1
|
Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nat Rev Neurol 2025; 21:265-282. [PMID: 40181198 DOI: 10.1038/s41582-025-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Over the past few decades, extensive basic, translational and clinical research has been devoted to deciphering the physiological and pathogenic roles of extracellular vesicles (EVs) in the nervous system. The presence of brain cell-derived EVs in the blood, carrying diverse cargoes, has enabled the development of predictive, diagnostic, prognostic, disease-monitoring and treatment-response biomarkers for various neurological disorders. In this Review, we consider how EV biomarkers can bring us closer to understanding the complex pathogenesis of neurological disorders such as Alzheimer disease, Parkinson disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis and multiple sclerosis. We describe how translational research on EVs might unfold bidirectionally, proceeding from basic to clinical studies but also in the opposite direction, with biomarker findings in the clinic leading to novel hypotheses that can be tested in the laboratory. We demonstrate the potential value of EVs across all stages of the therapeutic development pipeline, from identifying therapeutic targets to the use of EVs as reporters in model systems and biomarkers in clinical research. Finally, we discuss how the cargo and physicochemical properties of naturally occurring and custom-engineered EVs can be leveraged as novel treatments and vehicles for drug delivery, potentially revolutionizing neurotherapeutics.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
2
|
Friberg S, Lindblad C, Zeiler FA, Zetterberg H, Granberg T, Svenningsson P, Piehl F, Thelin EP. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 2024; 20:671-684. [PMID: 39363129 DOI: 10.1038/s41582-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.
Collapse
Affiliation(s)
- Susanna Friberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Majeed A, Naz N, Namal F, Tahir S, Karmani VK. Chronic Traumatic Encephalopathy: A Comprehensive Narrative Review of Its Biomarkers. Cureus 2024; 16:e69510. [PMID: 39421082 PMCID: PMC11485022 DOI: 10.7759/cureus.69510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive and fatal neurological disorder linked to repeated traumatic brain injuries (TBIs), including concussions and blows to the head. This condition is characterized by the accumulation of abnormally structured hyperphosphorylated tau proteins (p-tau), forming neurofibrillary tangles, astrocytic tangles, and neurites in the brain. CTE is often diagnosed post-mortem, making it challenging to diagnose and predict its progression in living individuals. Despite recent advancements, no definitive pathological, radiological, or neurobiological marker consistently shows promise in diagnosing and predicting the disease. This review aims to summarize the available techniques and advancements in imaging-based, genetic, neuropsychological, and fluid biomarkers for CTE, evaluating their specificity and sensitivity. It will also highlight the limitations of each marker in diagnosing CTE and provide future research directions to enhance the accuracy of CTE diagnosis in living individuals.
Collapse
Affiliation(s)
- Aleena Majeed
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Nageen Naz
- Internal Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Fnu Namal
- Internal Medicine, Social Security Hospital, Faisalabad, PAK
| | - Sohaira Tahir
- Internal Medicine, Avicenna Medical College, Lahore, PAK
| | | |
Collapse
|
4
|
Fang X, Zhou D, Wang X, Ma Y, Zhong G, Jing S, Huang S, Wang Q. Exosomes: A Cellular Communication Medium That Has Multiple Effects On Brain Diseases. Mol Neurobiol 2024; 61:6864-6892. [PMID: 38356095 DOI: 10.1007/s12035-024-03957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Exosomes, as membranous vesicles generated by multiple cell types and secreted to extracellular space, play a crucial role in a range of brain injury-related brain disorders by transporting diverse proteins, RNA, DNA fragments, and other functional substances. The nervous system's pathogenic mechanisms are complicated, involving pathological processes like as inflammation, apoptosis, oxidative stress, and autophagy, all of which result in blood-brain barrier damage, cognitive impairment, and even loss of normal motor function. Exosomes have been linked to the incidence and progression of brain disorders in recent research. As a result, a thorough knowledge of the interaction between exosomes and brain diseases may lead to the development of more effective therapeutic techniques that may be implemented in the clinic. The potential role of exosomes in brain diseases and the crosstalk between exosomes and other pathogenic processes were discussed in this paper. Simultaneously, we noted the delicate events in which exosomes as a media allow the brain to communicate with other tissues and organs in physiology and disease, and compiled a list of natural compounds that modulate exosomes, in order to further improve our understanding of exosomes and propose new ideas for treating brain disorders.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510405, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510405, Guangzhou, China
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shangwen Jing
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
5
|
Peck EG, Holleran KM, Curry AM, Holter KM, Estave PM, Sens JP, Locke JL, Ortelli OA, George BE, Dawes MH, West AM, Alexander NJ, Kiraly DD, Farris SP, Gould RW, McCool BA, Jones SR. Synaptogyrin-3 Prevents Cocaine Addiction and Dopamine Deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605436. [PMID: 39211138 PMCID: PMC11361146 DOI: 10.1101/2024.07.27.605436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synaptogyrin-3, a functionally obscure synaptic vesicle protein, interacts with vesicular monoamine and dopamine transporters, bringing together dopamine release and reuptake sites. Synaptogyrin-3 was reduced by chronic cocaine exposure in both humans and rats, and synaptogyrin-3 levels inversely correlated with motivation to take cocaine in rats. Synaptogyrin-3 overexpression in dopamine neurons reduced cocaine self-administration, decreased anxiety-like behavior, and enhanced cognitive flexibility. Overexpression also enhanced nucleus accumbens dopamine signaling and prevented cocaine-induced deficits, suggesting a putative therapeutic role for synaptogyrin-3 in cocaine use disorder.
Collapse
|
6
|
Manwani B, Brathaban N, Baqai A, Munshi Y, Ahnstedt HW, Zhang M, Arkelius K, Llera T, Amorim E, Elahi FM, Singhal NS. Small RNA signatures of acute ischemic stroke in L1CAM positive extracellular vesicles. Sci Rep 2024; 14:13560. [PMID: 38866905 PMCID: PMC11169361 DOI: 10.1038/s41598-024-63633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
L1CAM-positive extracellular vesicles (L1EV) are an emerging biomarker that may better reflect ongoing neuronal damage than other blood-based biomarkers. The physiological roles and regulation of L1EVs and their small RNA cargoes following stroke is unknown. We sought to characterize L1EV small RNAs following stroke and assess L1EV RNA signatures for diagnosing stroke using weighted gene co-expression network analysis and random forest (RF) machine learning algorithms. Interestingly, small RNA sequencing of plasma L1EVs from patients with stroke and control patients (n = 28) identified micro(mi)RNAs known to be enriched in the brain. Weighted gene co-expression network analysis (WGCNA) revealed small RNA transcript modules correlated to diagnosis, initial NIH stroke scale, and age. L1EV RNA signatures associated with the diagnosis of AIS were derived from WGCNA and RF classification. These small RNA signatures demonstrated a high degree of accuracy in the diagnosis of AIS with an area under the curve (AUC) of the signatures ranging from 0.833 to 0.932. Further work is necessary to understand the role of small RNA L1EV cargoes in the response to brain injury, however, this study supports the utility of L1EV small RNA signatures as a biomarker of stroke.
Collapse
Affiliation(s)
- Bharti Manwani
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Nivetha Brathaban
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Abiya Baqai
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Yashee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Hilda W Ahnstedt
- Department of Neurology, University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Mengqi Zhang
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Kajsa Arkelius
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Ted Llera
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Edilberto Amorim
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
| | - Fanny M Elahi
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
| | - Neel S Singhal
- Department of Neurology, University of California-San Francisco, San Francisco, CA, 94158, USA.
- Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, 94150, USA.
| |
Collapse
|
7
|
Guo Z, Tian C, Shi Y, Song XR, Yin W, Tao QQ, Liu J, Peng GP, Wu ZY, Wang YJ, Zhang ZX, Zhang J. Blood-based CNS regionally and neuronally enriched extracellular vesicles carrying pTau217 for Alzheimer's disease diagnosis and differential diagnosis. Acta Neuropathol Commun 2024; 12:38. [PMID: 38444036 PMCID: PMC10913681 DOI: 10.1186/s40478-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 03/07/2024] Open
Abstract
Accurate differential diagnosis among various dementias is crucial for effective treatment of Alzheimer's disease (AD). The study began with searching for novel blood-based neuronal extracellular vesicles (EVs) that are more enriched in the brain regions vulnerable to AD development and progression. With extensive proteomic profiling, GABRD and GPR162 were identified as novel brain regionally enriched plasma EVs markers. The performance of GABRD and GPR162, along with the AD molecule pTau217, was tested using the self-developed and optimized nanoflow cytometry-based technology, which not only detected the positive ratio of EVs but also concurrently presented the corresponding particle size of the EVs, in discovery (n = 310) and validation (n = 213) cohorts. Plasma GABRD+- or GPR162+-carrying pTau217-EVs were significantly reduced in AD compared with healthy control (HC). Additionally, the size distribution of GABRD+- and GPR162+-carrying pTau217-EVs were significantly different between AD and non-AD dementia (NAD). An integrative model, combining age, the number and corresponding size of the distribution of GABRD+- or GPR162+-carrying pTau217-EVs, accurately and sensitively discriminated AD from HC [discovery cohort, area under the curve (AUC) = 0.96; validation cohort, AUC = 0.93] and effectively differentiated AD from NAD (discovery cohort, AUC = 0.91; validation cohort, AUC = 0.90). This study showed that brain regionally enriched neuronal EVs carrying pTau217 in plasma may serve as a robust diagnostic and differential diagnostic tool in both clinical practice and trials for AD.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Chen Tian
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yang Shi
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ru Song
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, 310011, China
| | - Qing-Qing Tao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jie Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Guo-Ping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen-Xin Zhang
- Department of Neurology and Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University, 311121, Hangzhou, China.
| |
Collapse
|
8
|
Zhang G, Li L, Kong Y, Xu D, Bao Y, Zhang Z, Liao Z, Jiao J, Fan D, Long X, Dai J, Xie C, Meng Z, Zhang Z. Vitamin D-binding protein in plasma microglia-derived extracellular vesicles as a potential biomarker for major depressive disorder. Genes Dis 2024; 11:1009-1021. [PMID: 37692510 PMCID: PMC10491883 DOI: 10.1016/j.gendis.2023.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
No well-established biomarkers are available for the clinical diagnosis of major depressive disorder (MDD). Vitamin D-binding protein (VDBP) is altered in plasma and postmortem dorsolateral prefrontal cortex (DLPFC) tissues of MDD patients. Thereby, the role of VDBP as a potential biomarker of MDD diagnosis was further assessed. Total extracellular vesicles (EVs) and brain cell-derived EVs (BCDEVs) were isolated from the plasma of first-episode drug-naïve or drug-free MDD patients and well-matched healthy controls (HCs) in discovery (20 MDD patients and 20 HCs) and validation cohorts (88 MDD patients and 38 HCs). VDBP level in the cerebrospinal fluid (CSF) from chronic glucocorticoid-induced depressed rhesus macaques or prelimbic cortex from lipopolysaccharide (LPS)-induced depressed mice and wild control groups was measured to evaluate its relationship with VDBP in plasma microglia-derived extracellular vesicles (MDEVs). VDBP was significantly decreased in MDD plasma MDEVs compared to HCs, and negatively correlated with HAMD-24 score with the highest diagnostic accuracy among BCDEVs. VDBP in plasma MDEVs was decreased both in depressed rhesus macaques and mice. A positive correlation of VDBP in MDEVs with that in CSF was detected in depressed rhesus macaques. VDBP levels in prelimbic cortex microglia were negatively correlated with those in plasma MDEVs in depressed mice. The main results suggested that VDBP in plasma MDEVs might serve as a prospective candidate biomarker for MDD diagnosis.
Collapse
Affiliation(s)
- Gaojia Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ling Li
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Xu
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu Bao
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
| | - Zhiting Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhixiang Liao
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Jiao
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiaojing Long
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Brain Cognition and Brain Disease Institute, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Tang TZ, Zhao Y, Agarwal D, Tharzeen A, Patrikeev I, Zhang Y, DeJesus J, Bossmann SH, Natarajan B, Motamedi M, Szczesny B. Serum amyloid A and mitochondrial DNA in extracellular vesicles are novel markers for detecting traumatic brain injury in a mouse model. iScience 2024; 27:108932. [PMID: 38323004 PMCID: PMC10844832 DOI: 10.1016/j.isci.2024.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential use of circulating extracellular vesicles' (EVs) DNA and protein content as biomarkers for traumatic brain injury (TBI) in a mouse model. Despite an overall decrease in EVs count during the acute phase, there was an increased presence of exosomes (CD63+ EVs) during acute and an increase in microvesicles derived from microglia/macrophages (CD11b+ EVs) and astrocytes (ACSA-2+ EVs) in post-acute TBI phases, respectively. Notably, mtDNA exhibited an immediate elevation post-injury. Neuronal (NFL) and microglial (Iba1) markers increased in the acute, while the astrocyte marker (GFAP) increased in post-acute TBI phases. Novel protein biomarkers (SAA, Hp, VWF, CFD, CBG) specific to different TBI phases were also identified. Biostatistical modeling and machine learning identified mtDNA and SAA as decisive markers for TBI detection. These findings emphasize the importance of profiling EVs' content and their dynamic release as an innovative diagnostic approach for TBI in liquid biopsies.
Collapse
Affiliation(s)
- Tony Z. Tang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Deepesh Agarwal
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Aabila Tharzeen
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Igor Patrikeev
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuanyi Zhang
- Department of Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jana DeJesus
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Stefan H. Bossmann
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
10
|
Rubenstein R, McQuillan L, Wang KKW, Robertson C, Chang B, Yang Z, Xu H, Williamson J, Wagner AK. Temporal Profiles of P-Tau, T-Tau, and P-Tau:Tau Ratios in Cerebrospinal Fluid and Blood from Moderate-Severe Traumatic Brain Injury Patients and Relationship to 6-12 Month Global Outcomes. J Neurotrauma 2024; 41:369-392. [PMID: 37725589 DOI: 10.1089/neu.2022.0479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Traumatic brain injury (TBI) can initiate progressive injury responses, which are linked to increased risk of neurodegenerative diseases known as "tauopathies." Increased post-TBI tau hyperphosphorylation has been reported in brain tissue and biofluids. Acute-to-chronic TBI total (T)-tau and phosphorylated (P)-tau temporal profiles in the cerebrospinal fluid (CSF) and serum and their relationship to global outcome is unknown. Our multi-site longitudinal study examines these concurrent profiles acutely (CSF and serum) and also characterizes the acute- to-chronic serum patterns. Serial serum and CSF samples from individuals with moderate-to-severe TBI were obtained from two cohorts (acute, subacute, and chronic samples from University of Pittsburgh [UPitt] [n = 286 unique subjects] and acute samples from Baylor College of Medicine [BCM] [n = 114 unique subjects]) and assayed for T-tau and P-tau using the Rolling Circle Amplification-Surround Optical Fiber ImmunoAssay platform. Biokinetic analyses described serum T-tau and P-tau temporal patterns. T-tau and P-tau levels are compared with those in healthy controls (n = 89 for both CSF and serum), and univariate/multivariable associations are made with global outcome, including the Disability Rating Scale (DRS) and the Glasgow Outcome Scale-Extended (GOS-E) scores at 3 and 6 months post-TBI (BCM cohort) and at 6 and 12 months post-TBI (UPitt cohort). For both the UPitt and BCM cohorts, temporal increases in median serum and CSF T-tau and P-tau levels occurred over the first 5 days post-injury, while the initial increases of P-tau:T-tau ratio plateaued by day 4 post-injury (UPitt: n = 99, BCM: n = 48). Biokinetic analyses with UPitt data showed novel findings that T-tau (n = 74) and P-tau (n = 87) reached delayed maximum levels at 4.5 and 5.1 days, while exhibiting long serum half-lives (152 and 123 days), respectively. The post-TBI rise in acute (days 2-6) serum P-tau (up to 276-fold) far outpaced that of T-tau (7.3-fold), leading to a P-tau:T-tau increase of up to 267-fold, suggesting a shift toward tau hyperphosphorylation. BCM analyses showed that days 0-6 mean CSF T-tau and P-tau levels and P-tau:T-tau ratios were associated with greater disability (DRS) (n = 48) and worse global outcome (GOS-E) (n = 48) 6 months post-injury. Days 0-6 mean serum T-tau, P-tau, and P-tau:T-tau ratio were not associated with outcome in either cohort (UPitt: n = 145 [DRS], n = 154 [GOS-E], BCM: n = 99 [DRS and GOS-E]). UPitt multivariate models showed that higher chronic (months 1-6) mean P-tau levels and P-tau:T-tau ratio, but not T-tau levels, are associated with greater disability (DRS: n = 119) and worse global outcomes (GOS-E: n = 117) 12 months post-injury. This work shows the potential importance of monitoring post-TBI T-tau and P-tau levels over time. This multi-site longitudinal study features concurrent acute TBI T-tau and P-tau profiles in CSF and serum, and also characterizes acute-to-chronic serum profiles. Longitudinal profiles, along with no temporal concordance between trajectory groups over time, imply a sustained post-TBI shift in tau phosphorylation dynamics that may favor tauopathy development chronically.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Leah McQuillan
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin K W Wang
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Binggong Chang
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhihui Yang
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Haiyan Xu
- Department of Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - John Williamson
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, Malcolm Randall VA Medical Center, Gainesville, Florida, USA
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Guo M, Wang L, Yin Z, Chen F, Lei P. Small extracellular vesicles as potential theranostic tools in central nervous system disorders. Biomed Pharmacother 2023; 167:115407. [PMID: 37683594 DOI: 10.1016/j.biopha.2023.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity. Increasing evidence has focused on the potential of sEVs in clinical application for central nervous system disorders. sEVs are emerging as a promising diagnostic and therapeutic tool with high sensitivity, low immunogenicity, superior safety profile, and high transfer efficiency. This review highlighted the development of sEVs in central nervous system disorder clinical application. We also outlined the role of sEVs in central nervous system disorders and discussed the limitations of sEVs in clinical translation.
Collapse
Affiliation(s)
- Mengtian Guo
- Department of Internal Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
12
|
Halicki MJ, Hind K, Chazot PL. Blood-Based Biomarkers in the Diagnosis of Chronic Traumatic Encephalopathy: Research to Date and Future Directions. Int J Mol Sci 2023; 24:12556. [PMID: 37628736 PMCID: PMC10454393 DOI: 10.3390/ijms241612556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease consistently associated with repetitive traumatic brain injuries (TBIs), which makes multiple professions, such as contact sports athletes and the military, especially susceptible to its onset. There are currently no approved biomarkers to diagnose CTE, thus it can only be confirmed through a post-mortem brain autopsy. Several imaging and cerebrospinal fluid biomarkers have shown promise in the diagnosis. However, blood-based biomarkers can be more easily obtained and quantified, increasing their clinical feasibility and potential for prophylactic use. This article aimed to comprehensively review the studies into potential blood-based biomarkers of CTE, discussing common themes and limitations, as well as suggesting future research directions. While the interest in blood-based biomarkers of CTE has recently increased, the research is still in its early stages. The main issue for many proposed biomarkers is their lack of selectivity for CTE. However, several molecules, such as different phosphorylated tau isoforms, were able to discern CTE from different neurodegenerative diseases. Further, the results from studies on exosomal biomarkers suggest that exosomes are a promising source of biomarkers, reflective of the internal environment of the brain. Nonetheless, more longitudinal studies combining imaging, neurobehavioral, and biochemical approaches are warranted to establish robust biomarkers for CTE.
Collapse
Affiliation(s)
| | - Karen Hind
- Durham Wolfson Research Institute for Health and Wellbeing, Stockton-on-Tees TS17 6BH, UK;
| | - Paul L. Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
13
|
Zhu D, Huang Y, Guo S, Li N, Yang X, Sui A, Wu Q, Zhang Y, Kong Y, Li Q, Zhang T, Zheng W, Li A, Yu J, Ma T, Li S. AQP4 Aggravates Cognitive Impairment in Sepsis-Associated Encephalopathy through Inhibiting Na v 1.6-Mediated Astrocyte Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205862. [PMID: 36922751 PMCID: PMC10190498 DOI: 10.1002/advs.202205862] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Indexed: 05/18/2023]
Abstract
The pathology of sepsis-associated encephalopathy (SAE) is related to astrocyte-inflammation associated with aquaporin-4 (AQP4). The aim here is to investigate the effects of AQP4 associated with SAE and reveal its underlying mechanism causing cognitive impairment. The in vivo experimental results reveal that AQP4 in peripheral blood of patients with SAE is up-regulated, also the cortical and hippocampal tissue of cecal ligation and perforation (CLP) mouse brain has significant rise in AQP4. Furthermore, the data suggest that AQP4 deletion could attenuate learning and memory impairment, attributing to activation of astrocytic autophagy, inactivation of astrocyte and downregulate the expression of proinflammatory cytokines induced by CLP or lipopolysaccharide (LPS). Furthermore, the activation effect of AQP4 knockout on CLP or LPS-induced PPAR-γ inhibiting in astrocyte is related to intracellular Ca2+ level and sodium channel activity. Learning and memory impairment in SAE mouse model are attenuated by AQP4 knockout through activating autophagy, inhibiting neuroinflammation leading to neuroprotection via down-regulation of Nav 1.6 channels in the astrocytes. This results in the reduction of Ca2+ accumulation in the cell cytosol furthermore activating the inhibition of PPAR-γ signal transduction pathway in astrocytes.
Collapse
Affiliation(s)
- Dan‐Dan Zhu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Yue‐Lin Huang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Song‐Yu Guo
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Na Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Xue‐Wei Yang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ao‐Ran Sui
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qiong Wu
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Yue Kong
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Qi‐Fa Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Ting Zhang
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Wen‐Fei Zheng
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Ai‐Ping Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| | - Jian Yu
- Department of Critical Care Medicinethe Second Hospital of Dalian Medical UniversityDalian116023China
| | - Tong‐Hui Ma
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shao Li
- Department of PhysiologyCollege of Basic Medical SciencesLiaoning Provincial Key Laboratory of Cerebral DiseasesNational‐Local Joint Engineering Research Center for Drug‐Research and Development (R & D) of Neurodegenerative DiseasesDalian Medical UniversityDalian116044China
| |
Collapse
|
14
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Tian C, Stewart T, Hong Z, Guo Z, Aro P, Soltys D, Pan C, Peskind ER, Zabetian CP, Shaw LM, Galasko D, Quinn JF, Shi M, Zhang J. Blood extracellular vesicles carrying synaptic function- and brain-related proteins as potential biomarkers for Alzheimer's disease. Alzheimers Dement 2023; 19:909-923. [PMID: 35779041 PMCID: PMC9806186 DOI: 10.1002/alz.12723] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Objective and accessible markers for Alzheimer's disease (AD) and other dementias are critically needed. METHODS We identified NMDAR2A, a protein related to synaptic function, as a novel marker of central nervous system (CNS)-derived plasma extracellular vesicles (EVs) and developed a flow cytometry-based technology for detecting such plasma EVs readily. The assay was initially tested in our local cross-sectional study to distinguish AD patients from healthy controls (HCs) or from Parkinson's disease (PD) patients, followed by a validation study using an independent cohort collected from multiple medical centers (the Alzheimer's Disease Neuroimaging Initiative). Cerebrospinal fluid AD molecular signature was used to confirm diagnoses of all AD participants. RESULTS Likely CNS-derived EVs in plasma were significantly reduced in AD compared to HCs in both cohorts. Integrative models including CNS-derived EV markers and AD markers present on EVs reached area under the curve of 0.915 in discovery cohort and 0.810 in validation cohort. DISCUSSION This study demonstrated that robust and rapid analysis of individual neuron-derived synaptic function-related EVs in peripheral blood may serve as a helpful marker of synaptic dysfunction in AD and dementia.
Collapse
Affiliation(s)
- Chen Tian
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Tessandra Stewart
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Zhen Hong
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Guo
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - Patrick Aro
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - David Soltys
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Catherine Pan
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Northwest (VISN-20) Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Cyrus P. Zabetian
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Leslie M. Shaw
- Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, California, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, USA
| | - Min Shi
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
16
|
Hagey DW, El Andaloussi S. The promise and challenges of extracellular vesicles in the diagnosis of neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:227-241. [PMID: 36803813 DOI: 10.1016/b978-0-323-85555-6.00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as essential means of intercommunication for all cell types, and their role in CNS physiology is increasingly appreciated. Accumulating evidence has demonstrated that EVs play important roles in neural cell maintenance, plasticity, and growth. However, EVs have also been demonstrated to spread amyloids and inflammation characteristic of neurodegenerative disease. Such dual roles suggest that EVs may be prime candidates for neurodegenerative disease biomarker analysis. This is supported by several intrinsic properties of EVs: Populations can be enriched by capturing surface proteins from their cell of origin, their diverse cargo represent the complex intracellular states of the cells they derive from, and they can pass the blood-brain barrier. Despite this promise, there are important questions outstanding in this young field that will need to be answered before it can fulfill its potential. Namely, overcoming the technical challenges of isolating rare EV populations, the difficulties inherent in detecting neurodegeneration, and the ethical considerations of diagnosing asymptomatic individuals. Although daunting, succeeding to answer these questions has the potential to provide unprecedented insight and improved treatment of neurodegenerative disease in the future.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
17
|
Wang H, Liu Y, Sun Y, Dong J, Xu X, Wang H, Zhao X, Zhang J, Yao B, Zhao L, Liu S, Peng R. Changes in cognitive function, synaptic structure and protein expression after long-term exposure to 2.856 and 9.375 GHz microwaves. Cell Commun Signal 2023; 21:34. [PMID: 36782203 PMCID: PMC9926547 DOI: 10.1186/s12964-022-01011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/04/2022] [Indexed: 02/15/2023] Open
Abstract
Health hazards from long-term exposure to microwaves, especially the potential for changes in cognitive function, are attracting increasing attention. The purpose of this study was to explore changes in spatial learning and memory and synaptic structure and to identify differentially expressed proteins in hippocampal and serum exosomes after long-term exposure to 2.856 and 9.375 GHz microwaves. The spatial reference learning and memory abilities and the structure of the DG area were impaired after long-term exposure to 2.856 and 9.375 GHz microwaves. We also found a decrease in SNARE-associated protein Snapin and an increase in charged multivesicular body protein 3 in the hippocampus, indicating that synaptic vesicle recycling was inhibited and consistent with the large increase in presynaptic vesicles. Moreover, we investigated changes in serum exosomes after 2.856 and 9.375 GHz microwave exposure. The results showed that long-term 2.856 GHz microwave exposure could induce a decrease in calcineurin subunit B type 1 and cytochrome b-245 heavy chain in serum exosomes. While the 9.375 GHz long-term microwave exposure induced a decrease in proteins (synaptophysin-like 1, ankyrin repeat and rabankyrin-5, protein phosphatase 3 catalytic subunit alpha and sodium-dependent phosphate transporter 1) in serum exosomes. In summary, long-term microwave exposure could lead to different degrees of spatial learning and memory impairment, EEG disturbance, structural damage to the hippocampus, and differential expression of hippocampal tissue and serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Yu Liu
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Yunbo Sun
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Ji Dong
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Xinping Xu
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Haoyu Wang
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Xuelong Zhao
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Jing Zhang
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Binwei Yao
- grid.506261.60000 0001 0706 7839Beijing Institute of Radiation Medicine, Beijing, 100850 China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
18
|
The Roles of Exosomal Proteins: Classification, Function, and Applications. Int J Mol Sci 2023; 24:ijms24043061. [PMID: 36834471 PMCID: PMC9961790 DOI: 10.3390/ijms24043061] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.
Collapse
|
19
|
Hotta N, Tadokoro T, Henry J, Koga D, Kawata K, Ishida H, Oguma Y, Hirata A, Mitsuhashi M, Yoshitani K. Monitoring of Post-Brain Injuries By Measuring Plasma Levels of Neuron-Derived Extracellular Vesicles. Biomark Insights 2022; 17:11772719221128145. [PMID: 36324609 PMCID: PMC9618756 DOI: 10.1177/11772719221128145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/06/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EV) released from neurons into the blood can reflect the state of nervous tissue. Measurement of neuron derived EV (NDE) may serve as an indicator of brain injury. METHODS A sandwich immunoassay was established to measure plasma NDE using anti-neuron CD171 and anti-EV CD9 ([CD171 + CD9+]). Plasma samples were obtained from commercial sources, cross-country (n = 9), football (n = 22), soccer (n = 19), and rugby (n = 18) athletes over time. Plasma was also collected from patients undergoing total aortic arch replacement (TAR) with selective cerebral perfusion during cardiopulmonary bypass before and after surgery (n = 36). RESULTS The specificity, linearity, and reproducibility of NDE assay (measurement of [CD171 + CD9+]) were confirmed. By scanning electron microscopy and nanoparticle tracking, spherical vesicles ranging in size from 150 to 300 nm were confirmed. Plasma levels of NDE were widely spread over 2 to 3 logs in different individuals with a significant age-dependent decrease. However, NDE were very stable in each individual within a ± 50% change over time (cross-country, football, soccer), whereas rugby players were more variable over 4 years. In patients undergoing TAR, NDE increased rapidly in days post-surgery and were significantly (P = .0004) higher in those developing postoperative delirium (POD) (n = 13) than non-delirium patients (n = 23). CONCLUSIONS The blood test to determine plasma levels of NDE was established by a sandwich immunoassay using 2 antibodies against neuron (CD171) and exosomes (CD9). NDE levels varied widely in different individuals and decreased with age, indicating that NDE levels should be considered as a normalizer of NDE biomarker studies. However, NDE levels were stable over time in each individual, and increased rapidly after TAR with greater increases associated with patients developing POD. This assay may serve as a surrogate for evaluating and monitoring brain injuries.
Collapse
Affiliation(s)
- Naoshi Hotta
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Takahiro Tadokoro
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Daisuke Koga
- Department of Anatomy, Asahikawa Medical University, Asahikawa, Japan
| | - Keisuke Kawata
- School of Public Health, Indiana University, Bloomington, IN, USA
| | - Hiroyuki Ishida
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Yuko Oguma
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Akihiro Hirata
- Sports Medicine Research Center, Keio University, Kanagawa, Japan
| | - Masato Mitsuhashi
- NanoSomiX, Inc., Irvine, CA, USA,Masato Mitsuhashi, M.D., Ph.D., Technical section, CTO, NanoSomiX, Inc. 15375 Barranca Parkway E-101, Irvine, CA 92718, USA.
| | - Kenji Yoshitani
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
20
|
Altered Expression of AQP1 and AQP4 in Brain Barriers and Cerebrospinal Fluid May Affect Cerebral Water Balance during Chronic Hypertension. Int J Mol Sci 2022; 23:ijms232012277. [PMID: 36293145 PMCID: PMC9603298 DOI: 10.3390/ijms232012277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Hypertension is the leading cause of cardiovascular affection and premature death worldwide. The spontaneously hypertensive rat (SHR) is the most common animal model of hypertension, which is characterized by secondary ventricular dilation and hydrocephalus. Aquaporin (AQP) 1 and 4 are the main water channels responsible for the brain’s water balance. The present study focuses on defining the expression of AQPs through the time course of the development of spontaneous chronic hypertension. We performed immunofluorescence and ELISA to examine brain AQPs from 10 SHR, and 10 Wistar−Kyoto (WKY) rats studied at 6 and 12 months old. There was a significant decrease in AQP1 in the choroid plexus of the SHR-12-months group compared with the age-matched control (p < 0.05). In the ependyma, AQP4 was significantly decreased only in the SHR-12-months group compared with the control or SHR-6-months groups (p < 0.05). Per contra, AQP4 increased in astrocytes end-feet of 6 months and 12 months SHR rats (p < 0.05). CSF AQP detection was higher in the SHR-12-months group than in the age-matched control group. CSF findings were confirmed by Western blot. In SHR, ependymal and choroidal AQPs decreased over time, while CSF AQPs levels increased. In turn, astrocytes AQP4 increased in SHR rats. These AQP alterations may underlie hypertensive-dependent ventriculomegaly.
Collapse
|
21
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
22
|
Wang H, Liu Y, Sun Y, Zhao L, Dong J, Xu X, Wang H, Zhang J, Yao B, Zhao X, Liu S, Zhang K, Peng R. Changes in rat spatial learning and memory as well as serum exosome proteins after simultaneous exposure to 1.5 GHz and 4.3 GHz microwaves. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113983. [PMID: 35985199 DOI: 10.1016/j.ecoenv.2022.113983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/22/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to elucidate the effects and biological targets sensitive to simultaneous 1.5 and 4.3 GHz microwave exposure in rats. A total of 120 male Wistar rats were divided randomly into four groups: the sham (S group), 1.5 GHz microwave exposure (L group), 4.3 GHz microwave exposure (C group) and simultaneous 1.5 and 4.3 GHz microwave exposure (LC group) groups. Spatial learning and memory, cortical electrical activity, and hippocampal ultrastructure were assessed by the Morris Water Maze, electroencephalography, and transmission electron microscopy, respectively. Additionally, serum exosomes were isolated by ultracentrifugation and assessed by Western blotting, nanoparticle tracking and transmission electron microscopy. The serum exosome protein content was assessed by label-free quantitative proteomics. Impaired spatial learning and memory decreased cortical excitability, and damage to the hippocampal ultrastructure were observed in groups exposed to microwaves, especially the L and LC groups. A total of 54, 145 and 296 exosomal proteins were differentially expressed between the S group and the L, C and LC groups, respectively. These differentially expressed proteins were involved in the synaptic vesicle cycle and SNARE interactions during vesicular transport. Additionally, VAMP8, Syn7 and VMAT are potential serum markers of simultaneous microwave exposure. Thus, exposure to 1.5 and 4.3 GHz microwaves induced impairments in spatial learning and memory, and simultaneous microwave exposure had the most severe effects.
Collapse
Affiliation(s)
- Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yu Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Education, Hebei University, No. 180 of Wusi East Road, Baoding, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ke Zhang
- College of Education, Hebei University, No. 180 of Wusi East Road, Baoding, China.
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
23
|
Boutté AM, Thangavelu B, Anagli J. Opinion: The Potential Role of Amyloid Beta Peptides as Biomarkers of Subconcussion and Concussion. Front Neurol 2022; 13:941151. [PMID: 35903122 PMCID: PMC9315433 DOI: 10.3389/fneur.2022.941151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Angela M. Boutté
- Aries Biotechnologies, Oakland, CA, United States
- *Correspondence: Angela M. Boutté
| | | | - John Anagli
- NeuroTheranostics, Inc., Detroit, MI, United States
| |
Collapse
|
24
|
Lai JQ, Shi YC, Lin S, Chen XR. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol Metab 2022; 33:451-462. [PMID: 35534336 DOI: 10.1016/j.tem.2022.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
Abstract
Cognitive dysfunction is a common adverse consequence of traumatic brain injury (TBI). After brain injury, the brain and other organs trigger a series of complex metabolic changes, including reduced glucose metabolism, enhanced lipid peroxidation, disordered neurotransmitter secretion, and imbalanced trace element synthesis. In recent years, several research and clinical studies have demonstrated that brain metabolism directly or indirectly affects cognitive dysfunction after TBI, but the mechanisms remain unclear. Drugs that improve the symptoms of cognitive dysfunction caused by TBI are under investigation and treatments that target metabolic processes are expected to improve cognitive function in the future. This review explores the impact of metabolic disorders on cognitive dysfunction after TBI and provides new strategies for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Jin-Qing Lai
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Neuroendocrinology Group, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neurosurgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
25
|
Cell-Derived Exosomes as Therapeutic Strategies and Exosome-Derived microRNAs as Biomarkers for Traumatic Brain Injury. J Clin Med 2022; 11:jcm11113223. [PMID: 35683610 PMCID: PMC9181755 DOI: 10.3390/jcm11113223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a complex, life-threatening condition that causes mortality and disability worldwide. No effective treatment has been clinically verified to date. Achieving effective drug delivery across the blood–brain barrier (BBB) presents a major challenge to therapeutic drug development for TBI. Furthermore, the field of TBI biomarkers is rapidly developing to cope with the many aspects of TBI pathology and enhance clinical management of TBI. Exosomes (Exos) are endogenous extracellular vesicles (EVs) containing various biological materials, including lipids, proteins, microRNAs, and other nucleic acids. Compelling evidence exists that Exos, such as stem cell-derived Exos and even neuron or glial cell-derived Exos, are promising TBI treatment strategies because they pass through the BBB and have the potential to deliver molecules to target lesions. Meanwhile, Exos have decreased safety risks from intravenous injection or orthotopic transplantation of viable cells, such as microvascular occlusion or imbalanced growth of transplanted cells. These unique characteristics also create Exos contents, especially Exos-derived microRNAs, as appealing biomarkers in TBI. In this review, we explore the potential impact of cell-derived Exos and exosome-derived microRNAs on the diagnosis, therapy, and prognosis prediction of TBI. The associated challenges and opportunities are also discussed.
Collapse
|
26
|
Edwards KA, Leete JJ, Smith EG, Quick A, Modica CM, Wassermann EM, Polejaeva E, Dell KC, LoPresti M, Walker P, O'Brien M, Lai C, Qu BX, Devoto C, Carr W, Stone JR, Ahlers ST, Gill JM. Elevations in Tumor Necrosis Factor Alpha and Interleukin 6 From Neuronal-Derived Extracellular Vesicles in Repeated Low-Level Blast Exposed Personnel. Front Neurol 2022; 13:723923. [PMID: 35528741 PMCID: PMC9070565 DOI: 10.3389/fneur.2022.723923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The purpose of this pilot study was to determine if military service members with histories of hundreds to thousands of low-level blast exposures (i. e., experienced breachers) had different levels of serum and neuronal-derived extracellular vesicle (EV) concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNFα), compared to matched controls, and if these biomarkers related to neurobehavioral symptoms. Methods Participants were experienced breachers (n = 20) and matched controls without blast exposures (n = 14). Neuronal-derived EVs were isolated from serum and identified with mouse anti-human CD171. Serum and neuronal-derived EVs were analyzed for IL-6, IL-10, and TNFα using an ultra-sensitive assay. Results Serum TNFα concentrations were decreased in breachers when compared to control concentrations (p < 0.01). There were no differences in serum concentrations of IL-6, IL-10, or the IL-6/IL-10 ratio between breachers and controls (p's > 0.01). In neuronal-derived EVs, TNFα and IL-6 levels were increased in breachers compared to controls (p's < 0.01), and IL-10 levels were decreased in the breacher group compared to controls (p < 0.01). In breachers the IL-6/IL-10 ratio in neuronal-derived EVs was higher compared to controls, which correlated with higher total Rivermead Post-concussion Questionnaire (RPQ) scores (p's < 0.05). Conclusions These findings suggest that exposure of personnel to high numbers of low-level blast over a career may result in enduring central inflammation that is associated with chronic neurological symptoms. The data also suggest that peripheral markers of inflammation are not necessarily adequate surrogates for central neuroinflammation.
Collapse
Affiliation(s)
- Katie A Edwards
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jacqueline J Leete
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Ethan G Smith
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Alycia Quick
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Claire M Modica
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Elena Polejaeva
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Kristine C Dell
- Department of Psychology, Pennsylvania State University, University Park, PA, United States
| | - Matthew LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peter Walker
- Joint Artificial Intelligence Center, Arlington, VA, United States
| | - Meghan O'Brien
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Chen Lai
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Bao-Xi Qu
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Christina Devoto
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Stephen T Ahlers
- Naval Medical Research Center, Operational and Undersea Medicine Directorate, Silver Spring, MD, United States
| | - Jessica M Gill
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Uniformed Services of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
27
|
Sandau US, McFarland TJ, Smith SJ, Galasko DR, Quinn JF, Saugstad JA. Differential Effects of APOE Genotype on MicroRNA Cargo of Cerebrospinal Fluid Extracellular Vesicles in Females With Alzheimer's Disease Compared to Males. Front Cell Dev Biol 2022; 10:864022. [PMID: 35573689 PMCID: PMC9092217 DOI: 10.3389/fcell.2022.864022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Multiple biological factors, including age, sex, and genetics, influence Alzheimer's disease (AD) risk. Of the 6.2 million Americans living with Alzheimer's dementia in 2021, 3.8 million are women and 2.4 million are men. The strongest genetic risk factor for sporadic AD is apolipoprotein E-e4 (APOE-e4). Female APOE-e4 carriers develop AD more frequently than age-matched males and have more brain atrophy and memory loss. Consequently, biomarkers that are sensitive to biological risk factors may improve AD diagnostics and may provide insight into underlying mechanistic changes that could drive disease progression. Here, we have assessed the effects of sex and APOE-e4 on the miRNA cargo of cerebrospinal fluid (CSF) extracellular vesicles (EVs) in AD. We used ultrafiltration (UF) combined with size exclusion chromatography (SEC) to enrich CSF EVs (e.g., Flotillin+). CSF EVs were isolated from female and male AD or controls (CTLs) that were either APOE-e3,4 or -e3,3 positive (n = 7/group, 56 total). MiRNA expression levels were quantified using a custom TaqMan™ array that assayed 190 miRNAs previously found in CSF, including 25 miRNAs that we previously validated as candidate AD biomarkers. We identified changes in the EV miRNA cargo that were affected by both AD and sex. In total, four miRNAs (miR-16-5p, -331-3p, -409-3p, and -454-3p) were significantly increased in AD vs. CTL, independent of sex and APOE-e4 status. Pathway analysis of the predicted gene targets of these four miRNAs with identified pathways was highly relevant to neurodegeneration (e.g., senescence and autophagy). There were also three miRNAs (miR-146b-5p, -150-5p, and -342-3p) that were significantly increased in females vs. males, independent of disease state and APOE-e4 status. We then performed a statistical analysis to assess the effect of APOE genotype in AD within each sex and found that APOE-e4 status affects different subsets of CSF EV miRNAs in females vs. males. Together, this study demonstrates the complexity of the biological factors associated with AD risk and the impact on EV miRNAs, which may contribute to AD pathophysiology.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Trevor J. McFarland
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Sierra J. Smith
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Douglas R. Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
- Parkinson Center and Movement Disorders Program, Oregon Health and Science University, Portland, OR, United States
- Portland VAMC Parkinson’s Disease Research, Education, and Clinical Center, Portland, OR, United States
| | - Julie A. Saugstad
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
28
|
Whole-Transcriptome Analysis of Serum L1CAM-Captured Extracellular Vesicles Reveals Neural and Glycosylation Changes in Autism Spectrum Disorder. J Mol Neurosci 2022; 72:1274-1292. [PMID: 35412111 DOI: 10.1007/s12031-022-01994-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Extracellular vesicles (EVs) are cell-derived nano-sized vesicles, carrying nucleic acids, proteins, lipids, and other bioactive substances. As reported, serum neural cell adhesion molecule L1 (L1CAM)-captured EVs (LCEVs) can provide reliable biomarkers for neurological diseases; however, little is known about the LCEVs in children with ASD. The study enrolled 100 children with ASD (2.5-6 years of age; 90 males) and 60 age-matched TD children (54 males) as control. The serum sample was collected and pooled into five ASD subgroups and three TD subgroups (n = 20). LCEVs were isolated and characterized meticulously. Whole-transcriptome of LCEVs was analyzed by lncRNA microarray and RNA-sequencing. All raw data was submitted on GEO Profiles, and GEO accession numbers is GSE186493. RNAs expressed differently in LCEVs from ASD sera vs. TD sera were screened, analyzed, and further validated. A total of 1418 mRNAs, 1745 lncRNAs, and 11 miRNAs were differentially expressed, and most of them were downregulated in ASD. Most RNAs were involved in neuron- and glycan-related networks implicated in ASD. The levels of EDNRA, SLC17A6, HTR3A, OSTC, TMEM165, PC-5p-139289_26, and hsa-miR-193a-5p were validated in at least 15 ASD and 15 TD individual serum samples, which were consistent with the results of transcriptome analysis. In conclusion, whole-transcriptome analysis of serum LCEVs reveals neural and glycosylation changes in ASD, which may help detect predictive biomarkers and molecular mechanisms of ASD, and provide reference for diagnoses and therapeutic management of the disease.
Collapse
|
29
|
Gomes DE, Witwer KW. L1CAM-associated extracellular vesicles: A systematic review of nomenclature, sources, separation, and characterization. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e35. [PMID: 35492832 PMCID: PMC9045013 DOI: 10.1002/jex2.35] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
When released into biological fluids like blood or saliva, brain extracellular vesicles (EVs) might provide a window into otherwise inaccessible tissue, contributing useful biomarkers of neurodegenerative and other central nervous system (CNS) diseases. To enrich for brain EVs in the periphery, however, cell-specific EV surface markers are needed. The protein that has been used most frequently to obtain EVs of putative neuronal origin is the transmembrane L1 cell adhesion molecule (L1CAM/CD171). In this systematic review, we examine the existing literature on L1CAM and EVs, including investigations of both neurodegenerative disease and cancer through the lens of the minimal information for studies of EVs (MISEV), specifically in the domains of nomenclature usage, EV sources, and EV separation and characterization. Although numerous studies have reported L1CAM-associated biomarker signatures that correlate with disease, interpretation of these results is complicated since L1CAM expression is not restricted to neurons and is also upregulated during cancer progression. A recent study has suggested that L1CAM epitopes are present in biofluids mostly or entirely as cleaved, soluble protein. Our findings on practices and trends in L1CAM-mediated EV separation, enrichment, and characterization yield insights that may assist with interpreting results, evaluating rigor, and suggesting avenues for further exploration.
Collapse
Affiliation(s)
- Dimitria E. Gomes
- Cornell University College of Veterinary MedicineIthacaNew YorkUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Centre of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
30
|
Vaughn MN, Winston CN, Levin N, Rissman RA, Risbrough VB. Developing Biomarkers of Mild Traumatic Brain Injury: Promise and Progress of CNS-Derived Exosomes. Front Neurol 2022; 12:698206. [PMID: 35222223 PMCID: PMC8866179 DOI: 10.3389/fneur.2021.698206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Mild traumatic brain injuries (mTBI) are common injuries across civilian and military populations. Although most individuals recover after mTBI, some individuals continue to show long-term symptoms as well as increased risk for neurodegenerative and neuropsychiatric disorders. Currently, diagnosing TBI severity relies primarily on self-report and subjective symptoms, with limited tools for diagnosis or prognosis. Brain-derived exosomes, a form of extracellular vesicle, may offer a solution for interpreting injury states by aiding in diagnosis as well as outcome prediction with relatively low patient burden. Exosomes, which are released into circulation, contain both protein and RNA cargo that can be isolated and quantified, providing a molecular window into molecular status of the exosome source. Here we examined the current literature studying the utility of exosomes, in particular neuronal- and astrocyte-derived exosomes, to identify protein and miRNA biomarkers of injury severity, trajectory, and functional outcome. Current evidence supports the potential for these emerging new tools to capture an accessible molecular window into the brain as it responds to a traumatic injury, however a number of limitations must be addressed in future studies. Most current studies are relatively small and cross sectional; prospective, longitudinal studies across injury severity, and populations are needed to track exosome cargo changes after injury. Standardized exosome isolation as well as advancement in identifying/isolating exosomes from CNS-specific tissue sources will improve mechanistic understanding of cargo changes as well as reliability of findings. Exosomes are also just beginning to be used in model systems to understand functional effects of TBI-associated cargo such as toxicity. Finally linking exosome cargo changes to objective markers of neuronal pathology and cognitive changes will be critical in validating these tools to provide insights into injury and recovery states after TBI.
Collapse
Affiliation(s)
- Melonie N. Vaughn
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Charisse N. Winston
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Natalie Levin
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Health System, University of California, San Diego, San Diego, CA, United States
| | - Victoria B. Risbrough
- Veterans Affairs San Diego Health System, University of California, San Diego, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- VA Center of Excellence for Stress and Mental Health, La Jolla, CA, United States
| |
Collapse
|
31
|
Wang L, Wu R. Clinical Effectiveness of Pre-hospital and In-hospital Optimized Emergency Care Procedures for Patients With Acute Craniocerebral Trauma. Front Surg 2022; 8:830571. [PMID: 35111807 PMCID: PMC8801443 DOI: 10.3389/fsurg.2021.830571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Acute craniocerebral injury is a common traumatic disease in clinical practice, characterized by rapid changes in condition and a high rate of death and disability. Early and effective emergency care throughout the pre-hospital and in-hospital period is the key to reducing the rate of death and disability and promoting the recovery of patients. In this study, we conducted an observational study of 130 patients with acute craniocerebral injury admitted between May 2020 and May 2021. Patients were randomly divided into a regular group and an optimization group of 65 patients each, with patients in the regular group receiving the conventional emergency care model and patients in the optimization group receiving the pre-hospital and in-hospital optimal emergency care process for intervention. In this study, we observed and compared the time taken to arrive at the scene, assess the condition, attend to the patient and provide emergency care, the success rate of emergency care within 48 h, the interleukin-6 (IL-6), interleukin-8 (IL-8), and intercellular adhesion molecule-1 (ICAM-1) after admission and 1 day before discharge, the National Institute of Health Stroke Scale (NIHSS) and the Short Form 36-item Health Survey (SF-36) after resuscitation and 1 day before discharge, and the complications of infection, brain herniation, central hyperthermia, and electrolyte disturbances in both groups. We collected and statistically analyzed the recorded data. The results showed that the time taken to arrive at the consultation site, assess the condition, receive the consultation, provide first aid was significantly lower in the optimized group than in the regular group (P < 0.05); the success rate of treatment was significantly higher in the optimized group than in the regular group (P < 0.05). In both groups, IL-6, IL-8, and ICAM-1 decreased on the day before discharge compared with the day of rescue, with the levels of each index lower in the optimization group than in the regular group (P < 0.05); the NIHSS scores decreased and the SF-36 scores increased on the day before discharge compared with the successful rescue in both groups, with the NIHSS scores in the optimization group lower than in the regular group and the SF-36 scores higher than in the control group (P < 0.05). The overall complication rate in the optimization group was significantly lower than that in the regular group (P < 0.05). This shows that optimizing pre-hospital and in-hospital emergency care procedures can significantly shorten the time to emergency care for patients with acute craniocerebral injury, increase the success rate, reduce inflammation, improve neurological function and quality of life, reduce the occurrence of complications, and improve patient prognosis.
Collapse
Affiliation(s)
- Lili Wang
- Department of Emergency, The Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Rong Wu
- Department of Outpatients, The Nanhua Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Rong Wu
| |
Collapse
|
32
|
Matamoros-Angles A, Hervera A, Soriano J, Martí E, Carulla P, Llorens F, Nuvolone M, Aguzzi A, Ferrer I, Gruart A, Delgado-García JM, Del Río JA. Analysis of co-isogenic prion protein deficient mice reveals behavioral deficits, learning impairment, and enhanced hippocampal excitability. BMC Biol 2022; 20:17. [PMID: 35027047 PMCID: PMC8759182 DOI: 10.1186/s12915-021-01203-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cellular prion protein (PrPC) is a cell surface GPI-anchored protein, usually known for its role in the pathogenesis of human and animal prionopathies. However, increasing knowledge about the participation of PrPC in prion pathogenesis contrasts with puzzling data regarding its natural physiological role. PrPC is expressed in a number of tissues, including at high levels in the nervous system, especially in neurons and glial cells, and while previous studies have established a neuroprotective role, conflicting evidence for a synaptic function has revealed both reduced and enhanced long-term potentiation, and variable observations on memory, learning, and behavior. Such evidence has been confounded by the absence of an appropriate knock-out mouse model to dissect the biological relevance of PrPC, with some functions recently shown to be misattributed to PrPC due to the presence of genetic artifacts in mouse models. Here we elucidate the role of PrPC in the hippocampal circuitry and its related functions, such as learning and memory, using a recently available strictly co-isogenic Prnp0/0 mouse model (PrnpZH3/ZH3). Results We performed behavioral and operant conditioning tests to evaluate memory and learning capabilities, with results showing decreased motility, impaired operant conditioning learning, and anxiety-related behavior in PrnpZH3/ZH3 animals. We also carried in vivo electrophysiological recordings on CA3-CA1 synapses in living behaving mice and monitored spontaneous neuronal firing and network formation in primary neuronal cultures of PrnpZH3/ZH3 vs wildtype mice. PrPC absence enhanced susceptibility to high-intensity stimulations and kainate-induced seizures. However, long-term potentiation (LTP) was not enhanced in the PrnpZH3/ZH3 hippocampus. In addition, we observed a delay in neuronal maturation and network formation in PrnpZH3/ZH3 cultures. Conclusion Our results demonstrate that PrPC promotes neuronal network formation and connectivity. PrPC mediates synaptic function and protects the synapse from excitotoxic insults. Its deletion may underlie an epileptogenic-susceptible brain that fails to perform highly cognitive-demanding tasks such as associative learning and anxiety-like behaviors. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01203-0.
Collapse
Affiliation(s)
- A Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Hervera
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - J Soriano
- Departament de Física de la Materia Condensada, University of Barcelona, Barcelona, Spain.,Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - E Martí
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Spain
| | - P Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain
| | - F Llorens
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Department of Neurology, University Medical School, Göttingen, Germany.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - M Nuvolone
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.,Amyloidosis Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - A Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland
| | - I Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), L'Hospitalet de Llobregat, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - A Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - J M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.
| | - J A Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain. .,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain. .,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Weaver KR, Mustapic M, Kapogiannis D, Henderson WA. Neuronal-enriched extracellular vesicles in individuals with IBS: A pilot study of COMT and BDNF. Neurogastroenterol Motil 2022; 34:e14257. [PMID: 34499398 PMCID: PMC9358931 DOI: 10.1111/nmo.14257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is characterized by abdominal pain, bowel habit alterations, and psychiatric comorbidities. Although pathophysiology remains incompletely understood, prior work demonstrates associations with brain-derived neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT). The purpose of this study was to quantify BDNF and COMT in plasma and in neuronal-enriched extracellular vesicles (nEVs), assess relationships with psychological symptoms, and gain insight on the brain-gut connection in IBS. METHODS Clinical data and biorepository samples from a parent investigation were used, including scores on the Perceived Stress Scale (PSS) and Center for Epidemiological Studies Depression Scale (CES-D). Distinct subpopulations of nEVs were isolated using neural cell adhesion molecule L1CAM; levels of COMT, mature BDNF, and pro-BDNF were quantified in plasma and in nEVs using ELISA. KEY RESULTS Data from 47 females (28.11 ± 6.85 years) included 18 IBS and 29 healthy control (HC) participants. IBS participants displayed reduced plasma levels of mature BDNF compared with HC (p = 0.024). Levels of COMT plasma and IBS grouping significantly predicted CES-D scores (p = 0.034). Exploratory analyses by IBS subtype and race revealed African American HC display lower levels of COMT EV than Caucasian HC (p = 0.022). CONCLUSIONS & INFERENCES Lower levels of mature BDNF in IBS participants, preliminary patterns detected in cargo content of nEVs, and relevance of COMT and IBS status to CES-D scores, offer insight on depressive symptomatology and brain-gut dysregulation in IBS. Lower COMT levels in nEVs of African Americans highlight the relevance of race when conducting such analyses across diverse populations.
Collapse
Affiliation(s)
| | - Maja Mustapic
- National Institute of Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | |
Collapse
|
34
|
Chand S, Gowen A, Savine M, Moore D, Clark A, Huynh W, Wu N, Odegaard K, Weyrich L, Bevins RA, Fox HS, Pendyala G, Yelamanchili SV. A comprehensive study to delineate the role of an extracellular vesicle-associated microRNA-29a in chronic methamphetamine use disorder. J Extracell Vesicles 2021; 10:e12177. [PMID: 34913274 PMCID: PMC8674191 DOI: 10.1002/jev2.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.
Collapse
Affiliation(s)
- Subhash Chand
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Austin Gowen
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Mason Savine
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Dalia Moore
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Alexander Clark
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Wendy Huynh
- Department of PsychologyUniversity of Nebraska–Lincoln (UNL)LincolnNebraskaUSA
| | - Niming Wu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Katherine Odegaard
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | | | - Rick A. Bevins
- Department of PsychologyUniversity of Nebraska–Lincoln (UNL)LincolnNebraskaUSA
| | - Howard S. Fox
- Department of Neurological SciencesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Gurudutt Pendyala
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Sowmya V. Yelamanchili
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| |
Collapse
|
35
|
Wisniewski T, Fossati S. Reader Response: Blood Biomarkers of Traumatic Brain Injury and Cognitive Impairment in Older Veterans. Neurology 2021; 97:101. [PMID: 34253655 DOI: 10.1212/wnl.0000000000012255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Ruan J, Miao X, Schlüter D, Lin L, Wang X. Extracellular vesicles in neuroinflammation: Pathogenesis, diagnosis, and therapy. Mol Ther 2021; 29:1946-1957. [PMID: 33895328 PMCID: PMC8178458 DOI: 10.1016/j.ymthe.2021.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are bilayer membrane vesicles and act as key messengers in intercellular communication. EVs can be secreted by both neurons and glial cells in the central nervous system (CNS). Under physiological conditions, EVs contribute to CNS homeostasis by facilitating omnidirectional communication among CNS cell populations. In response to CNS injury, EVs mediate neuroinflammatory responses and regulate tissue damage and repair, thereby influencing the pathogenesis, development, and/or recovery of neuroinflammatory diseases, including CNS autoimmune diseases, neurodegenerative diseases, stroke, CNS traumatic injury, and CNS infectious diseases. The unique ability of EVs to pass through the blood-brain barrier further confers them an important role in the bidirectional communication between the CNS and periphery, and application of EVs enables the diagnosis, prognosis, and therapy of neuroinflammatory diseases in a minimally invasive manner.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, 325000 Wenzhou, China
| | - Xiaomin Miao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China.
| | - Xu Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
37
|
Secreted Extracellular Vesicle Molecular Cargo as a Novel Liquid Biopsy Diagnostics of Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms22063267. [PMID: 33806874 PMCID: PMC8004928 DOI: 10.3390/ijms22063267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022] Open
Abstract
Secreted extracellular vesicles (EVs) are heterogeneous cell-derived membranous granules which carry a large diversity of molecules and participate in intercellular communication by transferring these molecules to target cells by endocytosis. In the last decade, EVs’ role in several pathological conditions, from etiology to disease progression or therapy evasion, has been consolidated, including in central nervous system (CNS)-related disorders. For this review, we performed a systematic search of original works published, reporting the presence of molecular components expressed in the CNS via EVs, which have been purified from plasma, serum or cerebrospinal fluid. Our aim is to provide a list of molecular EV components that have been identified from both nonpathological conditions and the most common CNS-related disorders. We discuss the methods used to isolate and enrich EVs from specific CNS-cells and the relevance of its components in each disease context.
Collapse
|
38
|
Sun B, Tang N, Peluso MJ, Iyer NS, Torres L, Donatelli JL, Munter SE, Nixon CC, Rutishauser RL, Rodriguez-Barraquer I, Greenhouse B, Kelly JD, Martin JN, Deeks SG, Henrich TJ, Pulliam L. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells 2021; 10:386. [PMID: 33668514 PMCID: PMC7918597 DOI: 10.3390/cells10020386] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
As the SARS-CoV-2 pandemic continues, reports have demonstrated neurologic sequelae following COVID-19 recovery. Mechanisms to explain long-term neurological sequelae are unknown and need to be identified. Plasma from 24 individuals recovering from COVID-19 at 1 to 3 months after initial infection were collected for cytokine and antibody levels and neuronal-enriched extracellular vesicle (nEV) protein cargo analyses. Plasma cytokine IL-4 was increased in all COVID-19 participants. Volunteers with self-reported neurological problems (nCoV, n = 8) had a positive correlation of IL6 with age or severity of the sequalae, at least one co-morbidity and increased SARS-CoV-2 antibody compared to those COVID-19 individuals without neurological issues (CoV, n = 16). Protein markers of neuronal dysfunction including amyloid beta, neurofilament light, neurogranin, total tau, and p-T181-tau were all significantly increased in the nEVs of all participants recovering from COVID-19 compared to historic controls. This study suggests ongoing peripheral and neuroinflammation after COVID-19 infection that may influence neurological sequelae by altering nEV proteins. Individuals recovering from COVID-19 may have occult neural damage while those with demonstrative neurological symptoms additionally had more severe infection. Longitudinal studies to monitor plasma biomarkers and nEV cargo are warranted to assess persistent neurodegeneration and systemic effects.
Collapse
Affiliation(s)
- Bing Sun
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (N.T.)
| | - Norina Tang
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (N.T.)
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (M.J.P.); (R.L.R.); (I.R.-B.); (B.G.); (S.G.D.)
| | - Nikita S. Iyer
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (N.S.I.); (L.T.); (J.L.D.); (S.E.M.); (C.C.N.); (T.J.H.)
| | - Leonel Torres
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (N.S.I.); (L.T.); (J.L.D.); (S.E.M.); (C.C.N.); (T.J.H.)
| | - Joanna L. Donatelli
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (N.S.I.); (L.T.); (J.L.D.); (S.E.M.); (C.C.N.); (T.J.H.)
| | - Sadie E. Munter
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (N.S.I.); (L.T.); (J.L.D.); (S.E.M.); (C.C.N.); (T.J.H.)
| | - Christopher C. Nixon
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (N.S.I.); (L.T.); (J.L.D.); (S.E.M.); (C.C.N.); (T.J.H.)
| | - Rachel L. Rutishauser
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (M.J.P.); (R.L.R.); (I.R.-B.); (B.G.); (S.G.D.)
| | - Isabel Rodriguez-Barraquer
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (M.J.P.); (R.L.R.); (I.R.-B.); (B.G.); (S.G.D.)
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (M.J.P.); (R.L.R.); (I.R.-B.); (B.G.); (S.G.D.)
| | - John D. Kelly
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA 94158, USA; (J.D.K.); (J.N.M.)
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA 94158, USA; (J.D.K.); (J.N.M.)
| | - Steven G. Deeks
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (M.J.P.); (R.L.R.); (I.R.-B.); (B.G.); (S.G.D.)
| | - Timothy J. Henrich
- Division of Experimental Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94110, USA; (N.S.I.); (L.T.); (J.L.D.); (S.E.M.); (C.C.N.); (T.J.H.)
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (B.S.); (N.T.)
- Department of Laboratory Medicine and Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Goetzl EJ. Advancing medicine for Alzheimer's disease: A plasma neural exosome platform. FASEB J 2020; 34:13079-13084. [PMID: 32856798 DOI: 10.1096/fj.202001655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Enrichment of neurally derived extracellular vesicles of several cell-types from plasma for protein quantification longitudinally in living patients with Alzheimer's disease has permitted the development of a tentative temporal framework of initiating events, progression mechanisms, and amplification processes. Interactions of beta-amyloid peptides with an elevated level of their normal prion protein dendritic receptor and of phospho-tau species with their synaptogyrin-3 synaptic vesicle receptor replace excessive production and accumulation of neuropathic proteins as the major initiating events. Synaptic dysfunction and microvascular angiopathy are confirmed as early progression mechanisms of decreased neuronal network connectivity, hypoxia, altered blood-brain barrier, and neurocellular degeneration. Neurally derived extracellular vesicle protein abnormalities also reveal a range of later amplification processes that encompasses insulin resistance, lysosomal defects, decreased survival factors, increased reactive oxygen species, and excessive neuroinflammation. New potential therapeutic targets also are suggested as well as the likely timing of their pathogenic engagement.
Collapse
Affiliation(s)
- Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, CA, USA.,Geriatric Research Center, Campus for Jewish Living, San Francisco, CA, USA
| |
Collapse
|
40
|
Guedes VA, Devoto C, Leete J, Sass D, Acott JD, Mithani S, Gill JM. Extracellular Vesicle Proteins and MicroRNAs as Biomarkers for Traumatic Brain Injury. Front Neurol 2020; 11:663. [PMID: 32765398 PMCID: PMC7378746 DOI: 10.3389/fneur.2020.00663] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous condition, associated with diverse etiologies, clinical presentations and degrees of severity, and may result in chronic neurobehavioral sequelae. The field of TBI biomarkers is rapidly evolving to address the many facets of TBI pathology and improve its clinical management. Recent years have witnessed a marked increase in the number of publications and interest in the role of extracellular vesicles (EVs), which include exosomes, cell signaling, immune responses, and as biomarkers in a number of pathologies. Exosomes have a well-defined lipid bilayer with surface markers that reflect the cell of origin and an aqueous core that contains a variety of biological material including proteins (e.g., cytokines and growth factors) and nucleic acids (e.g., microRNAs). The presence of proteins associated with neurodegenerative changes such as amyloid-β, α-synuclein and phosphorylated tau in exosomes suggests a role in the initiation and propagation of neurological diseases. However, mechanisms of cell communication involving exosomes in the brain and their role in TBI pathology are poorly understood. Exosomes are promising TBI biomarkers as they can cross the blood-brain barrier and can be isolated from peripheral fluids, including serum, saliva, sweat, and urine. Exosomal content is protected from enzymatic degradation by exosome membranes and reflects the internal environment of their cell of origin, offering insights into tissue-specific pathological processes. Challenges in the clinical use of exosomal cargo as biomarkers include difficulty in isolating pure exosomes, variable yields of the isolation processes, quantification of vesicles, and lack of specificity of exosomal markers. Moreover, there is no consensus regarding nomenclature and characteristics of EV subtypes. In this review, we discuss current technical limitations and challenges of using exosomes and other EVs as blood-based biomarkers, highlighting their potential as diagnostic and prognostic tools in TBI.
Collapse
Affiliation(s)
- Vivian A Guedes
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Christina Devoto
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jacqueline Leete
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Delia Sass
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jedidiah D Acott
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Sara Mithani
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Jessica M Gill
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Lekomtseva Y. Targeting higher levels of lactate in the post-injury period following traumatic brain injury. Clin Neurol Neurosurg 2020; 196:106050. [PMID: 32652391 DOI: 10.1016/j.clineuro.2020.106050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Secondary traumatic brain injury (TBI) consequences continue multiple cascades of biochemical reactions caused by initial neurotrauma and one of the important pathogenetic processes is mitochondrial dysfunction partly characterized by elevation of lactate/pyruvate ratio in brain following metabolic failure. OBJECTIVE To identify lactate, pyruvate, lactate dehydrogenase, tau protein, ceruloplasmin blood levels in the post-injury period following TBI in relation to its different forms. PATIENTS AND METHODS Ninety-six patients (mean age ± SD 38.8 ± 10.39 years) at 12 months post-injury follow-ups TBI (post-TBI) were investigated; plasma lactate and pyruvate levels were measured by the spectrophotometric method according to the manufacturer protocols; tau protein, ceruloplasmin and lactate dehydrogenase (LDH) were measured in sera by enzyme-linked immunosorbent assays. Group 1 was comprised of 54 participants who had a history of mild TBI, group 2 was comprised of 42 patients who had a history of moderate TBI. RESULTS In this work, we found the highest plasma lactate levels in the patients with the post-injury period following moderate TBI as compared to controls (p = 0.0047, t = 2.924, 95 % CI -0.2154 to -0.04071) where the median lactate level was 0.832 ± 0.033 and 0704 ± 0.021 mmol/L in controls. No significant differences were seen between mild and moderate post-TBI (p = 0.079; t = 1.772); significant difference was also seen between general post-TBI group versus controls (p = 0.0181; t = 2.396; 95 % CI -0.1627 to -0.01551) with the median total lactate level of 0.793 ± 0.019 mmol/L. Lactate data did not distinguish with the respect to gender or age. The results showed no significant differences in tau protein, pyruvate, LDH and ceruloplasmin levels. CONCLUSION This study shows higher lactate levels in the post-injury period following TBI that reflect post-injury oxidative dysmetabolism and are more expressed in the post-injury period following moderate TBI.
Collapse
Affiliation(s)
- Yevgeniya Lekomtseva
- State Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine, Department of Neurology, Department of Functional Neurosurgery and Paroxysmal States, Academic Pavlov Str, 46, Kharkiv, 61068, Ukraine.
| |
Collapse
|
42
|
Peltz CB, Kenney K, Gill J, Diaz-Arrastia R, Gardner RC, Yaffe K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 2020; 95:e1126-e1133. [PMID: 32571850 DOI: 10.1212/wnl.0000000000010087] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To determine whether blood-based biomarkers can differentiate older veterans with and without traumatic brain injury (TBI) and cognitive impairment (CogI). METHODS We enrolled 155 veterans from 2 veterans' retirement homes: 90 without TBI and 65 with TBI history. Participants were further separated into CogI groups: controls (no TBI, no CogI), n = 60; no TBI with CogI, n = 30; TBI without CogI, n = 30; and TBI with CogI, n = 35. TBI was determined by the Ohio State University TBI Identification Method. CogI was defined as impaired cognitive testing, dementia diagnosis, or use of dementia medication. Blood specimens were enriched for CNS-derived exosomes. Proteins (neurofilament light [NfL], total tau, glial fibrillary acidic protein [GFAP], α-synuclein, β-amyloid 42 [Aβ42], and phosphorylated tau [p-tau]) and cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-10) were measured using ultrasensitive immunoassays. RESULTS Veterans were, on average, 79 years old. In participants with TBI history, 65% had mild TBI; average time from most recent TBI was 37 years. In adjusted analyses, the TBI and CogI groups differed on CNS-enriched exosome concentration of p-tau, NfL, IL-6, TNF-α (all p < 0.05), and GFAP (p = 0.06), but not on Aβ42 or other markers. Adjusted area under the curve (AUC) analyses found that all significantly associated biomarkers combined separated TBI with/without CogI (AUC, 0.85; 95% confidence interval [CI], 0.74-0.95) and CogI with/without TBI (AUC, 0.88; 95% CI, 0.77-0.99). CONCLUSIONS Increased levels of blood-based, CNS-enriched exosomal biomarkers associated with TBI and CogI can be detected even decades after TBI. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in veterans with a history of TBI, CNS-enriched exosome concentration of p-tau, NfL, IL-6, and TNF-α are associated with CogI.
Collapse
Affiliation(s)
- Carrie B Peltz
- From San Francisco Veterans Affairs Health Care System (C.B.P., R.C.G., K.Y.), CA; Northern California Institute for Research and Education (C.B.P.), San Francisco; Uniformed Services University of the Health Sciences (K.K.), Rockville; NIH (J.G.), Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania, Philadelphia; and Departments of Neurology (R.C.G., K.Y.), Psychiatry (K.Y.), and Epidemiology and Biostatistics (K.Y.), University of California, San Francisco.
| | - Kimbra Kenney
- From San Francisco Veterans Affairs Health Care System (C.B.P., R.C.G., K.Y.), CA; Northern California Institute for Research and Education (C.B.P.), San Francisco; Uniformed Services University of the Health Sciences (K.K.), Rockville; NIH (J.G.), Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania, Philadelphia; and Departments of Neurology (R.C.G., K.Y.), Psychiatry (K.Y.), and Epidemiology and Biostatistics (K.Y.), University of California, San Francisco
| | - Jessica Gill
- From San Francisco Veterans Affairs Health Care System (C.B.P., R.C.G., K.Y.), CA; Northern California Institute for Research and Education (C.B.P.), San Francisco; Uniformed Services University of the Health Sciences (K.K.), Rockville; NIH (J.G.), Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania, Philadelphia; and Departments of Neurology (R.C.G., K.Y.), Psychiatry (K.Y.), and Epidemiology and Biostatistics (K.Y.), University of California, San Francisco
| | - Ramon Diaz-Arrastia
- From San Francisco Veterans Affairs Health Care System (C.B.P., R.C.G., K.Y.), CA; Northern California Institute for Research and Education (C.B.P.), San Francisco; Uniformed Services University of the Health Sciences (K.K.), Rockville; NIH (J.G.), Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania, Philadelphia; and Departments of Neurology (R.C.G., K.Y.), Psychiatry (K.Y.), and Epidemiology and Biostatistics (K.Y.), University of California, San Francisco
| | - Raquel C Gardner
- From San Francisco Veterans Affairs Health Care System (C.B.P., R.C.G., K.Y.), CA; Northern California Institute for Research and Education (C.B.P.), San Francisco; Uniformed Services University of the Health Sciences (K.K.), Rockville; NIH (J.G.), Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania, Philadelphia; and Departments of Neurology (R.C.G., K.Y.), Psychiatry (K.Y.), and Epidemiology and Biostatistics (K.Y.), University of California, San Francisco
| | - Kristine Yaffe
- From San Francisco Veterans Affairs Health Care System (C.B.P., R.C.G., K.Y.), CA; Northern California Institute for Research and Education (C.B.P.), San Francisco; Uniformed Services University of the Health Sciences (K.K.), Rockville; NIH (J.G.), Bethesda, MD; Department of Neurology (R.D.-A.), University of Pennsylvania, Philadelphia; and Departments of Neurology (R.C.G., K.Y.), Psychiatry (K.Y.), and Epidemiology and Biostatistics (K.Y.), University of California, San Francisco
| |
Collapse
|
43
|
Abner EL, Elahi FM, Jicha GA, Mustapic M, Al-Janabi O, Kramer JH, Kapogiannis D, Goetzl EJ. Endothelial-derived plasma exosome proteins in Alzheimer's disease angiopathy. FASEB J 2020; 34:5967-5974. [PMID: 32157747 PMCID: PMC7233139 DOI: 10.1096/fj.202000034r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022]
Abstract
Small cerebral vascular disease (SCeVD) demonstrated by white matter hyperintensity (WMH) on MRI contributes to the development of dementia in Alzheimer's disease (AD), but it has not been possible to correlate onset, severity, or protein components of SCeVD with characteristics of WMH in living patients. Plasma endothelial-derived exosomes (EDEs) were enriched by two-step immunoabsorption from four groups of participants with no clinical evidence of cerebrovascular disease: cognitively normal (CN) without WMH (CN without SCeVD, n = 20), CN with SCeVD (n = 22), preclinical AD (pAD) + mild cognitive impairment (MCI) without SCeVD (pAD/MCI without SCeVD, n = 22), and pAD/MCI with SCeVD (n = 16) for ELISA quantification of cargo proteins. Exosome marker CD81-normalized EDE levels of the cerebrovascular-selective biomarkers large neutral amino acid transporter 1 (LAT-1), glucose transporter type 1 (Glut-1), and permeability-glycoprotein (p-GP, ABCB1) were similarly significantly higher in the CN with SCeVD and pAD/MCI with SCeVD groups than their corresponding control groups without SCeVD. CD81-normalized EDE levels of Aβ40 and Aβ42 were significantly higher in the pAD/MCI with SCeVD group but not in the CN with SCeVD group relative to controls without SCeVD. Levels of normal cellular prion protein (PrPc), a receptor for amyloid peptides, and phospho-181T-tau were higher in both CN and pAD/MCI with SCeVD groups than in the corresponding controls. High EDE levels of Aβ40, Aβ42, and phospho-181T-tau in patients with WMH suggesting SCeVD appear at the pre-clinical or MCI stage of AD and therapeutic lowering of neurotoxic peptide levels may delay progression of AD angiopathy.
Collapse
Affiliation(s)
- Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Maja Mustapic
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Omar Al-Janabi
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Kapogiannis
- Cellular and Molecular Neurosciences Section, Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD, USA
| | - Edward J. Goetzl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Campus for Jewish Living, San Francisco, CA, USA
| |
Collapse
|
44
|
Goetzl EJ, Yaffe K, Peltz CB, Ledreux A, Gorgens K, Davidson B, Granholm AC, Mustapic M, Kapogiannis D, Tweedie D, Greig NH. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J 2020; 34:3359-3366. [PMID: 31916313 PMCID: PMC7459190 DOI: 10.1096/fj.201902842r] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 01/16/2023]
Abstract
Possible involvement of complement (C) systems in the pathogenesis of traumatic brain injury (TBI) was investigated by quantifying Cproteins in plasma astrocyte-derived exosomes (ADEs) of subjects with sports-related TBI (sTBI) and TBI in military veterans (mtTBI) without cognitive impairment. All sTBI subjects (n = 24) had mild injuries, whereas eight of the mtTBI subjects had moderate, and 17 had mild injuries. Plasma levels of ADEs were decreased after acute sTBI and returned to normal within months. Cprotein levels in ADEs were from 12- to 35-fold higher than the corresponding levels in neuron-derived exosomes. CD81 exosome marker-normalized ADE levels of classical pathway C4b, alternative pathway factor D and Bb, lectin pathway mannose-binding lectin (MBL), and shared neurotoxic effectors C3b and C5b-9 terminal C complex were significantly higher and those of C regulatory proteins CR1 and CD59 were lower in the first week of acute sTBI (n = 12) than in controls (n = 12). Most C abnormalities were no longer detected in chronic sTBI at 3-12 months after acute sTBI, except for elevated levels of factor D, Bb, and MBL. In contrast, significant elevations of ADE levels of C4b, factor D, Bb, MBL, C3b and C5b-9 terminal C complex, and depressions of CR1 and CD59 relative to those of controls were observed after 1-4 years in early chronic mtTBI (n = 10) and persisted for decades except for normalization of Bb, MBL, and CD59 in late chronic mtTBI (n = 15). Complement inhibitors may be useful therapeutically in acute TBI and post-concussion syndrome.
Collapse
Affiliation(s)
- Edward J. Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, CA, USA
| | - Kristine Yaffe
- Neurology-Psychiatry, University of California Medical Center, San Francisco, CA, USA
- Department of Psychiatry, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Carrie B. Peltz
- Department of Psychiatry, San Francisco VA Medical Center, San Francisco, CA, USA
- Northern California Institute for Research and Education, San Francisco, CA, USA
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Kim Gorgens
- Graduate School of Professional Psychology, University of Denver, Denver, CO, USA
| | - Bradley Davidson
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA
| | | | - Maja Mustapic
- Laboratory for Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory for Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Nigel H. Greig
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
45
|
Denver P, D’Adamo H, Hu S, Zuo X, Zhu C, Okuma C, Kim P, Castro D, Jones MR, Leal C, Mekkittikul M, Ghadishah E, Teter B, Vinters HV, Cole GM, Frautschy SA. A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease. Front Physiol 2019; 10:1269. [PMID: 31708792 PMCID: PMC6821690 DOI: 10.3389/fphys.2019.01269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics.
Collapse
Affiliation(s)
- Paul Denver
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather D’Adamo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuxin Hu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Xiaohong Zuo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Cansheng Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Chihiro Okuma
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Peter Kim
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Daniel Castro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mychica R. Jones
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Carmen Leal
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Marisa Mekkittikul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Elham Ghadishah
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Harry V. Vinters
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory Michael Cole
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Sally A. Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| |
Collapse
|