1
|
Zedde M, Piazza F, Pascarella R. Traumatic Brain Injury and Chronic Traumatic Encephalopathy: Not Only Trigger for Neurodegeneration but Also for Cerebral Amyloid Angiopathy? Biomedicines 2025; 13:881. [PMID: 40299513 PMCID: PMC12024568 DOI: 10.3390/biomedicines13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Traumatic brain injury (TBI) has been linked to the development of neurodegenerative diseases, particularly Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). This review critically assesses the relationship between TBI and cerebral amyloid angiopathy (CAA), highlighting the complexities of diagnosing CAA in the context of prior head trauma. While TBI has been shown to facilitate the accumulation of amyloid plaques and tau pathology, the interplay between neurodegenerative processes and vascular contributions remains underexplored. Epidemiological studies indicate that TBI increases the risk of various dementias, not solely AD, emphasizing the need for a comprehensive understanding of TBI-related neurodegeneration as a polypathological condition. This review further delineates the mechanisms by which TBI can lead to CAA, particularly focusing on the vascular changes that occur post-injury. It discusses the challenges associated with diagnosing CAA after TBI, particularly due to the overlapping symptoms and pathologies that complicate clinical evaluations. Notably, this review includes a clinical case that exemplifies the diagnostic challenges posed by TBI in patients with subsequent cognitive decline and vascular pathology. By synthesizing current research on TBI, CAA, and associated neurodegenerative conditions, this review aims to foster a more nuanced understanding of how these conditions interact and contribute to long-term cognitive outcomes. The findings underscore the importance of developing standardized diagnostic criteria and imaging techniques to better elucidate the relationship between TBI and vascular pathology, which could enhance clinical interventions and inform therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- iCAβ International Network
| | - Rosario Pascarella
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- SINdem Study Group “The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer’s Disease Biomarkers”
| |
Collapse
|
2
|
Li P, Ye L, Sun S, Wang Y, Chen Y, Chang J, Yin R, Liu X, Zuo W, Xu H, Zhang X, Zhao RC, Han Q, Wei J. Molecular intersections of traumatic brain injury and Alzheimer's disease: the role of ADMSC-derived exosomes and hub genes in microglial polarization. Metab Brain Dis 2024; 40:77. [PMID: 39715972 DOI: 10.1007/s11011-024-01503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Traumatic brain injury (TBI) is a significant contributor to global mortality and morbidity, with emerging evidence indicating a heightened risk of developing Alzheimer's disease (AD) following TBI. This study aimed to explore the molecular intersections between TBI and AD, focusing on the role of adipose mesenchymal stem cell (ADMSC)-derived exosomes and hub genes involved in microglial polarization. Transcriptome profiles from TBI (GSE58485) and AD (GSE74614) datasets were analyzed to identify differentially expressed genes (DEGs). The hub genes were validated in independent datasets (GSE180811 for TBI and GSE135999 for AD) and localized to specific cell types using single-cell RNA (scRNA) sequencing data (GSE160763 for TBI and GSE224398 for AD). Experimental validation was conducted to investigate the role of these genes in microglial polarization using cell culture and ADMSC-derived exosomes interventions. Our results identified three hub genes-Bst2, B2m, and Lgals3bp-that were upregulated in both TBI and AD, with strong associations to inflammation, neuronal apoptosis, and tissue repair processes. scRNA sequencing revealed that these genes are predominantly expressed in microglia, with increased expression during M1 polarization. Knockdown of these genes reduced M1 polarization and promoted M2 phenotype in microglia. Additionally, ADMSC-derived exosomes attenuated M1 polarization and downregulated the expression of hub genes. This study provides novel insights into the shared molecular pathways between TBI and AD, highlighting potential therapeutic targets for mitigating neuroinflammation and promoting recovery in both conditions.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liguo Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Sishuai Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yihao Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Chang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Rui Yin
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zuo
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Houshi Xu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qin Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Junji Wei
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Sweeney N, Kim TY, Morrison CT, Li L, Acosta D, Liang J, Datla NV, Fitzgerald JA, Huang H, Liu X, Tan GH, Wu M, Karelina K, Bray CE, Weil ZM, Scharre DW, Serrano GE, Saito T, Saido TC, Beach TG, Kokiko-Cochran ON, Godbout JP, Johnson GVW, Fu H. Neuronal BAG3 attenuates tau hyperphosphorylation, synaptic dysfunction, and cognitive deficits induced by traumatic brain injury via the regulation of autophagy-lysosome pathway. Acta Neuropathol 2024; 148:52. [PMID: 39394356 PMCID: PMC11469979 DOI: 10.1007/s00401-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Nicholas Sweeney
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Cody T Morrison
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Liangping Li
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Diana Acosta
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Jiawen Liang
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Nithin V Datla
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Haoran Huang
- Medical Scientist Training Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Xianglan Liu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gregory Huang Tan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Chelsea E Bray
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Zachary M Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
| | | | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA.
| |
Collapse
|
4
|
Qiu C, Li Z, Leigh DA, Duan B, Stucky JE, Kim N, Xie G, Lu KP, Zhou XZ. The role of the Pin1- cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia. Front Cell Dev Biol 2024; 12:1343962. [PMID: 38628595 PMCID: PMC11019028 DOI: 10.3389/fcell.2024.1343962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Tauopathies are neurodegenerative diseases characterized by deposits of abnormal Tau protein in the brain. Conventional tauopathies are often defined by a limited number of Tau epitopes, notably neurofibrillary tangles, but emerging evidence suggests structural heterogeneity among tauopathies. The prolyl isomerase Pin1 isomerizes cis P-tau to inhibit the development of oligomers, tangles and neurodegeneration in multiple neurodegenerative diseases such as Alzheimer's disease, traumatic brain injury, vascular contribution to cognitive impairment and dementia (VCID) and preeclampsia (PE). Thus, cis P-tau has emerged as an early etiological driver, blood marker and therapeutic target for multiple neurodegenerative diseases, with clinical trials ongoing. The discovery of cis P-tau and other tau pathologies in VCID and PE calls attention for simplistic classification of tauopathy in neurodegenerative diseases. These recent advances have revealed the exciting novel role of the Pin1-cis P-tau axis in the development and treatment of vascular contribution to cognitive impairment and dementia and preeclampsia.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Zhixiong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - David A. Leigh
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph E. Stucky
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nami Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - George Xie
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry and Robarts Research Institute, Western University, London, ON, Canada
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, and Lawson Health Research Institute, Western University, London, ON, Canada
| |
Collapse
|
5
|
Flavin WP, Hosseini H, Ruberti JW, Kavehpour HP, Giza CC, Prins ML. Traumatic brain injury and the pathways to cerebral tau accumulation. Front Neurol 2023; 14:1239653. [PMID: 37638180 PMCID: PMC10450935 DOI: 10.3389/fneur.2023.1239653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Tau is a protein that has received national mainstream recognition for its potential negative impact to the brain. This review succinctly provides information on the structure of tau and its normal physiological functions, including in hibernation and changes throughout the estrus cycle. There are many pathways involved in phosphorylating tau including diabetes, stroke, Alzheimer's disease (AD), brain injury, aging, and drug use. The common mechanisms for these processes are put into context with changes observed in mild and repetitive mild traumatic brain injury (TBI). The phosphorylation of tau is a part of the progression to pathology, but the ability for tau to aggregate and propagate is also addressed. Summarizing both the functional and dysfunctional roles of tau can help advance our understanding of this complex protein, improve our care for individuals with a history of TBI, and lead to development of therapeutic interventions to prevent or reverse tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- William P. Flavin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Helia Hosseini
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
| | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - H. Pirouz Kavehpour
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mayumi L. Prins
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
6
|
Shin SS, Mazandi VM, Schneider ALC, Morton S, Starr JP, Weeks MK, Widmann NJ, Jang DH, Kao SH, Ahlijanian MK, Kilbaugh TJ. Exploring the Therapeutic Potential of Phosphorylated Cis-Tau Antibody in a Pig Model of Traumatic Brain Injury. Biomedicines 2023; 11:1807. [PMID: 37509447 PMCID: PMC10376756 DOI: 10.3390/biomedicines11071807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Traumatic brain injury (TBI) results in the generation of tau. As hyperphosphorylated tau (p-tau) is one of the major consequences of TBI, targeting p-tau in TBI may lead to the development of new therapy. Twenty-five pigs underwent a controlled cortical impact. One hour after TBI, pigs were administered either vehicle (n = 13) or PNT001 (n = 12), a monoclonal antibody for the cis conformer of tau phosphorylated at threonine 231. Plasma biomarkers of neural injury were assessed for 14 days. Diffusion tensor imaging was performed at day 1 and 14 after injury, and these were compared to historical control animals (n = 4). The fractional anisotropy data showed significant white matter injury for groups at 1 day after injury in the corona radiata. At 14 days, the vehicle-treated pigs, but not the PNT001-treated animals, exhibited significant white matter injury compared to sham pigs in the ipsilateral corona radiata. The PNT001-treated pigs had significantly lower levels of plasma glial fibrillary acidic protein (GFAP) at day 2 and day 4. These findings demonstrate a subtle reduction in the areas of white matter injury and biomarkers of neurological injury after treatment with PNT001 following TBI. These findings support additional studies for PNT001 as well as the potential use of this agent in clinical trials in the near future.
Collapse
Affiliation(s)
- Samuel S Shin
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa M Mazandi
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea L C Schneider
- Division of Neurocritical Care, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Morton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan P Starr
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Katie Weeks
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J Widmann
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David H Jang
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Emergency Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shih-Han Kao
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Resuscitation Science Center of Emphasis, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Cheng WH, Cheung H, Kang A, Fan J, Cooper J, Anwer M, Barron C, Wilkinson A, Hu G, Yue J, Cripton PA, Vocadlo DJ, Wellington CL. Altered Tau Kinase Activity in rTg4510 Mice after a Single Interfaced CHIMERA Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24119439. [PMID: 37298388 DOI: 10.3390/ijms24119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Traumatic brain injury (TBI) is an established risk factor for neurodegenerative diseases. In this study, we used the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA) to investigate the effects of a single high-energy TBI in rTg4510 mice, a mouse model of tauopathy. Fifteen male rTg4510 mice (4 mo) were impacted at 4.0 J using interfaced CHIMERA and were compared to sham controls. Immediately after injury, the TBI mice showed significant mortality (7/15; 47%) and a prolonged duration of loss of the righting reflex. At 2 mo post-injury, surviving mice displayed significant microgliosis (Iba1) and axonal injury (Neurosilver). Western blotting indicated a reduced p-GSK-3β (S9):GSK-3β ratio in TBI mice, suggesting chronic activation of tau kinase. Although longitudinal analysis of plasma total tau suggested that TBI accelerates the appearance of tau in the circulation, there were no significant differences in brain total or p-tau levels, nor did we observe evidence of enhanced neurodegeneration in TBI mice compared to sham mice. In summary, we showed that a single high-energy head impact induces chronic white matter injury and altered GSK-3β activity without an apparent change in post-injury tauopathy in rTg4510 mice.
Collapse
Affiliation(s)
- Wai Hang Cheng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Honor Cheung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amy Kang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mehwish Anwer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carlos Barron
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Grace Hu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jefferey Yue
- Department of Chemistry, Simon Fraser University, Vancouver, BC V5A 1S6, Canada
| | - Peter A Cripton
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC V5Z 1M9, Canada
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Vancouver, BC V5A 1S6, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
8
|
Vinh To X, Soni N, Medeiros R, Alateeq K, Nasrallah FA. Traumatic brain injury alterations in the functional connectome are associated with neuroinflammation but not tau in a P30IL tauopathy mouse model. Brain Res 2022; 1789:147955. [PMID: 35636493 DOI: 10.1016/j.brainres.2022.147955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is often associated with long-term cognitive deficits and altered brain networks which have been linked with accumulation of neurofibrillary tau tangles and neuroinflammation. In this work, we investigated the changes in the brain post-TBI in an Alzheimer's disease pR5 tauopathy model and evaluated the contribution of tauopathy and neuroinflammation to connectivity alterations using resting-state functional Magnetic Resonance Imaging (rs-fMRI). METHOD 26 P301L tau transgenic mice of 8-9 months of age (21-35 g) expressing the human tau isoform carrying the pathogenic P301L mutation were used for the study. Animals were assessed at day 1 and 7 post-injury/craniotomy and were randomly divided into four groups. All animals underwent an MRI scan on a 9.4 T Bruker system where rsfMRI was acquired. Following imaging, brains were stained with pSer (396 + 404), glial fibrillary acidic protein (GFAP), and ionised calcium-binding adaptor molecule-1 (Iba-1). Group-information-guided Independent Component Analysis (GIG-ICA) and region-of-interest (ROI)-based network connectivity approaches were applied. Principal Component Regression was applied to predict connectivity network strength from the corresponding ROIs. RESULTS TBI mice showed decreased functional connectivity in the dentate gyrus, thalamus, and other areas compared to sham animals at day 1 post-injury with the majority of changes resolving at day 7. Principal Component Regression showed only the contralateral CA1 network strength was correlated with the CA1's astrocyte and microglia cell density and the ipsilateral thalamus network strength was correlated with the ipsilateral thalamus' astrocyte and microglia cell density. CONCLUSION We present the first report on the temporal alterations in functional connectivity in a P30IL mouse model following TBI. Connectivity between key regions known to be affected in Alzheimer's disease were short-term and reversible following injury. Connectivity strength in CA1 and thalamus showed significant correlation with astrocyte and microglial cell density but not tau density.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia; The University of California, Irvine, The United States of America.
| |
Collapse
|
9
|
Juan SMA, Daglas M, Adlard P. Tau pathology, metal dyshomeostasis and repetitive mild traumatic brain injury: an unexplored link paving the way for neurodegeneration. J Neurotrauma 2022; 39:902-922. [PMID: 35293225 DOI: 10.1089/neu.2021.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI), commonly experienced by athletes and military personnel, causes changes in multiple intracellular pathways, one of which involves the tau protein. Tau phosphorylation plays a role in several neurodegenerative conditions including chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder linked to repeated head trauma. There is now mounting evidence suggesting that tau phosphorylation may be regulated by metal ions (such as iron, zinc and copper), which themselves are implicated in ageing and neurodegenerative disorders such as Alzheimer's disease (AD). Recent work has also shown that a single TBI can result in age-dependent and region-specific modulation of metal ions. As such, this review explores the link between TBI, CTE, ageing and neurodegeneration with a specific focus on the involvement of (and interaction between) tau pathology and metal dyshomeostasis. The authors highlight that metal dyshomeostasis has yet to be investigated in the context of repeat head trauma or CTE. Given the evidence that metal dyshomeostasis contributes to the onset and/or progression of neurodegeneration, and that CTE itself is a neurodegenerative condition, this brings to light an uncharted link that should be explored. The development of adequate models of r-mTBI and/or CTE will be crucial in deepening our understanding of the pathological mechanisms that drive the clinical manifestations in these conditions and also in the development of effective therapeutics targeted towards slowing progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Sydney M A Juan
- The Florey Institute of Neuroscience and Mental Health, 56369, 30 Royal Parade, Parkville, Melbourne, Victoria, Australia, 3052;
| | - Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| | - Paul Adlard
- Florey Institute of Neuroscience and Mental Health, 56369, Parkville, Victoria, Australia;
| |
Collapse
|
10
|
Vonder Haar C, Wampler SK, Bhatia HS, Ozga JE, Toegel C, Lake AD, Iames CW, Cabral CE, Martens KM. Repeat Closed-Head Injury in Male Rats Impairs Attention but Causes Heterogeneous Outcomes in Multiple Measures of Impulsivity and Glial Pathology. Front Behav Neurosci 2022; 16:809249. [PMID: 35359588 PMCID: PMC8963781 DOI: 10.3389/fnbeh.2022.809249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023] Open
Abstract
Repetitive mild traumatic brain injury, or concussion, can lead to the development of long-term psychiatric impairments. However, modeling these deficits is challenging in animal models and necessitates sophisticated behavioral approaches. The current set of studies were designed to evaluate whether a rubberized versus metal impact tip would cause functional deficits, the number of injuries required to generate such deficits, and whether different psychiatric domains would be affected. Across two studies, male rats were trained in either the 5-choice serial reaction time task (5CSRT; Experiment 1) to assess attention and motor impulsivity or concurrently on the 5CSRT and the delay discounting task (Experiment 2) to also assess choice impulsivity. After behavior was stable, brain injuries were delivered with the Closed-head Injury Model of Engineered Rotational Acceleration (CHIMERA) either once per week or twice per week (Experiment 1) or just once per week (Experiment 2). Astrocyte and microglia pathology was also assayed in relevant regions of interest. CHIMERA injury caused attentional deficits across both experiments, but only increased motor impulsivity in Experiment 1. Surprisingly, choice impulsivity was actually reduced on the Delay Discounting Task after repeat injuries. However, subsequent analyses suggested potential visual issues which could alter interpretation of these and attentional data. Subtle changes in glial pathology immediately after the injury (Experiment 1) were attenuated after 4 weeks recovery (Experiment 2). Given the heterogenous findings between experiments, additional research is needed to determine the root causes of psychiatric disturbances which may arise as a results of repeated brain injuries.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Sarah K. Wampler
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Henna S. Bhatia
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Jenny E. Ozga
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Cory Toegel
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Anastasios D. Lake
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Christopher W. Iames
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Caitlyn E. Cabral
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Kris M. Martens
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Kris M. Martens,
| |
Collapse
|
11
|
Cai X, Harding IC, Sadaka AH, Colarusso B, Kulkarni P, Ebong E, Qiao J, O'Hare NR, Ferris CF. Mild repetitive head impacts alter perivascular flow in the midbrain dopaminergic system in awake rats. Brain Commun 2021; 3:fcab265. [PMID: 34806002 PMCID: PMC8600963 DOI: 10.1093/braincomms/fcab265] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Head injury is a known risk factor for Parkinson's disease. Disruption in the perivascular clearance of metabolic waste and unwanted proteins is thought to be a contributing factor to disease progression. We hypothesized that repetitive mild head impacts, without evidence of structural brain damage, would increase microgliosis and AQP4 expression and depolarization and alter perivascular flow in the midbrain dopaminergic system. Adult male rats were subjected to sham, or two mild head impacts separated by 48 h. Three weeks later, fully awake rats were imaged using dynamic, contrast-enhanced MRI to follow the distribution of intraventricular gadobenate dimeglumine contrast agent. Images were registered to and analysed using a 3D MRI rat atlas providing site-specific data on 171 different brain areas. Following imaging, rats were tested for cognitive function using the Barnes maze assay. Histological analyses of tyrosine hydroxylase, microglia activation and AQP4 expression and polarization were performed on a parallel cohort of head impacted rats at 20 days post insult to coordinate with the time of imaging. There was no change in the global flux of contrast agent between sham and head impacted rats. The midbrain dopaminergic system showed a significant decrease in the influx of contrast agent as compared to sham controls together with a significant increase in microgliosis, AQP4 expression and depolarization. There were no deficits in cognitive function. The histology showed a significant level of neuroinflammation in the midbrain dopaminergic system 3 weeks post mild repetitive head impact but no loss in tyrosine hydroxylase. MRI revealed no structural brain damage emphasizing the potential serious consequences of mild head impacts on sustained brain neuroinflammation in this area critical to the pathophysiology of Parkinson's.
Collapse
Affiliation(s)
- Xuezhu Cai
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Aymen H Sadaka
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Bradley Colarusso
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Praveen Kulkarni
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Eno Ebong
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Ju Qiao
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
| | - Nick R O'Hare
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Craig F Ferris
- Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA 02115, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Leaston J, Qiao J, Harding IC, Kulkarni P, Gharagouzloo C, Ebong E, Ferris CF. Quantitative Imaging of Blood-Brain Barrier Permeability Following Repetitive Mild Head Impacts. Front Neurol 2021; 12:729464. [PMID: 34659094 PMCID: PMC8515019 DOI: 10.3389/fneur.2021.729464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022] Open
Abstract
This was an exploratory study designed to evaluate the feasibility of a recently established imaging modality, quantitative ultrashort time-to-echo contrast enhanced (QUTE-CE), to follow the early pathology and vulnerability of the blood brain barrier in response to single and repetitive mild head impacts. A closed-head, momentum exchange model was used to produce three consecutive mild head impacts aimed at the forebrain separated by 24 h each. Animals were measured at baseline and within 1 h of impact. Anatomical images were collected to assess the extent of structural damage. QUTE-CE biomarkers for BBB permeability were calculated on 420,000 voxels in the brain and were registered to a bilateral 3D brain atlas providing site-specific information on 118 anatomical regions. Blood brain barrier permeability was confirmed by extravasation of labeled dextran. All head impacts occurred in the absence of any structural brain damage. A single mild head impact had measurable effects on blood brain barrier permeability and was more significant after the second and third impacts. Affected regions included the prefrontal ctx, basal ganglia, hippocampus, amygdala, and brainstem. Our findings support the concerns raised by the healthcare community regarding mild head injuries in participants in organized contact sports and military personnel in basic training and combat.
Collapse
Affiliation(s)
| | - Ju Qiao
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ian C. Harding
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | | | - Codi Gharagouzloo
- Imaginostics, Inc., Cambridge, MA, United States
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Eno Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
13
|
Soni N, Medeiros R, Alateeq K, To XV, Nasrallah FA. Diffusion Tensor Imaging Detects Acute Pathology-Specific Changes in the P301L Tauopathy Mouse Model Following Traumatic Brain Injury. Front Neurosci 2021; 15:611451. [PMID: 33716645 PMCID: PMC7943881 DOI: 10.3389/fnins.2021.611451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) has been linked with tauopathy. However, imaging methods that can non-invasively detect tau-protein abnormalities following TBI need further investigation. This study aimed to investigate the potential of diffusion tensor imaging (DTI) to detect tauopathy following TBI in P301L mutant-tau-transgenic-pR5-mice. A total of 24 9-month-old pR5 mice were randomly assigned to sham and TBI groups. Controlled cortical injuries/craniotomies were performed for TBI/sham groups followed by DTI data acquisition on days 1 and 7 post-injury. DTI data were analyzed by using voxelwise analysis and track-based spatial statistics for gray matter and white matter. Further, immunohistochemistry was performed for total-tau and phosphorylated-tau, astrocytes, and microglia. To detect the association of DTI with these pathological markers, a correlation analysis was performed between DTI and histology findings. At day 1 post-TBI, DTI revealed a widespread reduction in fractional anisotropy (FA) and axial diffusivity (AxD) in the TBI group compared to shams. On day 7, further reduction in FA, AxD, and mean diffusivity and increased radial diffusivity were observed. FA was significantly increased in the amygdala and cortex. Correlation results showed that in the ipsilateral hemisphere FA reduction was associated with increased phosphorylated-tau and glial-immunoreactivity, whereas in the contralateral regions, the FA increase was associated with increased immunostaining for astrocytes. This study is the first to exploit DTI to investigate the effect of TBI in tau-transgenic mice. We show that alterations in the DTI signal were associated with glial activity following TBI and would most likely reflect changes that co-occur with/without phosphorylated-tau. In addition, FA may be a promising measure to identify discrete pathological processes such as increased astroglia activation, tau-hyperphosphorylation or both in the brain following TBI.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
14
|
Perez Garcia G, Perez GM, De Gasperi R, Gama Sosa MA, Otero-Pagan A, Pryor D, Abutarboush R, Kawoos U, Hof PR, Cook DG, Gandy S, Ahlers ST, Elder GA. Progressive Cognitive and Post-Traumatic Stress Disorder-Related Behavioral Traits in Rats Exposed to Repetitive Low-Level Blast. J Neurotrauma 2021; 38:2030-2045. [PMID: 33115338 DOI: 10.1089/neu.2020.7398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries (TBI) in the conflicts in Iraq and Afghanistan currently have chronic cognitive and mental health problems including post-traumatic stress disorder (PTSD). Besides static symptoms, new symptoms may emerge or existing symptoms may worsen. TBI is also a risk factor for later development of neurodegenerative diseases. In rats exposed to repetitive low-level blast overpressure (BOP), robust and enduring cognitive and PTSD-related behavioral traits develop that are present for at least one year after blast exposure. Here we determined the time-course of the appearance of these traits by testing rats in the immediate post-blast period. Three cohorts of rats examined within the first eight weeks exhibited no behavioral phenotype or, in one cohort, features of anxiety. None showed the altered cued fear responses or impaired novel object recognition characteristic of the fully developed phenotype. Two cohorts retested 36 to 42 weeks after blast exposure exhibited the expanded behavioral phenotype including anxiety as well as altered cued fear learning and impaired novel object recognition. Combined with previous work, the chronic behavioral phenotype has been observed in six cohorts of blast-exposed rats studied at 3-4 months or longer after blast injury, and the three cohorts studied here document the progressive nature of the cognitive/behavioral phenotype. These studies suggest the existence of a latent, delayed emerging and progressive blast-induced cognitive and behavioral phenotype. The delayed onset has implications for the evolution of post-blast neurobehavioral syndromes in military veterans and its modeling in experimental animals.
Collapse
Affiliation(s)
- Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Alena Otero-Pagan
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Patrick R Hof
- Department of Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Barbara and Maurice A. Deane Center for Wellness and Cognitive Health, and the Mount Sinai NFL Neurological Care Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Gregory A Elder
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
15
|
Repetitive Traumatic Brain Injury Causes Neuroinflammation before Tau Pathology in Adolescent P301S Mice. Int J Mol Sci 2021; 22:ijms22020907. [PMID: 33477535 PMCID: PMC7831108 DOI: 10.3390/ijms22020907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/22/2023] Open
Abstract
Repetitive closed head injury (rCHI) is commonly encountered in young athletes engaged in contact and collision sports. Traumatic brain injury (TBI) including rCHI has been reported to be an important risk factor for several tauopathies in studies of adult humans and animals. However, the link between rCHI and the progression of tau pathology in adolescents remains to be elucidated. We evaluated whether rCHI can trigger the initial acceleration of pathological tau in adolescent mice and impact the long-term outcomes post-injury. To this end, we subjected adolescent transgenic mice expressing the P301S tau mutation to mild rCHI and assessed tau hyperphosphorylation, tangle formation, markers of neuroinflammation, and behavioral deficits at 40 days post rCHI. We report that rCHI did not accelerate tau pathology and did not worsen behavioral outcomes compared to control mice. However, rCHI induced cortical and hippocampal microgliosis and corpus callosum astrocytosis in P301S mice by 40 days post-injury. In contrast, we did not find significant microgliosis or astrocytosis after rCHI in age-matched WT mice or sham-injured P301S mice. Our data suggest that neuroinflammation precedes the development of Tau pathology in this rCHI model of adolescent repetitive mild TBI.
Collapse
|
16
|
An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 2020; 120:372-386. [PMID: 33171143 DOI: 10.1016/j.neubiorev.2020.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
L.P. Li, J.W. Liang and H.J. Fu. An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating conditions that have long-term consequences on individual's cognitive functions. Although TBI has been considered a risk factor for the development of AD, the link between TBI and AD is still in debate. Aggregation of hyperphosphorylated tau and intercorrelated synaptic dysfunction, two key pathological elements in both TBI and AD, play a pivotal role in mediating neurodegeneration and cognitive deficits, providing a mechanistic link between these two diseases. In the first part of this review, we analyze the experimental literatures on tau pathology in various TBI models and review the distribution, biological features and mechanisms of tau pathology following TBI with implications in AD pathogenesis. In the second part, we review evidences of TBI-mediated structural and functional impairments in synapses, with a focus on the overlapped mechanisms underlying synaptic abnormalities in both TBI and AD. Finally, future perspectives are proposed for uncovering the complex relationship between TBI and neurodegeneration, and developing potential therapeutic avenues for alleviating cognitive deficits after TBI.
Collapse
|
17
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
18
|
Bai Y, Ma X. Chlorzoxazone exhibits neuroprotection against Alzheimer's disease by attenuating neuroinflammation and neurodegeneration in vitro and in vivo. Int Immunopharmacol 2020; 88:106790. [PMID: 32795892 DOI: 10.1016/j.intimp.2020.106790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/21/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD), a complex and an age-related brain disease, is induced by the accumulation of amyloid beta (Aβ) and neuroinflammation. Chlorzoxazone (CZ) is a classical FDA-approved drug, and shows anti-inflammatory effects. However, up until now, its regulatory role in AD has not been investigated. Therefore, in this study we attempted to explore if CZ could be an effective therapeutic strategy for AD treatment. At first, the in vitro study was performed to mimic AD using Aβ. We found that Aβ caused p65 nuclear translocation in both primary microglial cells and astrocytes, which were, however, restrained by CZ treatments. Meanwhile, CZ incubation markedly decreased the expression of pro-inflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β). Aβ deposition was also markedly reduced in glial cells treated with CZ. Importantly, we found that glial activation and its-related pro-inflammation induced by Aβ led to obvious neurodegeneration and neuroinflammation, which were effectively attenuated by CZ pre-treatment in the isolated primary cortical neurons. Then, the in vivo study was performed using APP/PS1 mice with AD. Behavior tests showed that CZ administration effectively improved cognitive deficits in AD mice. Neuron death in hippocampus of AD mice was also inhibited by CZ. Aβ accumulation in brain was markedly decreased in CZ-treated AD mice. We finally found that hippocampal glial activation in AD mice was obviously blocked by CZ supplementation, along with remarkable decreases in TNF-α, IL-1β and p65 nuclear translocation. Together, these findings above demonstrated that CZ could inhibit glial activation and inflammatory response, contributing to the suppression of neurodegeneration and neuroinflammation. Therefore, CZ may be an effective therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Yanyan Bai
- Department of Neurology, The First Hospital of Yulin, Yulin 719000, China
| | - Xinshun Ma
- Department of Neurology, The First Hospital of Yulin, Yulin 719000, China.
| |
Collapse
|
19
|
Ledreux A, Pryhoda MK, Gorgens K, Shelburne K, Gilmore A, Linseman DA, Fleming H, Koza LA, Campbell J, Wolff A, Kelly JP, Margittai M, Davidson BS, Granholm AC. Assessment of Long-Term Effects of Sports-Related Concussions: Biological Mechanisms and Exosomal Biomarkers. Front Neurosci 2020; 14:761. [PMID: 32848549 PMCID: PMC7406890 DOI: 10.3389/fnins.2020.00761] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Concussion or mild traumatic brain injury (mTBI) in athletes can cause persistent symptoms, known as post-concussion syndrome (PCS), and repeated injuries may increase the long-term risk for an athlete to develop neurodegenerative diseases such as chronic traumatic encephalopathy (CTE), and Alzheimer's disease (AD). The Center for Disease Control estimates that up to 3.8 million sport-related mTBI are reported each year in the United States. Despite the magnitude of the phenomenon, there is a current lack of comprehensive prognostic indicators and research has shown that available monitoring tools are moderately sensitive to short-term concussion effects but less sensitive to long-term consequences. The overall aim of this review is to discuss novel, quantitative, and objective measurements that can predict long-term outcomes following repeated sports-related mTBIs. The specific objectives were (1) to provide an overview of the current clinical and biomechanical tools available to health practitioners to ensure recovery after mTBIs, (2) to synthesize potential biological mechanisms in animal models underlying the long-term adverse consequences of mTBIs, (3) to discuss the possible link between repeated mTBI and neurodegenerative diseases, and (4) to discuss the current knowledge about fluid biomarkers for mTBIs with a focus on novel exosomal biomarkers. The conclusions from this review are that current post-concussion clinical tests are not sufficiently sensitive to injury and do not accurately quantify post-concussion alterations associated with repeated mTBIs. In the current review, it is proposed that current practices should be amended to include a repeated symptom inventory, a cognitive assessment of executive function and impulse control, an instrumented assessment of balance, vestibulo-ocular assessments, and an improved panel of blood or exosome biomarkers.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Moira K. Pryhoda
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, United States
| | - Kevin Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - Daniel A. Linseman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Holly Fleming
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Lilia A. Koza
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
- Biological Sciences, University of Denver, Denver, CO, United States
| | - Julie Campbell
- Pioneer Health and Performance, University of Denver, Denver, CO, United States
| | - Adam Wolff
- Denver Neurological Clinic, Denver, CO, United States
| | - James P. Kelly
- Marcus Institute for Brain Health, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, United States
| | - Bradley S. Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, United States
| | | |
Collapse
|
20
|
Baker TL, Sun M, Semple BD, Tyebji S, Tonkin CJ, Mychasiuk R, Shultz SR. Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury? J Neuroinflammation 2020; 17:222. [PMID: 32711529 PMCID: PMC7382044 DOI: 10.1186/s12974-020-01885-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world’s population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.
Collapse
Affiliation(s)
- Tamara L Baker
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Mujun Sun
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Shiraz Tyebji
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J Tonkin
- Division of Infectious Diseases and Defence, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Mao X, Terpolilli NA, Wehn A, Cheng S, Hellal F, Liu B, Seker B, Plesnila N. Progressive Histopathological Damage Occurring Up to One Year after Experimental Traumatic Brain Injury Is Associated with Cognitive Decline and Depression-Like Behavior. J Neurotrauma 2020; 37:1331-1341. [DOI: 10.1089/neu.2019.6510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A. Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Farida Hellal
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University and China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Burcu Seker
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
22
|
Li M, Reisman J, Morris-Eppolito B, Qian SX, Kazis LE, Wolozin B, Goldstein LE, Xia W. Beneficial association of angiotensin-converting enzyme inhibitors and statins on the occurrence of possible Alzheimer's disease after traumatic brain injury. Alzheimers Res Ther 2020; 12:33. [PMID: 32220235 PMCID: PMC7102441 DOI: 10.1186/s13195-020-00589-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pathological analysis of brain tissue from animals and humans with a history of traumatic brain injury (TBI) suggests that TBI could be one of the risk factors facilitating onset of dementia with possible Alzheimer's disease (AD), but medications to prevent or delay AD onset are not yet available. METHODS This study explores four medication classes (angiotensin-converting enzyme inhibitors (ACEI), beta blockers, metformin, and statins) approved by the Food and Drug Administration (FDA) for other indications and evaluates their influence when used in combination on the risk of possible AD development for patients with a history of TBI. We identified patients with history of TBI from an existing Department of Veterans Affairs (VA) national database. Among 1,660,151 veterans who used VA services between the ages of 50 to 89 years old, we analyzed 733,920 patients, including 15,450 patients with a history of TBI and 718,470 non-TBI patients. The TBI patients were followed for up to 18.5 years, with an average of 7.7 ± 4.7 years, and onset of dementia with possible AD was recorded based on International Statistical Classification of Diseases (ICD) 9 or 10 codes. The effect of TBI on possible AD development was evaluated by multivariable logistic regression models adjusted by age, gender, race, and other comorbidities. The association of ACEI, beta blockers, metformin, statins, and combinations of these agents over time from the first occurrence of TBI to possible AD onset was assessed using Cox proportional hazard models adjusted for demographics and comorbidities. RESULTS Veterans with at least two TBI occurrences by claims data were 25% (odds ratio (OR) = 1.25, 95% confidence intervals (CI) (1.13, 1.37)) more likely to develop dementia with possible AD, compared to those with no record of TBI. In multivariable logistic regression models (propensity score weighted or adjusted), veterans taking a combination of ACEI and statins had reduced risk in developing possible AD after suffering TBI, and use of this medication class combination was associated with a longer period between TBI occurring and dementia with possible AD onset, compared to patients who took statins alone or did not take any of the four target drugs after TBI. CONCLUSIONS The combination of ACEI and statins significantly lowered the risk of development of dementia with possible AD in a national cohort of people with a history of TBI, thus supporting a clinical approach to lowering the risk of dementia with possible AD.
Collapse
Affiliation(s)
- Mingfei Li
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Mathematical Sciences, Bentley University, Waltham, MA USA
| | - Joel Reisman
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
| | - Benjamin Morris-Eppolito
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730 USA
| | - Shirley X. Qian
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA USA
| | - Lewis E. Kazis
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Hospital, Bedford, MA USA
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA USA
| | - Lee E. Goldstein
- Departments of Radiology, Psychiatry, Neurology, and Pathology, Boston University School of Medicine, Boston, MA USA
- Departments of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering & Photonics Center, Boston, MA USA
- Boston University Alzheimer’s Disease Center, Boston, MA USA
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730 USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA USA
| |
Collapse
|
23
|
Cheng H, Deaton LM, Qiu M, Ha S, Pacoma R, Lao J, Tolley V, Moran R, Keeton A, Lamb JR, Fathman J, Walker JR, Schumacher AM. Tau overexpression exacerbates neuropathology after repeated mild head impacts in male mice. Neurobiol Dis 2019; 134:104683. [PMID: 31765727 DOI: 10.1016/j.nbd.2019.104683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Repeated mild traumatic brain injury (rmTBI) can lead to development of chronic traumatic encephalopathy (CTE), which is characterized by progressive neurodegeneration with presence of white matter damage, gliosis and hyper-phosphorylated tau. While animal models of rmTBI have been documented, few characterize the molecular pathogenesis and expression profiles of relevant injured brain regions. Additionally, while the usage of transgenic tau mice in rmTBI is prevalent, the effects of tau on pathological outcomes has not been well studied. Here we characterized a 42-impact closed-head rmTBI paradigm on 3-4 month old male C57BL/6 (WT) and Tau-overexpressing mice (Tau58.4). This injury paradigm resulted in chronic gliosis, T-cell infiltration, and demyelination of the optic nerve and associated white matter tracts at 1-month post-injury. At 3-months post-injury, Tau58.4 mice showed progressive neuroinflammation and neurodegeneration in multiple brain regions compared to WT mice. Corresponding to histopathology, RNAseq of the optic nerve tract at 1-month post-injury showed significant upregulation of inflammatory pathways and downregulation of myelin synthetic pathways in both genotypes. However, Tau58.4 mice showed additional changes in neurite development, protein processing, and cell stress. Comparisons with published transcriptomes of human Alzheimer's Disease and CTE revealed common signatures including neuroinflammation and downregulation of protein phosphatases. We next investigated the demyelination and T-cell infiltration phenotypes to determine whether these offer potential avenues for therapeutic intervention. Tau58.4 mice were treated with the histamine H3 receptor antagonist GSK239512 for 1-month post-injury to promote remyelination of white matter lesions. This restored myelin gene expression to sham levels but failed to repair the histopathologic lesions. Likewise, injured T-cell-deficient Rag2/Il2rg (R2G2) mice also showed evidence for inflammation and loss of myelin. However, unlike immune-competent mice, R2G2 mice had altered myeloid cell gene expression and fewer demyelinated lesions. Together this data shows that rmTBI leads to chronic white matter inflammatory demyelination and axonal loss exacerbated by human tau overexpression but suggests that immune-suppression and remyelination alone are insufficient to reverse damage.
Collapse
Affiliation(s)
- Hank Cheng
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Lisa M Deaton
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Minhua Qiu
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Sukwon Ha
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Reynand Pacoma
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Jianmin Lao
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Valerie Tolley
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Rita Moran
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Amber Keeton
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - John R Lamb
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA
| | - John Fathman
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - John R Walker
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| | - Andrew M Schumacher
- Department of General Medical Biology, Genomics Institute for the Novartis Research Foundation, San Diego, CA 92121, USA.
| |
Collapse
|
24
|
Ojo JO, Leary P, Lungmus C, Algamal M, Mouzon B, Bachmeier C, Mullan M, Stewart W, Crawford F. Subchronic Pathobiological Response Following Chronic Repetitive Mild Traumatic Brain Injury in an Aged Preclinical Model of Amyloid Pathogenesis. J Neuropathol Exp Neurol 2019; 77:1144-1162. [PMID: 30395237 DOI: 10.1093/jnen/nly101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) is a risk factor for Alzheimer disease (AD). The precise nature of how r-mTBI leads to, or precipitates, AD pathogenesis remains unclear. In this study, we explore subchronic effects of chronic r-mTBI (12-impacts) administered over 1-month in aged-PS1/APP mice and littermate controls. We investigate specific mechanisms that may elucidate the molecular link between AD and r-mTBI, focusing primarily on amyloid and tau pathology, amyloid processing, glial activation states, and associated clearance mechanisms. Herein, we demonstrate r-mTBI in aged PS1/APP mice does not augment, glial activation, amyloid burden, or tau pathology (with exception of pS202-positive Tau) 1 month after exposure to the last-injury. However, we observed a decrease in brain soluble Aβ42 levels without any appreciable change in peripheral soluble Aβ42 levels. This was accompanied by an increase in brain insoluble to soluble Aβ42 ratio in injured PS1/APP mice compared with sham injury. A parallel reduction in phagocytic receptor, triggering receptor expressed on myeloid cells 2, was also observed. This study demonstrates very subtle subchronic effects of r-mTBI on a preexisting amyloid pathology background, which may be on a continuum toward a slow and worsening neurodegenerative outcome compared with sham injury, and therefore, have many implications, especially in the elderly population exposed to TBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,James A. Haley Veterans' Hospital, Tampa, Florida.,Open University, Milton Keynes, UK
| | - Paige Leary
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida
| | - Caryln Lungmus
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida
| | - Moustafa Algamal
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,Open University, Milton Keynes, UK
| | - Benoit Mouzon
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,James A. Haley Veterans' Hospital, Tampa, Florida.,Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, Florida
| | - Michael Mullan
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,Open University, Milton Keynes, UK
| | - William Stewart
- Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK.,University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fiona Crawford
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,James A. Haley Veterans' Hospital, Tampa, Florida.,Open University, Milton Keynes, UK
| |
Collapse
|
25
|
Current fluid biomarkers, animal models, and imaging tools for diagnosing chronic traumatic encephalopathy. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Gorgoraptis N, Li LM, Whittington A, Zimmerman KA, Maclean LM, McLeod C, Ross E, Heslegrave A, Zetterberg H, Passchier J, Matthews PM, Gunn RN, McMillan TM, Sharp DJ. In vivo detection of cerebral tau pathology in long-term survivors of traumatic brain injury. Sci Transl Med 2019; 11:11/508/eaaw1993. [DOI: 10.1126/scitranslmed.aaw1993] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) can trigger progressive neurodegeneration, with tau pathology seen years after a single moderate-severe TBI. Identifying this type of posttraumatic pathology in vivo might help to understand the role of tau pathology in TBI pathophysiology. We used flortaucipir positron emission tomography (PET) to investigate whether tau pathology is present many years after a single TBI in humans. We examined PET data in relation to markers of neurodegeneration in the cerebrospinal fluid (CSF), structural magnetic resonance imaging measures, and cognitive performance. Cerebral flortaucipir binding was variable, with many participants with TBI showing increases in cortical and white matter regions. At the group level, flortaucipir binding was increased in the right occipital cortex in TBI when compared to healthy controls. Flortaucipir binding was associated with increased total tau, phosphorylated tau, and ubiquitin carboxyl-terminal hydrolase L1 CSF concentrations, as well as with reduced fractional anisotropy and white matter tissue density in TBI. Apolipoprotein E (APOE) ε4 genotype affected the relationship between flortaucipir binding and time since injury, CSF β amyloid 1–42 (Aβ42) concentration, white matter tissue density, and longitudinal Mini-Mental State Examination scores in TBI. The results demonstrate that tau PET is a promising approach to investigating progressive neurodegeneration associated with tauopathy after TBI.
Collapse
Affiliation(s)
- Nikos Gorgoraptis
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Lucia M. Li
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Alex Whittington
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Invicro London, London W12 0NN, UK
| | - Karl A. Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Linda M. Maclean
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 0XH, UK
| | - Claire McLeod
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 0XH, UK
| | - Ewan Ross
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal 413 45, Sweden
| | | | - Paul M. Matthews
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK
| | - Roger N. Gunn
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Invicro London, London W12 0NN, UK
| | - Tom M. McMillan
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 0XH, UK
| | - David J. Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
| |
Collapse
|
27
|
Kulkarni P, Morrison TR, Cai X, Iriah S, Simon N, Sabrick J, Neuroth L, Ferris CF. Neuroradiological Changes Following Single or Repetitive Mild TBI. Front Syst Neurosci 2019; 13:34. [PMID: 31427931 PMCID: PMC6688741 DOI: 10.3389/fnsys.2019.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives To test the hypothesis that there are differences in neuroradiological measures between single and repeated mild traumatic brain injury using multimodal MRI. Methods A closed-head momentum exchange model was used to produce one or three mild head injuries in young adult male rats compared to non-injured, age and weight-matched controls. Six-seven weeks post-injury, rats were studied for deficits in cognitive and motor function. Seven-eight weeks post-injury changes in brain anatomy and function were evaluated through analysis of high resolution T2 weighted images, resting-state BOLD functional connectivity, and diffusion weighted imaging with quantitative anisotropy. Results Head injuries occurred without skull fracture or signs of intracranial bleeding or contusion. There were no significant differences in cognitive or motors behaviors between experimental groups. With a single mild hit, the affected areas were limited to the caudate/putamen and central amygdala. Rats hit three times showed altered diffusivity in white matter tracts, basal ganglia, central amygdala, brainstem, and cerebellum. Comparing three hits to one hit showed a similar pattern of change underscoring a dose effect of repeated head injury on the brainstem and cerebellum. Disruption of functional connectivity was pronounced with three mild hits. The midbrain dopamine system, hippocampus, and brainstem/cerebellum showed hypoconnectivity. Interestingly, rats exposed to one hit showed enhanced functional connectivity (or hyperconnectivity) across brain sites, particularly between the olfactory system and the cerebellum. Interpretation Neuroradiological evidence of altered brain structure and function, particularly in striatal and midbrain dopaminergic areas, persists long after mild repetitive head injury. These changes may serve as biomarkers of neurodegeneration and risk for dementia later in life.
Collapse
Affiliation(s)
- Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Thomas R Morrison
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Xuezhu Cai
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Sade Iriah
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Neal Simon
- Azevan Pharmaceuticals, Bethlehem, PA, United States.,Department of Biological Sciences, College of Arts and Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julia Sabrick
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Lucas Neuroth
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| |
Collapse
|
28
|
Zanier ER, Bertani I, Sammali E, Pischiutta F, Chiaravalloti MA, Vegliante G, Masone A, Corbelli A, Smith DH, Menon DK, Stocchetti N, Fiordaliso F, De Simoni MG, Stewart W, Chiesa R. Induction of a transmissible tau pathology by traumatic brain injury. Brain 2019; 141:2685-2699. [PMID: 30084913 DOI: 10.1093/brain/awy193] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Traumatic brain injury is a risk factor for subsequent neurodegenerative disease, including chronic traumatic encephalopathy, a tauopathy mostly associated with repetitive concussion and blast, but not well recognized as a consequence of severe traumatic brain injury. Here we show that a single severe brain trauma is associated with the emergence of widespread hyperphosphorylated tau pathology in a proportion of humans surviving late after injury. In parallel experimental studies, in a model of severe traumatic brain injury in wild-type mice, we found progressive and widespread tau pathology, replicating the findings in humans. Brain homogenates from these mice, when inoculated into the hippocampus and overlying cerebral cortex of naïve mice, induced widespread tau pathology, synaptic loss, and persistent memory deficits. These data provide evidence that experimental brain trauma induces a self-propagating tau pathology, which can be transmitted between mice, and call for future studies aimed at investigating the potential transmissibility of trauma associated tau pathology in humans.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eliana Sammali
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Pischiutta
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Douglas H Smith
- Penn Centre for Brain Injury and Repair and Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nino Stocchetti
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Fabio Fiordaliso
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - William Stewart
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
29
|
Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Mol Psychiatry 2019; 24:936-951. [PMID: 30089789 DOI: 10.1038/s41380-018-0133-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Chronic mental illnesses (CMI), such as schizophrenia or recurrent affective disorders, are complex conditions with both genetic and non-genetic elements. In many other chronic brain conditions, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia, sporadic instances of the disease are more common than gene-driven familial cases. Yet, the pathology of these conditions can be characterized by the presence of aberrant protein homeostasis, proteostasis, resulting in misfolded or aggregated proteins in the brains of patients that predominantly do not derive from genetic mutations. While visible deposits of aggregated protein have not yet been detected in CMI patients, we propose the existence of more subtle protein misassembly in these conditions, which form a continuum with the psychiatric phenotypes found in the early stages of many neurodegenerative conditions. Such proteinopathies need not rely on genetic variation. In a similar manner to the established aberrant neurotransmitter homeostasis in CMI, aberrant homeostasis of proteins is a functional statement that can only partially be explained by, but is certainly complementary to, genetic approaches. Here, we review evidence for aberrant proteostasis signatures from post mortem human cases, in vivo animal work, and in vitro analysis of candidate proteins misassembled in CMI. The five best-characterized proteins in this respect are currently DISC1, dysbindin-1, CRMP1, TRIOBP-1, and NPAS3. Misassembly of these proteins with inherently unstructured domains is triggered by extracellular stressors and thus provides a converging point for non-genetic causes of CMI.
Collapse
|
30
|
Albayram O, MacIver B, Mathai J, Verstegen A, Baxley S, Qiu C, Bell C, Caldarone BJ, Zhou XZ, Lu KP, Zeidel M. Traumatic Brain Injury-related voiding dysfunction in mice is caused by damage to rostral pathways, altering inputs to the reflex pathways. Sci Rep 2019; 9:8646. [PMID: 31201348 PMCID: PMC6570649 DOI: 10.1038/s41598-019-45234-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Brain degeneration, including that caused by traumatic brain injury (TBI) often leads to severe bladder dysfunction, including incontinence and lower urinary tract symptoms; with the causes remaining unknown. Male C57BL/6J mice underwent repetitive moderate brain injury (rmdTBI) or sham injury, then mice received either cis P-tau monoclonal antibody (cis mAb), which prevents brain degeneration in TBI mice, or control (IgG). Void spot assays revealed age-dependent incontinence in IgG controls 8 months after injury, while cis mAb treated or sham mice showed no dysfunction. No obvious bladder pathology occurred in any group. Urodynamic cystometry in conscious mice revealed overactive bladder, reduced maximal voiding pressures and incontinence in IgG control, but not sham or cis mAb treated mice. Hyperphosphorylated tau deposition and neural tangle-like pathology occurred in cortical and hippocampal regions only of IgG control mice accompanied with post-traumatic neuroinflammation and was not seen in midbrain and hindbrain regions associated with bladder filling and voiding reflex arcs. In this model of brain degeneration bladder dysfunction results from rostral, and not hindbrain damage, indicating that rostral brain inputs are required for normal bladder functioning. Detailed analysis of the functioning of neural circuits controlling bladder function in TBI should lead to insights into how brain degeneration leads to bladder dysfunction, as well as novel strategies to treat these disorders.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - Bryce MacIver
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| | - John Mathai
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Anne Verstegen
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sean Baxley
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Chenxi Qiu
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Carter Bell
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Barbara J Caldarone
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiao Zhen Zhou
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Kun Ping Lu
- Hematology and Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Mark Zeidel
- Division of Nephrology, Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
31
|
Risling M, Smith D, Stein TD, Thelin EP, Zanier ER, Ankarcrona M, Nilsson P. Modelling human pathology of traumatic brain injury in animal models. J Intern Med 2019; 285:594-607. [PMID: 30963638 PMCID: PMC9351987 DOI: 10.1111/joim.12909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is caused by a head impact with a force exceeding regular exposure from normal body movement which the brain normally can accommodate. People affected include, but are not restricted to, sport athletes in American football, ice hockey, boxing as well as military personnel. Both single and repetitive exposures may affect the brain acutely and can lead to chronic neurodegenerative changes including chronic traumatic encephalopathy associated with the development of dementia. The changes in the brain following TBI include neuroinflammation, white matter lesions, and axonal damage as well as hyperphosphorylation and aggregation of tau protein. Even though the human brain gross anatomy is different from rodents implicating different energy transfer upon impact, especially rotational forces, animal models of TBI are important tools to investigate the changes that occur upon TBI at molecular and cellular levels. Importantly, such models may help to increase the knowledge of how the pathologies develop, including the spreading of tau pathologies, and how to diagnose the severity of the TBI in the clinic. In addition, animal models are helpful in the development of novel biomarkers and can also be used to test potential disease-modifying compounds in a preclinical setting.
Collapse
Affiliation(s)
- M Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - D Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T D Stein
- VA Boston Healthcare System, Boston, MA, USA.,Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - E P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - E R Zanier
- Department of Neuroscience, Mario Negri Institute, IRCCS Milano, Milano, Italy
| | - M Ankarcrona
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| | - P Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Science and Society, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
32
|
Gangolli M, Benetatos J, Esparza TJ, Fountain EM, Seneviratne S, Brody DL. Repetitive Concussive and Subconcussive Injury in a Human Tau Mouse Model Results in Chronic Cognitive Dysfunction and Disruption of White Matter Tracts, But Not Tau Pathology. J Neurotrauma 2019; 36:735-755. [PMID: 30136628 PMCID: PMC6387572 DOI: 10.1089/neu.2018.5700] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Due to the unmet need for a means to study chronic traumatic encephalopathy (CTE) in vivo, there have been numerous efforts to develop an animal model of this progressive tauopathy. However, there is currently no consensus in the field on an injury model that consistently reproduces the neuropathological and behavioral features of CTE. We have implemented a repetitive Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) injury paradigm in human transgenic (hTau) mice. Animals were subjected to daily subconcussive or concussive injuries for 20 days and tested acutely, 3 months, and 12 months post-injury for deficits in social behavior, anxiety, spatial learning and memory, and depressive behavior. Animals also were assessed for chronic tau pathology, astrogliosis, and white matter degeneration. Repetitive concussive injury caused acute deficits in Morris water maze performance, including reduced swimming speed and increased distance to the platform during visible and hidden platform phases that persisted during the subacute and chronic time-points following injury. We found evidence of white matter disruption in animals injured with subconcussive and concussive injuries, with the most severe disruption occurring in the repetitive concussive injury group. Severity of white matter disruption in the corpus callosum was moderately correlated with swimming speed, while white matter disruption in the fimbria showed weak but significant correlation with worse performance during probe trial. There was no evidence of tau pathology or astrogliosis in sham or injured animals. In summary, we show that repetitive brain injury produces persistent behavioral abnormalities as late as 1 year post-injury that may be related to chronic white matter disruption, although the relationship with CTE remains to be determined.
Collapse
Affiliation(s)
- Mihika Gangolli
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Benetatos
- Queensland Brain Institute, University of Queensland, St. Lucia, Australia
| | - Thomas J. Esparza
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Emeka M. Fountain
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Shamilka Seneviratne
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - David L. Brody
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
33
|
Laffey M, Darby AJ, Cline MG, Teng E, Mendez MF. The utility of clinical criteria in patients with chronic traumatic encephalopathy. NeuroRehabilitation 2019; 43:431-441. [PMID: 30412511 DOI: 10.3233/nre-182452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Repetitive traumatic brain injury (TBI) is associated with chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder characterized by Alzheimer-like changes in the brain. CTE has been defined through neuropathological findings among deceased athletes and others exposed to repetitive TBI, but to date there are no definitive clinical criteria for CTE. OBJECTIVE To evaluate the utility of currently proposed clinical criteria for CTE and suggest improvements. METHODS We describe two well-characterized patients referred for evaluation of CTE and apply the four major proposed criteria for CTE. These criteria were further assessed in a cohort of patients referred to a neurobehavior clinic with or without a history of TBI. RESULTS Without a CTE biomarker, the current criteria were of limited utility when applied to the two patient and the Neurobehavior cohort. Six items were extracted as potentially improving the clinical diagnosis of CTE: length of exposure to head impacts, a progressive course, specific psychiatric symptoms, frontal-executive dysfunction, parkinsonism and tremors, and targeted findings on neuroimaging. CONCLUSIONS The prevention and neurorehabilitation of CTE depends on clinical diagnosis, but, without a biomarker, the clinical diagnosis of CTE remains difficult. This report suggests that clinical criteria for CTE may be greatly improved with emphasis on several critical historical and clinical correlates of CTE.
Collapse
Affiliation(s)
- Megan Laffey
- Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Adam J Darby
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michael G Cline
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edmond Teng
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
34
|
Liyanage SI, Santos C, Weaver DF. The hidden variables problem in Alzheimer's disease clinical trial design. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:628-635. [PMID: 30519628 PMCID: PMC6260222 DOI: 10.1016/j.trci.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the leading cause of dementia worldwide, Alzheimer's disease has garnered intense academic and clinical interest. Yet, trials in search of a disease-modifying therapy have failed overwhelmingly. We suggest that, in part, this may be attributable to the influence of disruptive variables inherent to the framework of a clinical trial. Specifically, we observe that everyday factors such as diet, education, mental exertion, leisure participation, multilingualism, sleep, trauma, and physical activity, as well as clinical/study parameters including environment, family coaching, concurrent medications, and illnesses may serve as potent confounders, disruptors, or sources of bias to an otherwise significant drug-disease interaction. This perspective briefly summarizes the potential influence of these hidden variables on the outcomes of clinical trials and suggests strategies to abate their impact. Clinical trials in Alzheimer's disease have failed overwhelmingly. In part, this may be due to interference by clinical and daily variables. The role of these variables in Alzheimer's disease risk and progression is reviewed. Strategies to abate a disruptive influence in Alzheimer's disease clinical trials are suggested.
Collapse
Affiliation(s)
- S Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Clarissa Santos
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Yu J, Zhu H, Taheri S, Mondy W, Perry S, Kindy MS. Impact of nutrition on inflammation, tauopathy, and behavioral outcomes from chronic traumatic encephalopathy. J Neuroinflammation 2018; 15:277. [PMID: 30249250 PMCID: PMC6154891 DOI: 10.1186/s12974-018-1312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Repetitive mild traumatic brain injuries (rmTBI) are associated with cognitive deficits, inflammation, and stress-related events. We tested the effect of nutrient intake on the impact of rmTBI in an animal model of chronic traumatic encephalopathy (CTE) to study the pathophysiological mechanisms underlying this model. We used a between group design rmTBI closed head injuries in mice, compared to a control and nutrient-treated groups. METHODS Our model allows for controlled, repetitive closed head impacts to mice. Briefly, 24-week-old mice were divided into five groups: control, rmTBI, and rmTBI with nutrients (2% of NF-216, NF-316 and NF-416). rmTBI mice received four concussive impacts over 7 days. Mice were treated with NutriFusion diets for 2 months prior to the rmTBI and until euthanasia (6 months). Mice were then subsequently euthanized for macro- and micro-histopathologic analysis for various times up to 6 months after the last TBI received. Animals were examined behaviorally, and brain sections were immunostained for glial fibrillary acidic protein (GFAP) for astrocytes, iba-1 for activated microglia, and AT8 for phosphorylated tau protein. RESULTS Animals on nutrient diets showed attenuated behavioral changes. The brains from all mice lacked macroscopic tissue damage at all time points. The rmTBI resulted in a marked neuroinflammatory response, with persistent and widespread astrogliosis and microglial activation, as well as significantly elevated phospho-tau immunoreactivity to 6 months. Mice treated with diets had significantly reduced inflammation and phospho-tau staining. CONCLUSIONS The neuropathological findings in the rmTBI mice showed histopathological hallmarks of CTE, including increased astrogliosis, microglial activation, and hyperphosphorylated tau protein accumulation, while mice treated with diets had attenuated disease process. These studies demonstrate that consumption of nutrient-rich diets reduced disease progression.
Collapse
Affiliation(s)
- Jin Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - Hong Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - William Mondy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA
| | - Stephen Perry
- NutriFusion®, LLC, 10641 Airport Pulling Rd., Suite 31, Naples, FL, 34109, USA
| | - Mark S Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 30, Tampa, FL, 33612, USA. .,Departments of Molecular Medicine, Molecular Pharmacology, Physiology and Pathology and Cell Biology, and Neurology, College of Medicine, University of South Florida, Tampa, FL, USA. .,James A. Haley VA Medical Center, Tampa, FL, USA. .,Shriners Hospital for Children, Tampa, FL, USA.
| |
Collapse
|
36
|
Mouzon B, Bachmeier C, Ojo J, Acker C, Ferguson S, Crynen G, Davies P, Mullan M, Stewart W, Crawford F. Chronic White Matter Degeneration, but No Tau Pathology at One-Year Post-Repetitive Mild Traumatic Brain Injury in a Tau Transgenic Model. J Neurotrauma 2018; 36:576-588. [PMID: 29993324 DOI: 10.1089/neu.2018.5720] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tau pathology associated with chronic traumatic encephalopathy has been documented in the brains of individuals with a history of repetitive mild traumatic brain injury (r-mTBI). At this stage, the pathobiological role of tau in r-mTBI has not been extensively explored in appropriate pre-clinical models. Here, we describe the acute and chronic behavioral and histopathological effects of single and repetitive mild TBI (five injuries given at 48 h intervals) in young adult (3 months old) hTau mice that express all six isoforms of hTau on a null murine tau background. Animals exposed to r-mTBI showed impaired visuospatial learning in the Barnes maze test that progressively worsened from two weeks to 12 months post-injury, which was also accompanied by significant deficits in visuospatial memory consolidation at 12 months post-injury. In contrast, only marginal changes were observed in visuospatial learning at six and 12 months after single mTBI. Histopathological analyses revealed that hTau mice developed axonal injury, thinning of the corpus callosum, microgliosis and astrogliosis in the white matter at acute and chronic time points after injury. Tau immunohistochemistry and enzyme-linked immunosorbent assay data suggest, however, only transient, injury-dependent increases in phosphorylated tau in the cerebral cortex beneath the impact site and in the CA1/CA3 subregion of the hippocampus after single or r-mTBI. This study implicates white matter degeneration as a prominent feature of survival from mTBI, while the role of tau pathology in the neuropathological sequelae of TBI remains elusive.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Davies
- 2 Feinstein Institute for Medical Research , Manhasset, New York
| | | | - William Stewart
- 3 Department of Neuropathology, Laboratory Medicine Building, Queen Elizabeth University Hospital , Glasgow, Scotland
| | | |
Collapse
|
37
|
Abstract
Mild traumatic brain injury (mTBI) represents a significant public healthcare concern, accounting for the majority of all head injuries. While symptoms are generally transient, some patients go on to experience long-term cognitive impairments and additional mild impacts can result in exacerbated and persisting negative outcomes. To date, studies using a range of experimental models have reported chronic behavioral deficits in the presence of axonal injury and inflammation following repeated mTBI; assessments of oxidative stress and myelin pathology have thus far been limited. However, some models employed induced acute focal damage more suggestive of moderate–severe brain injury and are therefore not relevant to repeated mTBI. Given that the nature of mechanical loading in TBI is implicated in downstream pathophysiological changes, the mechanisms of damage and chronic consequences of single and repeated closed-head mTBI remain to be fully elucidated. This review covers literature on potential mechanisms of damage following repeated mTBI, integrating known mechanisms of pathology underlying moderate–severe TBIs, with recent studies on adult rodent models relevant to direct impact injuries rather than blast-induced damage. Pathology associated with excitotoxicity and cerebral blood flow-metabolism uncoupling, oxidative stress, cell death, blood-brain barrier dysfunction, astrocyte reactivity, microglial activation, diffuse axonal injury, and dysmyelination is discussed, followed by a summary of functional deficits and preclinical assessments of therapeutic strategies. Comprehensive characterization of the pathology underlying delayed and persisting deficits following repeated mTBI is likely to facilitate further development of therapeutic strategies to limit long-term sequelae.
Collapse
Affiliation(s)
- Brooke Fehily
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Melinda Fitzgerald
- 1 Experimental and Regenerative Neurosciences, School of Biological sciences, The University of Western Australia, Perth, Western Australia, Australia.,2 Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,3 Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| |
Collapse
|
38
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
39
|
Becker RE, Kapogiannis D, Greig NH. Does traumatic brain injury hold the key to the Alzheimer's disease puzzle? Alzheimers Dement 2018; 14:431-443. [PMID: 29245000 PMCID: PMC5958613 DOI: 10.1016/j.jalz.2017.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/10/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Neurodegenerative disorders have been a graveyard for hundreds of well-intentioned efforts at drug discovery and development. Concussion and other traumatic brain injuries (TBIs) and Alzheimer's disease (AD) share many overlapping pathologies and possible clinical links. METHODS We searched the literature since 1995 using MEDLINE and Google Scholar for the terms concussion, AD, and shared neuropathologies. We also studied a TBI animal model as a supplement to transgenic (Tg) mouse AD models for evaluating AD drug efficacy by preventing neuronal losses. To evaluate TBI/AD pathologies and neuronal self-induced cell death (apoptosis), we are studying brain extracellular vesicles in plasma and (-)-phenserine pharmacology to probe, in animal models of AD and humans, apoptosis and pathways common to concussion and AD. RESULTS Neuronal cell death and a diverse and significant pathological cascade follow TBIs. Many of the developing pathologies are present in early AD. The use of an animal model of concussion as a supplement to Tg mice provides an indication of an AD drug candidate's potential for preventing apoptosis and resulting progression toward dementia in AD. This weight drop supplementation to Tg mouse models, the experimental drug (-)-phenserine, and plasma-derived extracellular vesicles enriched for neuronal origin to follow biomarkers of neurodegenerative processes, each and in combination, show promise as tools useful for probing the progression of disease in AD, TBI/AD pathologies, apoptosis, and drug effects on rates of apoptosis both preclinically and in humans. (-)-Phenserine both countered many subacute post-TBI pathologies that could initiate clinical AD and, in the concussion and other animal models, showed evidence consistent with direct inhibition of neuronal preprogrammed cell death in the presence of TBI/AD pathologies. DISCUSSION These findings may provide support for expanding preclinical Tg mouse studies in AD with a TBI weight drop model, insights into the progression of pathological targets, their relations to apoptosis, and timing of interventions against these targets and apoptosis. Such studies may demonstrate the potential for drugs to effectively and safely inhibit preprogrammed cell death as a new drug development strategy for use in the fight to defeat AD.
Collapse
Affiliation(s)
- Robert E Becker
- Aristea Translational Medicine Corporation, Park City, UT, USA; Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
40
|
Woerman AL, Patel S, Kazmi SA, Oehler A, Freyman Y, Espiritu L, Cotter R, Castaneda JA, Olson SH, Prusiner SB. Kinetics of Human Mutant Tau Prion Formation in the Brains of 2 Transgenic Mouse Lines. JAMA Neurol 2017; 74:1464-1472. [PMID: 29059326 DOI: 10.1001/jamaneurol.2017.2822] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Importance Accumulation of the protein tau is a defining characteristic of several neurodegenerative diseases. Thorough assessment of transgenic (Tg) mouse lines that replicate this process is critical for establishing the models used for testing anti-tau therapeutics in vivo. Objective To define a consistent mouse model of disease for use in future compound efficacy studies. Design, Setting, and Participants In this time course study, cohorts of Tg and control mice were euthanized at defined intervals. Collected brains were bisected down the midline. One half was frozen and used to measure the tau prion content, while the other half was fixed for immunostaining with anti-tau antibodies. All mice were maintained at the Hunters Point Animal Facility at the University of California, San Francisco, and all experiments were performed at the Mission Bay Campus of the University of California, San Francisco. Study animals were PS19, homozygous and hemizygous Tg(MAPT*P301S), and B6/J mice. The study dates were August 9, 2010, to October 3, 2016. Main Outcomes and Measures Tau prions were measured using a cell-based assay. Neuropathology was measured by determining the percentage area positive for immunostaining in defined brain regions. A separate cohort of mice was aged until each mouse developed neurological signs as determined by trained animal technicians to assess mortality. Results A total of 1035 mice were used in this time course study. These included PS19 mice (51.2% [126 of 246] male and 48.8% [120 of 246] female), Tg(MAPT*P301S+/+) mice (52.3% [216 of 413] male, 43.8% [181 of 413] female, and 3.9% [16 of 413] undetermined), Tg(MAPT*P301S+/-) mice (51.8% [101 of 195] male and 48.2% [94 of 195] female), and B6/J mice (49.7% [90 of 181] male and 50.3% [91 of 181] female). While considerable interanimal variability in neuropathology, disease onset, and tau prion formation in the PS19 mice was observed, all 3 measures of disease were more uniform in the Tg(MAPT*P301S+/+) mice. Comparing tau prion formation in Tg(MAPT*P301S+/+) mice with B6/J controls, the 95% CIs for the 2 mouse lines diverged before age 5 weeks, and significant (P < .05) neuropathology in the hindbrain of 24-week-old mice was quantifiable. Conclusions and Relevance The assessment of disease progression using 3 criteria showed that disease onset in PS19 mice is too variable to obtain reliable measurements for drug discovery research. However, the reproducibility of tau prion formation in young Tg(MAPT*P301S+/+) mice establishes a rapid assay for compound efficacy in vivo.
Collapse
Affiliation(s)
- Amanda L Woerman
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| | - Smita Patel
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Sabeen A Kazmi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Yevgeniy Freyman
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Lloyd Espiritu
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Robert Cotter
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Julian A Castaneda
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco
| | - Steven H Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco.,Department of Neurology, University of California, San Francisco.,Department of Biochemistry and Biophysics, University of California, San Francisco
| |
Collapse
|
41
|
Mouzon BC, Bachmeier C, Ojo JO, Acker CM, Ferguson S, Paris D, Ait-Ghezala G, Crynen G, Davies P, Mullan M, Stewart W, Crawford F. Lifelong behavioral and neuropathological consequences of repetitive mild traumatic brain injury. Ann Clin Transl Neurol 2017; 5:64-80. [PMID: 29376093 PMCID: PMC5771321 DOI: 10.1002/acn3.510] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022] Open
Abstract
Objective Exposure to repetitive concussion, or mild traumatic brain injury (mTBI), has been linked with increased risk of long‐term neurodegenerative changes, specifically chronic traumatic encephalopathy (CTE). To date, preclinical studies largely have focused on the immediate aftermath of mTBI, with no literature on the lifelong consequences of mTBI in these models. This study provides the first account of lifelong neurobehavioral and histological consequences of repetitive mTBI providing unique insight into the constellation of evolving and ongoing pathologies with late survival. Methods Male C57BL/6J mice (aged 2–3 months) were exposed to either single or repetitive mild TBI or sham procedure. Thereafter, animals were monitored and assessed at 24 months post last injury for measures of motor coordination, learning deficits, cognitive function, and anxiety‐like behavior prior to euthanasia and preparation of the brains for detailed neuropathological and protein biochemical studies. Results At 24 months survival animals exposed to r‐mTBI showed clear evidence of learning and working memory impairment with a lack of spatial memory and vestibule‐motor vestibulomotor deficits compared to sham animals. Associated with these late behavioral deficits there was evidence of ongoing axonal degeneration and neuroinflammation in subcortical white matter tracts. Notably, these changes were also observed after a single mTBI, albeit to a lesser degree than repetitive mTBI. Interpretation In this context, our current data demonstrate, for the first time, that rather than an acute, time limited event, mild TBI can precipitate a lifelong degenerative process. These data therefore suggest that successful treatment strategies should consider both the acute and chronic nature of mTBI.
Collapse
Affiliation(s)
- Benoit C Mouzon
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida.,The Open University Milton Keynes United Kingdom
| | - Corbin Bachmeier
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida.,The Open University Milton Keynes United Kingdom
| | - Joseph O Ojo
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida
| | | | - Scott Ferguson
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida
| | - Daniel Paris
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida.,The Open University Milton Keynes United Kingdom
| | - Ghania Ait-Ghezala
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida.,The Open University Milton Keynes United Kingdom
| | - Gogce Crynen
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida.,The Open University Milton Keynes United Kingdom
| | - Peter Davies
- Feinstein Institute for Medical Research Manhasset New York
| | | | - William Stewart
- Queen Elizabeth Glasgow University Hospital Glasgow United Kingdom.,University of Glasgow Glasgow United Kingdom
| | - Fiona Crawford
- Roskamp Institute Sarasota Florida.,James A. Haley Veterans' Hospital Tampa Florida.,The Open University Milton Keynes United Kingdom
| |
Collapse
|
42
|
Levy Nogueira M, Hamraz M, Abolhassani M, Bigan E, Lafitte O, Steyaert J, Dubois B, Schwartz L. Mechanical stress increases brain amyloid β, tau, and α‐synuclein concentrations in wild‐type mice. Alzheimers Dement 2017; 14:444-453. [DOI: 10.1016/j.jalz.2017.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/19/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Marcel Levy Nogueira
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie Hôpital de la Pitié‐Salpêtrière, AP‐HP Paris France
- Institut de Recherche Translationnelle en Neurosciences (IHU‐A‐ICM) Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
| | | | | | - Erwan Bigan
- Laboratoire d'informatique (LIX), UMR 7161, École Polytechnique Université Paris‐Saclay Palaiseau France
| | - Olivier Lafitte
- LAGA, UMR 7539 Université Paris 13, Sorbonne Paris Cité Villetaneuse France
| | - Jean‐Marc Steyaert
- Laboratoire d'informatique (LIX), UMR 7161, École Polytechnique Université Paris‐Saclay Palaiseau France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie Hôpital de la Pitié‐Salpêtrière, AP‐HP Paris France
- Institut de Recherche Translationnelle en Neurosciences (IHU‐A‐ICM) Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
- INSERM, CNRS, UMR‐S975 Institut du Cerveau et de la Moelle Epinière (ICM) Paris France
| | | |
Collapse
|
43
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
44
|
Abstract
There is a long history linking traumatic brain injury (TBI) with the development of dementia. Despite significant reservations, such as recall bias or concluding causality for TBI, a summary of recent research points to several conclusions on the TBI-dementia relationship. 1) Increasing severity of a single moderate-to-severe TBI increases the risk of subsequent Alzheimer's disease (AD), the most common type of dementia. 2) Repetitive, often subconcussive, mild TBIs increases the risk for chronic traumatic encephalopathy (CTE), a degenerative neuropathology. 3) TBI may be a risk factor for other neurodegenerative disorders that can be associated with dementia. 4) TBI appears to lower the age of onset of TBI-related neurocognitive syndromes, potentially adding "TBI cognitive-behavioral features". The literature further indicates several specific risk factors for TBI-associated dementia: 5) any blast or blunt physical force to the head as long as there is violent head displacement; 6) decreased cognitive and/or neuronal reserve and the related variable of older age at TBI; and 7) the presence of apolipoprotein E ɛ4 alleles, a genetic risk factor for AD. Finally, there are neuropathological features relating TBI with neurocognitive syndromes: 8) acute TBI results in amyloid pathology and other neurodegenerative proteinopathies; 9) CTE shares features with neurodegenerative dementias; and 10) TBI results in white matter tract and neural network disruptions. Although further research is needed, these ten findings suggest that dose-dependent effects of violent head displacement in vulnerable brains predispose to dementia; among several potential mechanisms is the propagation of abnormal proteins along damaged white matter networks.
Collapse
Affiliation(s)
- Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Neurology, Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
45
|
A model of recurrent concussion that leads to long-term motor deficits, CTE-like tauopathy and exacerbation of an ALS phenotype. J Trauma Acute Care Surg 2017; 81:1070-1079. [PMID: 27602892 DOI: 10.1097/ta.0000000000001248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Concussion injury is the most common form of traumatic brain injury (TBI). How recurrent concussions alter long-term outcomes is poorly understood, especially as related to the development of neurodegenerative disease. We evaluated the functional and pathological consequences of repeated TBI over time in wild type (WT) rats as well as rats harboring the human SOD1 mutation ("SOD1"), a model of familial amyotrophic lateral sclerosis (ALS). METHODS A total of 42 rats, 26 WT and 16 SOD1, were examined over a study period of 25 weeks (or endpoint). At postnatal day 60, 20 WT and 7 SOD1 rats were exposed to mild, bilateral TBI once per week for either 2 weeks (2×TBI) or 5 weeks (5×TBI) using a controlled cortical impact device. Six WT and nine SOD1 rats underwent sham injury with anesthesia alone. Twenty WT rats were euthanized at 12 weeks after first injury and six WT rats were euthanized at 25 weeks after first injury. SOD1 rats were euthanized when they reached ALS disease endpoint. Weekly body weights and behavioral assessments were performed. Tauopathy in brain tissue was analyzed using immunohistochemistry. RESULTS 2XTBI injured rats initially demonstrated recovery of motor function but failed to recover to baseline within the 12-week study period. Relative to both 2XTBI and sham controls, 5XTBI rats demonstrated significant deficits that persisted over the 12-week period. SOD1 5XTBI rats reached a peak body weight earlier than sham SOD1 rats, indicating earlier onset of the ALS phenotype. Histologic examination of brain tissue revealed that, in contrast with sham controls, SOD1 and WT TBI rats demonstrated cortical and corpus collosum thinning and tauopathy, which increased over time. CONCLUSIONS Unlike previous models of repeat brain injury, which demonstrate only transient deficits in motor function, our concussion model of repeat, mild, bilateral TBI induced long-lasting deficits in motor function, decreased cortical thickness, shrinkage of the corpus callosum, increased brain tauopathy, and earlier onset of ALS symptoms in SOD1 rats. This model may allow for a greater understanding of the complex relationship between TBI and neurodegenerative diseases and provides a potential method for testing novel therapeutic strategies.
Collapse
|
46
|
Abstract
Concussion is a significant issue in medicine and the media today. With growing interest on the long-term effects of sports participation, it is important to understand what occurs in the brain after an impact of any degree. While some of the basic pathophysiology has been elucidated, much is still unknown about what happens in the brain after traumatic brain injury, particularly with milder injuries where no damage can be seen at the structural level on standard neuroimaging. Understanding the chain of events from a cellular level using studies investigating more severe injuries can help to drive research efforts in understanding the symptomatology that is seen in the acute phase after concussion, as well as point to mechanisms that may underlie persistent post-concussive symptoms. This review discusses the basic neuropathology that occurs after traumatic brain injury at the cellular level. We also present the pathology of chronic traumatic encephalopathy and its similarities to other neurodegenerative diseases. We conclude with recent imaging and biomarker findings looking at changes that may occur after repeated subconcussive blows, which may help to guide efforts in understanding if cumulative subconcussive mechanical forces upon the brain are detrimental in the long term or if concussive symptoms mark the threshold for brain injury.
Collapse
Affiliation(s)
- Meeryo C Choe
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine, 22-474 MDCC, 10833 LeConte Avenue, Los Angeles, CA, 90095-1752, USA.
| |
Collapse
|
47
|
Lesniak A, Leszczynski P, Bujalska-Zadrozny M, Pick CG, Sacharczuk M. Naloxone exacerbates memory impairments and depressive-like behavior after mild traumatic brain injury (mTBI) in mice with upregulated opioid system activity. Behav Brain Res 2017; 326:209-216. [PMID: 28284950 DOI: 10.1016/j.bbr.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
The neuroprotective role of the endogenous opioid system in the pathophysiological sequelae of brain injury remains largely ambiguous. Noteworthy, almost no data is available on how its genetically determined activity influences the outcome of mild traumatic brain injury. Thus, the aim of our study was to examine the effect of opioid receptor blockage on cognitive impairments produced by mild traumatic brain injury in mice selectively bred for high (HA) and low (LA) swim-stress induced analgesia that show innate divergence in opioid system activity. Mild traumatic brain injury was induced with a weight-drop device on anaesthetized mice. Naloxone (5mg/kg) was intraperitoneally delivered twice a day for 7days to non-selectively block opioid receptors. Spatial memory performance and manifestations of depressive-like behavior were assessed using the Morris Water Maze and tail suspension tests, respectively. Mild traumatic brain injury resulted in a significant deterioration of spatial memory performance and severity of depressive-like behavior in the LA mouse line as opposed to HA mice. Opioid receptor blockage with naloxone unmasked cognitive deficits in HA mice but was without effect in the LA line. The results suggest a protective role of genetically predetermined enhanced opioid system activity in suppression of mild brain trauma-induced cognitive impairments. Mice selected for high and low swim stress-induced analgesia might therefore be a useful model to study the involvement of the opioid system in the pathophysiology and neurological outcome of traumatic brain injury.
Collapse
Affiliation(s)
- Anna Lesniak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), Banacha 1B, 02-097 Warsaw, Poland
| | - Pawel Leszczynski
- Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), Banacha 1B, 02-097 Warsaw, Poland
| | - Chaim G Pick
- Department of Anatomy, and Anthropology, Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Ramat-Aviv, 69978 Tel Aviv, Israel
| | - Mariusz Sacharczuk
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology (CePT), Banacha 1B, 02-097 Warsaw, Poland; Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; Department of Genomics, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland.
| |
Collapse
|
48
|
Gupta R, Sen N. Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev Neurosci 2016; 27:93-100. [PMID: 26352199 DOI: 10.1515/revneuro-2015-0017] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/03/2015] [Indexed: 11/15/2022]
Abstract
Traumatic brain injury (TBI), a major global health and socioeconomic problem, is now established as a chronic disease process with a broad spectrum of pathophysiological symptoms followed by long-term disabilities. It triggers multiple and multidirectional biochemical events that lead to neurodegeneration and cognitive impairment. Recent studies have presented strong evidence that patients with TBI history have a tendency to develop proteinopathy, which is the pathophysiological feature of neurodegenerative disorders such as Alzheimer disease (AD), chronic traumatic encephalopathy (CTE), and amyotrophic lateral sclerosis (ALS). This review mainly focuses on mechanisms related to AD, CTE, and ALS that are induced after TBI and their relevance to the advancement of these neurodegenerative diseases. This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages.
Collapse
|
49
|
Abstract
Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.
Collapse
|
50
|
Edwards G, Moreno-Gonzalez I, Soto C. Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochem Biophys Res Commun 2016; 483:1137-1142. [PMID: 27492070 DOI: 10.1016/j.bbrc.2016.07.123] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022]
Abstract
Neurodegenerative diseases are characterized by distinctive neuropathological alterations, including the cerebral accumulation of misfolded protein aggregates, neuroinflammation, synaptic dysfunction, and neuronal loss, along with behavioral impairments. Traumatic brain injury (TBI) is believed to be an important risk factor for certain neurodegenerative diseases, such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). TBI represents a ubiquitous problem in the world and could play a major role in the pathogenesis and etiology of AD or CTE later in life. TBI events appear to trigger and exacerbate some of the pathological processes in these diseases, in particular, the formation and accumulation of misfolded protein aggregates composed of amyloid-beta (Aβ) and tau. Here, we describe the relationship between repetitive mild TBI and the development of Aβ and tau pathology in patients affected by AD or CTE on the basis of epidemiological and pathological studies in human cases, and a thorough overview of data obtained in experimental animal models. We also discuss the possibility that TBI may contribute to initiate the formation of misfolded oligomeric species that may subsequently spread the pathology through a prion-like process of seeding of protein misfolding.
Collapse
Affiliation(s)
- George Edwards
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School, Houston, Texas
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School, Houston, Texas
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Medical School, Houston, Texas.
| |
Collapse
|