1
|
Coban G, Arici DS, Tekden BC, Yildiz P, Kiran T, Toluk Ö, Turk HM, Şahin N. Assessment of cyclin D1 activity in tumors and tumor budding and its prognostic significance in tumor budding in colorectal carcinomas. INDIAN J PATHOL MICR 2024; 67:753-757. [PMID: 38847197 DOI: 10.4103/ijpm.ijpm_240_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The most important prognostic parameter is staging in colorectal cancers, and tumor budding (TB) is among the independent prognostic parameters that are increasing in significance. Cyclin D1 expression has been associated with poor prognosis as a marker of various tumors. AIMS AND OBJECTIVES In this study, the aim was to determine the activity of cyclin D1 in colon adenocarcinomas, tumors, and tumor buds and to compare the results with prognostic parameters. MATERIALS AND METHODS This study included 167 patients who were operated on for colorectal tumors. In subjects, tumor budding was evaluated on hematoxylin and eosin-stained slides, and cyclin D1 was applied immunohistochemically. The cyclin D1 intensity of staining was studied in both tumors and TB and its correlation with prognostic parameters in TB was examined. RESULTS Lymph node (LN) metastasis was present in 93 (55.7%) of the cases, and distant metastasis in 35 (21%) cases. Tumor budding was present in 152 (91%) of the cases, and high-grade TB was detected in 55 (36.2%). The incidence of TB was higher in patients with LN metastasis ( P = 0.02) and in patients with Stages 3 and 4 ( P = 0.07). The intensity of cyclin D1 in intermediate and high-grade TB staining was higher. Cyclin D1 staining was more intense in patients with LN metastases and distant metastases as we determined, but it was not statistically significant. CONCLUSION Thus, based on our study findings, the increased expression of cyclin D1, which is more concentrated in TB than tumors, may indicate a poor prognosis. In contrast, we found no statistically significant correlation between cyclin D activity and prognostic parameters in TB.
Collapse
Affiliation(s)
- Ganime Coban
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Fatih, Turkey
| | | | - Busra C Tekden
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Fatih, Turkey
| | - Pelin Yildiz
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Fatih, Turkey
| | - Tugce Kiran
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Fatih, Turkey
| | - Özlem Toluk
- Biostatistics and Medical Informatics Bezmialem Vakif University Faculty of Medicine, Istanbul, Turkey
| | - Haci M Turk
- Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Nurhan Şahin
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Fatih, Turkey
| |
Collapse
|
2
|
Chen K, Jiao X, Ashton A, Di Rocco A, Pestell TG, Sun Y, Zhao J, Casimiro MC, Li Z, Lisanti MP, McCue PA, Shen D, Achilefu S, Rui H, Pestell RG. The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis 2020; 9:83. [PMID: 32948740 PMCID: PMC7501870 DOI: 10.1038/s41389-020-00266-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1–S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1–S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17β-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.
Collapse
Affiliation(s)
- Ke Chen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Anthony Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Timothy G Pestell
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA.,Dept of Science and Math, Abraham Baldwin Agricultural college, Tifton, GA, 31794, Georgia
| | - Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Michael P Lisanti
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Duanwen Shen
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA.,Departments of Radiology, Washington University, St. Louis, MO, 63110, USA.,Departments of Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, 63110, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA. .,The Wistar Cancer Center, Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Weng MC, Li MH, Chung JG, Liu YC, Wu JY, Hsu FT, Wang HE. Apoptosis induction and AKT/NF-κB inactivation are associated with regroafenib-inhibited tumor progression in non-small cell lung cancer in vitro and in vivo. Biomed Pharmacother 2019; 116:109032. [PMID: 31163381 DOI: 10.1016/j.biopha.2019.109032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/11/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a malignant lung cancer type with poor prognosis. NF-κB, the oncogenic transcription factor, has been recognized as an important mediator in progression of NSCLC. Regorafenib, a multikinase inhibitor, was demonstrated to inhibit tumor progression through suppression of ERK/NF-κB signaling in hepatocellular carcinoma cells in vitro and in vivo. However, whether regorafenib inhibit progression of NSCLC is ambiguous. Thus, the major purpose of present study was to evaluate anticancer efficacy and underlying mechanism of regorafenib on tumor progression in NSCLC in vitro and in vivo. CL-1-5-F4 cells were treated with regorafenib, NF-κB (QNZ) or AKT (LY294002) inhibitor for 24 or 48 h. Then, we performed cell viability assay, NF-κB reporter gene assay, transwell invasion assay and apoptosis related flow cytometry assay on cellular level to verify anti-cancer effect and mechanism of regorafenib. CL-1-5-F4 bearing animal model was treated with vehicle or regorafenib for 28 days. The therapeutic efficacy and mechanism of regorafenib in CL-1-5-F4 bearing animal model were investigated by tumor size evaluation, whole body computer tomography (CT) scan, Haemotoxylin and Eosin (H&E) stain and immunohistochemistry (IHC) stain. Our results demonstrated regorafenib significantly inhibited tumor growth and induced apoptosis through extrinsic/intrinsic pathways in NSCLC in vitro and in vivo. Furthermore, we also found the suppression of AKT/NF-κB signaling was required for regorafenib inhibited expression of progression-related and invasion-related proteins. Our finding indicated apoptosis induction and suppression of AKT/NF-κB signaling were associated with regorafenib-inhibited progression of NSCLC in vitro and in vivo.
Collapse
Affiliation(s)
- Mao-Chi Weng
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan
| | - Ming-Hsin Li
- Isotope Application Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan
| | - Jing Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Chang Liu
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jeng-Yuan Wu
- Department of Thoracic Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taiwan.
| |
Collapse
|
4
|
Wang D, Wang R, Huang A, Fang Z, Wang K, He M, Xia JT, Li W. Upregulation of macrophage migration inhibitory factor promotes tumor metastasis and correlates with poor prognosis of pancreatic ductal adenocarcinoma. Oncol Rep 2018; 40:2628-2636. [PMID: 30226561 PMCID: PMC6151891 DOI: 10.3892/or.2018.6703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that serves important roles in cancer. MIF overexpression is frequently observed in numerous human cancer types, including pancreatic carcinoma. However, the prognostic value and function of MIF in pancreatic ductal adenocarcinoma (PDAC) have not been fully elucidated. In the present study, upregulation of MIF expression in PDAC tissue compared with adjacent normal tissue was observed. Furthermore, MIF overexpression was identified to be significantly associated with poor survival rates in patients with PDAC. Multivariate Cox regression analysis confirmed that MIF was an independent risk factor for poor survival. Functional analyses demonstrated that MIF knockdown significantly inhibited the proliferation and invasion of pancreatic cancer cells in vitro compared with control cells. IN addition, mechanistic investigations revealed that silencing MIF leads to inhibition of AKT serine/threonine kinase and extracellular-signal-regulated kinase activation, and suppression of cyclin D1 and matrix metalloproteinase-2 expression, which may suppress tumor proliferation and invasion. These results highlight the importance of MIF overexpression in PDAC aggressiveness, and indicate that MIF may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Dong Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Anpei Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zeng Fang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Kebing Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jin-Tang Xia
- Department of General Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
5
|
Wu CH, Liu FC, Pan CH, Lai MT, Lan SJ, Wu CH, Sheu MJ. Suppression of Cell Growth, Migration and Drug Resistance by Ethanolic Extract of Antrodia cinnamomea in Human Lung Cancer A549 Cells and C57BL/6J Allograft Tumor Model. Int J Mol Sci 2018. [PMID: 29522490 PMCID: PMC5877652 DOI: 10.3390/ijms19030791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to investigate the inhibitory activities of ethanolic extracts from Antrodia cinnamomea (EEAC) on lung cancer. Cell proliferation and cell cycle distribution were analyzed using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay and flow cytometry, respectively. Wound-healing assay, Western blotting, and a murine tumor model were separately used to examine cell migration, protein expression, and tumor repression. Our results showed that EEAC induced cell cycle arrest at the G0/G1 phase resulting decreased cell viability in A549 cells. Moreover, EEAC up-regulated the growth-suppressing proteins, adenosine 5′-monophosphate-activated protein kinase (AMPK), p21 and p27, but down-regulated the growth-promoting proteins, protein kinase B (Akt), mammalian tarfet of rapamycin (mTOR), extracellular signal-regulating kinase 1/2 (ERK1/2), retinoblastoma protein (Rb), cyclin E, and cyclin D1. EEAC also inhibited A549 cell migration and reduced expression of gelatinases. In addition, our data showed that tumor growth was suppressed after treatment with EEAC in a murine allograft tumor model. Some bioactive compounds from EEAC, such as cordycepin and zhankuic acid A, were demonstrated to reduce the protein expressions of matrix metalloproteinase (MMP)-9 and cyclin D1 in A549 cells. Furthermore, EEAC enhanced chemosensitivity of A549 to paclitaxel by reducing the protein levels of caveolin-1. Our data suggests that EEAC has the potential to be an adjuvant medicine for the treatment of lung cancer.
Collapse
Affiliation(s)
- Chi-Han Wu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Fon-Chang Liu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare Taiwan, Taichung 40343, Taiwan.
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan.
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
6
|
Fusté NP, Castelblanco E, Felip I, Santacana M, Fernández-Hernández R, Gatius S, Pedraza N, Pallarés J, Cemeli T, Valls J, Tarres M, Ferrezuelo F, Dolcet X, Matias-Guiu X, Garí E. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer. Oncotarget 2017; 7:26979-91. [PMID: 27105504 PMCID: PMC5053626 DOI: 10.18632/oncotarget.8876] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/07/2016] [Indexed: 12/05/2022] Open
Abstract
Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome.
Collapse
Affiliation(s)
- Noel P Fusté
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Esmeralda Castelblanco
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Isidre Felip
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Maria Santacana
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Rita Fernández-Hernández
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Sònia Gatius
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Neus Pedraza
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Judit Pallarés
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Tània Cemeli
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Joan Valls
- Department of Biostatistics and Epidemiology Unit of The Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), Lleida, Catalonia, Spain
| | - Marc Tarres
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Francisco Ferrezuelo
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Xavier Dolcet
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| | - Xavier Matias-Guiu
- Department of Oncological Pathology, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain.,Department of Pathology and Molecular Genetics at Hospital Universitari Arnau de Vilanova, Lleida, Catalonia, Spain
| | - Eloi Garí
- Department of Cell Cycle, Lleida, Catalonia, Spain.,Department of Basic Medical Sciences at University of Lleida, Lleida, Catalonia, Spain
| |
Collapse
|
7
|
Deng L, Xiang X, Yang F, Xiao D, Liu K, Chen Z, Zhang R, Feng G. Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development. Biochem Biophys Res Commun 2017; 490:161-168. [PMID: 28601640 DOI: 10.1016/j.bbrc.2017.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Cancer cell molecular mimicry of stem cells (SC) follows with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to exhibit oncogenic potential. More and more researches showed that the embryonic stem cell self-renewal genes express in various cancer cells. In this study, we sought to test the tumorigenic functions of NANOG, particularly, in esophageal cancer (EC). Using quantitative RT-PCR and western blotting, we confirmed that EC cells highly express NANOG mRNA and protein. We then constructed a shRNA-mediated plasmid to knockdown of NANOG mRNA. We observed that NANOG deficiency in Eca109 cells decreased clone formation, cell proliferation, and showed G1 arrest. To further investigate the functions and mechanisms of NANOG in Eca109 cells, we detected the changes of multiple signaling molecules when NANOG deficiency. We foud that NANOG deficiency affected multiple genes, particularly, supressed drug-resistance via down-regulated ABCG2 in Eca109 cells, and caused G1 arrest by down-regulated cyclin D1 (CCND1) expression. The present loss-of-function work, establish the integral role for NANOG in Eca109 cell proliferation, drug resistance, and shed light on its mechanisms of action.
Collapse
Affiliation(s)
- Li Deng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiaocong Xiang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Fei Yang
- Orthopedics, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Kang Liu
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Zhu Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ruolan Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gang Feng
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|
8
|
Li Y, Xiao M, Guo F. The role of Sox6 and Netrin-1 in ovarian cancer cell growth, invasiveness, and angiogenesis. Tumour Biol 2017; 39:1010428317705508. [PMID: 28475012 DOI: 10.1177/1010428317705508] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
SOX6 plays important roles in cell proliferation, differentiation, and cell fate determination. It has been confirmed that SOX6 is a tumor suppressor and downregulated in various cancers, including esophageal squamous cell carcinoma, hepatocellular carcinoma, and chronic myeloid leukemia. Netrin-1 is highly expressed in various human cancers and acts as an anti-apoptotic and proangiogenic factor to drive tumorigenesis. The role of SOX6 and netrin-1 in regulating the growth of ovarian tumor cells still remains unclear. Real-time polymerase chain reaction and western blot were used to determine the SOX6 messenger RNA and protein levels, respectively, in ovarian cancer cells and tumor tissues. Stable transfection of SOX6 was conducted to overexpress SOX6 in PA-1 and SW626 cells. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Invasion of ovarian cancer cells and migration of human umbilical vein endothelial cells were confirmed by Transwell assays. To overexpress netrin-1, ovarian cancer cells with SOX6 restoration was transduced with netrin-1 lentiviral particles. PA-1 xenografts in a nude mice model were used to conduct in vivo evaluation of the role of SOX6 and its relationship with netrin-1 in tumor growth and angiogenesis. In this study, we found significantly reduced SOX6 levels in PA-1, SW626, SK-OV-3, and CaoV-3 ovarian cancer cell lines and human tumor tissues in comparison with normal human ovarian epithelial cells or matched non-tumor tissues. SOX6 overexpression by stable transfection dramatically inhibited proliferation and invasion of PA-1 and SW626 cells. Also, conditioned medium from PA-1 and SW626 cells with SOX6 restoration exhibited reduced ability to induce human umbilical vein endothelial cells migration and tube formation compared with conditioned medium from the cells with transfection control. Furthermore, an inverse relationship between SOX6 and netrin-1 expression was observed in PA-1 and SW626 cells. Overexpression of netrin-1 in ovarian cancer cells with forced SOX6 expression remarkably abrogated the inhibitory effect of SOX6 on proliferation, invasion of the cells, and tumor xenograft growth and vascularity in vivo. Human umbilical vein endothelial cell migration and tube formation were enhanced in the conditioned medium from the ovarian cancer cells transduced with netrin-1 lentivirus particles. Our observations revealed that SOX6 is a tumor suppressor in ovarian cancer cells, and SOX6 exerts an inhibitory effect on the proliferation, invasion, and tumor cell-induced angiogenesis of ovarian cancer cells, whereas nerin-1 plays an opposite role and its expression is inversely correlated with SOX6. Moreover, our findings suggest a new role of SOX6 and netrin-1 for understanding the progression of ovarian cancer and have the potential for the development of new diagnosis and treatment strategies for ovarian cancer.
Collapse
Affiliation(s)
- Yi Li
- Department of Gynecology, The Second People’s Hospital of Liaocheng City, Linqing, P.R. China
| | - Ming Xiao
- Department of Cardiology, The Second People’s Hospital of Liaocheng City, Linqing, P.R. China
| | - Fangchun Guo
- Department of Medical Ultrasound, The People’s Hospital of Linzi District, Zibo, P.R. China
| |
Collapse
|
9
|
Tao Y, Lin F, Li R, Shen J, Wang Z. Prolyl hydroxylase-2 inhibits liver tumor cell proliferation and cyclin D1 expression in a hydroxylase-dependent manner. Int J Biochem Cell Biol 2016; 77:129-140. [PMID: 27307407 DOI: 10.1016/j.biocel.2016.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/04/2016] [Accepted: 05/29/2016] [Indexed: 01/23/2023]
Abstract
Prolyl hydroxylase 2 is a key regulator of hypoxia-inducible factor 1 alpha protein, and has previously been implicated as a tumor suppressor in various cancers. However, the function of prolyl hydroxylase 2 in liver cancer has yet to be elucidated. Characterization of prolyl hydroxylase 2 function and related mechanisms in liver cancer may enable the development of targeted therapy. Here we found that prolyl hydroxylase 2 overexpression in human hepatocellular carcinoma cancer cell lines inhibited cell proliferation, while prolyl hydroxylase 2 knockdown enhanced cell proliferation. Further analyses revealed that the prolyl hydroxylase 2-mediated inhibition of cell proliferation was due to a cell cycle arrest at the G1/S transition. Moreover, the block in cell cycle was facilitated by negative regulation of cyclin D1, a process dependent on the hydroxylase activity of prolyl hydroxylase 2. Using an in vivo xenograft mouse model, we found that the overexpression of prolyl hydroxylase 2 led to a reduction in tumor size. Evaluation of paired human liver cancer patient samples revealed that prolyl hydroxylase 2 protein levels were significantly reduced in 6 of the 10 cancer tissues as compared to their respective normal tissue controls. Furthermore, elevated expression of prolyl hydroxylase 2 was associated with significantly prolonged survival in patients with liver cancer. These results suggest that prolyl hydroxylase 2 plays an important tumor suppressive role in liver cancer and may prove to be of prognostic and therapeutic value.
Collapse
Affiliation(s)
- Yifeng Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Feng Lin
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China
| | - Ruidong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jie Shen
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, China.
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
10
|
Fusté NP, Fernández-Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, Torres-Rosell J, Colomina N, Ferrezuelo F, Dolcet X, Garí E. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun 2016; 7:11581. [PMID: 27181366 PMCID: PMC4873647 DOI: 10.1038/ncomms11581] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/11/2016] [Indexed: 02/08/2023] Open
Abstract
Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis.
Collapse
Affiliation(s)
- Noel P Fusté
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Rita Fernández-Hernández
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Tània Cemeli
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Cristina Mirantes
- Oncopathology Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Neus Pedraza
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Marta Rafel
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Jordi Torres-Rosell
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Neus Colomina
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Francisco Ferrezuelo
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Xavier Dolcet
- Oncopathology Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| | - Eloi Garí
- Cell Cycle Lab, Institut de Recerca Biomèdica de Lleida (IRBLleida), and Departament de Ciències Mèdiques Bàsiques; Facultat de Medicina; Universitat de Lleida, 25198 Lleida, Catalonia, Spain
| |
Collapse
|
11
|
Żuryń A, Litwiniec A, Safiejko-Mroczka B, Klimaszewska-Wiśniewska A, Gagat M, Krajewski A, Gackowska L, Grzanka D. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line. Int J Oncol 2016; 48:2521-33. [PMID: 27035641 DOI: 10.3892/ijo.2016.3444] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/20/2016] [Indexed: 11/05/2022] Open
Abstract
Sulforaphane (SFN) is present in plants belonging to Cruciferae family and was first isolated from broccoli sprouts. Chemotherapeutic and anticarcinogenic properties of sulforaphane were demonstrated, however, the underlying mechanisms are not fully understood. In this study we evaluated the expression of cyclin D1 and p21 protein in SFN-treated A549 cells and correlated these results with the extent of cell death and/or cell cycle alterations, as well as determined a potential contribution of cyclin D1 to cell death. A549 cells were treated with increasing concentrations of SFN (30, 60 and 90 µM) for 24 h. Morphological and ultrastructural changes were observed using light, transmission electron microscope and videomicroscopy. Image-based cytometry was applied to evaluate the effect of SFN on apoptosis and the cell cycle. Cyclin D1 and p21 expression was determined by flow cytometry, RT-qPCR and immunofluorescence. siRNA was used to evaluate the role of cyclin D1 in the process of suforaphane-induced cell death. We found that the percentage of cyclin D1-positive cells decreased after the treatment with SFN, but at the same time mean fluorescence intensity reflecting cyclin D1 content was increased at 30 µM SFN and decreased at 60 and 90 µM SFN. Percentage of p21-positive cells increased following the treatment, with the highest increase at 60 µM SFN, at which concentration mean fluorescence intensity of this protein was also significantly increased. The 30-µM dose of SFN induced an increased G2/M phase population along with a decreased polyploid fraction of cells, which implies a functional G2/M arrest. The major mode of cell death induced by SFN was necrosis and, to a lower degree apoptosis. Transfection with cyclin D1-siRNA resulted in significantly compromised fraction of apoptotic and necrotic cells, which suggests that cyclin D1 is an important determinant of the therapeutic efficiency of SFN in the A549 cells.
Collapse
Affiliation(s)
- Agnieszka Żuryń
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Anna Litwiniec
- Plant Breeding and Acclimatization Institute - National Research Institute, Bydgoszcz Research Center, Department of Genetics and Breeding of Root Crops, Laboratory of Biotechnology, 85-090 Bydgoszcz, Poland
| | | | - Anna Klimaszewska-Wiśniewska
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-092 Bydgoszcz, Poland
| | - Lidia Gackowska
- Department of Immunology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, 85-094 Bydgoszcz, Poland
| |
Collapse
|
12
|
Zhao X, Xu Z, Wang Z, Wu Z, Gong Y, Zhou L, Xiang Y. RNA silencing of integrin-linked kinase increases the sensitivity of the A549 lung cancer cell line to cisplatin and promotes its apoptosis. Mol Med Rep 2015; 12:960-6. [PMID: 25760437 PMCID: PMC4438971 DOI: 10.3892/mmr.2015.3471] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 11/03/2014] [Indexed: 01/24/2023] Open
Abstract
The expression of integrin-linked kinase (ILK) has been reported to be involved in the regulation of integrin-mediated processes, including cancer cell proliferation, migration and invasion. Previous studies have demonstrated that inhibition of ILK may be an underlying approach for treating cancer. However, whether the knock down of ILK affects growth and apoptosis of lung cancer cells remains to be elucidated. Importantly, whether downregulation of ILK increases the sensitivity of lung cancer cells to cisplatin and amplifies cell apoptosis also remains to be elucidated. In the present study, ILK downregulation was mediated by lentivirus-mediated RNA interference. The expression levels of associated genes were determined by reverse-transcription quantitative polymerase chain reaction and western blotting. Cell proliferation was evaluated using a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and clone formation assay. The cell cycle and apoptosis were analyzed using flow cytometry. The current data revealed that lentivirus-mediated ILK gene silencing alone inhibited A549 cell proliferation and promotes cell cycle arrest, however, had no detectable effect on cell apoptosis. However, combined treatment with lentivirus-mediated ILK interference and cisplatin chemotherapy induced significantly more cell apoptosis than mono-chemotherapy or knockdown. The increased cell apoptosis and proliferation inhibition were attributed to abnormal downstream protein expression of ILK, including phospho-glycogen synthase kinase 3β, p-AKT, activator protein-1, β-catenin, cyclin D1 and matrix metalloproteinase-9. ILK inhibition may suppress the proliferation of A549 and increase A549 sensitivity to cisplatin. The combined treatment of ILK gene knockdown and chemotherapy has the potential to improve anticancer efficacy.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhonghua Wu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yabin Gong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Lijuan Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yi Xiang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Li WH, Chang L, Xia YX, Wang L, Liu YY, Wang YH, Jiang Z, Xiao J, Wang ZR. Knockdown of PTTG1 inhibits the growth and invasion of lung adenocarcinoma cells through regulation of TGFB1/SMAD3 signaling. Int J Immunopathol Pharmacol 2015; 28:45-52. [PMID: 25816405 DOI: 10.1177/0306419015572073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased expression of pituitary tumor-transforming gene 1 (PTTG1) is expressed in many tumors and regulates tumor growth and progression. However, the precise function of PTTG1 in the tumorigenesis of lung adenocarcinoma (LAC) is not defined yet. Here, we examined the expression of PTTG1 in human LAC tissues by immunohistochemical assay using a tissue microarray procedure. A loss-of-function experiment was carried out to investigate the effects of lentiviral vector-mediated PTTG1 shRNA (shPTTG1) on cell growth and invasive potential in LAC cell lines (A549 and LETPα-2), assessed by MTT and Transwell assays. As a consequence, we found that the expression of PTTG1 protein was markedly upregulated in LAC tissues compared with the adjacent non-cancerous tissues (ANCT) (54.0% vs. 28.0%, P = 0.008), and was positively associated with the lymphatic invasion of the tumor ( P = 0.01). Moreover, knockdown of PTTG1 expression inhibited tumor proliferation and invasion of LAC cells, companied by the decreased expression of CyclinD1 and MMP-2 and increased expression of p-TGFβ1 and p-SMAD3. Collectively, our findings indicate that high expression of PTTG1 is correlated with the tumor metastasis of LAC patients, and knockdown of PTTG1 suppresses the growth and invasion of LAC cells through upregulation of the TGFβ1/SMAD3 signaling, suggesting that PTTG1 may be a potential target for developing an effective immunotherapeutic strategy for LAC.
Collapse
Affiliation(s)
- W-H Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, PR China
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, PR China
| | - L Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, PR China
| | - Y-X Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, PR China
| | - L Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, PR China
| | - Y-Y Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Y-H Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Z Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - J Xiao
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Z-R Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, PR China
| |
Collapse
|
14
|
Ikari A, Watanabe R, Sato T, Taga S, Shimobaba S, Yamaguchi M, Yamazaki Y, Endo S, Matsunaga T, Sugatani J. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2079-88. [PMID: 24907662 DOI: 10.1016/j.bbamcr.2014.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/02/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Claudin-2 is expressed in human lung adenocarcinoma tissue and cell lines, although it is absent in normal lung tissue. However, the role of claudin-2 in cell proliferation and the regulatory mechanism of intracellular distribution remain undefined. Proliferation of human adenocarcinoma A549 cells was decreased by claudin-2 knockdown together with a decrease in the percentage of S phase cells. This knockdown decreased the expression levels of ZONAB and cell cycle regulators. Claudin-2 was distributed in the nucleus in human adenocarcinoma tissues and proliferating A549 cells. The nuclear distribution of ZONAB and percentage of S phase cells were higher in cells exogenously expressing claudin-2 with a nuclear localization signal than in cells expressing claudin-2 with a nuclear export signal. Nuclear claudin-2 formed a complex with ZO-1, ZONAB, and cyclin D1. Nuclear distribution of S208A mutant, a dephosphorylated form of claudin-2, was higher than that of wild type. We suggest that nuclear distribution of claudin-2 is up-regulated by dephosphorylation and claudin-2 serves to retain ZONAB and cyclin D1 in the nucleus, resulting in the enhancement of cell proliferation in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan; School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Ryo Watanabe
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomonari Sato
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Saeko Taga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Shun Shimobaba
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Masahiko Yamaguchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuhiro Yamazaki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Junko Sugatani
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
15
|
Jiao J, Huang L, Ye F, Shi M, Cheng X, Wang X, Hu D, Xie X, Lu W. Cyclin D1 affects epithelial-mesenchymal transition in epithelial ovarian cancer stem cell-like cells. Onco Targets Ther 2013; 6:667-77. [PMID: 23836980 PMCID: PMC3699300 DOI: 10.2147/ott.s44177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The association of cancer stem cells with epithelial–mesenchymal transition (EMT) is receiving attention. We found in our previous study that EMT existed from CD24− phenotype cells to their differentiated cells. It was shown that cyclin D1 functioned in sustaining self-renewal independent of CDK4/CDK6 activation, but its effect on the EMT mechanism in ovarian cancer stem cells is unclear. Methods The anchorage-independent spheroids from ovarian adenocarcinoma cell line 3AO were formed in a serum-free medium. CD24− and CD24+ cells were isolated by fluorescence-activated cell sorting. Cell morphology, viability, apoptosis, and migratory ability were observed. Stem-related molecule Bmi-1, Oct-4 and EMT-related marker E-cadherin, and vimentin expressions were analyzed. Cyclin D1 expression in CD24− phenotype enriched spheroids was knocked down with small interfering RNA, and its effects on cell proliferation, apoptosis, migration ability, and EMT-related phenotype after transfection were observed. Results In our study, CD24− cells presented stronger proliferative, anti-apoptosis capacity, and migratory ability, than CD24+ cells or parental cells. CD24− cells grew with a scattered spindle-shape within 3 days of culture and transformed into a cobblestone-like shape, identical to CD24+ cells or parental cells at 7 days of culture. CD24− cells or spheroids highly expressed cyclin D1, Bmi-1, and vimentin, and seldom expressed E-cadherin, while CD24+ or parental cells showed the opposite expression. Furthermore, cyclin D1-targeted small interfering RNA resulted in decreased vimentin expression in spheroids. Transfected cells also exhibited an obvious decrease in cell viability and migration, but an increase in cell apoptosis. Conclusion Cancer stem cell-like cells possess mesenchymal characteristics and EMT ability, and cyclin D1 involves in EMT mechanism, suggesting that EMT of cancer stem cell-like cells may play a key role in invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jie Jiao
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou ; Department of Gynaecology and Obstetrics, Hangzhou First People's Hospital, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zimonjic DB, Chan LN, Tripathi V, Lu J, Kwon O, Popescu NC, Lowy DR, Tamanoi F. In vitro and in vivo effects of geranylgeranyltransferase I inhibitor P61A6 on non-small cell lung cancer cells. BMC Cancer 2013; 13:198. [PMID: 23607551 PMCID: PMC3639152 DOI: 10.1186/1471-2407-13-198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/15/2013] [Indexed: 11/26/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related mortality. Therapies against non-small cell lung cancer (NSCLC) are particularly needed, as this type of cancer is relatively insensitive to chemotherapy and radiation therapy. We recently identified GGTI compounds that are designed to block geranylgeranylation and membrane association of signaling proteins including the Rho family G-proteins. One of the GGTIs is P61A6 which inhibits proliferation of human cancer cells, causes cell cycle effects with G1 accumulation and exhibits tumor-suppressing effects with human pancreatic cancer xenografts. In this paper, we investigated effects of P61A6 on non-small cell lung cancer (NSCLC) cells in vitro and in vivo. Methods Three non-small cell lung cancer cell lines were used to test the ability of P61A6 to inhibit cell proliferation. Further characterization involved analyses of geranylgeranylation, membrane association and activation of RhoA, and anchorage-dependent and –independent growth, as well as cell cycle effects and examination of cell cycle regulators. We also generated stable cells expressing RhoA-F, which bypasses the geranylgeranylation requirement of wild type RhoA, and examined whether the proliferation inhibition by P61A6 is suppressed in these cells. Tumor xenografts of NSCLC cells growing in nude mice were also used to test P61A6’s tumor-suppressing ability. Results P61A6 was shown to inhibit proliferation of NSCLC lines H358, H23 and H1507. Detailed analysis of P61A6 effects on H358 cells showed that P61A6 inhibited geranylgeranylation, membrane association of RhoA and caused G1 accumulation associated with decreased cyclin D1/2. The effects of P61A6 to inhibit proliferation could mainly be ascribed to RhoA, as expression of the RhoA-F geranylgeranylation bypass mutant rendered the cells resistant to inhibition by P61A6. We also found that P61A6 treatment of H358 tumor xenografts growing in nude mice reduced their growth as well as the membrane association of RhoA in the tumors. Conclusion Thus, P61A6 inhibits proliferation of NSCLC cells and causes G1 accumulation associated with decreased cyclin D1/2. The result with the RhoA-F mutant suggests that the effect of P61A6 to inhibit proliferation is mainly through the inhibition of RhoA. P61A6 also shows efficacy to inhibit growth of xenograft tumor.
Collapse
Affiliation(s)
- Drazen B Zimonjic
- Molecular Cytogenetics Section, Lab. of Experimental Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang X, Yuan F, Liang M, Lo HW, Shinohara ML, Robertson C, Zhong P. M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer. PLoS One 2012; 7:e41632. [PMID: 22911830 PMCID: PMC3404041 DOI: 10.1371/journal.pone.0041632] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/22/2012] [Indexed: 01/05/2023] Open
Abstract
Objective In this study, we explored the use of mechanical high intensity focused ultrasound (M-HIFU) as a neo-adjuvant therapy prior to surgical resection of the primary tumor. We also investigated the role of signal transducer and activator of transcription 3 (STAT3) in M-HIFU elicited anti-tumor immune response using a transplant tumor model of prostate cancer. Methods RM-9, a mouse prostate cancer cell line with constitutively activated STAT3, was inoculated subcutaneously in C57BL/6J mice. The tumor-bearing mice (with a maximum tumor diameter of 5∼6 mm) were treated by M-HIFU or sham exposure two days before surgical resection of the primary tumor. Following recovery, if no tumor recurrence was observed in 30 days, tumor rechallenge was performed. The growth of the rechallenged tumor, survival rate and anti-tumor immune response of the animal were evaluated. Results No tumor recurrence and distant metastasis were observed in both treatment groups employing M-HIFU + surgery and surgery alone. However, compared to surgery alone, M-HIFU combined with surgery were found to significantly inhibit the growth of rechallenged tumors, down-regulate intra-tumoral STAT3 activities, increase cytotoxic T cells in spleens and tumor draining lymph nodes (TDLNs), and improve the host survival. Furthermore, M-HIFU combined with surgery was found to significantly decrease the level of immunosuppression with concomitantly increased number and activities of dendritic cells, compared to surgery alone. Conclusion Our results demonstrate that M-HIFU can inhibit STAT3 activities, and when combined synergistically with surgery, may provide a novel and promising strategy for the treatment of prostate cancers.
Collapse
Affiliation(s)
- Xiaoyi Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Fang Yuan
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, United States of America
| | - Meihua Liang
- Division of Surgical Sciences, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Hui-Wen Lo
- Division of Surgical Sciences, Departments of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail: (H-WL); (MLS); (PZ)
| | - Mari L. Shinohara
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (H-WL); (MLS); (PZ)
| | - Cary Robertson
- Division of Urology, Departments of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, United States of America
- Division of Urology, Departments of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (H-WL); (MLS); (PZ)
| |
Collapse
|
18
|
Chen Y, Cao Y, Yang D, Li K, Wang Z, Zhu J, Bunjhoo H, Xiong S, Xu Y, Xiong W. Increase of the therapeutic effect on non-small-cell lung cancer cells with combination treatment of shRNA against Cyclin D1 and Bcl-xL in vitro. Exp Ther Med 2011; 3:255-260. [PMID: 22969878 DOI: 10.3892/etm.2011.381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/20/2011] [Indexed: 02/05/2023] Open
Abstract
Overexpression of Cyclin D1 and Bcl-xL proteins has often been found in non-small-cell lung cancer (NSCLC). These two genes may play a significant role in tumorigenesis. However, the combined inhibition of the two genes in vitro is unclear in NSCLC. In this study, the effect of a combined intervention on Cyclin D1 and Bcl-xL in NSCLC is assessed and discussed. Three recombinant plasmids that expressed a cytomegalovirus (CMV) promoter-driven micro30 short hairpin RNA (shRNA) targeting the Cyclin D1 gene (Cyclin D1 shRNA), the Bcl-xL gene (Bcl-xL shRNA) and a combination of the two genes (Cyclin D1-Bcl-xL shRNA), based on the plasmid pcDNA6.2-GW/EmGFP-miR, were constructed. The cell lines A549 and NCI-H441 were divided into four groups; blank control (untreated cells), Cyclin D1 shRNA, Bcl-xL shRNA and Cyclin D1-Bcl-xL shRNA (transfected cells), respectively. The expression of mRNA and protein of Cyclin D1 or Bcl-xL was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The apoptosis and proliferation of the two cell lines were evaluated by dimethylthiazol-diphenyltetrazolium bromide (MTT), cell count and flow cytometry. The recombinant plasmid sufficiently mediated the RNA interference (RNAi) effects in A549 and NCI-H441 cells. The expression levels of mRNA and protein of Cyclin D1 or Bcl-xL in the three intervention groups were significantly reduced compared to the untreated cells (P<0.05). No statistical differences were found among the combined shRNAs and single shRNA regarding Cyclin D1 or Bcl-xL, respectively (P>0.05). In the assessment of proliferation and apoptosis, it was found that in all three intervention groups there was significant inhibition of cell proliferation and promotion of cell apoptosis compared with the untreated cells (P<0.05). Furthermore, the combined interference of the two genes was more effective than either single interference (P<0.05). Our results suggested that the combined targeting of Cyclin D1 and Bcl-xL genes has potential for NSCLC investigation, providing increased efficacy over Cyclin D1 or Bcl-xL inhibition alone.
Collapse
Affiliation(s)
- Ying Chen
- Department of Respiratory Diseases, Tongji Hospital, Key Lab of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|