upon return to pre-injury FiO(2). Hypoxia alone failed to cause hippocampal neuronal degeneration when measured at 24 h after insult. TBI alone resulted in neuronal degeneration in each ipsilateral hippocampal field, predominantly in CA2-CA3 and the dentate gyrus. Compared to TBI alone, TBI plus immediate hypoxia for either 15 or 30 min significantly increased neuronal loss in most ipsilateral hippocampal fields and in the contralateral hilus and dentate gyrus. In Experiment 2, TBI plus hypoxia delayed 30 min significantly increased degeneration only in ipsilateral CA2-CA3. In Experiment 3, 30 min of immediate hypoxia significantly reduced the numbers of surviving neurons in the CA3 at 14 days after TBI. The greatly increased vulnerability in all hippocampal fields by immediate 30 min post-traumatic hypoxia provides a relevant model of TBI complicated with hypoxia/hypotension. These data underscore the significance of the secondary insult, the necessity to better characterize the range of injuries experienced by the TBI patient, and the importance of strictly avoiding hypoxia in the early management of TBI patients.
Collapse
Affiliation(s)
- Jun-feng Feng
- Department of Neurological Surgery, University of California at Davis, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
12
|
Tomura S, Nawashiro H, Otani N, Uozumi Y, Toyooka T, Ohsumi A, Shima K. Effect of decompressive craniectomy on aquaporin-4 expression after lateral fluid percussion injury in rats. J Neurotrauma 2011; 28:237-43. [PMID: 21083433 DOI: 10.1089/neu.2010.1443] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Decompressive craniectomy is one therapeutic option for severe traumatic brain injury (TBI), and it has long been used for the treatment of patients with malignant post-traumatic brain edema. A lack of definitive evidence, however, prevents physicians from drawing any conclusions about the effects of decompressive craniectomy for the treatment of TBI. Therefore, the aim of the present study was to investigate the influence of decompressive craniectomy on post-traumatic brain edema formation. The aquaporin-4 (AQP4) water channel is predominantly expressed in astrocytes, and it plays an important role in the regulation of brain water homeostasis. In the present study, we investigated the time course of AQP4 expression and the water content of traumatized cortex following decompressive craniectomy after TBI. Adult male Sprague-Dawley rats (300-400 g) were subjected to lateral fluid percussion injury using the Dragonfly device. The effect of decompressive craniectomy was studied in traumatized rats without craniectomy (closed skull, DC-), and in rats craniectomized immediately after trauma (DC+). AQP4 expression was investigated with a Western blot analysis and immunohistochemistry. Brain edema was measured using the wet weight/dry weight method. At 48 h after TBI, AQP4 expression of the DC- group was significantly increased compared with the DC+ group (p < 0.01). In addition, the cortical water content of the DC- group was significantly increased compared to the DC+ group at the same time point (p < 0.05). The present results suggest that decompressive craniectomy may affect AQP4 expression and reduce brain edema formation after TBI.
Collapse
Affiliation(s)
- Satoshi Tomura
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Lu KT, Sun CL, Wo PYY, Yen HH, Tang TH, Ng MC, Huang ML, Yang YL. Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the Raf/MEK/ERK cascade. J Neurotrauma 2011; 28:441-50. [PMID: 21091268 DOI: 10.1089/neu.2010.1473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adult neurogenesis occurs in the subgranular zone of the hippocampal dentate gyrus, and can be modulated by physiological and pathological events. We examined the effect of vascular endothelial growth factor (VEGF), and the correlation between VEGF and the Raf/MEK/ERK cascade in neurogenesis after traumatic brain injury (TBI). The expression of VEGF and the phosphorylation level of Raf/MEK/ERK were analyzed by Western blot, and TBI-induced neurogenesis was determined by immunofluorescence labeling and confocal microscopic detection. Hippocampal VEGF began to increase after 12 h, and reached a peak at day 7. Along with the upregulation of VEGF, neurogenesis in the hippocampus also increased. Administration of the VEGF antisense oligodeoxynucleotide, or the VEGF receptor-2 antagonist SU1498 (10 μg, ICV), attenuated the phosphorylation of the MAPK cascade proteins and caused a decrease in neurogenesis in the hippocampus. Similarly, administration of the ERK inhibitor PD98059 (500 ng, ICV) also exhibited a suppressive effect on neurogenesis. Our results indicate that VEGF plays an important role in neurogenesis after TBI, and that the process involves VEGF receptor-2 and the Raf/MEK/ERK cascade.
Collapse
Affiliation(s)
- Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Otani N, Nawashiro H, Nagatani K, Takeuchi S, Kobayashi H, Shima K. Mitogen-Activated Protein Kinase Pathways Following Traumatic Brain Injury. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/nm.2011.23028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Brain volume regulation: osmolytes and aquaporin perspectives. Neuroscience 2010; 168:871-84. [DOI: 10.1016/j.neuroscience.2009.11.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 02/08/2023]
|
16
|
Lindh C, Wennersten A, Arnberg F, Holmin S, Mathiesen T. Differences in cell death between high and low energy brain injury in adult rats. Acta Neurochir (Wien) 2008; 150:1269-75;discussion 1275. [PMID: 19015811 DOI: 10.1007/s00701-008-0147-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 06/03/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND Traumatic brain damage is dependent on energy transfer to the brain at impact. Different injury mechanisms may cause different types of brain injury. It is, however, unknown if the relative distribution between apoptotic cell-death and necrotic cell- death in different populations of brain cells varies depending on energy transfer. METHOD Experimental contusions were produced with a modified weight drop onto the exposed dura of rats. Animals were divided into two groups. They received a weight drop from two different heights to vary energy transfer to be higher or lower. Animals were sacrificed at 24 hours post injury (1 DPI) or 6 days (6 DPI); brains were frozen and processed for TUNEL (TdT mediated dUTP nick end labelling), light microscopy and immunochemistry. FINDINGS The total number of TUNEL positive cells was higher in the higher energy group on the first day after the injury. At the same time point, relatively fewer cells were apoptotic than necrotic, while relatively more glial cells than neurons were TUNEL-positive in higher energy trauma. At 6 day after the injury fewer cells were TUNEL positive and there were no longer significant differences between the high and low energy groups. CONCLUSIONS Increasing energy transfer in a model for brain contusion demonstrated qualitative and quantitative changes in the pattern of cell death. This complexity must be considered when evaluating brain-protection as treatment results may vary depending on which cellular population and which mechanism of cell death is treated under the exact experimental and clinical conditions.
Collapse
Affiliation(s)
- Claes Lindh
- Department of Clinical Neuroscience, Section of Clinical CNS Research, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
Hartley CE, Varma M, Fischer JP, Riccardi R, Strauss JA, Shah S, Zhang S, Yang ZJ. Neuroprotective effects of erythropoietin on acute metabolic and pathological changes in experimentally induced neurotrauma. J Neurosurg 2008; 109:708-14. [PMID: 18826359 DOI: 10.3171/jns/2008/109/10/0708] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Head trauma is a dynamic process characterized by a cascade of metabolic and molecular events. Erythropoietin (EPO) has been shown to have neuroprotective effects in animal models of traumatic brain injury (TBI). Acute in vivo mechanisms and pathological changes associated with EPO following TBI are unknown. In this study the authors compare acute metabolic and pathological changes following TBI with and without systemically administered EPO. METHODS Right frontal lobe microdialysis cannulae and right parietal lobe percussion hubs were inserted into 16 Sprague-Dawley rats. After a 4- to 5-day recovery, TBI was induced via a DragonFly fluid-percussion device at 2.5-2.8 atm. Rats were randomized into 2 groups, which received 5000 U/kg EPO or normal saline intraperitoneally 30 minutes after TBI. Microdialysis samples for glucose, lactate, pyruvate, and glutamate were obtained every 25 minutes for 10 hours. Rats were killed, their brains processed for light microscopy, and sections stained with H & E. RESULTS Erythropoietin administered 30 minutes after TBI directly affects acute brain metabolism. Brains treated with EPO maintain higher levels of glucose 4-10 hours after TBI (p<0.01), lower levels of lactate 6-10 hours after TBI (p<0.01), and lower levels of pyruvate 7.5-10 hours after TBI (p<0.01) compared with saline-treated controls. Erythropoietin maintains aerobic metabolism after TBI. Systemic EPO administration reduces acute TBI-induced lesion volume (p<0.05). CONCLUSIONS Following TBI, neuron use initially increases, with subsequent depletion of extracellular glucose, resulting in increased levels of extracellular lactate and pyruvate. This energy requirement can result in cell death due to increased metabolic demands. These data suggest that the neuroprotective effect of EPO may be partially due to improved energy metabolism in the acute phase in this rat model of TBI.
Collapse
Affiliation(s)
- Chad E Hartley
- Department of Neurosurgery, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kimelberg HK. Volume activated anion channel and astrocytic cellular edema in traumatic brain injury and stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 559:157-67. [PMID: 18727237 DOI: 10.1007/0-387-23752-6_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Harold K Kimelberg
- Neural and Vascular Biology Theme, Ordway Research Institute, 150 New Scotland Avenue., Albany, NY 12208, USA.
| |
Collapse
|
19
|
Aoyama N, Lee SM, Moro N, Hovda DA, Sutton RL. Duration of ATP reduction affects extent of CA1 cell death in rat models of fluid percussion injury combined with secondary ischemia. Brain Res 2008; 1230:310-9. [PMID: 18657524 PMCID: PMC2581618 DOI: 10.1016/j.brainres.2008.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/02/2008] [Indexed: 11/27/2022]
Abstract
Secondary ischemia (SI) following traumatic brain injury (TBI) increases damage to the brain in both animals and humans. The current study determined if SI after TBI alters the extent or duration of reduced energy production within the first 24 h post-injury and hippocampal cell loss at one week post-injury. Adult male rats were subjected to sham injury, lateral (LFPI) or central fluid percussion injury (CFPI) only, or to combined LFPI or CFPI with SI. The SI was 8 min of bilateral forebrain ischemia combined with hemorrhagic hypotension, applied at 1 h following FPI. After LFPI alone adenosine triphosphate (ATP) levels within the ipsilateral CA1 were reduced at 2 h (p < 0.05) and subsequently recovered. After LFPI+SI the ATP reductions in CA1 ipsilateral to FPI persisted for 24 h (p < 0.01). ATP levels in the contralateral CA1 were not affected by LFPI alone or LFPI+SI. After CFPI alone CA1 ATP levels were depressed bilaterally only at 2 h (p < 0.05). Similar to the LFPI paradigm, CFPI+SI reduced ATP levels for 24 h (p < 0.01), with bilateral ATP reductions seen after CFPI+SI. Cell counts in the CA1 region at 7 days post-injury revealed no significant neuronal cell loss after LFPI or CFPI alone. Significant neuronal cell loss was present only within the ipsilateral (p < 0.001) CA1 after LFPI+SI, but cell loss was bilateral (p < 0.001) after CFPI+SI. Thus, SI prolongs ATP reductions induced by LFPI and CFPI within the CA1 region and this SI-induced energy reduction appears to adversely affect regional neuronal viability.
Collapse
Affiliation(s)
- Naoki Aoyama
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| | - Stefan M. Lee
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| | - Nobuhiro Moro
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| | - David A. Hovda
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles
| | - Richard L. Sutton
- UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California at Los Angeles
- Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles
| |
Collapse
|
20
|
NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med 2008; 36:917-22. [DOI: 10.1097/ccm.0b013e31816590c4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
The Contribution of the Blood Glutamate Scavenging Activity of Pyruvate to its Neuroprotective Properties in a Rat Model of Closed Head Injury. Neurochem Res 2007; 33:1044-50. [DOI: 10.1007/s11064-007-9548-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
|
22
|
McMahon CP, Rocchitta G, Serra PA, Kirwan SM, Lowry JP, O'Neill RD. Control of the oxygen dependence of an implantable polymer/enzyme composite biosensor for glutamate. Anal Chem 2007; 78:2352-9. [PMID: 16579619 DOI: 10.1021/ac0518194] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biosensors for glutamate (Glu) were fabricated from Teflon-coated Pt wire (cylinders and disks), modified with the enzyme glutamate oxidase (GluOx) and electrosynthesized polymer PPD, poly(o-phenylenediamine). The polymer/enzyme layer was deposited in two configurations: enzyme before polymer (GluOx/PPD) and enzyme after polymer (PPD/GluOx). These four biosensor designs were characterized in terms of response time, limit of detection, Michaelis-Menten parameters for Glu (J max and K(M)(Glu)), sensitivity to Glu in the linear response region, and dependence on oxygen concentration, K(M)(O2). Analysis showed that the two polymer/enzyme configurations behaved similarly on both cylinders and disks. Although the two geometries showed different behaviors, these differences could be explained in terms of higher enzyme loading density on the disks; in many analyses, the four designs behaved like a single population with a range of GluOx loading. Enzyme loading was the key to controlling the K(M)(O2) values of these first generation biosensors. The counterintuitive, and beneficial, behavior that biosensors with higher GluOx loading displayed a lower oxygen dependence was explained in terms of the effects of enzyme loading on the affinity of GluOx for its anionic substrate. Some differences between the properties of surface immobilized GluOx and glucose oxidase are highlighted.
Collapse
Affiliation(s)
- Colm P McMahon
- UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Tweedie D, Milman A, Holloway HW, Li Y, Harvey BK, Shen H, Pistell PJ, Lahiri DK, Hoffer BJ, Wang Y, Pick CG, Greig NH. Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 2007; 85:805-15. [PMID: 17243171 DOI: 10.1002/jnr.21160] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mild traumatic brain injury (mTBI) is a not uncommon event in adolescents and young adults. Although it does not result in clear morphological brain defects, it is associated with long-term cognitive, emotional, and behavioral problems. Herein, we characterized the biochemical and behavioral changes associated with experimental mTBI in mice that may act as either targets or surrogate markers for interventional therapy. Specifically, mTBI was induced by 30-g and 50-g weight drop, and at 8 and 72 hr thereafter markers of cellular apoptosis-caspase-3, Bax, apoptosis-inducing factor (AIF), and cytochrome-c (Cyt-c)-were quantified by Western blot analysis in hippocampus ipsilateral to the impact. Levels of amyloid-beta precursor protein (APP) were also measured, and specific behavioral tests-passive avoidance, open field, and forced swimming (Porsolt) paradigms-were undertaken to assess learning, emotionality, and emotional memory. In the absence of hemorrhage or infarcts, as assessed by triphenyltetrazolium chloride staining, procaspase-3 and Bax levels were markedly altered following mTBI at both times. No cleaved caspase-3 was detected, and levels of AIF and Cyt-c, but not APP, were significantly changed at 72 hr. Mice subjected to mTBI were indistinguishable from controls by neurological examination at 1 and 24 hr, and by passive avoidance/open field at 72 hr, but could be differentiated in the forced swimming paradigm. In general, this model mimics the diffuse effects of mTBI on brain function associated with the human condition and highlights specific apoptotic proteins and a behavioral paradigm as potential markers for prospective interventional strategies.
Collapse
Affiliation(s)
- David Tweedie
- Drug Design and Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mikrogianakis A, Shaye RE, Griffin P, Kawesa S, Lockwood J, Gendron NH, Gaboury I, Merali Z, Mackenzie AE, Hutchison JS. Hypoxia Alters The Expression of Inhibitor of Apoptosis Proteins after Brain Trauma in The Mouse. J Neurotrauma 2007; 24:338-53. [PMID: 17375998 DOI: 10.1089/neu.2006.003615] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypoxia worsens brain injury following trauma, but the mechanisms remain unclear. The purpose of this study was to determine the effect of traumatic brain injury (TBI) and secondary hypoxia (9% oxygen) on apoptosis-related protein expression, cell death, and behavior. Using a murine weight-drop model, TBI led to an early (6 h) increase followed by a later (24 h) decrease in neuronal apoptosis inhibitor protein (NAIP) expression in the olfactory and motor cortex; in contrast, TBI led to a sustained (6 h to 7 days) increase in NAIP in the striatum. The peak increase in the expression of NAIP (6-12 h) following TBI alone was delayed (1-7 days) when hypoxia was added to TBI. Hypoxia following TBI further depleted other apoptosis inhibitor proteins (IAPs) and activated caspases, as well as increased contusion size and worsened cell death. Hypoxia added to TBI also increased motor and feeding activity on days 2 and 4 compared to TBI alone. Hypoxia without TBI had no effect on the expression of IAPs or cell death. These findings show that IAPs have a potential role in the increased vulnerability of brain cells to hypoxia following TBI, and have implications for configuring future therapies for TBI.
Collapse
Affiliation(s)
- Angelo Mikrogianakis
- Division of Pediatric Emergency Medicine, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cater HL, Gitterman D, Davis SM, Benham CD, Morrison B, Sundstrom LE. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels. J Neurochem 2007; 101:434-47. [PMID: 17250683 DOI: 10.1111/j.1471-4159.2006.04379.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.
Collapse
Affiliation(s)
- Heather L Cater
- Division of Clinical Neurosciences, University of Southampton, Southampton, UK.
| | | | | | | | | | | |
Collapse
|
26
|
McMahon CP, Rocchitta G, Kirwan SM, Killoran SJ, Serra PA, Lowry JP, O'Neill RD. Oxygen tolerance of an implantable polymer/enzyme composite glutamate biosensor displaying polycation-enhanced substrate sensitivity. Biosens Bioelectron 2006; 22:1466-73. [PMID: 16887344 DOI: 10.1016/j.bios.2006.06.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/17/2006] [Accepted: 06/26/2006] [Indexed: 11/21/2022]
Abstract
Biosensors were fabricated at neutral pH by sequentially depositing the polycation polyethyleneimine (PEI), the stereoselective enzyme L-glutamate oxidase (GluOx) and the permselective barrier poly-ortho-phenylenediamine (PPD) onto 125-microm diameter Pt wire electrodes (Pt/PEI/GluOx/PPD). These devices were calibrated amperometrically at 0.7 V versus SCE to determine the Michaelis-Menten parameters for enzyme substrate, l-glutamate (Glu) and co-substrate, dioxygen. The presence of PEI produced a 10-fold enhancement in the detection limit for Glu (approximately 20 nM) compared with the corresponding PEI-free configurations (Pt/GluOx/PPD), without undermining their fast response time (approximately 2 s). Most remarkable was the finding that, although some designs of PEI-containing biosensors showed a 10-fold increase in linear region sensitivity to Glu, their oxygen dependence remained low.
Collapse
Affiliation(s)
- Colm P McMahon
- UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
27
|
Shojo H, Kibayashi K. Changes in localization of synaptophysin following fluid percussion injury in the rat brain. Brain Res 2006; 1078:198-211. [PMID: 16497279 DOI: 10.1016/j.brainres.2006.01.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 11/24/2022]
Abstract
Traumatic brain injuries damage neurons and cause progressing dysfunctions of the brain. Synaptophysin (SYP), a major integral transmembrane protein of synaptic vesicles, provides a molecular marker for the synapse and serves as a functional marker of the brain. This study examined magnitude-dependent changes of SYP in the rat brain 2 days following low, moderate or high fluid percussion injuries and investigated time-dependent changes of SYP in the rat brain with moderate fluid percussion injury 2, 15 and 30 days after trauma using immunohistochemistry and Western blotting. SYP immunoreactivity increased in the lateral cortex and in the subcortical white matter, with increasing magnitude of injury and time after trauma. Increased SYP immunoreactivity was accompanied with degeneration of neuronal cell bodies, their processes and terminals as well as glial cell proliferations. Amounts of SYP measured by Western blotting remained unchanged in brains with moderate fluid percussion within 30 days after trauma. These findings indicate that trauma accumulates SYP at injured sites of neurons without changing SYP contents and that increased SYP immunoreactivity in the cerebral cortex following traumatic injury reflects an inhibition of synaptic vesicle transportation and dysfunction of synapses, thus providing a histological substrate for brain dysfunctions.
Collapse
Affiliation(s)
- Hideki Shojo
- Department of Forensic Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | |
Collapse
|
28
|
McMahon CP, Rocchitta G, Serra PA, Kirwan SM, Lowry JP, O'Neill RD. The efficiency of immobilised glutamate oxidase decreases with surface enzyme loading: an electrostatic effect, and reversal by a polycation significantly enhances biosensor sensitivity. Analyst 2006; 131:68-72. [PMID: 16365665 DOI: 10.1039/b511643k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The apparent Michaelis constant, K(M), for glutamate oxidase (GluOx) immobilised on Pt electrodes increased systematically with enzyme loading. The effect was due, at least in part, to electrostatic repulsion between neighbouring oxidase molecules and the anionic substrate, glutamate (Glu). This understanding has allowed us to increase the Glu sensitivity of GluOx-based amperometric biosensors in the linear response region (100+/-11 nA cm(-2)microM(-1) at pH 7.4; SD, n=23) by incorporating a polycation (polyethyleneimine, PEI) to counterbalance the polyanionic protein. Differences in the behaviour of glucose biosensors of a similar configuration highlight a limitation of using glucose oxidase as a model enzyme in biosensor design.
Collapse
Affiliation(s)
- Colm P McMahon
- UCD School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
29
|
Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of Interleukin-1 on Traumatic Brain Injury–Induced Damage to Hippocampal Neurons. J Neurotrauma 2005; 22:885-95. [PMID: 16083355 DOI: 10.1089/neu.2005.22.885] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin-1 (IL-1) has many roles in the brain in addition to mediating inflammatory processes in the glia, and has also been implicated in neurodegenerative disease. Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity and mortality in young persons. We conducted a study to assess the effect of IL-1 on the TBI-induced death of hippocampal neurons. After TBI was induced in adult male Sprague-Dawley rats under anesthesia, we evaluated neuronal damage score through microscopic examination and Pulsinelli's grading system. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to measure the levels of IL-1alpha and IL- 1beta in brain tissue at different points after the induction of TBI. Over a 4-day period, the specific sites of release of IL-1alpha and IL-1beta in the brain were elucidated by immunocytochemistry with double- labeling. TBI to the hippocampus was followed by disruption of the blood-brain barrier and severe neuronal loss. Levels of IL-1alpha RNA and protein were significantly elevated at 3 h after TBI, peaked at 12 h, and remained elevated for 168 h. IL-1beta RNA and protein expression were also elevated at 3 h after TBI, but remained so only for 48 h. Our findings indicate that the observed TBI-induced increases in IL-1alpha and IL-1beta occur largely through release of these cytokines from neurons and astrocytes, respectively. Intraventricular administration of antibodies to IL-1alpha and IL-1beta before TBI significantly attenuated the TBI-induced loss of hippocampal neurons. These results show that IL-1alpha and IL-1beta play important roles in the TBI-induced loss of hippocampal neurons.
Collapse
Affiliation(s)
- Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Animal models of traumatic brain injury (TBI) are used to elucidate primary and secondary sequelae underlying human head injury in an effort to identify potential neuroprotective therapies for developing and adult brains. The choice of experimental model depends upon both the research goal and underlying objectives. The intrinsic ability to study injury-induced changes in behavior, physiology, metabolism, the blood/tissue interface, the blood brain barrier, and/or inflammatory- and immune-mediated responses, makes in vivo TBI models essential for neurotrauma research. Whereas human TBI is a highly complex multifactorial disorder, animal trauma models tend to replicate only single factors involved in the pathobiology of head injury using genetically well-defined inbred animals of a single sex. Although such an experimental approach is helpful to delineate key injury mechanisms, the simplicity and hence inability of animal models to reflect the complexity of clinical head injury may underlie the discrepancy between preclinical and clinical trials of neuroprotective therapeutics. Thus, a search continues for new animal models, which would more closely mimic the highly heterogeneous nature of human TBI, and address key factors in treatment optimization.
Collapse
Affiliation(s)
- Ibolja Cernak
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20057, USA.
| |
Collapse
|
31
|
Tavazzi B, Signoretti S, Lazzarino G, Amorini AM, Delfini R, Cimatti M, Marmarou A, Vagnozzi R. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery 2005; 56:582-9; discussion 582-9. [PMID: 15730584 DOI: 10.1227/01.neu.0000156715.04900.e6] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 01/11/2005] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The combined effect of traumatic brain injury (TBI) and secondary insult on biochemical changes of cerebral tissue is not well known. For this purpose, we studied the time-course changes of parameters reflecting ROS-mediated oxidative stress and modifications of cell energy metabolism determined in rats subjected to cerebral insult of increasing severity. METHODS Rats were divided into four groups: 1) sham-operated, 2) subjected to 10 minutes of hypoxia and hypotension (HH), 3) subjected to severe diffuse TBI, and 4) subjected to severe diffuse TBI + HH. Rats were killed at different times after injury, and analyses of malondialdehyde, ascorbate, high-energy phosphates, nicotinic coenzymes, oxypurines, nucleosides, and N-acetylaspartate (NAA) were made by high-performance liquid chromatography on whole-brain tissue extracts. RESULTS Data indicated a close relationship between degree of oxidative stress and severity of brain insult, as evidenced by the highest malondialdehyde values and lowest ascorbate levels in rats subjected to TBI + HH. Similarly, modifications of parameters related to cell energy metabolism were modulated by increasing severity of brain injury, as demonstrated by the lowest values of energy charge potential, nicotinic coenzymes, and NAA and the highest levels of oxypurines and nucleosides recorded in TBI + HH rats. Both the intensity of oxidative stress-mediated cerebral damage and perturbation of energy metabolism were minimally affected in rats subjected to HH only. CONCLUSION These results showed that the severity of brain insult can be graded by measuring biochemical modifications, specifically, reactive oxygen species-mediated damage, energy metabolism depression, and NAA, thereby validating the rodent model of closed-head diffuse TBI coupled with HH and proposing NAA as a marker with diagnostic relevance to monitor the metabolic state of postinjured brain.
Collapse
Affiliation(s)
- Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005; 22:42-75. [PMID: 15665602 DOI: 10.1089/neu.2005.22.42] [Citation(s) in RCA: 398] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This article comprehensively reviews the lateral fluid percussion (LFP) model of traumatic brain injury (TBI) in small animal species with particular emphasis on its validity, clinical relevance and reliability. The LFP model, initially described in 1989, has become the most extensively utilized animal model of TBI (to date, 232 PubMed citations), producing both focal and diffuse (mixed) brain injury. Despite subtle variations in injury parameters between laboratories, universal findings are evident across studies, including histological, physiological, metabolic, and behavioral changes that serve to increase the reliability of the model. Moreover, demonstrable histological damage and severity-dependent behavioral deficits, which partially recover over time, validate LFP as a clinically-relevant model of human TBI. The LFP model, also has been used extensively to evaluate potential therapeutic interventions, including resuscitation, pharmacologic therapies, transplantation, and other neuroprotective and neuroregenerative strategies. Although a number of positive studies have identified promising therapies for moderate TBI, the predictive validity of the model may be compromised when findings are translated to severely injured patients. Recently, the clinical relevance of LFP has been enhanced by combining the injury with secondary insults, as well as broadening studies to incorporate issues of gender and age to better approximate the range of human TBI within study design. We conclude that the LFP brain injury model is an appropriate tool to study the cellular and mechanistic aspects of human TBI that cannot be addressed in the clinical setting, as well as for the development and characterization of novel therapeutic interventions. Continued translation of pre-clinical findings to human TBI will enhance the predictive validity of the LFP model, and allow novel neuroprotective and neuroregenerative treatment strategies developed in the laboratory to reach the appropriate TBI patients.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ashwal S, Holshouser B, Tong K, Serna T, Osterdock R, Gross M, Kido D. Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury. J Neurotrauma 2005; 21:1539-52. [PMID: 15684647 DOI: 10.1089/neu.2004.21.1539] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adults with traumatic brain injury (TBI) have been shown by invasive methods to have increased levels of the excitatory neurotransmitter glutamate. It is unclear whether glutamate release contributes to primary or secondary injury and whether its protracted elevation is predictive of a poor outcome. Preliminary studies at our institution in adults found that early increases in magnetic resonance spectroscopy (MRS)-detected glutamate/glutamine (Glx) were associated with poor outcomes. We therefore studied 38 children (mean age, 11 years; range, 1.6-17 years) who had TBI with quantitative short-echo time (STEAM, TE = 20 msec) proton MRS, a mean of 7 +/- 4 (range, 1-17) days after injury in order to determine if their occipital or parietal Glx levels correlated with the severity of injury or outcome. Occipital Glx was significantly increased in children with TBI compared to controls (13.5 +/- 2.4 vs. 10.7 +/- 1.8; p = 0.002), but there was no difference between children with good compared to poor outcomes as determined by the Pediatric Cerebral Performance Category Scale score at 6-12 months after injury. We also did not find a correlation between the amount of Glx and the initial Glasgow Coma Scale score, duration of coma, nor with changes in spectral metabolites, including N-acetyl aspartate, choline, and myoinositol. In part, this may have occurred because, in this study, most patients with poor outcomes were studied later than patients with good outcomes, potentially beyond the time frame for peak elevation of Glx after injury. Additional early and late studies of patients with varying degrees of injury are required to assess the importance to the pathophysiology of TBI of this excitatory neurotransmitter.
Collapse
Affiliation(s)
- S Ashwal
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
McMahon CP, O'Neill RD. Polymer−Enzyme Composite Biosensor with High Glutamate Sensitivity and Low Oxygen Dependence. Anal Chem 2005; 77:1196-9. [PMID: 15859007 DOI: 10.1021/ac048686r] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Otani N, Nawashiro H, Tsuzuki N, Katoh H, Miyazawa T, Shima K. Mitogen-activated protein kinases phosphorylation in posttraumatic selective vulnerability in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:287-9. [PMID: 14753454 DOI: 10.1007/978-3-7091-0651-8_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Mitogenic stimulation of the Mitogen-activated protein kinase (MAPK) pathway modulates the activity of many transcriptional factors leading to biological responses. Of these, three MAPK cascades are well characterized as extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 pathways. The aim of this study was to investigate the topographic distribution and the role of activated MAPK pathways after fluid percussion injury (FPI) in rats. In the present results, FPI significantly induced ERK- and JNK-phosphorylation, but not p38-phosphorylation in the cortex and hippocampus at the injury site. The immunoreactivity for phospho-ERK was localized in the superficial neuronal layers, dentate hilar neurons, and the damaged CA3 neurons after 30 mins of FPI. Double immunostaining showed that phospho-ERK was prominent in astrocytes 6 hrs after TBI. The current results suggest that MAPK pathways are involved in signal transduction after FPI.
Collapse
Affiliation(s)
- N Otani
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Yi JH, Pow DV, Hazell AS. Early loss of the glutamate transporter splice-variant GLT-1v in rat cerebral cortex following lateral fluid-percussion injury. Glia 2004; 49:121-33. [PMID: 15390098 DOI: 10.1002/glia.20099] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glutamate transporter proteins are essential for the control of interstitial glutamate levels, with an impairment of their function or levels being a major potential contributor to excitotoxicity. We have investigated the effects of lateral fluid percussion on the levels of the glutamate transporter proteins GLT-1alpha, its splice variant GLT-1v, GLAST, and EAAC1 in the rat in order to evaluate their pathogenetic role in this model of traumatic brain injury (TBI). Immunoblot analysis revealed neuronal loss in the cerebral cortex was accompanied by a 54% decrease in GLT-1v 6 h following the insult which progressed to an 83% loss of the transporter after 24 h. No changes in GLT-1alpha, GLAST, or EAAC1 were observed in this brain region at either time point. GLT-1v content was also decreased by 55% and 68% in the hippocampus and thalamus, respectively, at 6 h post-injury, but recovered fully after 24 h in both brain regions. In contrast, levels of GLT-1alpha were increased in the hippocampus at 6 h and 24 h post-TBI. These alterations in transporter protein content were also confirmed using immunohistochemical methods. Our results show for the first time a pattern of early, dynamic changes in the levels of GLT-1 transporter splice variants in different brain regions in this trauma model. In addition, correlation of GLT-1v levels with both neuronal cell loss and alpha-internexin content in the injured cortex suggests that loss of this novel glutamate transporter may be a key factor in determining cerebral vulnerability following this type of brain injury.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Department of Medicine, Hôpital Saint-Luc, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
37
|
Zanier ER, Lee SM, Vespa PM, Giza CC, Hovda DA. Increased hippocampal CA3 vulnerability to low-level kainic acid following lateral fluid percussion injury. J Neurotrauma 2003; 20:409-20. [PMID: 12803974 DOI: 10.1089/089771503765355496] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was designed to determine whether a secondary increase in neuronal activity induced by a low dose of kainic acid (KA), a glutamate analogue, exacerbates the anatomical damage in hippocampal regions following a mild lateral fluid percussion (LFP) brain injury. KA (9 mg/kg) was injected intraperitoneally in LFP-injured rats (n = 16) 1 h post-trauma. The neuronal loss in the CA3, CA4, and hilar regions at 7 days was quantified by two-dimensional cell counts. Hippocampal activation 15 min following KA injection was assessed by measuring local glucose metabolic rates (lCMR(glc)). Following LFP + KA, the ipsilateral side exhibited a 62.7%, 75.7%, and 52.1% decrease in the number of CA3, CA4 and hilar neurons, respectively, compared to naive rats (n = 3). These CA3 and CA4 neuronal counts were also significantly decreased compared to LFP + saline (n = 5) and sham + KA (n = 9) groups. The median Racine Score, used to rate the severity of behavioral seizures, was 4 in LFP + KA and 2 in sham + KA groups (p < 0.015), suggesting a reduction in seizure threshold following injury. lCMRglc in CA3 following LFP + KA was 121.8 +/- 2.0 (mean +/- SE) ipsilaterally and 71.5 +/- 5.4 contralaterally (p < 0.0012). No changes were found in the BBB permeability as measured by [(14)C]aminoisobutyric acid in CA3, CA4, and hilar regions. We conclude that the presence of low-level KA 1 h after LFP dramatically increases the extent of hippocampal activation and induces a striking loss of ipsilateral CA3 and CA4 pyramidal neurons. Neuronal excitation during a time of cellular vulnerability may trigger or amplify the cycle of secondary damage in functionally impaired, but potentially viable, tissue.
Collapse
Affiliation(s)
- Elisa Roncati Zanier
- Brain Injury Research Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
38
|
Otani N, Nawashiro H, Fukui S, Nomura N, Shima K. Temporal and spatial profile of phosphorylated mitogen-activated protein kinase pathways after lateral fluid percussion injury in the cortex of the rat brain. J Neurotrauma 2002; 19:1587-96. [PMID: 12542859 DOI: 10.1089/089771502762300247] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) play a crucial role in signal transduction that regulates gene expression through transcriptional factor activity. The purpose of this study was to investigate the temporal expression and topographic distribution of the activated MAPK pathways including extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK following traumatic brain injury (TBI) in the cortex of the rat brain. Adult male Sprague-Dawley rats (300-400 g) were subjected to lateral fluid percussion injury of moderate severity (3.5-4.0 atm) using the Dragonfly device model (no. HPD-1700). Phosphorylated-MAPK protein levels were quantified using Western blot analysis. Topographic distribution of immunoreactivity for phosphorylated-MAPK was examined using immunohistochemistry. Our findings showed that TBI significantly increased the phosphorylated-ERK (p-ERK) and -JNK (p-JNK) levels, but not the -p38 (p-p38) protein levels in the cortex surrounding the injury site. The immunoreactivity for p-ERK and p-JNK immediately after TBI were localized in neurons. The immunoreactivity for p-JNK was uniformly but only transiently induced and returned to control levels 1 h after TBI. The immunoreactivity for p-ERK was confirmed up until 30 min after TBI in the superficial neuronal layers. Double immunostaining using a glial-specific marker demonstrated that p-ERK was prominent in astrocytes 6 h after TBI. The current results suggest that the ERK and JNK pathways, but not the p38 MAPK pathways are involved in signal transduction in the cortex following TBI.
Collapse
Affiliation(s)
- Naoki Otani
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan.
| | | | | | | | | |
Collapse
|
39
|
Leonard SE, Kirby R. The role of glutamate, calcium and magnesium in secondary brain injury. J Vet Emerg Crit Care (San Antonio) 2002. [DOI: 10.1046/j.1534-6935.2002.00003.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Stoffel M, Plesnila N, Eriskat J, Fürst M, Baethmann A. Release of excitatory amino acids in the penumbra of a focal cortical necrosis. J Neurotrauma 2002; 19:467-77. [PMID: 11990352 DOI: 10.1089/08977150252932415] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A cortical tissue necrosis from focal trauma expands between 30% and 300% from its initial size within 24 h, depending on the species studied. To shed light on the pathophysiological processes in the penumbra 1 zone after a focal cortical lesion, the release of excitatory amino acids into the traumatic penumbra zone 1 was measured throughout the entire period of necrosis expansion. A microdialysis probe was inserted at an oblique angle into the cortex of Sprague-Dawley rats 2 mm below the brain surface. One day later, a highly standardized cortical freezing lesion was induced at the brain cortex above the microdialysis probe. Dialysate was continuously collected prior to, during, and up to 24 h after trauma and analyzed for primary amino acids. In each animal, it was confirmed histologically that the tip of the microdialysis probe was localized in the gray matter in close proximity to the primary lesion. Following induction of the trauma, a statistically significant sharp increase of the dialysate level of aspartate, glutamate, glycine, and serine was observed. Thereafter, the dialysate levels of these amino acids returned to baseline levels without any further increase throughout the remaining observation period. This process ranged in time from a few minutes to a few hours. The level of alanine in the dialysate was essentially not altered throughout the experiment. Although the early post-traumatic increase of the excitatory neurotransmitters aspartate and glutamate may well contribute to the secondary lesion growth of a cortical necrosis after trauma, glutamate receptor targeted therapeutic intervention may be in view of these findings of limited use when initiated post trauma.
Collapse
Affiliation(s)
- Michael Stoffel
- Department of Neurosurgery, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | | | | | | | |
Collapse
|
41
|
Otani N, Nawashiro H, Fukui S, Nomura N, Yano A, Miyazawa T, Shima K. Differential activation of mitogen-activated protein kinase pathways after traumatic brain injury in the rat hippocampus. J Cereb Blood Flow Metab 2002; 22:327-34. [PMID: 11891438 DOI: 10.1097/00004647-200203000-00010] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitogen-activated protein kinases, which play a crucial role in signal transduction, are activated by phosphorylation in response to a variety of mitogenic signals. In the present study, the authors used Western blot analysis and immunohistochemistry to show that phosphorylated extracellular signal-regulated protein kinase (p-ERK) and c-Jun NH2-terminal kinase (p-JNK), but not p38 mitogen-activated protein kinase, significantly increased in both the neurons and astrocytes after traumatic brain injury in the rat hippocampus. Different immunoreactivities of p-ERK and p-JNK were observed in the pyramidal cell layers and dentate hilar cells immediately after traumatic brain injury. Immunoreactivity for p-JNK was uniformly induced but was only transiently induced throughout all pyramidal cell layers. However, strong immunoreactivity for p-ERK was observed in the dentate hilar cells and the damaged CA3 neurons, along with the appearance of pyknotic morphologic changes. In addition, immunoreactivity for p-ERK was seen in astrocytes surrounding dentate and CA3 pyramidal neurons 6 hours after traumatic brain injury. These findings suggest that ERK and JNK but not p38 cascades may be closely involved in signal transduction in the rat hippocampus after traumatic brain injury.
Collapse
Affiliation(s)
- Naoki Otani
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Kline AE, Yu J, Horváth E, Marion DW, Dixon CE. The selective 5-HT(1A) receptor agonist repinotan HCl attenuates histopathology and spatial learning deficits following traumatic brain injury in rats. Neuroscience 2002; 106:547-55. [PMID: 11591455 DOI: 10.1016/s0306-4522(01)00300-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The selective 5-HT(1A) receptor agonist Repinotan HCl (BAY x3702) has been reported to attenuate cortical damage and improve functional performance in experimental models of cerebral ischemia and acute subdural hematoma. Using a clinically relevant contusion model of traumatic brain injury, we tested the hypothesis that a 4-h continuous infusion of Repinotan HCl (10 microg/kg/h i.v.) commencing 5 min post-injury would ameliorate functional outcome and attenuate histopathology. Forty isoflurane-anesthetized male adult rats were randomly assigned to receive either a controlled cortical impact (2.7 mm tissue deformation, 4 m/s) or sham injury (Injury/Vehicle=10, Injury/MK-801=10, Injury/Repinotan HCl=10, Sham/Vehicle=10), then tested for vestibulomotor function on post-operative days 1-5 and for spatial learning on days 14-18. Neither Repinotan HCl nor the non-competitive N-methyl-D-aspartate receptor antagonist MK-801, which served as a positive control, improved vestibulomotor function on beam balance and beam walk tasks relative to the Injury/Vehicle group, but both did significantly attenuate spatial learning and memory deficits on a water maze task. Repinotan HCl also reduced hippocampal CA(1) and CA(3) neuronal loss, as well as cortical tissue damage, compared to the Injury/Vehicle group at 4 weeks post-trauma. No significant difference in histological outcome was revealed between the Repinotan HCl- and MK-801-treated groups.These findings extend the therapeutic efficacy of Repinotan HCl to a contusion model of experimental brain injury and demonstrate for the first time that 5-HT(1A) receptor agonists confer neuroprotection and attenuate spatial learning deficits following controlled cortical impact injury. This treatment strategy may be beneficial in a clinical context where memory impairments are common following human traumatic brain injury.
Collapse
Affiliation(s)
- A E Kline
- Brain Tumor Research Center, Department of Neurosurgery, University of Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
43
|
Statler KD, Jenkins LW, Dixon CE, Clark RS, Marion DW, Kochanek PM. The simple model versus the super model: translating experimental traumatic brain injury research to the bedside. J Neurotrauma 2001; 18:1195-206. [PMID: 11721738 DOI: 10.1089/089771501317095232] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite considerable investigation in rodent models of traumatic brain injury (TBI), no novel therapy has been successfully translated from bench to bedside. Although well-described limitations of clinical trails may account for these failures, several modeling factors may also contribute to the lack of therapeutic translation from the laboratory to the clinic. Specifically, models of TBI may omit one or more critical, clinically relevant pathophysiologic features. In this invited review article, the impact of the limited incorporation of several important clinical pathophysiologic factors in TBI, namely secondary insults (i.e., hypotension and/or hypoxemia), coma, and aspects of standard neurointensive care monitoring and management strategies (i.e., intracranial pressure [ICP] monitoring and ICP-directed therapies, sedation, mechanical ventilation, and cardiovascular support) are discussed. Comparative studies in rodent and large animal models of TBI (which may, in some cases, represent super models) are also presented. We conclude that therapeutic breakthroughs will likely require a multidisciplinary approach, involving investigation in a range of models, including clinically relevant modifications of established animal models, along with development and application of new innovations in clinical trial design.
Collapse
Affiliation(s)
- K D Statler
- Department of Anesthesiology, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Collapse
Affiliation(s)
- N C Danbolt
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317, Oslo, Norway
| |
Collapse
|
45
|
Abstract
In this study I examined whether isoflurane, an inhalational anesthetic used commonly in clinical practice, affected glutamate uptake via glutamate transporters, proteins expressed in the plasma membrane of cells in the central nervous system. Isoflurane at clinically relevant concentrations (1-3%) caused a time-, sodium- and concentration-dependent increase of glutamate uptake in primary cultures of rat cerebral mixed glial cells. This enhancement was inhibited by a specific glutamate transporter inhibitor. The study also demonstrated that 2.0% isoflurane significantly increased both Vmax and Km of transporter-mediated glutamate uptake. Thus, isoflurane enhances glutamate uptake by a pathway that requires function of glutamate transporters. This represents a novel pharmacological effect of inhalational anesthetics and may contribute to isoflurane-induced anesthesia and neuroprotective effects.
Collapse
Affiliation(s)
- Z Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville 22908-0710, USA
| |
Collapse
|
46
|
Lin B, Ginsberg MD, Zhao W, Alonso OF, Belayev L, Busto R. Quantitative analysis of microvascular alterations in traumatic brain injury by endothelial barrier antigen immunohistochemistry. J Neurotrauma 2001; 18:389-97. [PMID: 11336440 DOI: 10.1089/089771501750170958] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Endothelial barrier antigen (EBA) is a protein triplet located in the plasma membrane of microvascular endothelium and selectively expressed in the normal nervous system. In this study, microvascular alterations following traumatic brain injury were studied using EBA immunohistochemistry. Anesthetized, physiologically regulated, normothermic Sprague-Dawley rats received moderate (1.5-2.0 atm) parieto-occipital parasagittal fluid-percussion traumatic brain injury (TBI). Control rats were subjected to similar anesthesia and physiological monitoring. Seven days after operative procedures, brains were perfusion-fixed, and coronal sections were reacted for EBA immunohistochemistry using a monoclonal antibody to rat EBA. Selected sections were reacted for isolectin B4 histochemistry. Computerized image analysis was used to compute numbers of EBA-immunopositive vascular profiles and mean vascular profile areas. In control brains, virtually all brain microvessels were clearly and positively immunostained, and antibody binding was specific for blood vessels. In rats with TBI, EBA immunoreactivity was greatly reduced in the zone of cortical contusion. Within the core contusion, fractional areas occupied by vascular profiles were markedly reduced (on average, by 57%), vascular profile counts were diminished, and lectin histochemistry revealed a robust inflammatory response with abundant macrophages. Taken together, these findings were thought to indicate frank microvascular destruction. At adjacent peri-contusional sites, the intensity of EBA immunostaining was also diminished; and vascular profile counts were reduced at adjacent cortical sites and homologous contralateral sites. The latter findings were interpreted as sublethal microvascular alterations possibly related to cerebral edema. The present results confirm that EBA is a specific immunohistochemical marker of normal central nervous system microvessels; that it is suitable for use in formaldehyde-fixed material; and that it is useful in quantitatively assessing microvascular alterations observed at contusional, peri-contusional and more remote sites following traumatic brain injury.
Collapse
Affiliation(s)
- B Lin
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Doyle JA, Davis DP, Hoyt DB. The use of hypertonic saline in the treatment of traumatic brain injury. THE JOURNAL OF TRAUMA 2001; 50:367-83. [PMID: 11242309 DOI: 10.1097/00005373-200102000-00030] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- J A Doyle
- Department of Emergency Medicine, University of California at San Diego, 200 West Arbor Drive, San Diego, CA 92103-8676, USA
| | | | | |
Collapse
|
48
|
Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma 2001; 18:141-62. [PMID: 11229708 DOI: 10.1089/08977150150502587] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study was designed to determine the regional and temporal profile of 45calcium (45Ca2+) accumulation following mild lateral fluid percussion (LFP) injury and how this profile differs when traumatic brain injury occurs early in life. Thirty-six postnatal day (P) 17, thirty-four P28, and 17 adult rats were subjected to a mild (approximately 2.75 atm) LFP or sham injury and processed for 45Ca2+ autoradiography immediately, 6 h, and 1, 2, 4, 7, and 14 days after injury. Optical densities were measured bilaterally within 16 regions of interest. 45Ca2+ accumulation was evident diffusely within the ipsilateral cerebral cortex immediately after injury (18-64% increase) in all ages, returning to sham levels by 2-4 days in P17s, 1 day in P28s, and 4 days in adults. While P17s showed no further 45Ca2+ accumulation, P28 and adult rats showed an additional delayed, focal accumulation in the ipsilateral thalamus beginning 2-4 days postinjury (12-49% increase) and progressing out to 14 days (26-64% increase). Histological analysis of cresyl violet-stained, fresh frozen tissue indicated little evidence of neuronal loss acutely (in all ages), but considerable delayed cell death in the ipsilateral thalamus of the P28 and adult animals. These data suggest that two temporal patterns of 45Ca2+ accumulation exist following LFP: acute, diffuse calcium flux associated with the injury-induced ionic cascade and blood brain barrier breakdown and delayed, focal calcium accumulation associated with secondary cell death. The age-dependency of posttraumatic 45Ca2+ accumulation may be attributed to differential biomechanical consequences of the LFP injury and/or the presence or lack of secondary cell death.
Collapse
Affiliation(s)
- C L Osteen
- Department of Physiological Science, UCLA, Los Angeles, California 90024-7039, USA.
| | | | | | | |
Collapse
|
49
|
|