1
|
Mosini A, Mazzonetto P, Calió M, Pompeu C, Massinhani F, Nakamura T, Pires J, Silva C, Porcionatto M, Mello L. Temporal pattern of Fos and Jun families expression after mitogenic stimulation with FGF-2 in rat neural stem cells and fibroblasts. Braz J Med Biol Res 2023; 56:e12546. [PMID: 37703106 PMCID: PMC10496756 DOI: 10.1590/1414-431x2023e12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
Intense stimulation of most living cells triggers the activation of immediate early genes, such as Fos and Jun families. These genes are important in cellular and biochemical processes, such as mitosis and cell death. The present study focused on determining the temporal expression pattern of Fos and Jun families in fibroblasts and neural stem cells of cerebellum, hippocampus, and subventricular zone (SVZ) of rats of different ages at 0, 0.5, 1, 3, and 6 h after stimulation with fibroblast growth factor (FGF)-2. In neonates, a similar expression pattern was observed in all cells analyzed, with lower expression in basal condition, peak expression at 0.5 h after stimulation, returning to baseline values between 1 and 3 h after stimulation. On the other hand, cells from adult animals only showed Fra1 and JunD expression after stimulation. In fibroblasts and hippocampus, Fra1 reached peak expression at 0.5 h after stimulation, while in the SVZ, peak level was observed at 6 h after stimulation. JunD in fibroblasts presented two peak expressions, at 0.5 and 6 h after stimulation. Between these periods, the expression observed was at a basal level. Nevertheless, JunD expression in SVZ and hippocampus was low and without significant changes after stimulation. Differences in mRNA expression in neonate and adult animals characterize the significant differences in neurogenesis and cell response to stimulation at different stages of development. Characterizing these differences might be important for the development of cell cultures, replacement therapy, and the understanding of the physiological response profile of different cell types.
Collapse
Affiliation(s)
- A.C. Mosini
- Laboratório de Neurobiologia, Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - P.C. Mazzonetto
- Laboratório de Neurobiologia, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - M.L. Calió
- Laboratório de Neurobiologia, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - C. Pompeu
- Laboratório de Neurobiologia, Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - F.H. Massinhani
- Laboratório de Neurobiologia, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - T.K.E. Nakamura
- Laboratório de Neurobiologia, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - J.M. Pires
- Laboratório de Neurobiologia, Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - C.S. Silva
- Laboratório de Neurobiologia, Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - M.A. Porcionatto
- Laboratório de Neurobiologia, Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - L.E. Mello
- Laboratório de Neurobiologia, Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
- Instituto D’Or de Pesquisa e Ensino, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Varzideh F, Gambardella J, Kansakar U, Jankauskas SS, Santulli G. Molecular Mechanisms Underlying Pluripotency and Self-Renewal of Embryonic Stem Cells. Int J Mol Sci 2023; 24:8386. [PMID: 37176093 PMCID: PMC10179698 DOI: 10.3390/ijms24098386] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
3
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
4
|
Alisch M, Kerkering J, Crowley T, Rosiewicz K, Paul F, Siffrin V. Identification of the gliogenic state of human neural stem cells to optimize in vitro astrocyte differentiation. J Neurosci Methods 2021; 361:109284. [PMID: 34242705 DOI: 10.1016/j.jneumeth.2021.109284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Human preclinical models are crucial for advancing biomedical research. In particular consistent and robust protocols for astrocyte differentiation in the human system are rare. NEW METHOD We performed a transcriptional characterization of human gliogenesis using embryonic H9- derived hNSCs. Based on these findings we established a fast and highly efficient protocol for the differentiation of mature human astrocytes. We could reproduce these results in induced pluripotent stem cell (iPSC)-derived NSCs. RESULTS We identified an increasing propensity of NSCs to give rise to astrocytes with repeated cell passaging. The gliogenic phenotype of NSCs was marked by a down-regulation of stem cell factors (e.g. SOX1, SOX2, EGFR) and an increase of glia-associated factors (e.g. NFIX, SOX9, PDGFRa). Using late passage NSCs, rapid and robust astrocyte differentiation can be achieved within 28 days. COMPARISON WITH EXISTING METHOD(S) In published protocols it usually takes around three months to yield in mature astrocytes. The difficulty, expense and time associated with generating astrocytes in vitro represents a major roadblock for glial cell research. We show that rapid and robust astrocyte differentiation can be achieved within 28 days. We describe here by an extensive sequential transcriptome analysis of hNSCs the characterization of the signature of a novel gliogenic stem cell population. The transcriptomic signature might serve to identify the proper divisional maturity. CONCLUSIONS This work sheds light on the factors associated with rapid NSC differentiation into glial cells. These findings contribute to understand human gliogenesis and to develop novel preclinical models that will help to study CNS disease such as Multiple Sclerosis.
Collapse
Affiliation(s)
- Marlen Alisch
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Janis Kerkering
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Tadhg Crowley
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kamil Rosiewicz
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany
| | - Friedemann Paul
- Neurocure Clinical Research Center and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Volker Siffrin
- Neuroimmunology Lab, Experimental and Clinical Research Center (ECRC), Charité - Universitätsmedizin Berlin und Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
| |
Collapse
|
5
|
Papadopoulos A, Chalmantzi V, Mikhaylichenko O, Hyvönen M, Stellas D, Kanhere A, Heath J, Cunningham DL, Fotsis T, Murphy C. Combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells. Stem Cell Res 2020; 50:102133. [PMID: 33383406 DOI: 10.1016/j.scr.2020.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFβ. This culture system is further used to investigate the changes induced by BMP4 on hESCs by employing a combination of transcriptomic and phosphoproteomic approaches. Results indicate that in a pluripotent state, hESCs maintain WNT signaling under negative regulation by expressing pathway inhibitors. Initial stages of differentiation are characterized by upregulation of WNT pathway ligands, TGFβ pathway inhibitors which have been shown in Xenopus to expand the BMP signaling range essential for embryonic patterning, and mesendodermal transcripts. Moreover, BMP4 enhances the phosphorylation of proteins associated with migration and transcriptional regulation. Results further indicate the vital regulatory role of Activin A and BMP4 in crucial fate decisions in hESCs.
Collapse
Affiliation(s)
- Angelos Papadopoulos
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Varvara Chalmantzi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Olga Mikhaylichenko
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - John Heath
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Debbie L Cunningham
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece; Laboratory of Biology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Carol Murphy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
6
|
Dakhore S, Nayer B, Hasegawa K. Human Pluripotent Stem Cell Culture: Current Status, Challenges, and Advancement. Stem Cells Int 2018; 2018:7396905. [PMID: 30595701 PMCID: PMC6282144 DOI: 10.1155/2018/7396905] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022] Open
Abstract
Over the past two decades, human embryonic stem cells (hESCs) have gained attention due to their pluripotent and proliferative ability which enables production of almost all cell types in the human body in vitro and makes them an excellent tool to study human embryogenesis and disease, as well as for drug discovery and cell transplantation therapies. Discovery of human-induced pluripotent stem cells (hiPSCs) further expanded therapeutic applications of human pluripotent stem cells (PSCs). hPSCs provide a stable and unlimited original cell source for producing suitable cells and tissues for downstream applications. Therefore, engineering the environment in which these cells are grown, for stable and quality-controlled hPSC maintenance and production, is one of the key factors governing the success of these applications. hPSCs are maintained in a particular niche using specific cell culture components. Ideally, the culture should be free of xenobiotic components to render hPSCs suitable for therapeutic applications. Substantial efforts have been put to identify effective components, and develop culture conditions and protocols, for their large-scale expansion without compromising on quality. In this review, we discuss different media, their components and functions, including specific requirements to maintain the pluripotent and proliferative ability of hPSCs. Understanding the role of culture components would enable the development of appropriate conditions to promote large-scale, quality-controlled expansion of hPSCs thereby increasing their potential applications.
Collapse
Affiliation(s)
- Sushrut Dakhore
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Bhavana Nayer
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
| | - Kouichi Hasegawa
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, India
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Japan
| |
Collapse
|
7
|
Safaeinejad Z, Nabiuni M, Peymani M, Ghaedi K, Nasr-Esfahani MH, Baharvand H. Resveratrol promotes human embryonic stem cells self-renewal by targeting SIRT1-ERK signaling pathway. Eur J Cell Biol 2017; 96:665-672. [PMID: 28865806 DOI: 10.1016/j.ejcb.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Resveratrol (RSV), a natural polyphenol component, has diverse biological properties. It has been shown that RSV regulated the self-renewal and differentiation of several types of stem cells, but the precise role of this compound on regulation of human embryonic stem cells (hESCs) self- renewal remained to be elucidated. Here we have shown that RSV promoted hESCs proliferation through cell cycle modulation and up-regulation of anti-apoptotic markers, without affecting pluripotency. Furthermore, inhibition of SIRT1 by EX-527 resulted in suppression of RSV-induced enhancement of hESCs self-renewal. RSV exerted its beneficial effects by activation of MEK/ERK signaling pathway as verified by application of specific MEK inhibitor, PD0325901. In conclusion, RSV elevated self-renewal of hESCs at least partly via "SIRT1-MEK/ERK" axis. These findings provide a novel application of RSV for developing a defined medium for hESCs culture which could help to better understanding of the signaling events that govern self-renewal of hESCs.
Collapse
Affiliation(s)
- Zahra Safaeinejad
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Maryam Peymani
- Department of Biology, Sharekord Branch, Islamic Azad University, Sharekord, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
8
|
Zhao H, Jin Y. Signaling networks in the control of pluripotency. Curr Opin Genet Dev 2017; 46:141-148. [PMID: 28806594 DOI: 10.1016/j.gde.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are characterized by their ability of unlimited self-renewal in vitro and pluripotent developmental potential, which endows them with great values in basic research and future clinical application. However, realization of full potential of ESCs is dependent on the elucidation of molecular mechanisms governing ESCs, among which signaling pathways play critical roles. A great deal of efforts has been made in the past decades to understand what and how signaling pathways contribute to the establishment and maintenance of pluripotency. In this review, we discuss signaling networks in both mouse and human ESCs, focusing on signals involved in the control of self-renewal and differentiation. In addition, the modulation of signaling pathways by pluripotency-associated transcription factors is also briefly summarized.
Collapse
Affiliation(s)
- Hanzhi Zhao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Heng X, Guo Q, Leung AW, Li JY. Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia. eLife 2017; 6. [PMID: 28489004 PMCID: PMC5457141 DOI: 10.7554/elife.23253] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neocortical basal radial glia (bRG) and cerebellar Bergmann glia (BG) are basal progenitors derived from ventricular apical radial glia (aRG) that selectively lose their apical processes. bRG and BG have been implicated in the expansion and folding of the cerebrum and cerebellum, respectively. Here, we analyzed the molecular characteristics and development of bRG and BG. Transcriptomic comparison revealed striking similarity of the molecular features of bRG and BG. We found that heightened ERK signaling activity in aRG is tightly linked to the temporal formation and the relative abundance of bRG in human and mouse cortices. Forced activation of an FGF-ERK-ETV axis that is crucial to BG induction specifically induced bRG with canonical human bRG features in mice. Therefore, our data point to a common mechanism of bRG and BG generation, bearing implications to the role for these basal progenitors in the evolution of cortical folding of the cerebrum and cerebellum. DOI:http://dx.doi.org/10.7554/eLife.23253.001 The outer layer of the brain of a mammal, called the cortex, helps support mental abilities such as memory, attention and thought. In rodents, the cortex is smooth whereas in primates it is organized into folds. These folds increase the surface area of the brain and thus the number of neurons it can contain, which may in turn increase its processing power. Folding occurs as the brain develops in the womb. Specialized cells called basal or outer radial glia, which are more abundant in humans than in rodents, are believed to trigger the folding process. Another area of the brain, called the cerebellum, is intricately folded in both rodents and humans. As the brain develops, cells within the cerebellum called Bergmann glia cause the tissue to fold. Bergmann glia and basal radial glia share a number of similarities, but it was not known whether the same molecular pathway might regulate both types of cell. Now, Heng et al. show that Bergmann glia in the cerebellums of mice and basal radial glia in human cortex contain similar sets of active genes. Moreover, the molecular pathway that gives rise to Bergmann glia in mice is also active in the cortex of both mice and humans. However, it is much more active in humans, leading Heng et al. to speculate that high levels of activity in this pathway might give rise to basal radial glia. Consistent with this prediction, artificially activating the pathway at high levels in mouse cortex triggered the formation of basal radial glia in mice too. These results thus suggest that a common mechanism generates both types of glial cells involved in brain folding. The work of Heng et al. lays the foundations for further studies into how these cells fold the brain and thus how they contribute to more complex mental abilities. Remaining questions to address are whether other species with Bergmann glia also have folded cerebellums, and whether incorrect development of basal radial glia in humans leads to disorders in which the cortex folds abnormally. DOI:http://dx.doi.org/10.7554/eLife.23253.002
Collapse
Affiliation(s)
- Xin Heng
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Alan W Leung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - James Yh Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States.,Institute for Systems Genomics, University of Connecticut, Farmington, United States
| |
Collapse
|
10
|
FGF2 Stimulates COUP-TFII Expression via the MEK1/2 Pathway to Inhibit Osteoblast Differentiation in C3H10T1/2 Cells. PLoS One 2016; 11:e0159234. [PMID: 27404388 PMCID: PMC4942136 DOI: 10.1371/journal.pone.0159234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/29/2016] [Indexed: 11/20/2022] Open
Abstract
Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor that regulates many key biological processes, including organ development and cell fate determination. Although the biological functions of COUP-TFII have been studied extensively, little is known about what regulates its gene expression, especially the role of inducible extracellular factors in triggering it. Here we report that COUP-TFII expression is regulated specifically by fibroblast growth factor 2 (FGF2), which mediates activation of the MEK1/2 pathway in mesenchymal lineage C3H10T1/2 cells. Although FGF2 treatment increased cell proliferation, the induction of COUP-TFII expression was dispensable. Instead, FGF2-primed cells in which COUP-TFII expression was induced showed a low potential for osteoblast differentiation, as evidenced by decreases in alkaline phosphatase activity and osteogenic marker gene expression. Reducing COUP-TFII by U0126 or siRNA against COUP-TFII prevented the anti-osteogenic effect of FGF2, indicating that COUP-TFII plays a key role in the FGF2-mediated determination of osteoblast differentiation capability. This report is the first to suggest that FGF2 is an extracellular inducer of COUP-TFII expression and may suppress the osteogenic potential of mesenchymal cells by inducing COUP-TFII expression prior to the onset of osteogenic differentiation.
Collapse
|
11
|
Lee JE, Lim MS, Park JH, Park CH, Koh HC. PTEN Promotes Dopaminergic Neuronal Differentiation Through Regulation of ERK-Dependent Inhibition of S6K Signaling in Human Neural Stem Cells. Stem Cells Transl Med 2016; 5:1319-1329. [PMID: 27388240 DOI: 10.5966/sctm.2015-0200] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
: Phosphatase and tension homolog (PTEN) is a widely known negative regulator of insulin/phosphatidylinositol 3-kinase (PI3K) signaling. The PI3K/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) and Ras-extracellular signal-regulated kinase (Ras-ERK) signaling pathways are the chief mechanisms controlling the survival, proliferation, and differentiation of neural stem cells (NSCs). However, the roles of PTEN in Akt/mTOR and ERK signaling during proliferation and neuronal differentiation of human NSCs (hNSCs) are poorly understood. Treatment of proliferating hNSCs with a specific inhibitor of PTEN or overexpression of the PTEN inactive mutant G129E resulted in an increase in the expression levels of Ki67, p-S6 kinase (p-S6K), and p-ERK without affecting p-Akt expression during proliferation of hNSCs. Therefore, we focused on the regulatory effect of PTEN in S6K and ERK signaling during dopaminergic neuronal differentiation of hNSCs. Overexpression of PTEN during neuronal differentiation of hNSCs caused an increase in p-S6K expression and a decrease in p-ERK expression. Conversely, inhibition of PTEN increased p-ERK expression and decreased p-S6K expression. Inhibition of ERK by a specific chemical inhibitor, U0126, promoted neuronal generation, especially of tyrosine hydroxylase-positive neurons. p-S6K expression increased in a time-dependent manner during differentiation, and this effect was enhanced by U0126. These results indicated that PTEN promoted neuronal differentiation by inhibition of ERK signaling, which in turn induced activation of S6K. Our data suggest that ERK pathways participate in crosstalk with S6K through PTEN signaling during neuronal differentiation of hNSCs. These results represent a novel pathway by which PTEN may modulate the interplay between ERK and S6K signaling, leading to increased neuronal differentiation in hNSCs. SIGNIFICANCE This article adds to the body of knowledge about the mechanism of extracellular signal-regulated kinase (ERK)-mediated differentiation by describing the molecular function of phosphatase and tension homolog (PTEN) during the neuronal differentiation of human neural stem cells (hNSCs). Previous studies showed that S6K signaling promoted neuronal differentiation in hNSCs via the phosphatidylinositol 3-kinase Akt-mammalian target of rapamycin signaling pathway. A further series of studies investigated whether this S6 kinase-induced differentiation in hNSCs involves regulation of ERK signaling by PTEN. The current study identified a novel mechanism by which PTEN regulates neuronal differentiation in hNSCs, suggesting that activating PTEN function promotes dopaminergic neuronal differentiation and providing an important resource for future studies of PTEN function.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea
| | - Mi Sun Lim
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea Research and Development Center, Jeil Pharmaceutical Company, Limited, Yongin, Republic of Korea
| | - Jae Hyeon Park
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang Hwan Park
- Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, Republic of Korea Hanyang Biomedical Research Institute, Seoul, Republic of Korea Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Matsa E, Ahrens JH, Wu JC. Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiol Rev 2016; 96:1093-126. [PMID: 27335446 PMCID: PMC6345246 DOI: 10.1152/physrev.00036.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.
Collapse
Affiliation(s)
- Elena Matsa
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - John H Ahrens
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiology, and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
13
|
Utility of Lymphoblastoid Cell Lines for Induced Pluripotent Stem Cell Generation. Stem Cells Int 2016; 2016:2349261. [PMID: 27375745 PMCID: PMC4914736 DOI: 10.1155/2016/2349261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/01/2016] [Accepted: 05/08/2016] [Indexed: 12/15/2022] Open
Abstract
A large number of EBV immortalized LCLs have been generated and maintained in genetic/epidemiological studies as a perpetual source of DNA and as a surrogate in vitro cell model. Recent successes in reprograming LCLs into iPSCs have paved the way for generating more relevant in vitro disease models using this existing bioresource. However, the overall reprogramming efficiency and success rate remain poor and very little is known about the mechanistic changes that take place at the transcriptome and cellular functional level during LCL-to-iPSC reprogramming. Here, we report a new optimized LCL-to-iPSC reprogramming protocol using episomal plasmids encoding pluripotency transcription factors and mouse p53DD (p53 carboxy-terminal dominant-negative fragment) and commercially available reprogramming media. We achieved a consistently high reprogramming efficiency and 100% success rate using this optimized protocol. Further, we investigated the transcriptional changes in mRNA and miRNA levels, using FC-abs ≥ 2.0 and FDR ≤ 0.05 cutoffs; 5,228 mRNAs and 77 miRNAs were differentially expressed during LCL-to-iPSC reprogramming. The functional enrichment analysis of the upregulated genes and activation of human pluripotency pathways in the reprogrammed iPSCs showed that the generated iPSCs possess transcriptional and functional profiles very similar to those of human ESCs.
Collapse
|
14
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
15
|
Lo NW, Intawicha P, Chiu YT, Lee KH, Lu HC, Chen CH, Chang YH, Chen CD, Ju JC. Leukemia Inhibitory Factor and Fibroblast Growth Factor 2 Critically and Mutually Sustain Pluripotency of Rabbit Embryonic Stem Cells. Cell Transplant 2015; 24:319-38. [DOI: 10.3727/096368915x686832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Effects of leukemia inhibitory factor (LIF) and fibroblast growth factor 2 (FGF2) on establishment and maintenance of rabbit embryonic stem cell (rESC) lines were assessed. When grown on MEF feeders, rESC lines derived from fertilized embryos were established and maintained in medium containing paracrine factors LIF (via STAT3) and/or FGF2 (via MEK-ERK1/2 and PI3K-AKT). However, high levels of ERK1/2 and AKT activities in rESCs were crucial for maintaining their undifferentiated proliferation. Although rESCs under the influence of either LIF (500, 1,000, and 2,000 U/ml) or FGF2 (5, 10, and 20 ng/ml) alone had enhanced expression of pluripotency markers, peak expression occurred when both LIF (1,000 U/ml) and FGF2 (10 ng/ml) were applied. Induced dephosphorylation of STAT3, ERK1/2, and AKT by specific inhibitors limited growth of rESCs and caused remarkable losses of self-renewal capacity; therefore, we inferred that STAT3, ERK, and AKT had essential roles in maintaining rESC proliferation and self-renewal. We concluded that LIF and FGF2 jointly maintained the undifferentiated state and self-renewal of rESCs through an integrative signaling module.
Collapse
Affiliation(s)
- Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Payungsuk Intawicha
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- School of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | | | - Kun-Hsiung Lee
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, Hsinchu, Taiwan
| | - Hsi-Chi Lu
- Department of Food Science, Tunghai University, Taichung, Taiwan
| | - Chien-Hong Chen
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, Hsinchu, Taiwan
| | - Yong-Hsuan Chang
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Chun-Da Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Agricultural Biotechnology Center and Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Medical Research Department, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung, Taiwan
| |
Collapse
|
16
|
Zhao P, Schulz TC, Sherrer ES, Weatherly DB, Robins AJ, Wells L. The human embryonic stem cell proteome revealed by multidimensional fractionation followed by tandem mass spectrometry. Proteomics 2014; 15:554-66. [PMID: 25367160 DOI: 10.1002/pmic.201400132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023]
Abstract
Human embryonic stem cells (hESCs) have received considerable attention due to their therapeutic potential and usefulness in understanding early development and cell fate commitment. In order to appreciate the unique properties of these pluripotent, self-renewing cells, we have performed an in-depth multidimensional fractionation followed by LC-MS/MS analysis of the hESCs harvested from defined media to elucidate expressed, phosphorylated, O-linked β-N-acetylglucosamine (O-GlcNAc) modified, and secreted proteins. From the triplicate analysis, we were able to assign more than 3000 proteins with less than 1% false-discovery rate. This analysis also allowed us to identify nearly 500 phosphorylation sites and 68 sites of O-GlcNAc modification with the same high confidence. Investigation of the phosphorylation sites allowed us to deduce the set of kinases that are likely active in these cells. We also identified more than 100 secreted proteins of hESCs that likely play a role in extracellular matrix formation and remodeling, as well as autocrine signaling for self-renewal and maintenance of the undifferentiated state. Finally, by performing in-depth analysis in triplicate, spectral counts were obtained for these proteins and posttranslationally modified peptides, which will allow us to perform relative quantitative analysis between these cells and any derived cell type in the future.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Peterson H, Abu Dawud R, Garg A, Wang Y, Vilo J, Xenarios I, Adjaye J. Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells. Front Physiol 2013; 4:303. [PMID: 24194720 PMCID: PMC3809568 DOI: 10.3389/fphys.2013.00303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/02/2013] [Indexed: 11/13/2022] Open
Abstract
Pluripotency in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is regulated by three transcription factors—OCT3/4, SOX2, and NANOG. To fully exploit the therapeutic potential of these cells it is essential to have a good mechanistic understanding of the maintenance of self-renewal and pluripotency. In this study, we demonstrate a powerful systems biology approach in which we first expand literature-based network encompassing the core regulators of pluripotency by assessing the behavior of genes targeted by perturbation experiments. We focused our attention on highly regulated genes encoding cell surface and secreted proteins as these can be more easily manipulated by the use of inhibitors or recombinant proteins. Qualitative modeling based on combining boolean networks and in silico perturbation experiments were employed to identify novel pluripotency-regulating genes. We validated Interleukin-11 (IL-11) and demonstrate that this cytokine is a novel pluripotency-associated factor capable of supporting self-renewal in the absence of exogenously added bFGF in culture. To date, the various protocols for hESCs maintenance require supplementation with bFGF to activate the Activin/Nodal branch of the TGFβ signaling pathway. Additional evidence supporting our findings is that IL-11 belongs to the same protein family as LIF, which is known to be necessary for maintaining pluripotency in mouse but not in human ESCs. These cytokines operate through the same gp130 receptor which interacts with Janus kinases. Our finding might explain why mESCs are in a more naïve cell state compared to hESCs and how to convert primed hESCs back to the naïve state. Taken together, our integrative modeling approach has identified novel genes as putative candidates to be incorporated into the expansion of the current gene regulatory network responsible for inducing and maintaining pluripotency.
Collapse
Affiliation(s)
- Hedi Peterson
- Quretec Ltd. Tartu, Estonia ; Faculty of Mathematics and Computer Science, Institute of Computer Science, University of Tartu Tartu, Estonia ; Faculty of Science and Technology, Institute of Molecular and Cellular Biology, University of Tartu Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
18
|
Kook SH, Jeon YM, Park SS, Lee JC. Periodontal fibroblasts modulate proliferation and osteogenic differentiation of embryonic stem cells through production of fibroblast growth factors. J Periodontol 2013; 85:645-54. [PMID: 23805819 DOI: 10.1902/jop.2013.130252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Periodontal ligament fibroblasts (PLFs) maintain homeostasis of periodontal ligaments by producing paracrine factors that affect various functions of stem-like cells. It is hypothesized that PLFs induce proliferation and differentiation of stem cells more effectively than gingival fibroblasts (GFs) and skin fibroblasts (SFs). METHODS PLFs and GFs were isolated from extracted teeth and cultured in the presence and absence of osteogenesis-inducing factors. Mouse embryonic stem (mES) cells and SFs were purchased commercially. mES cells were incubated with culture supernatants of these fibroblasts or cocultured directly with the cells. Proliferation and mineralization in mES cells were determined at various times of incubation. Immunostaining and polymerase chain reaction were performed. The activity of mitogen-activated protein kinase and alkaline phosphatase (ALP) was also measured. RESULTS In cocultures, PLFs stimulated proliferation of mES cells more effectively than GFs or SFs. Similarly, the addition of culture supernatant of PLFs induced the most prominent proliferation of mES cells, and this was significantly inhibited by treatment with antibody against fibroblast growth factor (FGF)4 or the c-Jun N-terminal kinase inhibitor SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one). Supplementation with culture supernatant from the fibroblasts induced osteogenic differentiation of mES cells in the order PLFs > GFs > SFs. These activities of PLFs were related to their potential to produce osteogenic markers, such as ALP and runt-related transcription factor-2 (Runx2), and to secrete FGF7. Pretreatment of mES cells with the extracellular signal-regulated kinase inhibitor PD98059 [2-(2-amino-3-methyoxyphenyl)-4H-1-benzopyran-4-one] or SP600125 clearly attenuated mineralization induced by culture supernatant of PLF with attendant decreases in mRNA levels of Runx2, bone sialoprotein, osteocalcin, and osteopontin. CONCLUSION PLFs regulate the proliferation and osteogenic differentiation of mES cells more strongly than GFs and SFs via the secretion of FGF through a mechanism that involves mitogen-activated protein kinase-mediated signaling.
Collapse
Affiliation(s)
- Sung-Ho Kook
- Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | | | | | | |
Collapse
|
19
|
Hu F, Wang X, Liang G, Lv L, Zhu Y, Sun B, Xiao Z. Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cell Reprogram 2013; 15:224-32. [PMID: 23713433 PMCID: PMC3666248 DOI: 10.1089/cell.2012.0077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stem cells used for clinical tissue regeneration therapy should have the capacity of self-renewal, high proliferation, and differentiation and be able to be transplanted in large numbers. Although high concentrations of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) may induce the differentiation of stem cells, these factors have been widely used to enhance the propagation of stem cells, including adipose-derived mesenchymal stem cells (ASCs). However, the effects of low concentrations of EGF and bFGF on stem cells need to be evaluated carefully. This study illustrates that low concentrations of EGF (5 ng/mL) and bFGF (10 ng/mL) increase the proliferative ability of ASCs and induce the typical spindle-shaped cell morphology. EGF and bFGF added to medium promoted neural lineage differentiation and impaired the mesodermal differentiation ability of ASCs. This study demonstrates that even low concentrations of EGF and bFGF may limit the differentiation ability of stem cells during stem cell expansion in vitro. EGF and bFGF supplementation should be carefully considered in stem cells for clinical applications.
Collapse
Affiliation(s)
- Feihu Hu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Hall VJ. Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reprod Fertil Dev 2013; 25:94-102. [PMID: 23244832 DOI: 10.1071/rd12264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Understanding the cell signalling events that govern cell renewal in porcine pluripotent cells may help improve culture conditions and allow for establishment of bona fide porcine embryonic stem cells (pESC) and stable porcine induced pluripotent stem cells (piPSC). This review investigates cell signalling in the porcine preimplantation embryo containing either the inner cell mass or epiblast, with particular emphasis on fibroblast growth factor, SMAD, WNT and Janus tyrosine kinases/signal transducers and activators of transcription signalling. It is clear that key differences exist in the cell signalling events that govern pluripotency in this species compared with similar embryonic stages in mouse and human. The fact that bona fide pESC have still not been produced and that piPSC cannot survive in culture following the silencing or downregulation of the reprogramming transgenes suggest that culture conditions are not optimal. Unravelling the factor/s that regulate pluripotency in porcine embryos will pave the way for future establishment of stable pluripotent stem cell lines.
Collapse
Affiliation(s)
- Vanessa Jane Hall
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical and Animal Sciences, Gronnegaardsvej 7, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
21
|
Ermakov A, Pells S, Freile P, Ganeva VV, Wildenhain J, Bradley M, Pawson A, Millar R, De Sousa PA. A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture. Stem Cell Res 2012; 9:171-84. [DOI: 10.1016/j.scr.2012.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 12/28/2022] Open
|
22
|
Ezashi T, Telugu BPVL, Roberts RM. Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell Tissue Res 2012; 349:809-24. [PMID: 22427062 PMCID: PMC3429771 DOI: 10.1007/s00441-012-1371-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
This review focuses on a now well-established model for generating cells of the trophoblast (TB) lineage by treating human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) with the growth factor BMP4. We first discuss the opposing roles of FGF2 and BMP4 in directing TB formation and the need to exclude the former from the growth medium to minimize the co-induction of mesoderm and endoderm. Under these conditions, there is up-regulation of several transcription factors implicated in TB lineage emergence within 3 h of BMP4 exposure and, over a period of days and especially under a high O(2) gas atmosphere, gradual appearance of cell types carrying markers for more differentiated TB cell types, including extravillous TB and syncytioTB. We describe the potential value of including low molecular weight pharmaceutical agents that block activin A (INHBA) and FGF2 signaling to support BMP4-directed differentiation. We contend that the weight of available evidence supports the contention that BMP4 converts human ESC and iPSC of the so-called epiblast type unidirectionally to TB. We also consider the argument that BMP4 treatment of human ESC in the absence of exogenous FGF2 leads only to the emergence of mesoderm derivatives to be seriously flawed. Instead, we propose that, when signaling networks supporting pluripotency ESC or iPSC become unsustainable and when specification towards extra-embryonic mesoderm and endoderm are rendered inoperative, TB emerges as a major default state to pluripotency.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Bhanu Prakash V. L. Telugu
- Department of Animal and Avian Sciences, College Park, MD 20742 & Animal Biosciences and Biotechnology Laboratory, ANRI, ARS, USDA, University of Maryland, Beltsville, MD 20705 USA
| | - R. Michael Roberts
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
- 240b Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310 USA
| |
Collapse
|
23
|
Xiao Y, Chen J. Proteomics approaches in the identification of molecular signatures of mesenchymal stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 129:153-76. [PMID: 22790357 DOI: 10.1007/10_2012_143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are undifferentiated, multi-potent stem cells with the ability to renew. They can differentiate into many types of terminal cells, such as osteoblasts, chondrocytes, adipocytes, myocytes, and neurons. These cells have been applied in tissue engineering as the main cell type to regenerate new tissues. However, a number of issues remain concerning the use of MSCs, such as cell surface markers, the determining factors responsible for their differentiation to terminal cells, and the mechanisms whereby growth factors stimulate MSCs. In this chapter, we will discuss how proteomic techniques have contributed to our current knowledge and how they can be used to address issues currently facing MSC research. The application of proteomics has led to the identification of a special pattern of cell surface protein expression of MSCs. The technique has also contributed to the study of a regulatory network of MSC differentiation to terminal differentiated cells, including osteocytes, chondrocytes, adipocytes, neurons, cardiomyocytes, hepatocytes, and pancreatic islet cells. It has also helped elucidate mechanisms for growth factor-stimulated differentiation of MSCs. Proteomics can, however, not reveal the accurate role of a special pathway and must therefore be combined with other approaches for this purpose. A new generation of proteomic techniques have recently been developed, which will enable a more comprehensive study of MSCs.
Collapse
Affiliation(s)
- Yin Xiao
- Institute of Health and Biomedical Innovation Queensland University of Technology, 60 Musk Avenue, Kelvin Grove Brisbane, QLD, 4059, Australia,
| | | |
Collapse
|
24
|
Greber B, Coulon P, Zhang M, Moritz S, Frank S, Müller-Molina AJ, Araúzo-Bravo MJ, Han DW, Pape HC, Schöler HR. FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 2011; 30:4874-84. [PMID: 22085933 DOI: 10.1038/emboj.2011.407] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022] Open
Abstract
Human embryonic stem cells (hESCs) can exit the self-renewal programme, through the action of signalling molecules, at any given time and differentiate along the three germ layer lineages. We have systematically investigated the specific roles of three signalling pathways, TGFβ/SMAD2, BMP/SMAD1, and FGF/ERK, in promoting the transition of hESCs into the neuroectoderm lineage. In this context, inhibition of SMAD2 and ERK signalling served to cooperatively promote exit from hESC self-renewal through the rapid downregulation of NANOG and OCT4. In contrast, inhibition of SMAD1 signalling acted to maintain SOX2 expression and prevent non-neural differentiation via HAND1. Inhibition of FGF/ERK upregulated OTX2 that subsequently induced the neuroectodermal fate determinant PAX6, revealing a novel role for FGF2 in indirectly repressing PAX6 in hESCs. Combined inhibition of the three pathways hence resulted in highly efficient neuroectoderm formation within 4 days, and subsequently, FGF/ERK inhibition promoted rapid differentiation into peripheral neurons. Our study assigns a novel, biphasic role to FGF/ERK signalling in the neural induction of hESCs, which may also have utility for applications requiring the rapid and efficient generation of peripheral neurons.
Collapse
Affiliation(s)
- Boris Greber
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee WY, Kim J, Gil CH, Lee JH, Song H, Kim JH, Chung HM. Maintenance of human pluripotent stem cells using 4SP-hFGF2-secreting STO cells. Stem Cell Res 2011; 7:210-8. [DOI: 10.1016/j.scr.2011.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/11/2011] [Accepted: 05/16/2011] [Indexed: 02/02/2023] Open
|
26
|
Wang X. Computational analysis of expression of human embryonic stem cell-associated signatures in tumors. BMC Res Notes 2011; 4:471. [PMID: 22041030 PMCID: PMC3217937 DOI: 10.1186/1756-0500-4-471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/19/2022] Open
Abstract
Background The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach. Results We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells. Conclusions The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Biometric Research Branch, National Cancer Institute, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
27
|
Sharma R, George A, Kamble NM, Singh KP, Chauhan MS, Singla SK, Manik RS, Palta P. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell Reprogram 2011; 13:539-49. [PMID: 22029416 DOI: 10.1089/cell.2011.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu P, Pan G, Yu J, Thomson JA. FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 2011; 8:326-34. [PMID: 21362572 PMCID: PMC3052735 DOI: 10.1016/j.stem.2011.01.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/05/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.
Collapse
Affiliation(s)
- Pengzhi Yu
- Morgridge Institute for Research, Madison, WI 53715-7365, USA
| | | | | | | |
Collapse
|
29
|
Stem cell integrins: Implications for ex-vivo culture and cellular therapies. Stem Cell Res 2011; 6:1-12. [DOI: 10.1016/j.scr.2010.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 12/15/2022] Open
|
30
|
Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 2010; 129:290-306. [PMID: 21073897 DOI: 10.1016/j.pharmthera.2010.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 01/25/2023]
Abstract
Stem cell-based therapeutics have the potential to effectively treat many terminal and debilitating human diseases, but the mechanisms by which their growth and differentiation are regulated are incompletely defined. Recent data from multiple systems suggest major roles for G protein coupled receptor (GPCR) pathways in regulating stem cell function in vivo and in vitro. The goal of this review is to illustrate common ground between the growing field of stem cell therapeutics and the long-established field of G protein coupled receptor signaling. Herein, we briefly introduce basic stem cell biology and discuss how several conserved pathways regulate pluripotency and differentiation in mouse and human stem cells. We further discuss general mechanisms by which GPCR signaling may impact these pluripotency and differentiation pathways, and summarize specific examples of receptors from each of the major GPCR subfamilies that have been shown to regulate stem cell function. Finally, we discuss possible therapeutic implications of GPCR regulation of stem cell function.
Collapse
Affiliation(s)
- Phillip Callihan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, United States
| | | | | | | | | |
Collapse
|
31
|
Farrow EG, Summers LJ, Schiavi SC, McCormick JA, Ellison DH, White KE. Altered renal FGF23-mediated activity involving MAPK and Wnt: effects of the Hyp mutation. J Endocrinol 2010; 207:67-75. [PMID: 20675303 PMCID: PMC3050595 DOI: 10.1677/joe-10-0181] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fibroblast growth factor-23 (FGF23), a hormone central to renal phosphate handling, is elevated in multiple hypophosphatemic disorders. Initial FGF23-dependent Erk1/2 activity in the kidney localizes to the distal convoluted tubule (DCT) with the co-receptor α-Klotho (KL), distinct from Npt2a in proximal tubules (PT). The Hyp mouse model of X-linked hypophosphatemic rickets (XLH) is characterized by hypophosphatemia with increased Fgf23, and patients with XLH elevate FGF23 following combination therapy of phosphate and calcitriol. The molecular signaling underlying renal FGF23 activity, and whether these pathways are altered in hypophosphatemic disorders, is unknown. To examine Npt2a in vivo, mice were injected with FGF23. Initial p-Erk1/2 activity in the DCT occurred within 10 min; however, Npt2a protein was latently reduced in the PT at 30-60 min, and was independent of Npt2a mRNA changes. KL-null mice had no DCT p-Erk1/2 staining following FGF23 delivery. Under basal conditions in Hyp mice, c-Fos and Egr1, markers of renal Fgf23 activity, were increased; however, KL mRNA was reduced 60% (P<0.05). Despite the prevailing hypophosphatemia and elevated Fgf23, FGF23 injections into Hyp mice activated p-Erk1/2 in the DCT. FGF23 injection also resulted in phospho-β-catenin (p-β-cat) co-localization with KL in wild-type mice, and Hyp mice demonstrated strong p-β-cat staining under basal conditions, indicating potential crosstalk between mitogen-activated protein kinase and Wnt signaling. Collectively, these studies refine the mechanisms for FGF23 bioactivity, and demonstrate novel suppression of Wnt signaling in a KL-dependent DCT-PT axis, which is likely altered in XLH. Finally, the current treatment of phosphate and calcitriol for hypophosphatemic disorders may increase FGF23 activity.
Collapse
Affiliation(s)
- Emily G. Farrow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lelia J. Summers
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Park Y, Choi IY, Lee SJ, Lee SR, Sung HJ, Kim JH, Yoo YD, Geum DH, Kim SH, Kim BS. Undifferentiated propagation of the human embryonic stem cell lines, H1 and HSF6, on human placenta-derived feeder cells without basic fibroblast growth factor supplementation. Stem Cells Dev 2010; 19:1713-22. [PMID: 20201681 DOI: 10.1089/scd.2010.0014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order for human embryonic stem cells (hESCs) to be cultured on mouse embryonic fibroblast (MEFs) feeder cells, continuous basic fibroblast growth factor (bFGF) supplementation is required. However, the role of bFGF in a culture system using human-derived feeder cells has not been evaluated until now. In this study, we propagated the widely used hESC lines, H1 and HSF6, on human placenta-derived feeder cells (HPCs) without exogenous bFGF supplementation, and were able to propagate hESCs on HPC feeders up to 50 passages. The absence of bFGF in culture media did not interrupt the undifferentiated propagation and the expression of pluripotent stem cell markers ALP, SSEA-4, TRA-60, Oct-4, Nanog, and Rex-1, as well as the formation of embryoid bodies (EBs) and their differentiation potential. In contrast, hESCs cocultured with MEF feeders could not propagate and form EBs without exogenous bFGF supplementation. Expression of bFGF and the activation of the ERK1/2-c-Fos/c-Jun pathway, which is known as the signaling pathway of bFGF, were identifiable not only in hESCs cultured in bFGF-containing media regardless of feeder cell type, but also in hESCs cocultured with HPC feeder cells in media without bFGF. These findings may support the hypothesis that HPC feeder cells enhance endogenous bFGF production and activation of the ERK1/2-c-Fos/c-Jun pathway, which suggests that HPCs have an additional advantage in their hESC propagation compared with MEF.
Collapse
Affiliation(s)
- Yong Park
- Institute of Stem Cell Research, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
During early mammalian development, as the pluripotent cells that give rise to all of the tissues of the body proliferate and expand in number, they pass through transition states marked by a stepwise restriction in developmental potential and by changes in the expression of key regulatory genes. Recent findings show that cultured stem-cell lines derived from different stages of mouse development can mimic these transition states. They further reveal that there is a high degree of heterogeneity and plasticity in pluripotent populations in vitro and that these properties are modulated by extrinsic signalling. Understanding the extrinsic control of plasticity will guide efforts to use human pluripotent stem cells in research and therapy.
Collapse
Affiliation(s)
- Martin F Pera
- Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | |
Collapse
|
34
|
Schnerch A, Cerdan C, Bhatia M. Distinguishing between mouse and human pluripotent stem cell regulation: the best laid plans of mice and men. Stem Cells 2010; 28:419-30. [PMID: 20054863 DOI: 10.1002/stem.298] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cells (PSCs) have been derived from the embryos of mice and humans, representing the two major sources of PSCs. These cells are universally defined by their developmental properties, specifically their self-renewal capacity and differentiation potential which are regulated in mice and humans by complex transcriptional networks orchestrated by conserved transcription factors. However, significant differences exist in the transcriptional networks and signaling pathways that control mouse and human PSC self-renewal and lineage development. To distinguish between universally applicable and species-specific features, we collated and compared the molecular and cellular descriptions of mouse and human PSCs. Here we compare and contrast the response to signals dictated by the transcriptome and epigenome of mouse and human PSCs that will hopefully act as a critical resource to the field. These analyses underscore the importance of accounting for species differences when designing strategies to capitalize on the clinical potential of human PSCs.
Collapse
Affiliation(s)
- Angelique Schnerch
- Stem Cell and Cancer Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
35
|
Abstract
The present article reviews master stem cell transcription factors, their expression regulation network, and related signaling pathways with the aim of understanding the molecular mechanisms of pluripotent cell fate decisions. Oct4, Sox2, and Nanog are master transcription factors for maintenance of the undifferentiated state and self-renewal of embryonic stem cells (ESCs). In the mouse, they form a regulatory circuitry with coregulators, such as beta-catenin, Stat3, Myc, Klfs, Sall4, and Esrrb to control the expression of pluripotency-related genes including themselves. The threshold expression of Oct4, Sox2, and Nanog for sustaining ESC properties depends on the synergistic effects among Stat3, beta-catenin, and Smad signaling pathway under the specific conditions of the ESC cytoplasmic microenvironment. Some of the salient differences in human ESC signaling pathways affecting their fate commitment are highlighted.
Collapse
Affiliation(s)
- Yu-Qiang Li
- Cell Laboratory, Marine College, Shandong University at Weihai, Shandong, People's Republic of China.
| |
Collapse
|
36
|
Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reprod Biomed Online 2010; 21:26-36. [PMID: 20462797 DOI: 10.1016/j.rbmo.2010.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/14/2009] [Accepted: 03/03/2010] [Indexed: 12/19/2022]
Abstract
Embryonic stem cells (ESC) are pluripotent cells and have the ability to self-renew in vitro and to differentiate into cells representing all three germ layers. They provide enormous opportunities for basic research, regenerative medicine as well as drug discovery. The mechanisms that govern ESC fate are not completely understood, so a better understanding and control of ESC self-renewal and differentiation are pivotal for therapeutic applications. In contrast to growth factors and genetic manipulations, small molecules offer great advantages in modulating ESC fate. For instance, they could be conveniently identified through high-throughput screening, work across multiple signalling pathways and affect epigenetic modifications as well. This review focuses on the recent progress in the use of small molecules to regulate ESC self-renewal, differentiation and somatic cell reprogramming.
Collapse
|
37
|
Zeng H, Park JW, Guo M, Lin G, Crandall L, Compton T, Wang X, Li XJ, Chen FP, Xu RH. Lack of ABCG2 expression and side population properties in human pluripotent stem cells. Stem Cells 2010; 27:2435-45. [PMID: 19670287 DOI: 10.1002/stem.192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multidrug transporter ABCG2 in cell membranes enables various stem cells and cancer cells to efflux chemicals, including the fluorescent dye Hoechst 33342. The Hoechst(-) cells can be sorted out as a side population with stem cell properties. Abcg2 expression in mouse embryonic stem cells (ESCs) reduces accumulation of DNA-damaging metabolites in the cells, which helps prevent cell differentiation. Surprisingly, we found that human ESCs do not express ABCG2 and cannot efflux Hoechst. In contrast, trophoblasts and neural epithelial cells derived from human ESCs are ABCG2(+) and Hoechst(-). Human ESCs ectopically expressing ABCG2 become Hoechst(-), more tolerant of toxicity of mitoxantrone, a substrate of ABCG2, and more capable of self-renewal in basic fibroblast growth factor (bFGF)-free condition than control cells. However, Hoechst(low) cells sorted as a small subpopulation from human ESCs express lower levels of pluripotency markers than the Hoechst(high) cells. Similar results were observed with human induced pluripotent stem cells. Conversely, mouse ESCs are Abcg2(+) and mouse trophoblasts, Abcg2(-). Thus, absence of ABCG2 is a novel feature of human pluripotent stem cells, which distinguishes them from many other stem cells including mouse ESCs, and may be a reason why they are sensitive to suboptimal culture conditions.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Lin G, Martins-Taylor K, Zeng H, Xu RH. Inhibition of caspase-mediated anoikis is critical for basic fibroblast growth factor-sustained culture of human pluripotent stem cells. J Biol Chem 2009; 284:34054-64. [PMID: 19828453 DOI: 10.1074/jbc.m109.052290] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Apoptosis and proliferation are two dynamically and tightly regulated processes that together maintain the homeostasis of renewable tissues. Anoikis is a subtype of apoptosis induced by detachment of adherent cells from the extracellular matrix. By using the defined mTeSR1 medium and collecting freshly detached cells, we found here that human pluripotent stem (PS) cells including embryonic stem (ES) cells and induced pluripotent stem cells are subject to constant anoikis in culture, which is escalated in the absence of basic fibroblast growth factor (bFGF). Withdrawal of bFGF also promotes apoptosis and differentiation of the remaining adherent cells without affecting their cell cycle progression. Insulin-like growth factor 2 (IGF2) has previously been reported to act downstream of FGF signaling to support self-renewal of human ES cells. However, we found that IGF2 cannot substitute bFGF in the TeSR1-supported culture, although endogenous IGF signaling is required to sustain self-renewal of human ES cells. On the other hand, all of the bFGF withdrawal effects observed here can be markedly prevented by the caspase inhibitor z-VAD-FMK. We further demonstrated that the bFGF-repressed anoikis is dependent on activation of ERK and AKT and associated with inhibition of Bcl-2-interacting mediator of cell death and the caspase-ROCK1-myosin signaling. Anoikis is independent of pre-detachment apoptosis and differentiation of the cells. Because previous studies of human PS cells have been focused on attached cells, our findings revealed a neglected role of bFGF in sustaining self-renewal of human PS cells: preventing them from anoikis via inhibition of caspase activation.
Collapse
Affiliation(s)
- Xiaofang Wang
- University of Connecticut Stem Cell Institute, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | |
Collapse
|
39
|
Ishiguro S, Akasaka Y, Kiguchi H, Suzuki T, Imaizumi R, Ishikawa Y, Ito K, Ishii T. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen 2009; 17:617-25. [PMID: 19614927 DOI: 10.1111/j.1524-475x.2009.00511.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To examine the effects of basic fibroblast growth factor (bFGF) on the inhibition of alpha-smooth muscle actin (alpha-SMA) expression in dermal fibroblasts, we have established two dermal myofibroblastic cell lines positive for alpha-SMA (rat myofibroblasts [RMF] and rat myofibroblast-like [RMFL] cells) and one fibroblastic cell line negative for alpha-SMA (rat fibroblasts cells) as a model of fibroblast differentiation. In contrast to the increased expression of alpha-SMA in RMF and RMFL cells, irrespective of transforming growth factor-beta1 treatment, bFGF induced a decrease in alpha-SMA expression in the myofibroblastic cells and the reduced expression patterns of alpha-SMA differed between cells, as demonstrated by Western blot and reverse transcription polymerase chain reaction analyses. Along with the inhibition of alpha-SMA expression by bFGF, the RMF and RMFL cells also showed different activated expression of extracellular signal-regulated kinase 1/2, suggesting the involvement of extracellular signal-regulated kinase 1/2 activation in the down-regulation of alpha-SMA expression in myofibroblasts. Furthermore, an in vivo study demonstrated that bFGF administration markedly decreases the area that is positive for alpha-SMA expression in the treated wounds after day 18. In contrast, bFGF administration significantly increased the number of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining and alpha-SMA-positive cells at days 10 and 14, and reduced the double-positive cells rapidly after day 18. Collectively, the current investigation identified bFGF as a potent stimulator for the reduction of the myofibroblastic area in vivo, presumably because of its effects on the down-regulation of alpha-SMA expression as well as rapid induction of apoptosis in myofibroblasts.
Collapse
Affiliation(s)
- Shigeki Ishiguro
- Department of Pathology, School of Medicine, Toho University, Ohta-City, Tokyo 143-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cao S, Wang F, Chen Z, Liu Z, Mei C, Wu H, Huang J, Li C, Zhou L, Liu L. Isolation and culture of primary bovine embryonic stem cell colonies by a novel method. ACTA ACUST UNITED AC 2009; 311:368-76. [PMID: 19340839 DOI: 10.1002/jez.535] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Authentic bovine embryonic stem (ES) cell lines have not been established despite progress made for more than two decades. Isolation and culture of primary ES cell colonies are the first critical step towards establishment of stable ES cell lines. Here we report a novel method designated as "Separate and Seed" that contributes remarkably to efficient derivation of bovine primary ES-like cell colonies from blastocysts. These primary cultured bovine ES-like cells exhibit morphology typical of ES cells and express pluripotent molecular markers including Oct4, Nanog and alkaline phosphatase. Interestingly, bovine primary ES-like cell colonies distinctively express both stage-specific embryonic antigens 1 and 4 (SSEA1 and SSEA4), unlike mouse and human ES cells. These pluripotent markers may be used for characterization of authentic bovine ES cell lines in later studies. In contrast, whole embryos or inner cell mass (ICM) used for primary culture by conventional methods fails to produce primary bovine ES cell colonies that express all pluripotent stem cell markers shown above. Furthermore, bFGF improves growth and maintained undifferentiated state of bovine ES-like cells for several passages, whereas LIF and ERK inhibitor PD98059 known to promote pluripotency of mouse ES cells are unable to sustain bovine ES-like cells. Although continued efforts are required for improving long-term culture of bovine ES cells, this novel "Separate and Seed" method provides an initial effective step that may eventually lead to derivation of authentic bovine ES cell lines.
Collapse
Affiliation(s)
- Shanbo Cao
- School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim YE, Park JA, Nam KH, Kwon HJ, Lee Y. Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells. BMB Rep 2009; 42:148-53. [PMID: 19336001 DOI: 10.5483/bmbrep.2009.42.3.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is a stable anti-oxidant or pro-oxidant, depending on the situation, and it is widely used to inhibit the activation of NF-kappaB. We recently reported that PDTC activates the MIP-2 gene in a NF-kappaB-independent and c-Jun-dependent manner in macrophage cells. In this work, we found that PDTC activates signal transduction pathways in mouse ES cells. Among the three different mitogen-activated protein kinase (MAPK) pathways, including the extracellular-signal-regulated kinase (ERK), p38 MAP kinase, and stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathways, only the ERK pathway was significantly activated in mouse ES cells after stimulation with PDTC. Additionally, we observed a synergistic activation of ERK and induction of c-Fos after stimulation with PDTC in the presence of mouse embryonic fibroblast (MEF) conditioned medium. In contrast, another NF-kappaB inhibitor, BMS-345541, did not activate the MAP kinase pathways or induce expression of c-Fos. These results suggest that changes in the presence of the NF-kappaB inhibitor PDTC should be carefully considered when it used with mouse ES cells.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | |
Collapse
|
42
|
Gallicano GI. A New Approach to Investigating Embryonic Stem Cell Differentiation. Stem Cells Dev 2009; 18:201-4. [DOI: 10.1089/scd.2008.0394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- G. Ian Gallicano
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
43
|
Kim YE, Kang HB, Park JA, Nam KH, Kwon HJ, Lee Y. Upregulation of NF-kappaB upon differentiation of mouse embryonic stem cells. BMB Rep 2009; 41:705-9. [PMID: 18959816 DOI: 10.5483/bmbrep.2008.41.10.705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NF-kappaB is a transcriptional regulator involved in many biological processes including proliferation, survival, and differentiation. Recently, we reported that expression and activity of NF-kappaB is comparatively low in undifferentiated human embryonic stem (ES) cells, but increases during differentiation. Here, we found a lower expression of NF-kappaB p65 protein in mouse ES cells when compared with mouse embryonic fibroblast cells. Protein levels of NF-kappaB p65 and relB were clearly enhanced during retinoic acid-induced differentiation. Furthermore, increased DNA binding activity of NF-kappaB in response to TNF-alpha, an agonist of NF-kappaB signaling, was seen in differentiated but not undifferentiated mouse ES cells. Taken together with our previous data in human ES cells, it is likely that NF-kappaB expression and activity of the NF-kappaB signaling pathway is comparatively low in undifferentiated ES cells, but increases during differentiation of ES cells in general.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
44
|
Wang S, Shen Y, Yuan X, Chen K, Guo X, Chen Y, Niu Y, Li J, Xu RH, Yan X, Zhou Q, Ji W. Dissecting Signaling Pathways That Govern Self-renewal of Rabbit Embryonic Stem Cells. J Biol Chem 2008; 283:35929-40. [DOI: 10.1074/jbc.m804091200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
45
|
Choi SC, Kim SJ, Choi JH, Park CY, Shim WJ, Lim DS. Fibroblast growth factor-2 and -4 promote the proliferation of bone marrow mesenchymal stem cells by the activation of the PI3K-Akt and ERK1/2 signaling pathways. Stem Cells Dev 2008; 17:725-36. [PMID: 18788932 DOI: 10.1089/scd.2007.0230] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal, and differentiation into a variety of cell types. They thus represent an attractive source of material for cell therapy. However, little is known about the mechanisms underlying the proliferation of BMMSCs. The purpose of this study was to identify the factors and signaling pathways involved in the proliferation of stem cell antigen-1(+) (Sca-1(+)) BMMSCs. Among the cytokines and growth factors examined in this study, fibroblast growth factor-2 (FGF-2) and FGF-4 significantly stimulated the proliferation of Sca-1(+) BMMSCs, as determined by bromodeoxyuridine incorporation. PI3K-Akt, ERK1/2, and JAK/STAT3 pathways were investigated after stimulation with FGF-2 or FGF-4 via Western blot analysis. No changes were observed in the total ERK1/2 and Akt; however, the pERK1/2 and pAkt levels were upregulated early within 15 min in the FGF-2- or FGF-4-treated Sca-1(+) BMMSCs. Moreover, the pERK1/2 and pAkt upregulation induced by FGF-2 and -4 were completely abolished by treatment with the MEK1/2 inhibitor, U0126 and the PI3K inhibitor, LY294002. However, no change in pJAK2 or total JAK2 levels was observed in the Sca-1(+) BMMSCs induced by FGF-2 or FGF-4. As a consequence of PI3K-Akt and ERK1/2, the upregulation of c-Jun in the Sca-1(+) BMMSCs, after stimulation with FGF-2 or FGF-4, was observed after 12 and 24 h. Moreover, the activation of c-Jun in FGF-2- and FGF-4-treated Sca-1(+) BMMSCs was significantly reduced by U0126. Taken together, these data suggest that FGF-2 and -4 promote the proliferation of Sca-1(+) BMMSCs by activation of the ERK1/2 and PI3K-Akt signaling pathways.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while maintaining the ability to differentiate into advanced derivatives of all three germ layers, features very useful for understanding the differentiation and function of human tissues, for drug screen and toxicity testing, and for cellular transplantation therapies. Here we review the family of pluripotent cell lines derived from early embryos and from germ cells, and compare them with the more recently described induced pluripotent stem cells.
Collapse
|
48
|
Xu RH, Barron TL, Gu F, Root S, Peck RM, Pan G, Yu J, Antosiewicz-Bourget J, Tian S, Stewart R, Thomson JA. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 2008; 3:196-206. [PMID: 18682241 PMCID: PMC2758041 DOI: 10.1016/j.stem.2008.07.001] [Citation(s) in RCA: 377] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 05/23/2008] [Accepted: 07/01/2008] [Indexed: 01/04/2023]
Abstract
Self-renewal of human embryonic stem cells (ESCs) is promoted by FGF and TGFbeta/Activin signaling, and differentiation is promoted by BMP signaling, but how these signals regulate genes critical to the maintenance of pluripotency has been unclear. Using a defined medium, we show here that both TGFbeta and FGF signals synergize to inhibit BMP signaling; sustain expression of pluripotency-associated genes such as NANOG, OCT4, and SOX2; and promote long-term undifferentiated proliferation of human ESCs. We also show that both TGFbeta- and BMP-responsive SMADs can bind with the NANOG proximal promoter. NANOG promoter activity is enhanced by TGFbeta/Activin and FGF signaling and is decreased by BMP signaling. Mutation of putative SMAD binding elements reduces NANOG promoter activity to basal levels and makes NANOG unresponsive to BMP and TGFbeta signaling. These results suggest that direct binding of TGFbeta/Activin-responsive SMADs to the NANOG promoter plays an essential role in sustaining human ESC self-renewal.
Collapse
Affiliation(s)
- Ren-He Xu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT 06030, USA
- WiCell Research Institute, Madison, WI 53707-7365, USA
| | | | - Feng Gu
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT 06030, USA
| | - Sierra Root
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, University of Connecticut Stem Cell Institute, Farmington, CT 06030, USA
| | | | - Guangjin Pan
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
| | - Junying Yu
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
- National Primate Research Center, University of Wisconsin, Madison, WI 53715-1299, USA
| | - Jessica Antosiewicz-Bourget
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
- National Primate Research Center, University of Wisconsin, Madison, WI 53715-1299, USA
| | - Shulan Tian
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
| | - James A. Thomson
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706-1580, USA
- National Primate Research Center, University of Wisconsin, Madison, WI 53715-1299, USA
- Morgridge Institute for Research, Madison, WI 53707-7365, USA
- Department of Anatomy, University of Wisconsin, Madison, WI 53706-1509, USA
| |
Collapse
|
49
|
Abstract
Pluripotent ES (embryonic stem) cells can be expanded in culture and induced to differentiate into a wide range of cell types. Self-renewal of ES cells involves proliferation with concomitant suppression of differentiation. Some critical and conserved pathways regulating self-renewal in both human and mouse ES cells have been identified, but there is also evidence suggesting significant species differences. Cytoplasmic and receptor tyrosine kinases play important roles in proliferation, survival, self-renewal and differentiation in stem, progenitor and adult cells. The present review focuses on the role of tyrosine kinase signalling for maintenance of the undifferentiated state, proliferation, survival and early differentiation of ES cells.
Collapse
Affiliation(s)
- Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
50
|
Deconstructing human embryonic stem cell cultures: niche regulation of self-renewal and pluripotency. J Mol Med (Berl) 2008; 86:875-86. [PMID: 18521556 DOI: 10.1007/s00109-008-0356-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/17/2008] [Accepted: 03/31/2008] [Indexed: 02/08/2023]
Abstract
The factors and signaling pathways controlling pluripotent human cell properties, both embryonic and induced, have not been fully investigated. Failure to account for functional heterogeneity within human embryonic stem cell (hESC) cultures has led to inconclusive results in previous work examining extrinsic influences governing hESC fate (self renewal vs. differentiation vs. death). Here, we attempt to reconcile these inconsistencies with recent reports demonstrating that an autologously produced in vitro niche regulates hESCs. Moreover, we focus on the reciprocal paracrine signals within the in vitro hESC niche allowing for the maintenance and/or expansion of the hESC colony-initiating cell (CIC). Based on this, it is clear that separation of hESC-CICs, apart from their differentiated derivatives, will be essential in future studies involving their molecular regulation. Understanding how extrinsic factors control hESC self-renewal and differentiation will allow us to culture and differentiate these pluripotent cells with higher efficiency. This knowledge will be essential for clinical applications using human pluripotent cells in regenerative medicine.
Collapse
|