1
|
Aiyer S, Kim TH, Collier K, Pollock R, Verschraegen C, Stover DG, Tinoco G. Unlocking the Potential of ctDNA in Sarcomas: A Review of Recent Advances. Cancers (Basel) 2025; 17:1040. [PMID: 40149373 PMCID: PMC11941651 DOI: 10.3390/cancers17061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Soft tissue sarcomas (STSs) constitute a group of tumors with heterogeneous alterations and different biological behavior. Genetic profiling techniques have immense potential to revolutionize sarcoma classification, detection, and treatment. Cell-free DNA (cfDNA) analysis offers a minimally invasive approach to profiling tumor alterations, including tracking specific mutations or targeted panels of cancer-related genes via DNA sequencing methods. Circulating tumor DNA (ctDNA) platforms have gained popularity as a noninvasive alternative to tissue biopsies, offering a less invasive approach to tumor profiling. Nonetheless, ctDNA profiling in concordance with standard solid tumor comprehensive genomic profiling (CGP) is poorly characterized for STSs. Ultra-low-pass whole-genome sequencing and whole exome sequencing of cfDNA have yet to be fully leveraged in patients with sarcomas. This comprehensive review provides an overview of the application of ctDNA in STSs.
Collapse
Affiliation(s)
- Sahana Aiyer
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.A.); (T.-H.K.)
| | - Tae-Hee Kim
- College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.A.); (T.-H.K.)
| | - Katharine Collier
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.C.); (C.V.); (D.G.S.)
| | - Raphael Pollock
- Department of Surgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Claire Verschraegen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.C.); (C.V.); (D.G.S.)
| | - Daniel G. Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.C.); (C.V.); (D.G.S.)
| | - Gabriel Tinoco
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (K.C.); (C.V.); (D.G.S.)
| |
Collapse
|
2
|
Savi M, Su F, Sterchele ED, Bogossian EG, Demailly Z, Baggiani M, Casu GS, Taccone FS. Targeting NETosis in Acute Brain Injury: A Systematic Review of Preclinical and Clinical Evidence. Cells 2024; 13:1553. [PMID: 39329737 PMCID: PMC11440106 DOI: 10.3390/cells13181553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Acute brain injury (ABI) remains one of the leading causes of death and disability world-wide. Its treatment is challenging due to the heterogeneity of the mechanisms involved and the variability among individuals. This systematic review aims at evaluating the impact of anti-histone treatments on outcomes in ABI patients and experimental animals and defining the trend of nucleosome levels in biological samples post injury. We performed a search in Pubmed/Medline and Embase databases for randomized controlled trials and cohort studies involving humans or experimental settings with various causes of ABI. We formulated the search using the PICO method, considering ABI patients or animal models as population (P), comparing pharmacological and non-pharmacological therapy targeting the nucleosome as Intervention (I) to standard of care or no treatment as Control (C). The outcome (O) was mortality or functional outcome in experimental animals and patients affected by ABI undergoing anti-NET treatments. We identified 28 studies from 1246 articles, of which 7 were experimental studies and 21 were human clinical studies. Among these studies, only four assessed the effect of anti-NET therapy on circulating markers. Three of them were preclinical and reported better outcome in the interventional arm compared to the control arm. All the studies observed a significant reduction in circulating NET-derived products. NETosis could be a target for new treatments. Monitoring NET markers in blood and cerebrospinal fluid might predict mortality and long-term outcomes. However, longitudinal studies and randomized controlled trials are warranted to fully evaluate their potential, as current evidence is limited.
Collapse
Affiliation(s)
- Marzia Savi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20089 Milan, Italy
- Department of Intensive Care, Erasme Hospital, Brussels University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (E.D.S.); (E.G.B.); (Z.D.); (G.S.C.); (F.S.T.)
| | - Fuhong Su
- Laboratoire de Recherche Expérimentale des Soins Intensifs, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Elda Diletta Sterchele
- Department of Intensive Care, Erasme Hospital, Brussels University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (E.D.S.); (E.G.B.); (Z.D.); (G.S.C.); (F.S.T.)
- Terapia Intensiva e del Dolore, Scuola di Anestesia Rianimazione, Università degli Studi di Milano, 20089 Milan, Italy
| | - Elisa Gouvêa Bogossian
- Department of Intensive Care, Erasme Hospital, Brussels University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (E.D.S.); (E.G.B.); (Z.D.); (G.S.C.); (F.S.T.)
- Laboratoire de Recherche Expérimentale des Soins Intensifs, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Zoé Demailly
- Department of Intensive Care, Erasme Hospital, Brussels University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (E.D.S.); (E.G.B.); (Z.D.); (G.S.C.); (F.S.T.)
- Medical Intensive Care Unit, CHU Rouen, Normandie Université, F-76000 Rouen, France
| | - Marta Baggiani
- Neurological Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Giuseppe Stefano Casu
- Department of Intensive Care, Erasme Hospital, Brussels University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (E.D.S.); (E.G.B.); (Z.D.); (G.S.C.); (F.S.T.)
- Laboratoire de Recherche Expérimentale des Soins Intensifs, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Brussels University Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (E.D.S.); (E.G.B.); (Z.D.); (G.S.C.); (F.S.T.)
- Laboratoire de Recherche Expérimentale des Soins Intensifs, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
3
|
Lukacova E, Hanzlikova Z, Podlesnyi P, Sedlackova T, Szemes T, Grendar M, Samec M, Hurtova T, Malicherova B, Leskova K, Budis J, Burjanivova T. Novel liquid biopsy CNV biomarkers in malignant melanoma. Sci Rep 2024; 14:15786. [PMID: 38982214 PMCID: PMC11233564 DOI: 10.1038/s41598-024-65928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Malignant melanoma (MM) is known for its abundance of genetic alterations and a tendency for rapid metastasizing. Identification of novel plasma biomarkers may enhance non-invasive diagnostics and disease monitoring. Initially, we examined copy number variations (CNV) in CDK genes (CDKN2A, CDKN2B, CDK4) using MLPA (gDNA) and ddPCR (ctDNA) analysis. Subsequently, low-coverage whole genome sequencing (lcWGS) was used to identify the most common CNV in plasma samples, followed by ddPCR verification of chosen biomarkers. CNV alterations in CDK genes were identified in 33.3% of FFPE samples (Clark IV, V only). Detection of the same genes in MM plasma showed no significance, neither compared to healthy plasmas nor between pre- versus post-surgery plasma. Sequencing data showed the most common CNV occurring in 6q27, 4p16.1, 10p15.3, 10q22.3, 13q34, 18q23, 20q11.21-q13.12 and 22q13.33. CNV in four chosen genes (KIF25, E2F1, DIP2C and TFG) were verified by ddPCR using 2 models of interpretation. Model 1 was concordant with lcWGS results in 54% of samples, for model 2 it was 46%. Although CDK genes have not been proven to be suitable CNV liquid biopsy biomarkers, lcWGS defined the most frequently affected chromosomal regions by CNV. Among chosen genes, DIP2C demonstrated a potential for further analysis.
Collapse
Affiliation(s)
- E Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | | | - P Podlesnyi
- Instituto de Investigaciones Biomedicas de Barcelona (IIBB), CSIC /Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Barcelona, Spain
| | - T Sedlackova
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Szemes
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - M Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - M Samec
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - T Hurtova
- Department of Dermatovenereology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - B Malicherova
- Department of Clinical Biochemistry, University Hospital in Martin and Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - K Leskova
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University, Martin, Slovakia
| | - J Budis
- Geneton Ltd., Bratislava, Slovakia
- Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - T Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia.
| |
Collapse
|
4
|
Lopes AN, Regner A, Simon D. The Role of S100b Protein Biomarker in Brain Death: A Literature Review. Cureus 2024; 16:e62707. [PMID: 39036258 PMCID: PMC11259197 DOI: 10.7759/cureus.62707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Brain death (BD) represents the irreversible loss of all brain functions, including the brainstem, and is equivalent to clinical death established by neurological criteria. However, clinical diagnosis, mainly based on the absence of primary reflexes post-acute brain injury, remains a challenge in hospital settings. The S100 calcium-binding protein beta (S100b) is used to monitor brain injuries, as recommended by neurotrauma care guidelines in some countries. Its levels are associated with severity and mortality, particularly after traumatic brain injury (TBI) and cerebral hemorrhage. The evaluation of S100b levels in investigating brain death is promising; however, aspects such as cutoff values remain to be elucidated. This paper reviews the literature on the use of S100b as a biomarker in diagnosing brain death. It is noteworthy that there is still no defined cutoff for S100b levels in confirming brain death. Additionally, when considering the use of S100b in emergency situations, a point-of-care methodology should be established to support clinical decision-making quickly and easily in the early identification of patients who are more likely to progress to brain death. In this context, S100b levels may assist in establishing the diagnosis of brain death, complementing existing clinical evidence. This, in turn, can optimize and qualify the organ donation process, reducing costs with ineffective therapies and minimizing the suffering of the families involved.
Collapse
Affiliation(s)
| | - Andrea Regner
- Critical Care, Hospital Materno Infantil Presidente Vargas, Porto Alegre, BRA
| | - Daniel Simon
- Genetics, Universidade Luterana do Brasil, Canoas, BRA
| |
Collapse
|
5
|
Azad TD, Ran KR, Liu J, Vattipally VN, Khela H, Leite E, Materi JD, Davidar AD, Bettegowda C, Theodore N. A future blood test for acute traumatic spinal cord injury. Biomarkers 2023; 28:703-713. [PMID: 38126897 DOI: 10.1080/1354750x.2023.2298650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute spinal cord injury (SCI) requires prompt diagnosis and intervention to minimize the risk of permanent neurologic deficit. Presently, SCI diagnosis and interventional planning rely on magnetic resonance imaging (MRI), which is not always available or feasible for severely injured patients. Detection of disease-specific biomarkers in biofluids via liquid biopsy may provide a more accessible and objective means of evaluating patients with suspected SCI. Cell-free DNA, which has been used for diagnosing and monitoring oncologic disease, may detect damage to spinal cord neurons via tissue-specific methylation patterns. Other types of biomarkers, including proteins and RNA species, have also been found to reflect neuronal injury and may be included as part of a multi-analyte assay to improve liquid biopsy performance. The feasibility of implementing liquid biopsy into current practices of SCI management is supported by the relative ease of blood sample collection as well as recent advancements in droplet digital polymerase chain reaction technology. In this review, we detail the current landscape of biofluid biomarkers for acute SCI and propose a framework for the incorporation of a putative blood test into the clinical management of SCI.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Kathleen R Ran
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jiaqi Liu
- Georgetown University School of Medicine, Washington, DC, USA
| | | | - Harmon Khela
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Enzo Leite
- Faculdade Pernambucana de Saúde (FPS), Recife, PE, Brazil
| | - Joshua D Materi
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
6
|
Rose KM, Huelster HL, Meeks JJ, Faltas BM, Sonpavde GP, Lerner SP, Ross JS, Spiess PE, Grass GD, Jain RK, Kamat AM, Vosoughi A, Wang L, Wang X, Li R. Circulating and urinary tumour DNA in urothelial carcinoma - upper tract, lower tract and metastatic disease. Nat Rev Urol 2023; 20:406-419. [PMID: 36977797 DOI: 10.1038/s41585-023-00725-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Precision medicine has transformed the way urothelial carcinoma is managed. However, current practices are limited by the availability of tissue samples for genomic profiling and the spatial and temporal molecular heterogeneity observed in many studies. Among rapidly advancing genomic sequencing technologies, non-invasive liquid biopsy has emerged as a promising diagnostic tool to reproduce tumour genomics, and has shown potential to be integrated in several aspects of clinical care. In urothelial carcinoma, liquid biopsies such as plasma circulating tumour DNA (ctDNA) and urinary tumour DNA (utDNA) have been investigated as a surrogates for tumour biopsies and might bridge many shortfalls currently faced by clinicians. Both ctDNA and utDNA seem really promising in urothelial carcinoma diagnosis, staging and prognosis, response to therapy monitoring, detection of minimal residual disease and surveillance. The use of liquid biopsies in patients with urothelial carcinoma could further advance precision medicine in this population, facilitating personalized patient monitoring through non-invasive assays.
Collapse
Affiliation(s)
- Kyle M Rose
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Heather L Huelster
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua J Meeks
- Department of Urology, Northwestern University, Chicago, IL, USA
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Guru P Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Seth P Lerner
- Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA
- Departments of Urology and Pathology, Upstate Medical University, Syracuse, NY, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Aram Vosoughi
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
7
|
Bányász B, Antal J, Dénes B. False Positives in Brucellosis Serology: Wrong Bait and Wrong Pond? Trop Med Infect Dis 2023; 8:tropicalmed8050274. [PMID: 37235322 DOI: 10.3390/tropicalmed8050274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review summarizes the status of resolving the problem of false positive serologic results (FPSR) in Brucella serology, compiles our knowledge on the molecular background of the problem, and highlights some prospects for its resolution. The molecular basis of the FPSRs is reviewed through analyzing the components of the cell wall of Gram-negative bacteria, especially the surface lipopolysaccharide (LPS) with details related to brucellae. After evaluating the efforts that have been made to solve target specificity problems of serologic tests, the following conclusions can be drawn: (i) resolving the FPSR problem requires a deeper understanding than we currently possess, both of Brucella immunology and of the current serology tests; (ii) the practical solutions will be as expensive as the related research; and (iii) the root cause of FPSRs is the application of the same type of antigen (S-type LPS) in the currently approved tests. Thus, new approaches are necessary to resolve the problems stemming from FPSR. Such approaches suggested by this paper are: (i) the application of antigens from R-type bacteria; or (ii) the further development of specific brucellin-based skin tests; or (iii) the application of microbial cell-free DNA as analyte, whose approach is detailed in this paper.
Collapse
Affiliation(s)
- Borbála Bányász
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
- Laboratory of Immunology, Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Hungary
| | - József Antal
- Omixon Biocomputing Ltd., 1117 Budapest, Hungary
| | - Béla Dénes
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, 1143 Budapest, Hungary
| |
Collapse
|
8
|
Natalia A, Zhang L, Sundah NR, Zhang Y, Shao H. Analytical device miniaturization for the detection of circulating biomarkers. NATURE REVIEWS BIOENGINEERING 2023; 1:1-18. [PMID: 37359772 PMCID: PMC10064972 DOI: 10.1038/s44222-023-00050-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Diverse (sub)cellular materials are secreted by cells into the systemic circulation at different stages of disease progression. These circulating biomarkers include whole cells, such as circulating tumour cells, subcellular extracellular vesicles and cell-free factors such as DNA, RNA and proteins. The biophysical and biomolecular state of circulating biomarkers carry a rich repertoire of molecular information that can be captured in the form of liquid biopsies for disease detection and monitoring. In this Review, we discuss miniaturized platforms that allow the minimally invasive and rapid detection and analysis of circulating biomarkers, accounting for their differences in size, concentration and molecular composition. We examine differently scaled materials and devices that can enrich, measure and analyse specific circulating biomarkers, outlining their distinct detection challenges. Finally, we highlight emerging opportunities in biomarker and device integration and provide key future milestones for their clinical translation.
Collapse
Affiliation(s)
- Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
Krämer TJ, Pickart F, Pöttker B, Gölz C, Neulen A, Pantel T, Goetz H, Ritter K, Schäfer MKE, Thal SC. Early DNase-I therapy delays secondary brain damage after traumatic brain injury in adult mice. Sci Rep 2023; 13:4348. [PMID: 36928073 PMCID: PMC10018640 DOI: 10.1038/s41598-023-30421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) causes the release of danger-associated molecular patterns (DAMP) from damaged or dead cells, which contribute to secondary brain damage after TBI. Cell-free DNA (cfDNA) is a DAMP known to cause disruption of the blood-brain barrier (BBB), promote procoagulant processes, brain edema, and neuroinflammation. This study tested the hypothesis that administration of deoxyribonuclease-I (DNase-I) has a beneficial effect after TBI. Mice (n = 84) were subjected to controlled cortical impact (CCI) and posttraumatic intraperitoneal injections of low dose (LD) or high dose (HD) of DNase-I or vehicle solution at 30 min and 12 h after CCI. LD was most effective to reduce lesion volume (p = 0.003), brain water content (p < 0.0001) and to stabilize BBB integrity (p = 0.019) 1 day post-injury (dpi). At 6 h post injury LD-treated animals showed less cleavage of fibrin (p = 0.0014), and enhanced perfusion as assessed by micro-computer-tomography (p = 0.027). At 5 dpi the number of Iba1-positive cells (p = 0.037) were reduced, but the number of CD45-positive cells, motoric function and brain lesion volume was not different. Posttraumatic-treatment with DNase-I therefore stabilizes the BBB, reduces the formation of brain edema, immune response, and delays secondary brain damage. DNase-I might be a new approach to extend the treatment window after TBI.
Collapse
Affiliation(s)
- Tobias J Krämer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Faculty of Health, University Witten/Herdecke, Witten, Germany.
| | - Florian Pickart
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Bruno Pöttker
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Axel Neulen
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tobias Pantel
- Department of Neurosurgery, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Hermann Goetz
- Cell Biology Unit, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Center for Molecular Surgical Research, University Medical Center of Johannes Gutenberg University, Langenbeckstrasse 1, 55131, Mainz, Germany
- Department of Anesthesiology, Helios University Hospital Wuppertal, University Witten/Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany
| |
Collapse
|
10
|
El Hejjioui B, Bouguenouch L, Melhouf MA, El Mouhi H, Bennis S. Clinical Evidence of Circulating Tumor DNA Application in Aggressive Breast Cancer. Diagnostics (Basel) 2023; 13:470. [PMID: 36766575 PMCID: PMC9914403 DOI: 10.3390/diagnostics13030470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is clinically and biologically heterogeneous and is classified into different subtypes according to the molecular landscape of the tumor. Triple-negative breast cancer is a subtype associated with higher tumor aggressiveness, poor prognosis, and poor response to treatment. In metastatic breast cancer, approximately 6% to 10% of new breast cancer cases are initially staged IV (de novo metastatic disease). The number of metastatic recurrences is estimated to be 20-30% of all existing breast tumor cases, whereby the need to develop specific genetic markers to improve the prognosis of patients suffering from these deadly forms of breast cancer. As an alternative, liquid biopsy methods can minutely identify the molecular architecture of breast cancer, including aggressive forms, which provides new perspectives for more precise diagnosis and more effective therapeutics. This review aimed to summarize the current clinical evidence for the application of circulating tumor DNA in managing breast cancer by detailing the increased usefulness of this biomarker as a diagnostic, prognostic, monitoring, and surveillance marker for breast cancer.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Hind El Mouhi
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| |
Collapse
|
11
|
Li H, Lu S, Zhou Z, Zhu X, Shao Y. Role of Circulating Tumor DNA in Colorectal Cancer. Methods Mol Biol 2023; 2695:227-236. [PMID: 37450122 DOI: 10.1007/978-1-0716-3346-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Colorectal cancer (CRC) is a very common gastrointestinal tumor, ranking second in the global cause of cancer death. Because of the invasive nature of biopsy and cannot reflect the heterogeneity of tumor or monitor the dynamic progress of tumor, it is necessary to induce a novel noninvasive method to improve the current treatment strategies of colorectal cancer. Among all the components of liquid biopsy, circulating tumor DNA (ctDNA) may have the best future. CtDNA maintains the same genomic characteristics as those in matched tumor tissues, so it allows quantitative evaluation and analysis of mutation load in body fluid. Furthermore, because the half-life of ctDNA is from 16 min to several hours in circulation, the circulating ctDNA can be measured repeatedly within a certain period to monitor the response of CRC to treatment, the occurrence of drug resistance, and the diagnosis of recurrence.
Collapse
Affiliation(s)
- Haotian Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sheng Lu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zidong Zhou
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaocheng Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yong Shao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Kmeťová K, Drobná D, Lipták R, Hodosy J, Celec P. Early dynamics of glial fibrillary acidic protein and extracellular DNA in plasma of mice after closed head traumatic brain injury. Neurochirurgie 2022; 68:e68-e74. [PMID: 35810032 DOI: 10.1016/j.neuchi.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glial fibrillary acidic protein (GFAP) in plasma is an established biomarker of traumatic brain injury (TBI) in humans. Plasma extracellular DNA (ecDNA) is a very sensitive, although nonspecific marker of tissue damage including TBI. Whether plasma GFAP or ecDNA could be used as an early non-invasive biomarker in the mouse model of closed head injury is unknown. The aim of this paper was to describe the early dynamics of plasma GFAP and ecDNA in the animal model of closed head TBI. METHODS Closed head TBI was induced using the weight-drop method in 40 adult CD1 mice and blood was collected in different time points (1, 2 or 3h) after TBI in different groups of mice. Plasma GFAP and ecDNA and ecDNA fragmentation from the experimental groups were compared to healthy controls. In the surviving mice, a static rods test was performed 30 days after TBI to assess the neurological outcome of TBI. RESULTS Despite a trend of higher plasma GFAP after TBI the differences between the groups were not statistically significant. Plasma ecDNA was higher by 50% after 1h (P<0.05) and 2h (P<0.05) after TBI and was highly variable after 3h. Plasma ecDNA, but not GFAP, was partially predictive of the neurological impairment of the mice. CONCLUSION In this study, we have described the early dynamics of plasma GFAP and ecDNA after TBI in mice. According to our results, ecDNA in plasma is a more sensitive early marker of TBI than GFAP. Analysis of tissue-specific ecDNA might improve its predictive value regarding the survival and neurobehavioral outcome.
Collapse
Affiliation(s)
- K Kmeťová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - D Drobná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - R Lipták
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Emergency Department, University Hospital Bratislava, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - J Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Emergency Department, University Hospital Bratislava, Bratislava, Slovakia; Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - P Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
13
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
14
|
Pericleous S, Bhogal RH, Mavroeidis VK. The Role of Circulating Biomarkers in the Early Detection of Recurrent Colorectal Cancer Following Resection of Liver Metastases. FRONT BIOSCI-LANDMRK 2022; 27:189. [PMID: 35748265 DOI: 10.31083/j.fbl2706189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/06/2022]
Abstract
On a global scale, colorectal cancer (CRC) is currently the fourth most commonly diagnosed cancer and despite progress in early diagnosis and treatment has the third highest mortality. Patients with oligometastatic disease to the liver may be suitable for liver resection with a curative intent. A sustained progress in perioperative management and surgical techniques, including staged liver resections, has increased the number of patients who may be offered hepatectomy. It is well recognised that early detection of any tumour, including recurrence, leads to a timely initiation of treatment with improved outcomes. Tumour biomarkers have long been desired in the search for a tool to aid cancer diagnosis, prognosis and follow-up. Currently, the only widely used biomarker for CRC, Carcinoembryonic Antigen (CEA), has multiple limitations, clearly illustrating the need for novel biomarkers. It is therefore unsurprising that much research has focused on identifying such markers with the literature being swamped with new and promising biomarkers. The aim of this study is to review the current status and role of circulating biomarkers in patients post hepatectomy for colorectal cancer metastasis including alternative cancer antigens to CEA, extracellular vesicles, circulating microRNA, circulating tumour cells and circulating tumour DNA.
Collapse
Affiliation(s)
- Stephanos Pericleous
- The Royal Marsden Hospital, Department of Academic Surgery, Chelsea, SW3 6JJ London, UK
- The Royal Free Hospital, Centre for HPB Surgery and Liver Transplantation, NW3 2QG London, UK
| | - Ricky H Bhogal
- The Royal Marsden Hospital, Department of Academic Surgery, Chelsea, SW3 6JJ London, UK
- Institute for Cancer Research, SW7 3RP London, UK
| | | |
Collapse
|
15
|
Ribonuclease-1 treatment after traumatic brain injury preserves blood-brain barrier integrity and delays secondary brain damage in mice. Sci Rep 2022; 12:5731. [PMID: 35388024 PMCID: PMC8986812 DOI: 10.1038/s41598-022-09326-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
Traumatic brain injury (TBI) involves primary mechanical damage and delayed secondary damage caused by vascular dysfunction and neuroinflammation. Intracellular components released into the parenchyma and systemic circulation, termed danger-associated molecular patterns (DAMPs), are major drivers of vascular dysfunction and neuroinflammation. These DAMPs include cell-free RNAs (cfRNAs), which damage the blood-brain barrier (BBB), thereby promoting edema, procoagulatory processes, and infiltration of inflammatory cells. We tested the hypothesis that intraperitoneal injection of Ribonuclease-1 (RNase1, two doses of 20, 60, or 180 µg/kg) at 30 min and 12 h after controlled-cortical-impact (CCI) can reduce secondary lesion expansion compared to vehicle treatment 24 h and 120 h post-CCI. The lowest total dose (40 µg/kg) was most effective at reducing lesion volume (- 31% RNase 40 µg/kg vs. vehicle), brain water accumulation (- 5.5%), and loss of BBB integrity (- 21.6%) at 24 h post-CCI. RNase1 also reduced perilesional leukocyte recruitment (- 53.3%) and microglial activation (- 18.3%) at 120 h post-CCI, but there was no difference in lesion volume at this time and no functional benefit. Treatment with RNase1 in the early phase following TBI stabilizes the BBB and impedes leukocyte immigration, thereby suppressing neuroinflammation. RNase1-treatment may be a novel approach to delay brain injury to extend the window for treatment opportunities after TBI.
Collapse
|
16
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
17
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
18
|
Kong LZ, Zhang RL, Hu SH, Lai JB. Military traumatic brain injury: a challenge straddling neurology and psychiatry. Mil Med Res 2022; 9:2. [PMID: 34991734 PMCID: PMC8740337 DOI: 10.1186/s40779-021-00363-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Military psychiatry, a new subcategory of psychiatry, has become an invaluable, intangible effect of the war. In this review, we begin by examining related military research, summarizing the related epidemiological data, neuropathology, and the research achievements of diagnosis and treatment technology, and discussing its comorbidity and sequelae. To date, advances in neuroimaging and molecular biology have greatly boosted the studies on military traumatic brain injury (TBI). In particular, in terms of pathophysiological mechanisms, several preclinical studies have identified abnormal protein accumulation, blood-brain barrier damage, and brain metabolism abnormalities involved in the development of TBI. As an important concept in the field of psychiatry, TBI is based on organic injury, which is largely different from many other mental disorders. Therefore, military TBI is both neuropathic and psychopathic, and is an emerging challenge at the intersection of neurology and psychiatry.
Collapse
Affiliation(s)
- Ling-Zhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Rui-Li Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shao-Hua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China. .,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China. .,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| | - Jian-Bo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China. .,Brain Research Institute of Zhejiang University, Hangzhou, 310003, China. .,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China. .,MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Al-Adli N, Akbik OS, Rail B, Montgomery E, Caldwell C, Barrie U, Vira S, Al Tamimi M, Bagley CA, Aoun SG. The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurg 2021; 155:e418-e438. [PMID: 34438102 DOI: 10.1016/j.wneu.2021.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serum biomarkers have gained significant popularity as an adjunctive measure in the evaluation and prognostication of traumatic brain injury (TBI). However, a concise and clinically oriented report of the major markers in function of TBI severity is lacking. This systematic review aims to report current data on the diagnostic and prognostic utility of blood-based biomarkers across the spectrum of TBI. METHODS A literature search of the PubMed/Medline electronic database was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We excluded systematic reviews and meta-analyses that did not provide novel data. The American College of Cardiology/American Heart Association criteria were used to assess levels of evidence. RESULTS An initial 1463 studies were identified. In total, 115 full-text articles reporting on 94 distinct biomarkers met the inclusion criteria. Glasgow Coma Scale scores, computed tomography/magnetic resonance imaging abnormalities, and injury severity scores were the most used clinical diagnostic variables. Glasgow Outcome Scores and 1-, 3-, and 6-month mortality were the most used clinical prognostic variables. Several biomarkers significantly correlated with these variables and had statistically significant different levels in TBI subjects when compared with healthy, orthopedic, and polytrauma controls. The biomarkers also displayed significant variability across mild, moderate, and severe TBI categories, as well as in concussion cases. CONCLUSIONS This review summarizes existing high-quality evidence that supports the use of severity-specific biomarkers in the diagnostic and prognostic evaluation of TBI. These data can be used as a launching platform for the validation of upcoming clinical studies.
Collapse
Affiliation(s)
- Nadeem Al-Adli
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Omar S Akbik
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Rail
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Montgomery
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christie Caldwell
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Umaru Barrie
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shaleen Vira
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mazin Al Tamimi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos A Bagley
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Zanini G, De Gaetano A, Selleri V, Savino G, Cossarizza A, Pinti M, Mattioli AV, Nasi M. Mitochondrial DNA and Exercise: Implications for Health and Injuries in Sports. Cells 2021; 10:cells10102575. [PMID: 34685555 PMCID: PMC8533813 DOI: 10.3390/cells10102575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Gustavo Savino
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy;
| | - Andrea Cossarizza
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-205-5422
| |
Collapse
|
21
|
Paracchini L, D’Incalci M, Marchini S. Liquid Biopsy in the Clinical Management of High-Grade Serous Epithelial Ovarian Cancer-Current Use and Future Opportunities. Cancers (Basel) 2021; 13:2386. [PMID: 34069200 PMCID: PMC8156052 DOI: 10.3390/cancers13102386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The lack of a sensitive and specific biomarker and the limits relating to the single primary tumor sampling make it difficult to monitor high-grade serous epithelial ovarian cancer (HGS-EOC) over time and to capture those alterations that are potentially useful in guiding clinical decisions. To overcome these issues, liquid biopsy has emerged as a very promising tool for HGS-EOC. The analysis of circulating tumor DNA appears to be feasible and studies assessing specific pathogenic mutations (i.e., TP53) or copy number alterations have shown a sufficient degree of sensitivity and specificity to be realistically used to monitor the effectiveness of antitumor therapy. Liquid biopsy can also provide potential important information on the mechanisms of sensitivity and resistance, e.g., by the determination of the reversion of BRCA mutations. Perspective studies are needed to test whether the application of liquid biopsy will significantly improve HGS-EOC management and patients' survival.
Collapse
Affiliation(s)
- Lara Paracchini
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | | |
Collapse
|
22
|
Novel biomarkers useful in surveillance of graft rejection after heart transplantation. Transpl Immunol 2021; 67:101406. [PMID: 33975013 DOI: 10.1016/j.trim.2021.101406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
Heart transplantation (HTx) is considered the gold-standard therapy for the treatment of advanced heart failure (HF). The long-term survival in HTx is hindered by graft failure which represents one of the major limitations of the long-term efficacy of HTx. Endomyocardial biopsy (EMB) and the evaluation of donor-specific antibodies (DSA) are currently considered the essential diagnostic tools for surveillance of graft rejection. Recently, new molecular biomarkers (including cell-free DeoxyriboNucleic Acid, exosomes, gene profiling microarray, nanostring, reverse transcriptase multiplex ligation-dependent probe amplification, proteomics and immune profiling by quantitative multiplex immunofluorescence) provide useful information on mechanisms of graft rejection. The ambitious role of a similar change of perspective is aimed at a better and longer graft preservation.
Collapse
|
23
|
Ogawa M, Yokoyama K, Imoto S, Tojo A. Role of Circulating Tumor DNA in Hematological Malignancy. Cancers (Basel) 2021; 13:2078. [PMID: 33923024 PMCID: PMC8123338 DOI: 10.3390/cancers13092078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
With the recent advances in noninvasive approaches for cancer diagnosis and surveillance, the term "liquid biopsy" has become more familiar to clinicians, including hematologists. Liquid biopsy provides a variety of clinically useful genetic data. In this era of personalized medicine, genetic information is critical to early diagnosis, aiding risk stratification, directing therapeutic options, and monitoring disease relapse. The validity of circulating tumor DNA (ctDNA)-mediated liquid biopsies has received increasing attention. This review summarizes the current knowledge of liquid biopsy ctDNA in hematological malignancies, focusing on the feasibility, limitations, and key areas of clinical application. We also highlight recent advances in the minimal residual disease monitoring of leukemia using ctDNA. This article will be useful to those involved in the clinical practice of hematopoietic oncology.
Collapse
Affiliation(s)
- Miho Ogawa
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan;
| | - Arinobu Tojo
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (M.O.); (A.T.)
| |
Collapse
|
24
|
Orbán-Kálmándi R, Árokszállási T, Fekete I, Fekete K, Héja M, Tóth J, Sarkady F, Csiba L, Bagoly Z. A Modified in vitro Clot Lysis Assay Predicts Outcomes in Non-traumatic Intracerebral Hemorrhage Stroke Patients-The IRONHEART Study. Front Neurol 2021; 12:613441. [PMID: 33959087 PMCID: PMC8093390 DOI: 10.3389/fneur.2021.613441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Non-traumatic intracerebral hemorrhage (ICH) accounts for 10–15% of all strokes and results in a higher rate of mortality as compared to ischemic strokes. In the IRONHEART study, we aimed to find out whether a modified in vitro clot lysis assay method, that includes the effect of neutrophil extracellular traps (NETs) might predict ICH outcomes. Patients and Methods: In this prospective, observational study, 89 consecutive non-traumatic ICH patients were enrolled. Exclusion criteria included aneurysm rupture, cancer, liver- or kidney failure or hemorrhagic diathesis. On admission, detailed clinical and laboratory investigations were performed. ICH volume was estimated based on CT performed on admission, day 14 and 90. A conventional in vitro clot lysis assay (CLA) and a modified CLA (mCLA) including cell-free-DNA and histones were performed from stored platelet-free plasma taken on admission. Clot formation and lysis in case of both assays were defined using the following variables calculated from the turbidimetric curves: maximum absorbance, time to maximum absorbance, clot lysis times (CLT) and area under the curve (CLA AUC). Long-term ICH outcomes were defined 90 days post-event by the modified Rankin Scale (mRS). All patients or relatives provided written informed consent. Results: Patients with more severe stroke (NIHSS>10) presented significantly shorter clot lysis times of the mCLA in the presence of DNA and histone as compared to patients with milder stroke [10%CLT: NIHSS 0–10: median 31.5 (IQR: 21.0–40.0) min vs. NIHSS>10: 24 (18–31.0) min, p = 0.032]. Shorter clot lysis times of the mCLA showed significant association with non-survival by day 14 and with unfavorable long-term outcomes [mRS 0–1: 36.0 (22.5.0–51.0) min; mRS 2–5: 23.5 (18.0–36.0) min and mRS 6: 22.5 (18.0–30.5) min, p = 0.027]. Estimated ICH volume showed significant negative correlation with mCLA parameters, including 10%CLT (r = −0.3050, p = 0.009). ROC analysis proved good diagnostic performance of mCLA for predicting poor long-term outcomes [AUC: 0.73 (0.57–0.89)]. In a Kaplan-Meier survival analysis, those patients who presented with an mCLA 10%CLT result of >38.5 min on admission showed significantly better survival as compared to those with shorter clot lysis results (p=0.010). Conclusion: Parameters of mCLA correlate with ICH bleeding volume and might be useful to predict ICH outcomes.
Collapse
Affiliation(s)
- Rita Orbán-Kálmándi
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School University of Debrecen, Debrecen, Hungary
| | - Tamás Árokszállási
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Máté Héja
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Tóth
- Department of Radiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Sarkady
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School University of Debrecen, Debrecen, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Hungarian Academy of Sciences (MTA-DE) Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Bagoly
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, Kálmán Laki Doctoral School University of Debrecen, Debrecen, Hungary.,Hungarian Academy of Sciences (MTA-DE) Cerebrovascular and Neurodegenerative Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Hazeldine J, Dinsdale RJ, Naumann DN, Acharjee A, Bishop JRB, Lord JM, Harrison P. Traumatic injury is associated with reduced deoxyribonuclease activity and dysregulation of the actin scavenging system. BURNS & TRAUMA 2021; 9:tkab001. [PMID: 33834079 PMCID: PMC8014516 DOI: 10.1093/burnst/tkab001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/16/2020] [Indexed: 11/15/2022]
Abstract
Background Traumatic injury is associated with increased concentrations of cell-free DNA (cfDNA) in the circulation, which contribute to post-injury complications. The endonuclease deoxyribonuclease 1 (DNase-1) is responsible for removing 90% of circulating cfDNA. Recently, DNase activity was reported to be significantly reduced following major non-traumatic brain injury (TBI), but the processes responsible were not investigated. Moreover, it is not known how quickly following injury DNase activity is reduced and whether this also occurs after TBI. Methods At 3 post-injury time points (≤1, 4–12 and 48–72 hours), blood samples were obtained from 155 adult trauma patients that had sustained an isolated TBI (n = 21), TBI with accompanying extracranial injury (TBI+) (n = 53) or an extracranial injury only (ECI) (n = 81). In addition to measuring cfDNA levels and the activity and expression of DNase, circulating concentrations of monomeric globular action (G-actin), an inhibitor of DNase-1, and the actin scavenging proteins gelsolin (GSN) and vitamin D binding protein (VDBP) were determined and values compared to a cohort of healthy controls. Results Significantly elevated concentrations of plasma cfDNA were seen in TBI, TBI+ and ECI patients at all study time points when compared to healthy controls. cfDNA levels were significantly higher at ≤1 hour post-injury in ECI patients who subsequently developed multiple organ dysfunction syndrome when compared to those who did not. Plasma DNase-1 protein was significantly elevated in all patient groups at all sampling time points. In contrast, DNase enzyme activity was significantly reduced, with this impaired function evident in TBI+ patients within minutes of injury. Circulating concentrations of G-actin were elevated in all patient cohorts in the immediate aftermath of injury and this was accompanied by a significant reduction in the levels of GSN and VDBP. Conclusions The post-traumatic increase in circulating cfDNA that occurs following extracranial trauma and TBI is accompanied by reduced DNase activity. We propose that, secondary to reduced GSN and VDBP levels, elevated circulating concentrations of G-actin underlie the post-injury reduction in DNase activity. Reducing circulating cfDNA levels via therapeutic restoration of DNase-1 activity may improve clinical outcomes post-injury.
Collapse
Affiliation(s)
- Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - Robert J Dinsdale
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.,Scar Free Foundation Birmingham Centre for Burns Research, University Hospital Birmingham Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - David N Naumann
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom.,Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - Animesh Acharjee
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom.,Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom
| | - Jonathan R B Bishop
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Heritage Building, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom.,Scar Free Foundation Birmingham Centre for Burns Research, University Hospital Birmingham Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.,Scar Free Foundation Birmingham Centre for Burns Research, University Hospital Birmingham Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, West Midlands, B15 2TH, United Kingdom
| |
Collapse
|
26
|
Jaworski JJ, Morgan RD, Sivakumar S. Circulating Cell-Free Tumour DNA for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:E3704. [PMID: 33317202 PMCID: PMC7763954 DOI: 10.3390/cancers12123704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is a lethal disease, with mortality rates negatively associated with the stage at which the disease is detected. Early detection is therefore critical to improving survival outcomes. A recent focus of research for early detection is the use of circulating cell-free tumour DNA (ctDNA). The detection of ctDNA offers potential as a relatively non-invasive method of diagnosing pancreatic cancer by using genetic sequencing technology to detect tumour-specific mutational signatures in blood samples before symptoms manifest. These technologies are limited by a number of factors that lower sensitivity and specificity, including low levels of detectable ctDNA in early stage disease and contamination with non-cancer circulating cell-free DNA. However, genetic and epigenetic analysis of ctDNA in combination with other standard diagnostic tests may improve early detection rates. In this review, we evaluate the genetic and epigenetic methods under investigation in diagnosing pancreatic cancer and provide a perspective for future developments.
Collapse
Affiliation(s)
- Jedrzej J. Jaworski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK;
| | - Robert D. Morgan
- Department of Medical Oncology, Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Department of Medical Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| |
Collapse
|
27
|
Wei M, Ye M, Dong K, Dong R. Circulating tumor DNA in neuroblastoma. Pediatr Blood Cancer 2020; 67:e28311. [PMID: 32729220 DOI: 10.1002/pbc.28311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
As a sympathetic nervous system-derived tumor, aggressive neuroblastoma (NB) is currently attracting interest from researchers seeking diagnostic and prognostic markers via less invasive procedures. The analysis of circulating tumor DNA (ctDNA) in peripheral blood can provide genetic information from multiple tumor lesions and is not dependent on a surgical procedure. The identification of genetic alterations, chromosomal variations, and hypermethylation contained within plasma DNA yields clinical value in the diagnosis, risk stratification, monitoring of treatment effects, and survival prediction for patients. With the widespread application of genome sequencing, droplet digital polymerase chain reaction, and other advanced technologies, the detection of ctDNA may guide therapeutic schedules, enhance the quality of life, and improve the prognosis for patients with NB.
Collapse
Affiliation(s)
- Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
28
|
Lewis JM, Dhawan S, Obirieze AC, Sarno B, Akers J, Heller MJ, Chen CC. Plasma Biomarker for Post-concussive Syndrome: A Pilot Study Using an Alternating Current Electro-Kinetic Platform. Front Neurol 2020; 11:685. [PMID: 32760343 PMCID: PMC7371973 DOI: 10.3389/fneur.2020.00685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Technology platforms that afford biomarker discovery in patients suffering from traumatic brain injury (TBI) remain an unmet medical need. Here, we describe an observational pilot study to explore the utility of an alternating current electrokinetic (ACE) microchip device in this context. Methods: Blood samples were collected from participating subjects with and without minor TBI. Plasma levels of glial fibrillary acidic protein (GFAP), Tau, ubiquitin C-terminal hydrolase L1 (UCH-L1), and cell-free DNA (cfDNA) were determined in subjects with and without minor TBI using ACE microchip device followed by on-chip immunofluorescent analysis. Post-concussive symptoms were assessed using the Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) at one-month follow-up. Results: Highest levels of GFAP, UCH-L1, and Tau were seen in two minor TBI subjects with abnormality on head computed tomography (CT). In patients without abnormal head CT, Tau and GFAP levels discriminated between plasma from minor-TBI and non-TBI patients, with sensitivity and specificity of 64–72 and 50%, respectively. Plasma GFAP, UCH-L1, and Tau strongly correlated with the cumulative RPCSQ score. Plasma UCH-L1 and GFAP exhibited highest correlation to sensitivity to noise and light (r = 0.96 and 0.91, respectively, p < 0.001). Plasma UCH-L1 and Tau showed highest correlation with headache (r = 0.74 and 0.78, respectively, p < 0.001), sleep disturbance (r = 0.69 and 0.84, respectively, p < 0.001), and cognitive symptoms, including forgetfulness (r = 0.76 and 0.74, respectively, p < 0.001), poor concentration (r = 0.68 and 0.76, respectively, p < 0.001), and time required for information processing (r = 0.77 and 0.81, respectively, p < 0.001). cfDNA exhibited a strong correlation with depression (r = 0.79, p < 0.01) and dizziness (r = 0.69, p < 0.01). While cfDNA demonstrated positive correlation with dizziness and depression (r = 0.69 and 0.79, respectively, p < 0.001), no significant correlation was observed between cumulative RPCSQ and cfDNA (r = 0.07, p = 0.81). Conclusion: We provide proof-of-principle results supporting the utility of ACE microchip for plasma biomarker analysis in patients with minor TBI.
Collapse
Affiliation(s)
- Jean M Lewis
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States
| | - Sanjay Dhawan
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Augustine C Obirieze
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States
| | - Benjamin Sarno
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States
| | - Johnny Akers
- VisiCELL Medical Inc., San Diego, CA, United States
| | - Michael J Heller
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
29
|
Coombs CC, Dickherber T, Crompton BD. Chasing ctDNA in Patients With Sarcoma. Am Soc Clin Oncol Educ Book 2020; 40:e351-e360. [PMID: 32598183 DOI: 10.1200/edbk_280749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Liquid biopsies are new technologies that allow cancer profiling of tumor fragments found in body fluids, such as peripheral blood, collected noninvasively from patients with malignancies. These assays are increasingly valuable in clinical oncology practice as prognostic biomarkers, as guides for therapy selection, for treatment monitoring, and for early detection of disease progression and relapse. However, application of these assays to rare cancers, such as pediatric and adult sarcomas, have lagged. In this article, we review the technical challenges of applying liquid biopsy technologies to sarcomas, provide an update on progress in the field, describe common pitfalls in interpreting liquid biopsy data, and discuss the intersection of sarcoma clinical care and commercial assays emerging on the horizon.
Collapse
Affiliation(s)
| | | | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
30
|
Delmonico L, Alves G, Bines J. Cell free DNA biology and its involvement in breast carcinogenesis. Adv Clin Chem 2020; 97:171-223. [PMID: 32448434 DOI: 10.1016/bs.acc.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy represents a procedure for minimally invasive analysis of non-solid tissue, blood and other body fluids. It comprises a set of analytes that includes circulating tumor cells (CTCs) and circulating free DNA (cfDNA), RNA, long noncoding RNA (lncRNA) and micro RNA (miRNA), as well as extracellular vesicles. These novel analytes represent an alternative tool to complement diagnosis and monitor and predict response to treatment of the tumoral process and may be used for other disease processes such viral and parasitic infection. This review focuses on the biologic and molecular characteristics of cfDNA in general and the molecular changes (mutational and epigenetic) proven useful in oncologic practice for diagnosis, monitoring and treatment of breast cancer specifically.
Collapse
Affiliation(s)
- Lucas Delmonico
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Gilda Alves
- Laboratório de Marcadores Circulantes, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - José Bines
- Instituto Nacional de Câncer (INCA-HCIII), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Ding Y, Li W, Wang K, Xu C, Hao M, Ding L. Perspectives of the Application of Liquid Biopsy in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6843180. [PMID: 32258135 PMCID: PMC7085834 DOI: 10.1155/2020/6843180] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal tumors and the second leading cause of cancer death worldwide. Since traditional biopsies are invasive and do not reflect tumor heterogeneity or monitor the dynamic progression of tumors, there is an urgent need for new noninvasive methods that can supplement and improve the current management strategies of CRC. Blood-based liquid biopsies are a promising noninvasive biomarker that can detect disease early, assist in staging, monitor treatment responses, and predict relapse and metastasis. Over time, an increasing number of experiments have indicated the clinical utility of liquid biopsies in CRC. In this review, we mainly focus on the development of circulating tumor cells and circulating tumor DNA as key components of liquid biopsies in CRC and introduce the potential of exosomal microRNAs as emerging liquid biopsy markers in clinical application for CRC.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Wenxia Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Chang Xu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
- Ninth School of Clinical Medicine, Peking University, Beijing 100038, China
| |
Collapse
|
32
|
Duforestel M, Briand J, Bougras-Cartron G, Heymann D, Frenel JS, Vallette FM, Cartron PF. Cell-free circulating epimarks in cancer monitoring. Epigenomics 2020; 12:145-155. [PMID: 31916450 DOI: 10.2217/epi-2019-0170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer numbers increasing, cases heterogeneity and the drug resistance emergence have pushed scientists to search for innovative solutions for patients and epimutations can be one. Methylated DNA, modified nucleosomes and noncoding RNAs are found in all cells, including tumor cells. They are intracellular actors but also have intercellular communication roles, being released in extracellular environment and in different body fluids. Here, we reviewed current literature on the use of these blood circulating epimarks in cancer monitoring. What stands out is that epimarkers must be considered as ‘real time’ images of the tumor, and can be isolated without invasive methods. In the future, the real challenge lies in the development of specific, sensitive, fast and clinically applicable detection and analysis methods of epimarkers.
Collapse
Affiliation(s)
- Manon Duforestel
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
| | - Dominique Heymann
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest Site René Gauducheau, Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
- LabEX IGO, Université de Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
- LabEX IGO, Université de Nantes, France
| |
Collapse
|
33
|
Wang HC, Lin YT, Hsu SY, Tsai NW, Lai YR, Su BYJ, Kung CT, Lu CH. Serial plasma DNA levels as predictors of outcome in patients with acute traumatic cervical spinal cord injury. J Transl Med 2019; 17:329. [PMID: 31570098 PMCID: PMC6771086 DOI: 10.1186/s12967-019-2084-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acute traumatic cervical spinal cord injury (SCI) is a leading cause of disability in adolescents and young adults worldwide. Evidence from previous studies suggests that circulating cell-free DNA is associated with severity following acute injury. The present study determined whether plasma DNA levels in acute cervical SCI are predictive of outcome. METHODS In present study, serial plasma nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) levels were obtained from 44 patients with acute traumatic cervical SCI at five time points from day 1 to day 180 post-injury. Control blood samples were obtained from 66 volunteers. RESULTS Data showed a significant increase in plasma nDNA and mtDNA concentrations at admission in SCI patients compared to the control group. Plasma nDNA levels at admission, but not plasma mtDNA levels, were significantly associated with the Japanese Orthopaedic Association (JOA) score and Injury Severity Score in patients with acute traumatic cervical SCI. In patients with non-excellent outcomes, plasma nDNA increased significantly at days 1, 14 and 30 post-injury. Furthermore, its level at day 14 was independently associated with outcome. Higher plasma nDNA levels at the chosen cutoff point (> 45.6 ng/ml) predicted poorer outcome with a sensitivity of 78.9% and a specificity of 78.4%. CONCLUSIONS These results indicate JOA score performance and plasma nDNA levels reflect the severity of spinal cord injury. Therefore, the plasma nDNA assays can be considered as potential neuropathological markers in patients with acute traumatic cervical SCI.
Collapse
Affiliation(s)
- Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Tsai Lin
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Yuan Hsu
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Nai-Wen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Dist., Kaohsiung, Taiwan
| | - Yun-Ru Lai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Dist., Kaohsiung, Taiwan
| | - Ben Yu-Jih Su
- Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta Pei Road, Niao Sung Dist., Kaohsiung, Taiwan. .,Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China.
| |
Collapse
|
34
|
Liu Y, Shen Q, Zhao X, Zou M, Shao S, Li J, Ren X, Zhang L. Cell-free mitochondrial DNA in human follicular fluid: a promising bio-marker of blastocyst developmental potential in women undergoing assisted reproductive technology. Reprod Biol Endocrinol 2019; 17:54. [PMID: 31291946 PMCID: PMC6621940 DOI: 10.1186/s12958-019-0495-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cell-free mitochondrial DNA (cf-mtDNA) in body fluids has attracted much attention for the purpose of monitoring disease because of the clinical advantages. This study investigated whether the cf-mtDNA content in human follicular fluid samples was associated with oocyte and embryo developmental competence. METHODS We collected 225 individual follicular fluid samples from 92 patients undergoing conventional in vitro fertilization (n = 53) or intracytoplasmic sperm injection (n = 39). cf-mtDNA and cell-free nuclear DNA (cf-nDNA) were measured using real-time quantitative PCR for the ND1 and β-globin genes. Multivariate logistic regression and linear regression were used to analyze data. RESULTS The relative cf-mtDNA content (cf-ND1/cf-β-globin ratio) in follicular fluid was significantly lower in the group showing blastocyst development than in the non-blastocyst group (P = 0.030). Additionally, the relative cf-mtDNA content was significantly and positively correlated with the age of the female patient (P = 0.009), while the relative cf-mtDNA content for older women (≥38 years old) with anti-Müllerian hormone (AMH) ≤1.1 ng/ml was significantly higher than in those with AMH > 1.1 ng/ml (P <0.05). The cf-nDNA content was significantly positively correlated with the antral follicle count (P = 0.012), and significantly negatively correlated with both the number of days of stimulation and the total dose of gonadotropin administration (P = 0.039 and P = 0.015, respectively). Neither cf-mtDNA nor cf-nDNA levels in follicular fluid were associated with oocyte maturation, fertilization, or Day 3 embryo morphological scoring. CONCLUSIONS The relative cf-mtDNA content in human follicular fluid was negatively correlated with blastulation and positively correlated with the patient age, indicating that it is a promising bio-marker to evaluate oocyte developmental competence.
Collapse
Affiliation(s)
- Yu Liu
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China
| | - Qiuzi Shen
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China
| | - Xue Zhao
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China
| | - Min Zou
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China
| | - Shumin Shao
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China
| | - Jiao Li
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling Zhang
- Family Planning Research Institute and Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan,, 430030, People's Republic of China.
| |
Collapse
|
35
|
Jackson Chornenki NL, Coke R, Kwong AC, Dwivedi DJ, Xu MK, McDonald E, Marshall JC, Fox-Robichaud AE, Charbonney E, Liaw PC. Comparison of the source and prognostic utility of cfDNA in trauma and sepsis. Intensive Care Med Exp 2019; 7:29. [PMID: 31119471 PMCID: PMC6531595 DOI: 10.1186/s40635-019-0251-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) may contribute to the pathophysiology of post-injury inflammation and coagulation in trauma. However, the source and mechanism of release of cfDNA in trauma is not well understood. One potential source of cfDNA is from Neutrophil Extracellular Traps (NETs), released by activated neutrophils during the process of NETosis. The primary objective of our study was to determine if cfDNA has prognostic utility in trauma. The secondary objective of this study was to determine the source of cfDNA in trauma compared to sepsis. METHODS We studied trauma patients from two prospective observational cohort studies: the DNA as a Prognostic Marker in ICU Patients (DYNAMICS) study and the Endotoxin in Polytrauma (ENPOLY) study. We also studied septic patients from the DYNAMICS study. Citrated plasma samples were collected longitudinally from the patients (days 1 to 7). The following molecules were measured in the plasma samples: cfDNA, protein C (PC), myeloperoxidase (MPO) (a marker of neutrophil activation), citrullinated Histone H3 (H3Cit, a marker of NETosis), cyclophilin A (a marker of necrosis), and caspase-cleaved K18 (a marker of apoptosis). RESULTS A total of 77 trauma patients were included (n = 38 from DYNAMICS and n = 39 from ENPOLY). The median age was 49 years; 27.3% were female, and mortality was 16.9% at 28 days. Levels of cfDNA were elevated compared to healthy values but not significantly different between survivors and non-survivors. There was a positive correlation between MPO and cfDNA in septic patients (r = 0.424, p < 0.001). In contrast, there was no correlation between MPO and cfDNA in trauma patients (r = - 0.192, p = 0.115). Levels of H3Cit, a marker of NETosis, were significantly elevated in septic patients compared to trauma patients (p < 0.01) while apoptosis and necrosis markers did not differ between the two groups. CONCLUSION Our studies suggest that the source and mechanism of release of cfDNA differ between trauma and sepsis patients. In sepsis, cfDNA is likely primarily released by activated neutrophils via the process of NETosis. In contrast, cfDNA in trauma appears to originate mainly from injured or necrotic cells. Although cfDNA is elevated in trauma and sepsis patients compared to healthy controls, cfDNA does not appear to have prognostic utility in trauma patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01355042 . Registered May 17, 2011.
Collapse
Affiliation(s)
- Nicholas L. Jackson Chornenki
- Department of Medicine, McMaster University, Hamilton, ON Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2 Canada
| | - Robert Coke
- Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Andrew C. Kwong
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2 Canada
| | - Dhruva J. Dwivedi
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2 Canada
| | - Michael K. Xu
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2 Canada
| | - Ellen McDonald
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2 Canada
| | - John C. Marshall
- Departments of Surgery and Critical Care Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON Canada
| | | | - Emmanuel Charbonney
- Department of Critical Care Medicine, Hôpital du Sacré-Coeur de Montreal and Hôpital de Trois-Rivières, University of Montreal, Montreal, QC Canada
| | - Patricia C. Liaw
- Department of Medicine, McMaster University, Hamilton, ON Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON L8L 2X2 Canada
| |
Collapse
|
36
|
Abbou SD, Shulman DS, DuBois SG, Crompton BD. Assessment of circulating tumor DNA in pediatric solid tumors: The promise of liquid biopsies. Pediatr Blood Cancer 2019; 66:e27595. [PMID: 30614191 PMCID: PMC6550461 DOI: 10.1002/pbc.27595] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022]
Abstract
Circulating tumor DNA can be detected in the blood and body fluids of patients using ultrasensitive technologies, which have the potential to improve cancer diagnosis, risk stratification, noninvasive tumor profiling, and tracking of treatment response and disease recurrence. As we begin to apply "liquid biopsy" strategies in children with cancer, it is important to tailor our efforts to the unique genomic features of these tumors and address the technical and logistical challenges of integrating biomarker testing. This article reviews the literature demonstrating the feasibility of applying liquid biopsy to pediatric solid malignancies and suggests new directions for future studies.
Collapse
Affiliation(s)
- Samuel D. Abbou
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Department of Oncology for Children and Adolescents, Gustave Roussy, Villejuif, France
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA
| | - Brian D. Crompton
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, USA,Broad Institute, Cambridge, MA, USA
| |
Collapse
|
37
|
Mijiddorj T, Kajihara I, Tasaki Y, Otsuka-Maeda S, Sakamoto R, Sawamura S, Kanazawa-Yamada S, Egashira S, Inoue K, Makino K, Miyashita A, Aoi J, Igata T, Makino T, Masuguchi S, Fukushima S, Jinnin M, Morinaga J, Ikeda T, Ihn H. Serum cell-free DNA levels are a useful marker for extramammary Paget disease. Br J Dermatol 2019; 181:505-511. [PMID: 30706452 DOI: 10.1111/bjd.17709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA) are useful markers for extramammary Paget disease (EMPD), serum CEA and CYFRA levels are not elevated in most patients with EMPD without metastasis. Cell-free (cf)DNA has attracted attention as an indicator of clinical conditions in several cancers. OBJECTIVES To identify further useful biomarkers for the detection of EMPD, including early lesions, and to study the clinical implications of cfDNA in EMPD. METHODS cfDNA were isolated from serum of patients with EMPD with and without metastasis, and from healthy volunteers. Serum extracts were amplified using polymerase chain reaction. RESULTS Serum cfDNA levels were significantly elevated in patients with EMPD with or without metastasis compared with those in healthy controls. Serum cfDNA was a better diagnostic marker for the presence of EMPD than serum CYFRA. Moreover, the postoperative serum cfDNA levels were significantly lower than those from the preoperative samples, and the change in serum cfDNA levels reflected the clinical courses of patients with EMPD treated with chemotherapy. CONCLUSIONS Taking the evidence together, serum cfDNA levels may be a useful marker for diagnosis and disease progression in EMPD. What's already known about this topic? Serum levels of carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA) are not elevated in most patients with extramammary Paget disease (EMPD) without metastasis. Cell-free (cf)DNA has attracted attention as an indicator of clinical conditions in several cancers. There are few reports of the clinical implications of cfDNA in dermatology. What does this study add? Serum cfDNA levels were significantly elevated in patients with EMPD with or without metastasis compared with those in healthy controls. Postoperative serum cfDNA levels were significantly lower than those from the preoperative samples. Changes in serum cfDNA levels reflected the clinical courses of patients with EMPD treated with chemotherapy. What is the translational message? Serum cfDNA levels in patients with EMPD are a useful marker for the detection of EMPD, including localized EMPD. Changes in serum cfDNA levels in an individual patient may reflect the clinical course of EMPD.
Collapse
Affiliation(s)
- T Mijiddorj
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - I Kajihara
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Y Tasaki
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - S Otsuka-Maeda
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - R Sakamoto
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - S Sawamura
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - S Kanazawa-Yamada
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - S Egashira
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - K Inoue
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - K Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - A Miyashita
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - J Aoi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - T Igata
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - T Makino
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - S Masuguchi
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - S Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - M Jinnin
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - J Morinaga
- Department of Clinical Investigation (Biostatistics), Kumamoto University Hospital, Kumamoto, Japan
| | - T Ikeda
- Department of Clinical Investigation (Biostatistics), Kumamoto University Hospital, Kumamoto, Japan
| | - H Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| |
Collapse
|
38
|
Muluhngwi P, Valdes Jr R, Fernandez-Botran R, Burton E, Williams B, Linder MW. Cell-free DNA diagnostics: current and emerging applications in oncology. Pharmacogenomics 2019; 20:357-380. [DOI: 10.2217/pgs-2018-0174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy is a noninvasive dynamic approach for monitoring disease over time. It offers advantages including limited risks of blood sampling, opportunity for more frequent sampling, lower costs and theoretically non-biased sampling compared with tissue biopsy. There is a high degree of concordance between circulating tumor DNA mutations versus primary tumor mutations. Remote sampling of circulating tumor DNA can serve as viable option in clinical diagnostics. Here, we discuss the progress toward broad adoption of liquid biopsy as a diagnostic tool and discuss knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Roland Valdes Jr
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Rafael Fernandez-Botran
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Eric Burton
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Brian Williams
- Department of Neurosurgery, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mark W Linder
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
39
|
Osumi H, Shinozaki E, Yamaguchi K, Zembutsu H. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci 2019; 110:1148-1155. [PMID: 30742729 PMCID: PMC6447957 DOI: 10.1111/cas.13972] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is currently the most common type of cancer in Japan, and its prognosis has improved because of development of diagnosis and advancement in treatments including surgery and chemotherapy. However, because of intratumor heterogeneity and clonal evolution, tumors often develop resistance to treatment. Genotyping tumor tissue in search of somatic genetic alterations for actionable information has become routine examination in clinical practice. However, the inherent molecular heterogeneity of metastatic tumors and the ability of cancer genomes to dynamically evolve are not properly captured by tissue specimens only. Circulating tumor DNA (ctDNA) carrying tumor‐specific genetic or epigenetic alterations is released into the circulation from tumor cells undergoing apoptosis or necrosis. Analysis of ctDNA has the potential to change clinical practice by exploiting blood rather than tissue, as a source of information. Here, we provide an overview of the characteristics of ctDNA and focus on detection methods for ctDNA, and the feasibility of use of ctDNA to monitor tumor dynamics for patients with colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitoshi Zembutsu
- Cancer Precision Medicine Center, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
40
|
Detection of Minimal Residual Disease Using ctDNA in Lung Cancer: Current Evidence and Future Directions. J Thorac Oncol 2019; 14:16-24. [DOI: 10.1016/j.jtho.2018.09.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023]
|
41
|
Regner A, Meirelles LDS, Ikuta N, Cecchini A, Simon D. Prognostic utility of circulating nucleic acids in acute brain injuries. Expert Rev Mol Diagn 2018; 18:925-938. [PMID: 30307786 DOI: 10.1080/14737159.2018.1535904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute brain injuries represent major causes of morbidity and mortality worldwide. Nevertheless, therapeutic options are centered mainly on supportive care, and accurate prognosis prediction following traumatic brain injury (TBI) or stroke remains a challenge in clinical settings. Areas covered: Circulating DNA and RNA have shown potential as predictive molecules in acute brain injuries. In particular, plasma cell-free DNA (cfDNA) levels have been correlated to severity, mortality, and outcome after TBI and stroke. The real-time quantitative polymerase chain reaction (qPCR) is the most widely used technique for determination of cfDNA in brain injuries; however, to consider the use of cfDNA in emergency settings, a quicker and easier methodology for detection should be established. A recent study proposed detection of cfDNA applying a rapid fluorescent test that showed compatible results with qPCR. Expert commentary: As a promising perspective, detection of cfDNA levels using simple, rapid, and cheap methodology has potential to translate to clinic as a point-of-care marker, supporting the clinical decision-making in emergency care settings. Conversely, miRNA profiles may be used as signatures to determine the type and severity of injuries. Additionally, in the future, some miRNAs may constitute innovative neurorestorative therapies without the common hurdles associated with cell therapy.
Collapse
Affiliation(s)
- Andrea Regner
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Lindolfo da Silva Meirelles
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Nilo Ikuta
- b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| | - Andre Cecchini
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil.,c Neurosurgery Service , Cristo Redentor Hospital , Porto Alegre , Brazil
| | - Daniel Simon
- a School of Medicine , Lutheran University of Brazil , Canoas , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology Applied to Health (PPGBioSaúde) , Lutheran University of Brazil , Canoas , RS , Brazil
| |
Collapse
|
42
|
Agbor-Enoh S, Chan JL, Singh A, Tunc I, Gorham S, Zhu J, Pirooznia M, Corcoran PC, Thomas ML, Lewis BGT, Jang MK, Ayares DL, Horvath KA, Mohiuddin MM, Valantine H. Circulating cell-free DNA as a biomarker of tissue injury: Assessment in a cardiac xenotransplantation model. J Heart Lung Transplant 2018; 37:967-975. [PMID: 29933912 PMCID: PMC6707066 DOI: 10.1016/j.healun.2018.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/31/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND Observational studies suggest that cell-free DNA (cfDNA) is a biomarker of tissue injury in a range of conditions including organ transplantation. However, the lack of model systems to study cfDNA and its relevance to tissue injury has limited the advancements in this field. We hypothesized that the predictable course of acute humoral xenograft rejection (AHXR) in organ transplants from genetically engineered donors provides an ideal system for assessing circulating cfDNA as a marker of tissue injury. METHODS Genetically modified pig donor hearts were heterotopically transplanted into baboons (n = 7). Cell-free DNA was extracted from pre-transplant and post-transplant baboon plasma samples for shotgun sequencing. After alignment of sequence reads to pig and baboon reference sequences, we computed the percentage of xenograft-derived cfDNA (xdcfDNA) relative to recipient by counting uniquely aligned pig and baboon sequence reads. RESULTS The xdcfDNA percentage was high early post-transplantation and decayed exponentially to low stable levels (baseline); the decay half-life was 3.0 days. Post-transplantation baseline xdcfDNA levels were higher for transplant recipients that subsequently developed graft loss than in the 1 animal that did not reject the graft (3.2% vs 0.5%). Elevations in xdcfDNA percentage coincided with increased troponin and clinical evidence of rejection. Importantly, elevations in xdcfDNA percentage preceded clinical signs of rejection or increases in troponin levels. CONCLUSION Cross-species xdcfDNA kinetics in relation to acute rejection are similar to the patterns in human allografts. These observations in a xenotransplantation model support the body of evidence suggesting that circulating cfDNA is a marker of tissue injury.
Collapse
Affiliation(s)
- Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua L Chan
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Avneesh Singh
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ilker Tunc
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sasha Gorham
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Zhu
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mehdi Pirooznia
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Philip C Corcoran
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marvin L Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland
| | - Billeta G T Lewis
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland
| | - Moon Kyoo Jang
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Keith A Horvath
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| | - Hannah Valantine
- Genomic Research Alliance for Transplantation (GRAfT), Division of Intramural Research, National Institutes of Health, Bethesda, Maryland; Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
43
|
Zeng H, He B, Yi C, Peng J. Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genomics 2018; 45:185-192. [PMID: 29706556 DOI: 10.1016/j.jgg.2018.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/10/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Analysis of patient's materials like cells or nucleic acids obtained in a minimally invasive or noninvasive manner through the sampling of blood or other body fluids serves as liquid biopsies, which has huge potential for numerous diagnostic applications. Circulating cell-free DNA (cfDNA) is explored as a prognostic or predictive marker of liquid biopsies with the improvements in genomic and molecular methods. DNA methylation is an important epigenetic marker known to affect gene expression. cfDNA methylation detection is a very promising approach as abnormal distribution of DNA methylation is one of the hallmarks of many cancers and methylation changes occur early during carcinogenesis. This review summarizes the various investigational applications of cfDNA methylation and its oxidized derivatives as biomarkers for cancer diagnosis, prenatal diagnosis and organ transplantation monitoring. The review also provides a brief overview of the technologies for cfDNA methylation analysis based on next generation sequencing.
Collapse
Affiliation(s)
- Hu Zeng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bo He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
44
|
Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 2018; 18:165-180. [PMID: 29338452 PMCID: PMC6359936 DOI: 10.1080/14737159.2018.1428089] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major worldwide neurological disorder of epidemic proportions. To date, there are still no FDA-approved therapies to treat any forms of TBI. Encouragingly, there are emerging data showing that biofluid-based TBI biomarker tests have the potential to diagnose the presence of TBI of different severities including concussion, and to predict outcome. Areas covered: The authors provide an update on the current knowledge of TBI biomarkers, including protein biomarkers for neuronal cell body injury (UCH-L1, NSE), astroglial injury (GFAP, S100B), neuronal cell death (αII-spectrin breakdown products), axonal injury (NF proteins), white matter injury (MBP), post-injury neurodegeneration (total Tau and phospho-Tau), post-injury autoimmune response (brain antigen-targeting autoantibodies), and other emerging non-protein biomarkers. The authors discuss biomarker evidence in TBI diagnosis, outcome prognosis and possible identification of post-TBI neurodegernative diseases (e.g. chronic traumatic encephalopathy and Alzheimer's disease), and as theranostic tools in pre-clinical and clinical settings. Expert commentary: A spectrum of biomarkers is now at or near the stage of formal clinical validation of their diagnostic and prognostic utilities in the management of TBI of varied severities including concussions. TBI biomarkers could serve as a theranostic tool in facilitating drug development and treatment monitoring.
Collapse
Affiliation(s)
- Kevin K Wang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Zhihui Yang
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Tian Zhu
- a Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry , University of Florida , Gainesville , Florida , USA
| | - Yuan Shi
- b Department Of Pediatrics, Daping Hospital, Chongqing , Third Military Medical University , Chongqing , China
| | - Richard Rubenstein
- c Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology , SUNY Downstate Medical Center , Brooklyn , NY , USA
| | - J Adrian Tyndall
- d Department of Emergency Medicine , University of Florida , Gainesville , Florida , USA
| | - Geoff T Manley
- e Brain and Spinal Injury Center , San Francisco General Hospital , San Francisco , CA , USA
- f Department of Neurological Surgery , University of California, San Francisco , San Francisco , CA , USA
| |
Collapse
|
45
|
Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard? Biochim Biophys Acta Mol Basis Dis 2018; 1864:1024-1036. [PMID: 29329986 DOI: 10.1016/j.bbadis.2018.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is the result of persistent liver injury, and is characterized by sustained scar formation and disruption of the normal liver architecture. The extent of fibrosis is considered as an important prognostic factor for the patient outcome, as an absence of (early) treatment can lead to the development of liver cirrhosis and hepatocellular carcinoma. Till date, the most sensitive and specific way for the diagnosis and staging of liver fibrosis remains liver biopsy, an invasive diagnostic tool, which is associated with high costs and discomfort for the patient. Over time, non-invasive scoring systems have been developed, of which the measurements of serum markers and liver stiffness are validated for use in the clinic. These tools lack however the sensitivity and specificity to detect small changes in the progression or regression of both early and late stages of fibrosis. Novel non-invasive diagnostic markers with the potential to overcome these limitations have been developed, but often lack validation in large patient cohorts. In this review, we will summarize novel trends in non-invasive markers of liver fibrosis development and will discuss their (dis-)advantages for use in the clinic.
Collapse
|
46
|
Cao B, Zhou X, Yang W, Ma J, Zhou W, Fan D, Hong L. The role of cell-free DNA in predicting colorectal cancer prognosis. Expert Rev Gastroenterol Hepatol 2018; 12:39-48. [PMID: 28838275 DOI: 10.1080/17474124.2017.1372191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer is a cancer of the digestive system with poor prognosis. Cell-free DNA has received much attention with its unique predominance, especially in colorectal cancer. Areas covered: This study has summarized recent advancements and challenges regarding cell-free DNA in predicting CRC prognosis. Furthermore, the authors make predictions on the potential developments concerning cell-free DNA in future prognosis prediction techniques. Expert commentary: Cell-free DNA has the value of predicting CRC prognosis as an important biomarke. Further clinical trials should be performed to promote translating cell-free DNA into clinical applications.
Collapse
Affiliation(s)
- Bo Cao
- a The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- a The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Wanli Yang
- b State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- b State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- b State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- b State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- b State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
47
|
Volckmar AL, Sültmann H, Riediger A, Fioretos T, Schirmacher P, Endris V, Stenzinger A, Dietz S. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosomes Cancer 2017; 57:123-139. [DOI: 10.1002/gcc.22517] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Anna-Lena Volckmar
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Holger Sültmann
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK); Heidelberg Germany
| | - Anja Riediger
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK); Heidelberg Germany
| | - Thoas Fioretos
- Department of Clinical Genetics; Lund University; Lund Sweden
- Department of Clinical Genetics; University and Regional Laboratories; Region Skåne Lund Sweden
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, and German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Steffen Dietz
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK); Heidelberg Germany
| |
Collapse
|
48
|
Naumann DN, Hazeldine J, Dinsdale RJ, Bishop JR, Midwinter MJ, Harrison P, Hutchings SD, Lord JM. Endotheliopathy is associated with higher levels of cell-free DNA following major trauma: A prospective observational study. PLoS One 2017; 12:e0189870. [PMID: 29261771 PMCID: PMC5736230 DOI: 10.1371/journal.pone.0189870] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cell free deoxyribonucleic acid (cfDNA) has been proposed as a biomarker of secondary complications following trauma. Raised thrombomodulin and syndecan-1 levels have been used to indicate endotheliopathy, and are associated with inflammation, coagulopathy, and mortality. The current study aimed to analyse the association between cfDNA and biomarkers of endotheliopathy in a cohort of trauma patients, and whether raised levels of cfDNA were associated with poorer clinical outcomes. METHODS Serum thrombomodulin and syndecan-1 were used as biomarkers of endotheliopathy and compared to plasma cfDNA in trauma patients from two prospective longitudinal observational studies. Cohort A (n = 105) had a predicted injury severity score (ISS) >8, and had blood sampled within 1h of injury and at 4-12h. Cohort B (n = 17) had evidence of haemorrhagic shock, and had blood sampled at a median time of 3.5h after injury. Relationships between biomarkers were tested using multivariable linear regression models that included the covariates of gender, age, ISS, Glasgow Coma Scale, lactate, systolic blood pressure, and heart rate. A model was fitted to investigate whether changes in cfDNA were associated with similar changes in endothelial biomarkers. RESULTS The mean age was 41 (SD 19), and the median ISS was 25 (IQR 12-34). There was a significant association between cfDNA levels and both syndecan-1 and thrombomodulin levels (both p<0.001). This was independent of all covariates except for ISS, which significantly correlated with cfDNA levels. 50 ng/ml change in syndecan-1 and 1 ng/ml change in thrombomodulin corresponded to 15% and 20% increases in cfDNA levels respectively (both p<0.001). Patients who died had significantly higher prehospital and in-hospital cfDNA levels (both p<0.05). CONCLUSIONS Raised cfDNA levels are associated with markers of endotheliopathy following trauma, and are associated with mortality. This relationship is present within the first hour of injury, and a change in one biomarker level is reflected by similar changes in the others. These findings are in keeping with the hypothesis that circulating DNA and endothelial injury share a common pathway following trauma.
Collapse
Affiliation(s)
- David N. Naumann
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
- * E-mail:
| | - Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Robert J. Dinsdale
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jon R. Bishop
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Mark J. Midwinter
- Department of Surgery, University of Queensland, Rural Clinical School, Bundaberg, Queensland, Australia
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sam D. Hutchings
- Department of Intensive Care Medicine, Kings College Hospital, Denmark Hill, London, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
49
|
Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nat Commun 2017; 8:15363. [PMID: 28530246 PMCID: PMC5458134 DOI: 10.1038/ncomms15363] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors encounter a diversity of degradation products in endosomes. TLR7 and TLR8 have been shown to be activated by RNA degradation products. Here we show that although TLR9 requires single-stranded DNA longer than 20 nucleotides for a robust response, TLR9 activation is augmented by CpG-containing oligodeoxyribonucleotides (sODNs) as short as 2 nucleotides, which, by themselves, do not induce activation in cell cultures, as well as in mice. sODNs also activate human TLR9 in combination with ODNs containing a single CpG motif that by themselves do not activate human TLR9. The specific sequence motif of sODN and colocalization of ODN and sODN suggest that the mechanism of activation involves binding of both ODN and sODN to TLR9. sODNs augment TLR9 activation by mammalian genomic DNA indicating the role of short DNA degradation products in the endosomes in response to infection or in autoimmune disease, particularly at limiting concentrations of ODNs. DNA degradation products are frequently found in the endosome, but how they regulate the activation of Toll-like receptors is not known. Here the authors show that single-stranded DNA as short as two nucleotides can enhance the ability of longer DNA oligonucleotides to activate Toll-like receptors.
Collapse
|
50
|
Karlas T, Weise L, Kuhn S, Krenzien F, Mehdorn M, Petroff D, Linder N, Schaudinn A, Busse H, Keim V, Pratschke J, Wiegand J, Splith K, Schmelzle M. Correlation of cell-free DNA plasma concentration with severity of non-alcoholic fatty liver disease. J Transl Med 2017; 15:106. [PMID: 28521774 PMCID: PMC5437653 DOI: 10.1186/s12967-017-1208-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The assessment of fibrosis and inflammatory activity is essential to identify patients with non-alcoholic fatty liver disease (NAFLD) at risk for progressive disease. Serum markers and ultrasound-based methods can replace liver biopsy for fibrosis staging, whereas non-invasive characterization of inflammatory activity remains a clinical challenge. Cell-free DNA (cfDNA) is a novel non-invasive biomarker for assessing cellular inflammation and cell death, which has not been evaluated in NAFLD. METHODS Patients and healthy controls from two previous studies were included. NAFLD disease activity and severity were non-invasively characterized by liver stiffness measurement (transient elastography, TE) including steatosis assessment with controlled attenuation parameter (CAP), single-proton magnetic resonance spectroscopy (1H-MRS) for determination of hepatic fat fraction, aminotransferases and serum ferritin. cfDNA levels (90 and 222 bp fragments) were analyzed using quantitative real-time PCR. RESULTS Fifty-eight NAFLD patients (age 62 ± 11 years, BMI 28.2 ± 3.5 kg/m2) and 13 healthy controls (age 38 ± 12 years, BMI 22.4 ± 2.1 kg/m2) were included. 90 bp cfDNA levels were significantly higher in NAFLD patients compared to healthy controls: 3.7 (1.3-23.1) vs. 2.9 (1.4-4.1) ng/mL (p = 0.014). In the NAFLD cohort, circulating cfDNA correlated significantly with disease activity and severity, especially in patients with elevated liver stiffness (n = 13, 22%) compared to cases with TE values ≤7 kPa: cf90 bp 6.05 (2.41-23.13) vs. 3.16 (1.29-7.31) ng/mL (p < 0.001), and cf222 bp 14.41 (9.27-22.90) vs. 11.32 (6.05-18.28) ng/mL (p = 0.0041). CONCLUSIONS Cell-free DNA plasma concentration correlates with established non-invasive markers of NAFLD activity and severity. Therefore, cfDNA should be further evaluated as biomarker for identifying patients at risk for progressive NAFLD.
Collapse
Affiliation(s)
- Thomas Karlas
- 0000 0000 8517 9062grid.411339.dDepartment of Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
- 0000 0001 2230 9752grid.9647.cIFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Lara Weise
- 0000 0001 2230 9752grid.9647.cMedical Faculty, Leipzig University, Leipzig, Germany
| | - Stephanie Kuhn
- 0000 0004 0492 3830grid.7492.8Department Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany
| | - Felix Krenzien
- 0000 0001 2218 4662grid.6363.0Department of Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Mehdorn
- 0000 0000 8517 9062grid.411339.dDepartment of Visceral-, Transplantation-, Thoracic- and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - David Petroff
- 0000 0001 2230 9752grid.9647.cClinical Trial Centre, Leipzig University, Leipzig, Germany
| | - Nicolas Linder
- 0000 0000 8517 9062grid.411339.dDepartment of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Alexander Schaudinn
- 0000 0000 8517 9062grid.411339.dDepartment of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Harald Busse
- 0000 0000 8517 9062grid.411339.dDepartment of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Germany
| | - Volker Keim
- 0000 0000 8517 9062grid.411339.dDepartment of Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Johann Pratschke
- 0000 0001 2218 4662grid.6363.0Department of Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Wiegand
- 0000 0000 8517 9062grid.411339.dDepartment of Medicine, Neurology and Dermatology, Division of Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Katrin Splith
- 0000 0001 2218 4662grid.6363.0Department of Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Schmelzle
- 0000 0001 2218 4662grid.6363.0Department of Surgery, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|