1
|
Cheng YC, Hsieh ML, Lin CJ, Chang CMC, Huang CY, Puntney R, Wu Moy A, Ting CY, Herr Chan DZ, Nicholson MW, Lin PJ, Chen HC, Kim GC, Zhang J, Coonen J, Basu P, Simmons HA, Liu YW, Hacker TA, Kamp TJ, Hsieh PCH. Combined Treatment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells Regenerate the Infarcted Heart in Mice and Non-Human Primates. Circulation 2023; 148:1395-1409. [PMID: 37732466 PMCID: PMC10683868 DOI: 10.1161/circulationaha.122.061736] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Remuscularization of the mammalian heart can be achieved after cell transplantation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). However, several hurdles remain before implementation into clinical practice. Poor survival of the implanted cells is related to insufficient vascularization, and the potential for fatal arrhythmogenesis is associated with the fetal cell-like nature of immature CMs. METHODS We generated 3 lines of hiPSC-derived endothelial cells (ECs) and hiPSC-CMs from 3 independent donors and tested hiPSC-CM sarcomeric length, gap junction protein, and calcium-handling ability in coculture with ECs. Next, we examined the therapeutic effect of the cotransplantation of hiPSC-ECs and hiPSC-CMs in nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice undergoing myocardial infarction (n≥4). Cardiac function was assessed by echocardiography, whereas arrhythmic events were recorded using 3-lead ECGs. We further used healthy non-human primates (n=4) with cell injection to study the cell engraftment, maturation, and integration of transplanted hiPSC-CMs, alone or along with hiPSC-ECs, by histological analysis. Last, we tested the cell therapy in ischemic reperfusion injury in non-human primates (n=4, 3, and 4 for EC+CM, CM, and control, respectively). Cardiac function was evaluated by echocardiography and cardiac MRI, whereas arrhythmic events were monitored by telemetric ECG recorders. Cell engraftment, angiogenesis, and host-graft integration of human grafts were also investigated. RESULTS We demonstrated that human iPSC-ECs promote the maturity and function of hiPSC-CMs in vitro and in vivo. When cocultured with ECs, CMs showed more mature phenotypes in cellular structure and function. In the mouse model, cotransplantation augmented the EC-accompanied vascularization in the grafts, promoted the maturity of CMs at the infarct area, and improved cardiac function after myocardial infarction. Furthermore, in non-human primates, transplantation of ECs and CMs significantly enhanced graft size and vasculature and improved cardiac function after ischemic reperfusion. CONCLUSIONS These results demonstrate the synergistic effect of combining iPSC-derived ECs and CMs for therapy in the postmyocardial infarction heart, enabling a promising strategy toward clinical translation.
Collapse
Affiliation(s)
- Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Marvin L Hsieh
- Model Organisms Research Core, Department of Medicine (M.L.H., C.M.C.C., T.A.H.), University of Wisconsin-Madison
| | - Chen-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Cindy M C Chang
- Model Organisms Research Core, Department of Medicine (M.L.H., C.M.C.C., T.A.H.), University of Wisconsin-Madison
| | - Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Riley Puntney
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Amy Wu Moy
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Darien Zhing Herr Chan
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Martin W Nicholson
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Po-Ju Lin
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Hung-Chih Chen
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
| | - Gina C Kim
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
| | - Jianhua Zhang
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
| | - Jennifer Coonen
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Puja Basu
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Heather A Simmons
- Wisconsin National Primate Research Center (R.P., A.W.M., J.C., P.B., H.A.S.), University of Wisconsin-Madison
| | - Yen-Wen Liu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan (Y.W.L.)
| | - Timothy A Hacker
- Model Organisms Research Core, Department of Medicine (M.L.H., C.M.C.C., T.A.H.), University of Wisconsin-Madison
| | - Timothy J Kamp
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taiwan (Y.C.C., C.J.L., C.Y.H., C.Y.T., D.Z.H.C., M.W.N., P.J.L., H.C.C., P.C.H.H.)
- Department of Medicine and Stem Cell and Regenerative Medicine Center (G.C.K., J.Z., T.J.K., P.C.H.H.), University of Wisconsin-Madison
- Institute of Medical Genomics and Proteomics and Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (P.C.H.H.)
| |
Collapse
|
2
|
Yang C, Li Z, Liu Y, Hou R, Lin M, Fu L, Wu D, Liu Q, Li K, Liu C. Single-cell spatiotemporal analysis reveals cell fates and functions of transplanted mesenchymal stromal cells during bone repair. Stem Cell Reports 2022; 17:2318-2333. [PMID: 36150383 PMCID: PMC9561611 DOI: 10.1016/j.stemcr.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) transplantation could enhance bone repair. However, the cell fate of transplanted MSCs, in terms of their local distribution and spatial associations with other types of cells were poorly understood. Here, we developed a single-cell 3D spatial correlation (sc3DSC) method to track transplanted MSCs based on deep tissue microscopy of fluorescent nanoparticles (fNPs) and immunofluorescence of key proteins. Locally delivered fNP-labeled MSCs enhanced tibial defect repair, increased the number of stem cells and vascular maturity in mice. fNP-MSCs persisted in the defect throughout repair. But only a small portion of transplanted cells underwent osteogenic differentiation (OSX+); a significant portion has maintained their expression of mesenchymal stem cell and skeletal stem cell markers (SCA-1 and PRRX1). Our results contribute to the optimization of MSC-based therapies. The sc3DSC method may be useful in studying cell-based therapies for the regeneration of other tissue types or disease models. Transplanted marrow stromal cells associated with vessels during bone defect repair Small proportion of transplanted cells differentiated into osteogenic cells A proportion of transplanted cells maintained expressions of stem cell markers
Collapse
Affiliation(s)
- Chengyu Yang
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeshun Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runpeng Hou
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minmin Lin
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Linhao Fu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Decheng Wu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quanying Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kai Li
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chao Liu
- Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Shi L, Li W, Liu Y, Chen Z, Hui Y, Hao P, Xu X, Zhang S, Feng H, Zhang B, Zhou S, Li N, Xiao L, Liu L, Ma L, Zhang X. Generation of hypoimmunogenic human pluripotent stem cells via expression of membrane-bound and secreted β2m-HLA-G fusion proteins. Stem Cells 2020; 38:1423-1437. [PMID: 32930470 DOI: 10.1002/stem.3269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023]
Abstract
Allogeneic immune rejection is a major barrier for the application of human pluripotent stem cells (hPSCs) in regenerative medicine. A broad spectrum of immune cells, including T cells, natural killer (NK) cells, and antigen-presenting cells, which either cause direct cell killing or constitute an immunogenic environment, are involved in allograft immune rejection. A strategy to protect donor cells from cytotoxicity while decreasing the secretion of inflammatory cytokines of lymphocytes is still lacking. Here, we engineered hPSCs with no surface expression of classical human leukocyte antigen (HLA) class I proteins via beta-2 microglobulin (B2M) knockout or biallelic knockin of HLA-G1 within the frame of endogenous B2M loci. Elimination of the surface expression of HLA class I proteins protected the engineered hPSCs from cytotoxicity mediated by T cells. However, this lack of surface expression also resulted in missing-self response and NK cell activation, which were largely compromised by expression of β2m-HLA-G1 fusion proteins. We also proved that the engineered β2m-HLA-G5 fusion proteins were soluble, secretable, and capable of safeguarding low immunogenic environments by lowering inflammatory cytokines secretion in allografts. Our current study reveals a novel strategy that may offer unique advantages to construct hypoimmunogenic hPSCs via the expression of membrane-bound and secreted β2m-HLA-G fusion proteins. These engineered hPSCs are expected to serve as an unlimited cell source for generating universally compatible "off-the-shelf" cell grafts in the future.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China.,Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wenjing Li
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yang Liu
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Zhenyu Chen
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yi Hui
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Pengcheng Hao
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiangjie Xu
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shuwei Zhang
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hexi Feng
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bowen Zhang
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Shanshan Zhou
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Nan Li
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China.,Shanghai SiDanSai Biotechnology Limited Company, Shanghai, People's Republic of China
| | - Ling Liu
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
| | - Lin Ma
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
| | - Xiaoqing Zhang
- Brain and Spinal Cord Clinical Research Center, Tongji University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, Shanghai, People's Republic of China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China.,Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai, People's Republic of China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Hu X, Kueppers ST, Kooreman NG, Gravina A, Wang D, Tediashvili G, Schlickeiser S, Frentsch M, Nikolaou C, Thiel A, Marcus S, Fuchs S, Velden J, Reichenspurner H, Volk HD, Deuse T, Schrepfer S. The H-Y Antigen in Embryonic Stem Cells Causes Rejection in Syngeneic Female Recipients. Stem Cells Dev 2020; 29:1179-1189. [PMID: 32723003 DOI: 10.1089/scd.2019.0299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pluripotent stem cells are promising candidates for cell-based regenerative therapies. To avoid rejection of transplanted cells, several approaches are being pursued to reduce immunogenicity of the cells or modulate the recipient's immune response. These include gene editing to reduce the antigenicity of cell products, immunosuppression of the host, or using major histocompatibility complex-matched cells from cell banks. In this context, we have investigated the antigenicity of H-Y antigens, a class of minor histocompatibility antigens encoded by the Y chromosome, to assess whether the gender of the donor affects the cell's antigenicity. In a murine transplant model, we show that the H-Y antigen in undifferentiated embryonic stem cells (ESCs), as well as ESC-derived endothelial cells, provokes T- and B cell responses in female recipients.
Collapse
Affiliation(s)
- Xiaomeng Hu
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Simon T Kueppers
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA.,Department of Medicine, Stanford University, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Department of Vascular Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Alessia Gravina
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Dong Wang
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Grigol Tediashvili
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Stephan Schlickeiser
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Marco Frentsch
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christos Nikolaou
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Andreas Thiel
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sivan Marcus
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg, Hamburg, Germany
| | - Joachim Velden
- Evotec AG, Histopathology and In Vivo Pharmacology, Hamburg, Germany
| | - Hermann Reichenspurner
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Hans-Dieter Volk
- BIH-Center for Regenerative Therapies (BCRT), Charité University Medicine and Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Tobias Deuse
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA
| | - Sonja Schrepfer
- Transplant and Stem Cell Immunobiology Lab, Department of Surgery, University of California, San Francisco, California, USA.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,University Heart & Vascular Center Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Haworth R, Sharpe M. Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol Pathol 2020; 49:1308-1316. [PMID: 32319357 DOI: 10.1177/0192623320918241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.
Collapse
|
6
|
Han D, Wu JC. Using Bioengineered Bioluminescence to Track Stem Cell Transplantation In Vivo. Methods Mol Biol 2020; 2126:1-11. [PMID: 32112374 PMCID: PMC10902212 DOI: 10.1007/978-1-0716-0364-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Bioluminescence imaging enables the real-time detection and tracking of engrafted cells in vivo noninvasively and dynamically. By detecting and quantifying the photons released from the oxidation of luciferin catalyzed by luciferase enzymes, this approach has proven effective in tracking engrafted stem cell survival and retention, making it a powerful tool to monitor cell fate after transplantation without animal sacrifice. Here we describe a protocol that allows luciferase-labeled stem cells to be imaged and tracked in vivo by bioluminescent imaging via an IVIS spectrum imaging system.
Collapse
Affiliation(s)
- Dong Han
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Bogomiakova ME, Eremeev AV, Lagarkova MA. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? Mol Biol 2019. [DOI: 10.1134/s0026893319050042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Affiliation(s)
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Germany
| |
Collapse
|
9
|
Liu J, Huang Z, Yang L, Wang X, Wang S, Li C, Liu Y, Cheng Y, Wang B, Sang X, He X, Wang C, Liu T, Liu C, Jin L, Liu C, Zhang X, Wang L, Wang Z. Embryonic Stem Cells Modulate the Cancer-Permissive Microenvironment of Human Uveal Melanoma. Theranostics 2019; 9:4764-4778. [PMID: 31367256 PMCID: PMC6643444 DOI: 10.7150/thno.33139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/14/2019] [Indexed: 02/03/2023] Open
Abstract
The currently used anti-cancer therapies work by killing cancer cells but result in adverse effects and resistance to treatment, which accelerates aging and causes damage to normal somatic cells. On one hand, chicken and zebrafish embryos can reprogram cancer cells towards a non-tumorigenic phenotype; however, they cannot be used in the clinical practice. On the other hand, embryonic stem cells (ESCs) mimic the early embryonic microenvironment and are easily available. We investigated the therapeutic efficacy of the ESC microenvironment (ESCMe) in human uveal melanoma in vitro and in vivo. Methods: Human uveal melanoma C918 cells co-cultured with ESCs were used to measure the levels of mRNA and protein of the phosphoinositide 3-kinase (PI3K) pathway. Cell proliferation, invasiveness, and tumorigenicity of C918 cells were also analyzed. To mimic the tumor microenvironment in vivo, we co-cultured C918 cells and normal somatic cells with ESCs in a co-culture system and evaluated the therapeutic potential of ESCMe in both cell types. For an in vivo study, a mouse tumor model was used to test the safety and efficacy of the transplanted ESC. Elimination of the transplanted ESCs in mice was carried out by using the ESC-transfected with a thymidine kinase suicidal gene followed by administration of ganciclovir to prevent the formation of teratomas by ESCs. Results: In vitro studies confirmed that ESCMe inhibits the proliferation, invasiveness, and tumorigenicity of C918 cells, and the PI3K agonist abolished these effects. ESCMe suppressed the various malignant behaviors of uveal melanoma cells but enhanced the proliferation of normal somatic cells both in vitro and in vivo. Further, we demonstrated that ESCMe suppressed the PI3K pathway in tumor cells but activated in somatic cells. Conclusions: The ESCMe can effectively suppress the malignant phenotype of uveal melanoma cells and modulate the tumor-promoting aging environment by preventing the senescence of normal cells through the bidirectional regulation of the PI3K signaling. Our results suggest that ESC transplantation can serve as an effective and safe approach for treating cancer without killing cells.
Collapse
|
10
|
Nejadnik H, Tseng J, Daldrup-Link H. Magnetic resonance imaging of stem cell-macrophage interactions with ferumoxytol and ferumoxytol-derived nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1552. [PMID: 30734542 PMCID: PMC6579657 DOI: 10.1002/wnan.1552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
"Off the shelf" allogeneic stem cell transplants and stem cell nano-composites are being used for the treatment of degenerative bone diseases. However, major and minor histocompatibility antigens of therapeutic cell transplants can be recognized as foreign and lead to their rejection by the host immune system. If a host immune response is identified within the first week post-transplant, immune modulating therapies could be applied to prevent graft failure and support engraftment. Ferumoxytol (Feraheme™) is an FDA approved iron oxide nanoparticle preparation for the treatment of anemia in patients. Ferumoxytol can be used "off label" as an magnetic resonance (MR) contrast agent, as these nanoparticles provide measurable signal changes on magnetic resonance imaging (MRI). In this focused review article, we will discuss three methods to localize and identify innate immune responses to stem cell transplants using ferumoxytol-enhanced MRI, which are based on tracking stem cells, tracking macrophages or detecting mediators of cell death: (a) monitor MRI signal changes of ferumoxytol-labeled stem cells in the presence or absence of innate immune responses, (b) monitor influx of ferumoxytol-labeled macrophages into stem cell implants, and (c) monitor apoptosis of stem cell implants with caspase-3 activatable nanoparticles. These techniques can detect transplant failure at an early stage, when immune-modulating interventions can potentially preserve the viability of the cell transplants and thereby improve bone and cartilage repair outcomes. Approaches 1 and 2 are immediately translatable to clinical practice. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Hossein Nejadnik
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Jessica Tseng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Heike Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| |
Collapse
|
11
|
Nguyen PK, Neofytou E, Rhee JW, Wu JC. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review. JAMA Cardiol 2018; 1:953-962. [PMID: 27579998 DOI: 10.1001/jamacardio.2016.2750] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Importance Although progress continues to be made in the field of stem cell regenerative medicine for the treatment of cardiovascular disease, significant barriers to clinical implementation still exist. Objectives To summarize the current barriers to the clinical implementation of stem cell therapy in patients with cardiovascular disease and to discuss potential strategies to overcome them. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 25, 2016. Ten randomized clinical trials and 8 systematic reviews were included. Findings One of the major clinical barriers facing the routine implementation of stem cell therapy in patients with cardiovascular disease is the limited and inconsistent benefit observed thus far. Reasons for this finding are unclear but may be owing to poor cell retention and survival, as suggested by numerous preclinical studies and a small number of human studies incorporating imaging to determine cell fate. Additional studies in humans using imaging to determine cell fate are needed to understand how these factors contribute to the limited efficacy of stem cell therapy. Treatment strategies to address poor cell retention and survival are under investigation and include the following: coadministration of immunosuppressive and prosurvival agents, delivery of cardioprotective factors packaged in exosomes rather than the cells themselves, and use of tissue-engineering strategies to provide structural support for cells. If larger grafts are achieved using these strategies, it will be imperative to carefully monitor for the potential risks of tumorigenicity, immunogenicity, and arrhythmogenicity. Conclusions and Relevance Despite important achievements to date, stem cell therapy is not yet ready for routine clinical implementation. Significant research is still needed to address the clinical barriers outlined herein before the next wave of large clinical trials is under way.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California3Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California4Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
12
|
Da Sacco S, Perin L, Sedrakyan S. Amniotic fluid cells: current progress and emerging challenges in renal regeneration. Pediatr Nephrol 2018. [PMID: 28620747 DOI: 10.1007/s00467-017-3711-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amniotic fluid (AF) contains a heterogeneous population of cells that have been identified to possess pluripotent and progenitor-like characteristics. These cells have been applied in various regenerative medicine applications ranging from in vitro cell differentiation to tissue engineering to cellular therapies for different organs including the heart, the liver, the lung, and the kidneys. In this review, we examine the different methodologies used for the derivation of amniotic fluid stem cells and renal progenitors, and their application in renal repair and regeneration. Moreover, we discuss the recent achievements and newly emerging challenges in our understanding of their biology, their immunoregulatory characteristics, and their paracrine-mediated therapeutic potential for the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Children's Hospital Los Angeles, Division of Urology, Saban Research Institute, University of Southern California, 4650 Sunset Boulevard, Mailstop #35, Los Angeles, CA, 90027, USA.
| |
Collapse
|
13
|
J Siney E, Kurbatskaya K, Chatterjee S, Prasannan P, Mudher A, Willaime-Morawek S. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC technologies. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Chen G, Lin S, Huang D, Zhang Y, Li C, Wang M, Wang Q. Revealing the Fate of Transplanted Stem Cells In Vivo with a Novel Optical Imaging Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14. [PMID: 29171718 DOI: 10.1002/smll.201702679] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/30/2017] [Indexed: 05/17/2023]
Abstract
Stem-cell-based regenerative medicine holds great promise in clinical practices. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, is not fully understood, which is critical to understand the process and the underlying mechanism of regeneration for better therapeutic effects. Herein, we develop a dual-labeling strategy to in situ visualize the fate of transplanted stem cells in vivo by combining the exogenous near-infrared fluorescence imaging in the second window (NIR-II) and endogenous red bioluminescence imaging (BLI). The NIR-II fluorescence of Ag2 S quantum dots is employed to dynamically monitor the trafficking and distribution of all transplanted stem cells in vivo due to its deep tissue penetration and high spatiotemporal resolution, while BLI of red-emitting firefly luciferase (RfLuc) identifies the living stem cells after transplantation in vivo because only the living stem cells express RfLuc. This facile strategy allows for in situ visualization of the dynamic trafficking of stem cells in vivo and the quantitative evaluation of cell translocation and viability with high temporal and spatial resolution, and thus reports the fate of transplanted stem cells and how the living stem cells help, regeneration, for an instance, of a mouse with acute liver failure.
Collapse
Affiliation(s)
- Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Suying Lin
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Suzhou NIR-Optics Technology Co., Ltd., Suzhou, 215124, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Mao Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Lee S, Kivimäe S, Szoka FC. Clodronate Improves Survival of Transplanted Hoxb8 Myeloid Progenitors with Constitutively Active GMCSFR in Immunocompetent Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:60-73. [PMID: 29034260 PMCID: PMC5633862 DOI: 10.1016/j.omtm.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
New methods to produce large numbers of myeloid progenitor cells, precursors to macrophages (MΦs), by maintaining Hoxb8 transcription factor activity1 has reinvigorated interest in MΦ cell therapies. We generated Hoxb8-dependent myeloid progenitors (HDPs) by transducing lineage-negative bone marrow cells with a constitutively expressed Hoxb8 flanked by loxP. HDPs proliferate indefinitely and differentiate into MΦ when Hoxb8 is removed by a tamoxifen-inducible Cre. We genetically modified HDPs with a constitutively active GMCSF receptor and the tamoxifen-induced transcription factor IRF8, which we have termed “HDP-on.” The HDP-on proliferates without GMCSF and differentiates into the MΦ upon exposure to tamoxifen and ruxolitinib (GMCSF inhibitor via JAK1/2 blockade). We quantified the biodistribution of HDPs transplanted via intraperitoneal injection into immunodeficient NCG mice with a luciferase reporter; HDPs are detected for 14 days in the peritoneal cavity, liver, spleen, kidney, bone marrow, brain, lung, heart, and blood. In immunocompetent BALB/c mice, HDP-on cells, but not HDPs, are detected 1 day post-transplantation in the peritoneal cavity. Pretreatment of BALB/c mice with liposomal clodronate significantly enhances survival at day 7 for HDPs and HDP-on cells in the peritoneal cavity, spleen, and liver, but cells are undetectable at day 14. Short-term post-transplantation survival of HDPs is significantly improved using HDP-on and liposomal clodronate, opening a path for MΦ-based therapeutics.
Collapse
Affiliation(s)
- Simon Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Saul Kivimäe
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Francis C Szoka
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. RECENT FINDINGS Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. SUMMARY Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs.
Collapse
|
17
|
Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells. Sci Rep 2017; 7:12996. [PMID: 29021610 PMCID: PMC5636829 DOI: 10.1038/s41598-017-13522-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Resolving the immunogenicity of cells derived from induced pluripotent stem cells (iPSCs) remains an important challenge for cell transplant strategies that use banked allogeneic cells. Thus, we evaluated the immunogenicity of mouse fetal neural stem/progenitor cells (fetus-NSPCs) and iPSC-derived neural stem/progenitor cells (iPSC-NSPCs) both in vitro and in vivo. Flow cytometry revealed the low expression of immunological surface antigens, and these cells survived in all mice when transplanted syngeneically into subcutaneous tissue and the spinal cord. In contrast, an allogeneic transplantation into subcutaneous tissue was rejected in all mice, and allogeneic cells transplanted into intact and injured spinal cords survived for 3 months in approximately 20% of mice. In addition, cell survival was increased after co-treatment with an immunosuppressive agent. Thus, the immunogenicity and post-transplantation immunological dynamics of iPSC-NSPCs resemble those of fetus-NSPCs.
Collapse
|
18
|
Johannsen H, Muppala V, Gröschel C, Monecke S, Elsner L, Didié M, Zimmermann WH, Dressel R. Immunological Properties of Murine Parthenogenetic Stem Cells and Their Differentiation Products. Front Immunol 2017; 8:924. [PMID: 28824647 PMCID: PMC5543037 DOI: 10.3389/fimmu.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/20/2017] [Indexed: 12/27/2022] Open
Abstract
The perspective to transplant grafts derived from pluripotent stem cells has gained much attention in recent years. Parthenogenetic stem cells (PSCs) are an alternative pluripotent stem cell type that is attractive as source of grafts for allogeneic transplantations because most PSCs are haploidentical for the major histocompatibility complex (MHC). This reduced immunogenetic complexity of PSCs could tremendously simplify the search for MHC-matched allogeneic stem cells. In this study, we have characterized immunological properties of the MHC haploidentical PSC line A3 (H2d/d) and the heterologous PSC line A6 (H2b/d). Both PSC lines largely lack MHC class I molecules, which present peptides to cytotoxic T lymphocytes (CTLs) and serve as ligands for inhibitory natural killer (NK) receptors. They express ligands for activating NK receptors, including the NKG2D ligand RAE-1, and the DNAM-1 ligands CD112 and CD155. Consequently, both PSC lines are highly susceptible to killing by IL-2-activated NK cells. In vitro-differentiated cells acquire resistance and downregulate ligands for activating NK receptors but fail to upregulate MHC class I molecules. The PSC line A6 and differentiated A6 cells are largely resistant to CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the appropriate peptide. The high susceptibility to killing by activated NK cells may constitute a general feature of pluripotent stem cells as it has been also found with other pluripotent stem cell types. This activity potentially increases the safety of transplantations, if grafts contain traces of undifferentiated cells that could be tumorigenic in the recipient.
Collapse
Affiliation(s)
- Hannah Johannsen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijayakumar Muppala
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Carina Gröschel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Didié
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Hübscher D, Kaiser D, Elsner L, Monecke S, Dressel R, Guan K. The Tumorigenicity of Multipotent Adult Germline Stem Cells Transplanted into the Heart Is Affected by Natural Killer Cells and by Cyclosporine A Independent of Its Immunosuppressive Effects. Front Immunol 2017; 8:67. [PMID: 28220117 PMCID: PMC5292627 DOI: 10.3389/fimmu.2017.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Transplantation of stem cells represents an upcoming therapy for many degenerative diseases. For clinical use, transplantation of pluripotent stem cell-derived cells should lead to integration of functional grafts without immune rejection or teratoma formation. Our previous studies showed that the risk of teratoma formation is highly influenced by the immune system of the recipients. In this study, we have observed a higher teratoma formation rate when undifferentiated so-called multipotent adult germline stem cells (maGSCs) were transplanted into the heart of T, B, and natural killer (NK) cell-deficient RAG2−/−γc−/− mice than in RAG2−/− mice, which still have NK cells. Notably, in both strains, the teratoma formation rate was significantly reduced by the immunosuppressive drug cyclosporine A (CsA). Thus, CsA had a profound effect on teratoma formation independent of its immunosuppressive effects. The transplantation into RAG2−/− mice led to an activation of NK cells, which reached the maximum 14 days after transplantation and was not affected by CsA. The in vivo-activated NK cells efficiently killed YAC-1 and also maGSC target cells. This NK cell activation was confirmed in C57BL/6 wild-type mice whether treated with CsA or not. Sham operations in wild-type mice indicated that the inflammatory response to open heart surgery rather than the transplantation of maGSCs activated the NK cell system. An activation of NK cells during the transplantation of stem cell-derived in vitro differentiated grafts might be clinically beneficial by reducing the risk of teratoma formation by residual pluripotent cells.
Collapse
Affiliation(s)
- Daniela Hübscher
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Diana Kaiser
- Department of Cardiology and Pneumology, University Medical Center Göttingen , Göttingen , Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Sebastian Monecke
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany; Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany; Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Daldrup-Link HE, Chan C, Lenkov O, Taghavigarmestani S, Nazekati T, Nejadnik H, Chapelin F, Khurana A, Tong X, Yang F, Pisani L, Longaker M, Gambhir SS. Detection of Stem Cell Transplant Rejection with Ferumoxytol MR Imaging: Correlation of MR Imaging Findings with Those at Intravital Microscopy. Radiology 2017; 284:495-507. [PMID: 28128708 DOI: 10.1148/radiol.2017161139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose To determine whether endogenous labeling of macrophages with clinically applicable nanoparticles enables noninvasive detection of innate immune responses to stem cell transplants with magnetic resonance (MR) imaging. Materials and Methods Work with human stem cells was approved by the institutional review board and the stem cell research oversight committee, and animal experiments were approved by the administrative panel on laboratory animal care. Nine immunocompetent Sprague-Dawley rats received intravenous injection of ferumoxytol, and 18 Jax C57BL/6-Tg (Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6) 2Bck/J mice received rhodamine-conjugated ferumoxytol. Then, 48 hours later, immune-matched or mismatched stem cells were implanted into osteochondral defects of the knee joints of experimental rats and calvarial defects of Jax mice. All animals underwent serial MR imaging and intravital microscopy (IVM) up to 4 weeks after surgery. Macrophages of Jax C57BL/6-Tg (Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6) 2Bck/J mice express enhanced green fluorescent protein (GFP), which enables in vivo correlation of ferumoxytol enhancement at MR imaging with macrophage quantities at IVM. All quantitative data were compared between experimental groups by using a mixed linear model and t tests. Results Immune-mismatched stem cell implants demonstrated stronger ferumoxytol enhancement than did matched stem cell implants. At 4 weeks, T2 values of mismatched implants were significantly lower than those of matched implants in osteochondral defects of female rats (mean, 10.72 msec for human stem cells and 11.55 msec for male rat stem cells vs 15.45 msec for sex-matched rat stem cells; P = .02 and P = .04, respectively) and calvarial defects of recipient mice (mean, 21.7 msec vs 27.1 msec, respectively; P = .0444). This corresponded to increased recruitment of enhanced GFP- and rhodamine-ferumoxytol-positive macrophages into stem cell transplants, as visualized with IVM and histopathologic examination. Conclusion Endogenous labeling of macrophages with ferumoxytol enables noninvasive detection of innate immune responses to stem cell transplants with MR imaging. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Heike E Daldrup-Link
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Carmel Chan
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Olga Lenkov
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Seyedmeghdad Taghavigarmestani
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Toktam Nazekati
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Hossein Nejadnik
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Fanny Chapelin
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Aman Khurana
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Xinming Tong
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Fan Yang
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Laura Pisani
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Michael Longaker
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| | - Sanjiv Sam Gambhir
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS) (H.E.D.L., C.C., O.L., S.T., T.N., H.N., F.C., A.K., F.Y., L.P., M.L., S.S.G.), Department of Pediatrics (H.E.D.L.), Institute for Stem Cell Biology and Regenerative Medicine (H.E.D.L.), Department of Orthopaedic Surgery (X.T., F.Y.), Department of Bioengineering (F.Y., S.S.G.), Department of Surgery, Division of Plastic and Reconstructive Surgery (M.L.), and Department of Materials Science and Engineering (M.L., S.S.G.), Stanford University, 725 Welch Rd, Room 1665, Stanford, CA 94305-5614
| |
Collapse
|
21
|
Jiang L, Jones S, Jia X. Stem Cell Transplantation for Peripheral Nerve Regeneration: Current Options and Opportunities. Int J Mol Sci 2017; 18:ijms18010094. [PMID: 28067783 PMCID: PMC5297728 DOI: 10.3390/ijms18010094] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
Peripheral nerve regeneration is a complicated process highlighted by Wallerian degeneration, axonal sprouting, and remyelination. Schwann cells play an integral role in multiple facets of nerve regeneration but obtaining Schwann cells for cell-based therapy is limited by the invasive nature of harvesting and donor site morbidity. Stem cell transplantation for peripheral nerve regeneration offers an alternative cell-based therapy with several regenerative benefits. Stem cells have the potential to differentiate into Schwann-like cells that recruit macrophages for removal of cellular debris. They also can secrete neurotrophic factors to promote axonal growth, and remyelination. Currently, various types of stem cell sources are being investigated for their application to peripheral nerve regeneration. This review highlights studies involving the stem cell types, the mechanisms of their action, methods of delivery to the injury site, and relevant pre-clinical or clinical data. The purpose of this article is to review the current point of view on the application of stem cell based strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Liangfu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Salazar Jones
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaofeng Jia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Yoshizawa H, Senda D, Natori Y, Tanaka R, Mizuno H, Hayashi A. End-to-Side Neurorrhaphy as Schwann Cells Provider to Acellular Nerve Allograft and Its Suitable Application. PLoS One 2016; 11:e0167507. [PMID: 27907118 PMCID: PMC5132318 DOI: 10.1371/journal.pone.0167507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Axonal regeneration relies on support from proliferating host Schwann cells (SCs), and previous studies on acellular nerve allografts (ANGs) suggest that axons can regenerate into ANGs within a limited distance. Numerous studies have demonstrated that the supplementation of ANGs with exogenous factors, such as cultured SCs, stem cells, and growth factors, promote nerve regeneration in ANGs. However, there are several problems associated with their utilization. In this study, we investigated whether end-to-side (ETS) neurorrhaphy, which is an axonal provider, could be useful as an SC provider to support axonal elongation in ANGs. We found that ETS neurorrhaphy effectively promoted SC migration into ANGs when an epineurium window combined with partial neurectomy was performed, and the effectiveness increased when it was applied bilaterally. When we transplanted ANGs containing migrated SCs via ETS neurorrhaphy (hybrid ANGs) to the nerve gap, hybrid ANGs increased the number of regenerated axons and facilitated rapid axonal elongation, particularly when ETS neurorrhaphy was applied to both edges of the graft. This approach may represent a novel application of ETS neurorrhaphy and lead to the development of hybrid ANGs, making ANGs more practical in a clinical setting.
Collapse
Affiliation(s)
- Hidekazu Yoshizawa
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Daiki Senda
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuhei Natori
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Rica Tanaka
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW In this review, we summarize the current status of clinical trials using therapeutic cells produced from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). We also discuss combined cell and gene therapy via correction of defined mutations in human pluripotent stem cells and provide commentary on key obstacles facing widescale clinical adoption of pluripotent stem cell-based therapy. RECENT FINDINGS Initial data suggest that hESC/hiPSC-derived cell products used for retinal repair and spinal cord injury are safe for human use. Early-stage studies for treatment of cardiac injury and diabetes are also in progress. However, there remain key concerns regarding the safety and efficacy of these cells that need to be addressed in additional well designed clinical trials. Advances using the clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing system offer an improved tool for more rapid and on-target gene correction of genetic diseases. Combined gene and cell therapy using human pluripotent stem cells may provide an additional curative approach for disabling or lethal genetic and degenerative diseases wherein there are currently limited therapeutic opportunities. SUMMARY Human pluripotent stem cells are emerging as a promising tool to produce cells and tissues suitable for regenerative therapy for a variety of genetic and degenerative diseases.
Collapse
|
24
|
Huang PJ, Kuo CC, Lee HC, Shen CI, Cheng FC, Wu SF, Chang JC, Pan HC, Lin SZ, Liu CS, Su HL. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains. Cell Transplant 2015; 25:913-27. [PMID: 26555763 DOI: 10.3727/096368915x689785] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Transferring exogenous mitochondria has therapeutic effects on damaged heart, liver, and lung tissues. Whether this protective effect requires the symbiosis of exogenous mitochondria in host cells remains unknown. Here xenogenic mitochondria derived from a hamster cell line were applied to ischemic rat brains and rat primary cortical neurons. Isolated hamster mitochondria, either through local intracerebral or systemic intra-arterial injection, significantly restored the motor performance of brain-ischemic rats. The brain infarct area and neuronal cell death were both attenuated by the exogenous mitochondria. Although internalized mitochondria could be observed in neurons and astrocytes, the low efficacy of mitochondrial internalization could not completely account for the high rate of rescue of the treated neural cells. We further illustrated that disrupting electron transport or ATPase synthase in mitochondria significantly attenuated the protective effect, suggesting that intact respiratory activity is essential for the mitochondrial potency on neural protection. These results emphasize that nonsymbiotic extracellular mitochondria can provide an effective cell defense against acute injurious ischemic stress in the central nervous system.
Collapse
Affiliation(s)
- Po-Jui Huang
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pan Y, Leveson-Gower DB, de Almeida PE, Pierini A, Baker J, Florek M, Nishikii H, Kim BS, Ke R, Wu JC, Negrin RS. Engraftment of embryonic stem cells and differentiated progeny by host conditioning with total lymphoid irradiation and regulatory T cells. Cell Rep 2015; 10:1793-802. [PMID: 25801020 DOI: 10.1016/j.celrep.2015.02.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022] Open
Abstract
Embryonic stem cells (ESCs) hold promise for the treatment of many medical conditions; however, their utility is limited by immune rejection. The objective of our study is to establish tolerance or promote engraftment of transplanted ESCs as well as mature cell populations derived from ESCs. Luciferase (luc(+))-expressing ESCs were utilized to monitor the survival of the ESCs and differentiated progeny in living recipients. Allogeneic recipients conditioned with fractioned total lymphoid irradiation (TLI) and anti-thymocyte serum (ATS) or TLI plus regulatory T cells (T(reg)) promoted engraftment of ESC allografts after transplantation. Following these treatments, the engraftment of transplanted terminally differentiated endothelial cells derived from ESCs was also significantly enhanced. Our findings provide clinically translatable strategies of inducing tolerance to adoptively transferred ESCs for cell replacement therapy of medical disorders.
Collapse
|
26
|
Abstract
Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal tissue engineering. However, there remain a number of limitations affecting their therapeutic efficiency. Due to the considerable proliferation and differentiation capacities, recently described induced pluripotent stem cells (iPSCs) provide a new way for cell-based therapies for periodontal regeneration. This review outlines the latest status of periodontal tissue engineering and highlights the potential use of iPSCs in periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mi Du
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| | - Xuejing Duan
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, No.324 Jingwu Rd., Jinan, 250000 People's Republic of China
| | - Pishan Yang
- Shandong provincial key laboratory of oral tissue regeneration, Department of Periodontology, School of Stomatology, Shandong University, No.44-1 West Wenhua Rd., Jinan, 250012 People's Republic of China
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Ongoing research is constantly looking for means to modulate the immune system for long-lasting engraftment of pluripotent stem cells (PSC) during stem cell-based therapies. This study reviews data on in-vitro and in-vivo immunogenicity of embryonic and induced-PSC and describes how their immunological properties can be harnessed for tolerance induction in organ transplantation. RECENT FINDINGS Although PSC display immunomodulatory properties in vitro, they are capable of eliciting an immune response that leads to cell rejection when transplanted into immune-competent recipients. Nevertheless, long-term acceptance of PSC-derived cells/tissues in an allogeneic environment can be achieved using minimal host conditioning. Protocols for differentiating PSC towards haematopoietic stem cells, thymic epithelial precursors, dendritic cells, regulatory T cells and myeloid-derived suppressor cells are being developed, suggesting the possibility to use PSC-derived immunomodulatory cells to induce tolerance to a solid organ transplant. SUMMARY PSC and/or their derivatives possess unique immunological properties that allow for acceptance of PSC-derived tissue with minimal host conditioning. Investigators involved either in regenerative or in transplant medicine must join their efforts with the ultimate aim of using PSC as a source of donor-specific cells that would create a protolerogenic environment to achieve tolerance in solid organ transplantation.
Collapse
|
28
|
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med 2015; 10:287-304. [DOI: 10.2217/rme.15.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major goals of regenerative medicine is repair or replacement of diseased and damaged tissues by transfer of differentiated stem cells or stem cell-derived tissues. The possibility that these tissues will be destroyed by immunological rejection remains a challenge that can only be overcome through a better understanding of the nature and expression of potentially immunogenic molecules associated with cell replacement therapy and the mechanisms and pathways resulting in their immunologic rejection. This review draws on clinical experience of organ and tissue transplantation, and on transplantation immunology research to consider practical approaches for avoiding and overcoming the possibility of rejection of stem cell-derived tissues.
Collapse
Affiliation(s)
- Eleanor M Bolton
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John Andrew Bradley
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
29
|
Karabekian Z, Idrees S, Ding H, Jamshidi A, Posnack NG, Sarvazyan N. Downregulation of beta-microglobulin to diminish T-lymphocyte lysis of non-syngeneic cell sources of engineered heart tissue constructs. ACTA ACUST UNITED AC 2015; 10:034101. [PMID: 25775354 DOI: 10.1088/1748-6041/10/3/034101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The presence of non-autologous major histocompatibility complex class I (MHC-I) molecules on the surface of the grafted cells is one of the main reasons for their rejection in non-syngeneic hosts. We present a straightforward strategy to decrease the presence of MHC-I by shRNA inhibition of beta-2-microglobulin (B2M), a conservative light chain of MHC-I, on the surface of two main cell types that are used to engineer heart tissue constructs. Engineered heart tissue constructs can be generated by combining mouse WT19 fibroblasts and mouse embryonic stem cell-derived cardiac myocytes (mESC-CM). WT19 fibroblasts were stably transduced with an anti-B2M shRNA, which yielded a cell line with dramatically reduced B2M expression levels (16 ± 11% of mock treated control cell line). Interferon gamma treatment increased the levels of B2M expression by >3-fold in both control and transduced fibroblasts; yet, B2M expression levels still remained very low in the transduced cells. When compared with their unmodified counterparts, transduced fibroblasts caused 5.7-fold lesser activation of cognate T-cells. B2M depletion in mESC-CM was achieved by 72 h transduction with anti-B2M shRNA lentiviral particles. Transduced mESC-CM exhibited regular beating and expressed classical cardiac markers. When compared with their unmodified counterparts, transduced mESC-CM caused 2.5-fold lesser activation of cognate T-cells. In vivo assessment of B2M downregulation was performed by analyzing the preferential survival of B2M-downregulated cells in the intraperitoneal cavity of allogeneic mice. Both B2M-downregulated fibroblasts and B2M-downregulated myocytes survived significantly better when compared to their unmodified counterparts (2.01 ± 0.4 and 5.07 ± 1.6 fold increase in survival, respectively). In contrast, when modified WT19 fibroblasts were injected into the intraperitoneal cavity of syngeneic C57Bl/6 mice, no significant survival advantage was observed. Notably, the preferential survival of B2M-downregulated cells persisted in allogeneic hosts with normal levels of natural killer cells, although the effect was lesser in magnitude. Use of shRNA against beta-2-microglobulin offers a simple and effective approach to minimize immunogenicity of the main cellular components of cardiac tissue constructs in non-syngeneic recipients.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- Pharmacology and Physiology Department, The George Washington University, School of Medicine and Health Sciences, 2300 Eye Street, Washington DC 20037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Recombinant lentiviral vectors are powerful tools to stably manipulate human pluripotent stem cells. They can be used to deliver ectopic genes, shRNAs, miRNAs, or any possible genetic DNA sequence into diving and nondividing cells. Here we describe a general protocol for the production of self-inactivating lentiviral vector particles and their purification to high titers by either ultracentrifugation or ultrafiltration. Next we provide a basic procedure to transduce human pluripotent stem cells and propagate clonal cell lines.
Collapse
|
31
|
Abstract
Although cellular therapies hold great promise for the treatment of human disease, results from several initial clinical trials have not shown a level of efficacy required for their use as a first line therapy. Here we discuss how in vivo molecular imaging has helped identify barriers to clinical translation and potential strategies that may contribute to successful transplantation and improved outcomes, with a focus on cardiovascular and neurological diseases. We conclude with a perspective on the future role of molecular imaging in defining safety and efficacy for clinical implementation of stem cell therapies.
Collapse
|
32
|
Kim DY, Choi YS, Kim SE, Lee JH, Kim SM, Kim YJ, Rhie JW, Jun YJ. In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes. J Korean Med Sci 2014; 29 Suppl 3:S183-92. [PMID: 25473208 PMCID: PMC4248004 DOI: 10.3346/jkms.2014.29.s3.s183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022] Open
Abstract
There have been many attempts for regeneration of peripheral nerve injury. In this study, we examined the in vivo effects of non-differentiated and neuronal differentiated adipose-derived stem cells (ADSCs) in inducing the neuronal regeneration in the Sprague-Dawley (SD) rats undergoing nerve defect bridged with the PCL nanotubes. Then, we performed immunohistochemical and histopathologic examinations, as well as the electromyography, in three groups: the control group (14 sciatic nerves transplanted with the PCL nanotube scaffold), the experimental group I (14 sciatic nerves with the non-differentiated ADSCs at a density of 7×10(5) cells/0.1 mL) and the experimental group II (14 sciatic nerves with the neuronal differentiated ADSCs at 7×10(5) cells/0.1 mL). Six weeks postoperatively, the degree of the neuronal induction and that of immunoreactivity to nestin, MAP-2 and GFAP was significantly higher in the experimental group I and II as compared with the control group. In addition, the nerve conduction velocity (NCV) was significantly higher in the experimental group I and II as compared with the control group (P=0.021 and P=0.020, respectively). On the other hand, there was no significant difference in the NCV between the two experimental groups (P>0.05). Thus, our results will contribute to treating patients with peripheral nerve defects using PCL nanotubes with ADSCs.
Collapse
Affiliation(s)
- Dong-Yeon Kim
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| | - Yong-Seong Choi
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| | - Sung-Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University, Seoul, Korea
| | - Jung-Ho Lee
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| | - Sue-Min Kim
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| | - Young-Jin Kim
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| | - Jong-Won Rhie
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| | - Young-Joon Jun
- Department of Plastic and Reconstructive Surgery, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res 2014; 13:342-54. [PMID: 25218797 DOI: 10.1016/j.scr.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/29/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) are capable of extensive self-renewal and expansion and can differentiate into any somatic tissue, making them useful for regenerative medicine applications. Allogeneic transplantation of hESC-derived tissues from results in immunological rejection absent adjunctive immunosuppression. The goal of our study was to generate a universal pluripotent stem cell source by nucleofecting a mutated human leukocyte antigen G (mHLA-G) gene into hESCs using the PiggyBac transposon. We successfully generated stable mHLA-G(EF1α)-hESC lines using chEF1α promoter system that stably expressed mHLA-G protein during prolonged undifferentiated proliferation andin differentiated embryoid bodies as well as teratomas. Morphology, karyotype, and telomerase activity of mHLA-G expressing hESC were normal. Immunofluorescence staining and flow cytometry analysis revealed persistent expression of pluripotent markers, OCT-3/4 and SSEA-4, in undifferentiated mHLA-G(EF1α)-hESC. Nucleofected hESC formed teratomas and when directed to differentiate into epidermal precursors, expressed high levels of mHLA-G and keratinocyte markers K14 and CD29. Natural killer cell cytotoxicity assays demonstrated a significant decrease in lysis of mHLA-G(EF1a)-hESC targets relative to control cells. Similar results were obtained with mHLA-G(EF1α)-hESC-derived epidermal progenitors (hEEP). One way mixed T lymphocyte reactions unveiled that mHLA-G(EF1a)-hESC and -hEEP restrained the proliferative activity of mixed T lymphocytes. We conclude that heterologous expression of mHLA-G decreases immunogenicity of hESCs and their epidermal differentiated derivatives.
Collapse
|
34
|
Induced pluripotent stem (iPS) cells: A new source for cell-based therapeutics? J Control Release 2014; 185:37-44. [DOI: 10.1016/j.jconrel.2014.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
35
|
Influence of immune responses in gene/stem cell therapies for muscular dystrophies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:818107. [PMID: 24959590 PMCID: PMC4052166 DOI: 10.1155/2014/818107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.
Collapse
|
36
|
Botman O, Wyns C. Induced pluripotent stem cell potential in medicine, specifically focused on reproductive medicine. Front Surg 2014; 1:5. [PMID: 25671222 PMCID: PMC4313692 DOI: 10.3389/fsurg.2014.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/05/2014] [Indexed: 01/15/2023] Open
Abstract
Since 2006, several laboratories have proved that somatic cells can be reprogramed into induced pluripotent stem cells (iPSCs). iPSCs have enormous potential in stem cell biology as they can give rise to numerous cell lineages, including the three germ layers. In this review, we discuss past and recent advances in human iPSCs used for modeling diseases in vitro, screening drugs to test new treatments, and autologous cell and tissue regenerative therapies, with a special focus on reproductive medicine applications. While this latter field of research is still in its infancy, it holds great promise for investigating germ cell development and studying the genetic and physiopathological mechanisms of infertility. A major cause of infertility is the absence of germ cells in the testes, mainly due to genetic background or as a consequence of gonadotoxic treatments. For these patients, no effective fertility restoration strategy has so far been identified. The derivation of germ cells from iPSCs represents an alternative source of stem cells able to differentiate into spermatozoa. Lessons learned from animal models as well as studies on human iPSCs for reproductive purposes are reviewed.
Collapse
Affiliation(s)
- Olivier Botman
- Gynecology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels , Belgium
| | - Christine Wyns
- Gynecology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain , Brussels , Belgium ; Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
37
|
Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV, Trinh P, Hirota Y, Gold JD, Viswanathan M, Laflamme MA. Electrical Integration of Human Embryonic Stem Cell-Derived Cardiomyocytes in a Guinea Pig Chronic Infarct Model. J Cardiovasc Pharmacol Ther 2014; 19:368-381. [PMID: 24516260 DOI: 10.1177/1074248413520344] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were recently shown to be capable of electromechanical integration following direct injection into intact or recently injured guinea pig hearts, and hESC-CM transplantation in recently injured hearts correlated with improvements in contractile function and a reduction in the incidence of arrhythmias. The present study was aimed at determining the ability of hESC-CMs to integrate and modulate electrical stability following transplantation in a chronic model of cardiac injury. METHODS AND RESULTS At 28 days following cardiac cryoinjury, guinea pigs underwent intracardiac injection of hESC-CMs, noncardiac hESC derivatives (non-CMs), or vehicle. Histology confirmed partial remuscularization of the infarct zone in hESC-CM recipients while non-CM recipients showed heterogeneous xenografts. The 3 experimental groups showed no significant difference in the left ventricular dimensions or fractional shortening by echocardiography or in the incidence of spontaneous arrhythmias by telemetric monitoring. Although recipients of hESC-CMs and vehicle showed a similar incidence of arrhythmias induced by programmed electrical stimulation at 4 weeks posttransplantation, non-CM recipients proved to be highly inducible, with a ∼3-fold greater incidence of induced arrhythmias. In parallel studies, we investigated the ability of hESC-CMs to couple with host myocardium in chronically injured hearts by the intravital imaging of hESC-CM grafts that stably expressed a fluorescent reporter of graft activation, the genetically encoded calcium sensor GCaMP3. In this work, we found that only ∼38% (5 of 13) of recipients of GCaMP3+ hESC-CMs showed fluorescent transients that were coupled to the host electrocardiogram. CONCLUSIONS Human embryonic stem cell-derived cardiomyocytes engraft in chronically injured hearts without increasing the incidence of arrhythmias, but their electromechanical integration is more limited than previously reported following their transplantation in a subacute injury model. Moreover, non-CM grafts may promote arrhythmias under certain conditions, a finding that underscores the need for input preparations of high cardiac purity.
Collapse
Affiliation(s)
- Yuji Shiba
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Dominic Filice
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Department of Bioengineering, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sarah Fernandes
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA Gilead Sciences, Fremont, CA, USA
| | - Elina Minami
- Department of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Sarah K Dupras
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Benjamin Van Biber
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Peter Trinh
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Yusuke Hirota
- Department of Cardiovascular Medicine, Shinshu University, Matsumoto, Japan
| | - Joseph D Gold
- Geron Corporation, Menlo Park, CA, USA Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Mohan Viswanathan
- Department of Medicine/Cardiology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Michael A Laflamme
- Department of Pathology, Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Thompson HL, McLelland BT, Manilay JO. Indirect immune recognition of mouse embryonic stem cell-derived hematopoietic progenitors in vitro. Exp Hematol 2014; 42:347-359.e5. [PMID: 24440521 DOI: 10.1016/j.exphem.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/02/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Abstract
The clinical use of embryonic stem cell (ESC)-derived hematopoietic progenitors (ESHPs) requires the generation of ESHPs that produce mature hematopoietic cells and do not induce immune rejection after transplantation. We compared the developmental maturity and immunogenicity of ESHPs generated using two methods: embryoid body (EB) formation and culture of ESCs with the OP9 bone marrow stromal cell line (ESC-OP9). ESHPs derived from EBs displayed an immature hematopoietic phenotype and were devoid of immunogenicity marker expression. In contrast, ESHPs derived via ESC-OP9 displayed a mature phenotype and expressed high levels of some immunostimulatory molecules. ESHPs alone could not stimulate CD4(+) T lymphocyte proliferation directly. However, preferential phagocytosis of ESHPs and T cell proliferation were observed in the presence of antigen-presenting cells, consistent with a model of indirect immune recognition of ESHPs. These results suggest that depletion of host CD4(+) T lymphocytes or antigen-presenting cells may be necessary for successful ESHP transplantation.
Collapse
Affiliation(s)
- Heather L Thompson
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Bryce T McLelland
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California-Merced, Merced, CA, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California-Merced, Merced, CA, USA.
| |
Collapse
|
39
|
Lijkwan MA, Hellingman AA, Bos EJ, van der Bogt KEA, Huang M, Kooreman NG, de Vries MR, Peters HAB, Robbins RC, Hamming JF, Quax PHA, Wu JC. Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia. Hum Gene Ther 2014; 25:41-9. [PMID: 24090375 DOI: 10.1089/hum.2013.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this study, we target the hypoxia inducible factor-1 alpha (HIF-1-alpha) pathway by short hairpin RNA interference therapy targeting prolyl hydroxylase-2 (shPHD2). We use the minicircle (MC) vector technology as an alternative for conventional nonviral plasmid (PL) vectors in order to improve neovascularization after unilateral hindlimb ischemia in a murine model. Gene expression and transfection efficiency of MC and PL, both in vitro and in vivo, were assessed using bioluminescence imaging (BLI) and firefly luciferase (Luc) reporter gene. C57Bl6 mice underwent unilateral electrocoagulation of the femoral artery and gastrocnemic muscle injection with MC-shPHD2, PL-shPHD2, or phosphate-buffered saline (PBS) as control. Blood flow recovery was monitored using laser Doppler perfusion imaging, and collaterals were visualized by immunohistochemistry and angiography. MC-Luc showed a 4.6-fold higher in vitro BLI signal compared with PL-Luc. BLI signals in vivo were 4.3×10(5)±3.3×10(5) (MC-Luc) versus 0.4×10(5)±0.3×10(5) (PL-Luc) at day 28 (p=0.016). Compared with PL-shPHD2 or PBS, MC-shPHD2 significantly improved blood flow recovery, up to 50% from day 3 until day 14 after ischemia induction. MC-shPHD2 significantly increased collateral density and capillary density, as monitored by alpha-smooth muscle actin expression and CD31(+) expression, respectively. Angiography data confirmed the histological findings. Significant downregulation of PHD2 mRNA levels by MC-shPHD2 was confirmed by quantitative polymerase chain reaction. Finally, Western blot analysis confirmed significantly higher levels of HIF-1-alpha protein by MC-shPHD2, compared with PL-shPHD2 and PBS. This study provides initial evidence of a new potential therapeutic approach for peripheral artery disease. The combination of HIF-1-alpha pathway targeting by shPHD2 with the robust nonviral MC plasmid improved postischemic neovascularization, making this approach a promising potential treatment option for critical limb ischemia.
Collapse
Affiliation(s)
- Maarten A Lijkwan
- 1 Department of Medicine and Radiology, Stanford University School of Medicine , Stanford, CA 94305
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chow MZ, Boheler KR, Li RA. Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Res Ther 2013; 4:97. [PMID: 23953772 PMCID: PMC3854712 DOI: 10.1186/scrt308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart diseases remain a major cause of mortality and morbidity worldwide. However, terminally differentiated human adult cardiomyocytes (CMs) possess a very limited innate ability to regenerate. Directed differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into CMs has enabled clinicians and researchers to pursue the novel therapeutic paradigm of cell-based cardiac regeneration. In addition to tissue engineering and transplantation studies, the need for functional CMs has also prompted researchers to explore molecular pathways and develop strategies to improve the quality, purity and quantity of hESC-derived and iPSC-derived CMs. In this review, we describe various approaches in directed CM differentiation and driven maturation, and discuss potential limitations associated with hESCs and iPSCs, with an emphasis on the role of epigenetic regulation and chromatin remodeling, in the context of the potential and challenges of using hESC-CMs and iPSC-CMs for drug discovery and toxicity screening, disease modeling, and clinical applications.
Collapse
Affiliation(s)
- Maggie Zi Chow
- Stem Cell and Regenerative Medicine Consortium, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong Jockey Club Building for Interdisciplinary Research, Pokfulam, Hong Kong
- Department of Physiology, The University of Hong Kong, 4th Floor, 21 Sassoon Road, Laboratory Block, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Kenneth R Boheler
- Stem Cell and Regenerative Medicine Consortium, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong Jockey Club Building for Interdisciplinary Research, Pokfulam, Hong Kong
- Department of Physiology, The University of Hong Kong, 4th Floor, 21 Sassoon Road, Laboratory Block, Faculty of Medicine Building, Pokfulam, Hong Kong
- Molecular Cardiology and Stem Cell Unit, Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | - Ronald A Li
- Stem Cell and Regenerative Medicine Consortium, Faculty of Medicine, The University of Hong Kong, 5 Sassoon Road, Hong Kong Jockey Club Building for Interdisciplinary Research, Pokfulam, Hong Kong
- Department of Physiology, The University of Hong Kong, 4th Floor, 21 Sassoon Road, Laboratory Block, Faculty of Medicine Building, Pokfulam, Hong Kong
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, New York 10029-6574, USA
| |
Collapse
|
41
|
Liu Z, Tang Y, Lü S, Zhou J, Du Z, Duan C, Li Z, Wang C. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med 2013; 17:782-91. [PMID: 23711115 PMCID: PMC3823182 DOI: 10.1111/jcmm.12062] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/01/2013] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) provides a promising seeding cell for regenerative medicine. However, iPSC has the potential to form teratomas after transplantation. Therefore, it is necessary to evaluate the tumorigenic risks of iPSC and all its differentiated derivates prior to use in a clinical setting. Here, murine iPSCs were transduced with dual reporter gene consisting of monomeric red fluorescent protein (mRFP) and firefly luciferase (Fluc). Undifferentiated iPSCs, iPSC derivates from induced differentiation (iPSC-derivates), iPSC-derivated cardiomyocyte (iPSC-CMs) were subcutaneously injected into the back of nude mice. Non-invasive bioluminescence imaging (BLI) was longitudinally performed at day 1, 7, 14 and 28 after transplantation to track the survival and proliferation of transplanted cells. At day 28, mice were killed and grafts were explanted to detect teratoma formation. The results demonstrated that transplanted iPSCs, iPSC-derivates and iPSC-CMs survived in receipts. Both iPSCs and iPSC-derivates proliferated dramatically after transplantation, while only slight increase in BLI signals was observed in iPSC-CM transplanted mice. At day 28, teratomas were detected in both iPSCs and iPSC-derivates transplanted mice, but not in iPSC-CM transplanted ones. In vitro study showed the long-term existence of pluripotent cells during iPSC differentiation. Furthermore, when these cells were passaged in feeder layers as undifferentiated iPSCs, they would recover iPSC-like colonies, indicating the cause for differentiated iPSC's tumourigenicity. Our study indicates that exclusion of tumorigenic cells by screening in addition to lineage-specific differentiation is necessary prior to therapeutic use of iPSCs.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee SH, Kim JY, Yoo SY, Kwon SM. Cytoprotective effect of dieckol on human endothelial progenitor cells (hEPCs) from oxidative stress-induced apoptosis. Free Radic Res 2013; 47:526-34. [DOI: 10.3109/10715762.2013.797080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Baculovirus as an ideal radionuclide reporter gene vector: a new strategy for monitoring the fate of human stem cells in vivo. PLoS One 2013; 8:e61305. [PMID: 23596521 PMCID: PMC3626603 DOI: 10.1371/journal.pone.0061305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Radionuclide reporter gene imaging holds promise for non-invasive monitoring of transplanted stem cells. Thus, the feasibility of utilizing recombinant baculoviruses carrying the sodium iodide symporter (NIS) reporter gene in monitoring stem cell therapy by radionuclide imaging was explored in this study. METHODS Recombinant baculoviruses carrying NIS and green fluorescent protein (GFP) reporter genes (Bac-NIS and Bac-GFP) were constructed and used to infect human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). Infection efficiency, total fluorescence intensity and duration of transgene expression were determined by flow cytometry. Cytotoxicity/proliferative effects of baculovirus on hUCB-MSCs were assessed using CCK-8 assays. ¹²⁵I uptake and perchlorate inhibition assays were performed on Bac-NIS-infected hUCB-MSCs. Radionuclide imaging of mice transplanted with Bac-NIS-infected hUCB-MSCs was performed by NanoSPECT/CT imaging. RESULTS Infection efficiencies of recombinant baculovirus in hESCs, hiPSCs and hUCB-MSCs increased with increasing MOIs (27.3%, 35.8% and 95.6%, respectively, at MOI = 800). Almost no cytotoxicity and only slight effects on hUCB-MSCs proliferation were observed. Obvious GFP expression (40.6%) remained at 8 days post-infection. The radioiodide was functionally accumulated by NIS gene products and specifically inhibited by perchlorate (ClO₄⁻). Radioiodide uptake, peaking at 30 min and gradually decreasing over time, significantly correlated with hUCB-MSCs cell number (R² = 0.994). Finally, radionuclide imaging showed Bac-NIS-infected hUCB-MSCs effectively accumulated radioiodide in vivo, which gradually weakened over time. CONCLUSION Baculovirus as transgenic vector of radionuclide reporter gene imaging technology is a promising strategy for monitoring stem cell transplantation therapy.
Collapse
|
44
|
Bíró V. [The role of mesenchymal stem cells in the reconstruction of nerve injuries in the hand]. Orv Hetil 2013; 154:574-80. [PMID: 23567875 DOI: 10.1556/oh.2013.29586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At present the end results of reconstruction of peripheral nerve injuries cannot be considered unequivocally advantageous. It seems that the level of reconstructive possibilities of these injuries has already peaked. Hence, ongoing research focuses on experimental studies to further improve results. One of the methods is the joint usage of pluripotent mesenchymal stem cells with tissue inductive polypeptides (growth factors) and frame structures to enhance the attachment of these cells with the aim creating new neural tissue (tissue engineering). The conditions to create new tissue can be further improved by gene technology. Based on recent literature data, the author summarizes the basic characteristics of the method related to nerve injuries, and the possibilities and modalities of clinical applications. In conclusion, future direction is a the wider use of stem cells, however, the currently established surgical and rehabilitation methods have to be performed at high levels since stem cell research data are not established in the clinical setting yet.
Collapse
|
45
|
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112:549-61. [PMID: 23371903 DOI: 10.1161/circresaha.111.249243] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
46
|
Catelain C, Riveron S, Papadopoulos A, Mougenot N, Jacquet A, Vauchez K, Yada E, Pucéat M, Fiszman M, Butler-Browne G, Bonne G, Vilquin JT. Myoblasts and embryonic stem cells differentially engraft in a mouse model of genetic dilated cardiomyopathy. Mol Ther 2013; 21:1064-75. [PMID: 23439500 DOI: 10.1038/mt.2013.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The functional and architectural benefits of embryonic stem cells (ESC) and myoblasts (Mb) transplantations into infarcted myocardium have been investigated extensively. Whereas ESC repopulated fibrotic areas and contributed to myocardial regeneration, Mb exerted their effects through paracrine secretions and scar remodeling. This therapeutic perspective, however, has been less explored in the setting of nonischemic dilated cardiomyopathies (DCMs). Our aim was to compare the integration and functional efficacy of ESC committed to cardiac fate by bone morphogenic protein 2 (BMP-2) pretreatment and Mb used as gold standard following their transplantation into the myocardium of a mouse model of laminopathy exhibiting a progressive and lethal DCM. After 4 and 8 weeks of transplantation, stabilization was observed in Mb-transplanted mice (P = 0.008) but not in groups of ESC-transplanted or medium-injected animals, where the left ventricular fractional shortening (LVFS) decreased by 32 ± 8% and 41 ± 8% respectively. Engrafted differentiated cells were consistently detected in myocardia of mice receiving Mb, whereas few or no cells were detected in the hearts of mice receiving ESC, except in two cases where teratomas were formed. These data suggest that committed ESC fail to integrate in DCM where scar tissue is absent to provide the appropriate niche, whereas the functional benefits of Mb transplantation might extend to nonischemic cardiomyopathy.
Collapse
Affiliation(s)
- Cyril Catelain
- UPMC UM 76, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Human embryonic stem cells (hESCs), initially thought to be immune privileged cells, are now known to be susceptible to immune recognition. Human induced pluripotent stem cells (iPSCs) have been proposed as a potential source of autologous stem cells for therapy, but even these autologous stem cells may be targets of immune rejection. With clinical trials on the horizon, it is imperative that the immunogenicity of hESCs and iPSCs be definitively understood.
Collapse
Affiliation(s)
- Jeremy I. Pearl
- Department of Medicine & Radiology, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Leslie S. Kean
- The Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, and Department of Pediatrics, and the Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - Mark M. Davis
- Howard Hughes Medical Institute and the Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Joseph C. Wu
- Department of Medicine & Radiology, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
48
|
Bauer M, Kang L, Qiu Y, Wu J, Peng M, Chen HH, Camci-Unal G, Bayomy AF, Sosnovik DE, Khademhosseini A, Liao R. Adult cardiac progenitor cell aggregates exhibit survival benefit both in vitro and in vivo. PLoS One 2012; 7:e50491. [PMID: 23226295 PMCID: PMC3511575 DOI: 10.1371/journal.pone.0050491] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 01/08/2023] Open
Abstract
Background A major hurdle in the use of exogenous stems cells for therapeutic regeneration of injured myocardium remains the poor survival of implanted cells. To date, the delivery of stem cells into myocardium has largely focused on implantation of cell suspensions. Methodology and Principal Findings We hypothesize that delivering progenitor cells in an aggregate form would serve to mimic the endogenous state with proper cell-cell contact, and may aid the survival of implanted cells. Microwell methodologies allow for the culture of homogenous 3D cell aggregates, thereby allowing cell-cell contact. In this study, we find that the culture of cardiac progenitor cells in a 3D cell aggregate augments cell survival and protects against cellular toxins and stressors, including hydrogen peroxide and anoxia/reoxygenation induced cell death. Moreover, using a murine model of cardiac ischemia-reperfusion injury, we find that delivery of cardiac progenitor cells in the form of 3D aggregates improved in vivo survival of implanted cells. Conclusion Collectively, our data support the notion that growth in 3D cellular systems and maintenance of cell-cell contact improves exogenous cell survival following delivery into myocardium. These approaches may serve as a strategy to improve cardiovascular cell-based therapies.
Collapse
Affiliation(s)
- Michael Bauer
- Division of Cardiology and Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lifeng Kang
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Harvard-MIT, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Yiling Qiu
- Division of Cardiology and Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinhui Wu
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Harvard-MIT, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- School of Life Science, Nanjing University, Nanjing, China
| | - Michelle Peng
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Harvard-MIT, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Howard H. Chen
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gulden Camci-Unal
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Harvard-MIT, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ahmad F. Bayomy
- Division of Cardiology and Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - David E. Sosnovik
- Harvard-MIT, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, United States of America
- Harvard-MIT, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- * E-mail: (RL); (AK)
| | - Ronglih Liao
- Division of Cardiology and Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (RL); (AK)
| |
Collapse
|
49
|
Haller JL, Panyutin I, Chaudhry A, Zeng C, Mach RH, Frank JA. Sigma-2 receptor as potential indicator of stem cell differentiation. Mol Imaging Biol 2012; 14:325-35. [PMID: 21614680 DOI: 10.1007/s11307-011-0493-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The sigma-2 (σ(2)) receptor is a potential biomarker of proliferative status of solid tumors. Specific synthetic probes using N-substituted-9-azabicyclo [3.3.1]nonan-3α-yl carbamate analogs have been designed and implemented for experimental cancer diagnosis and therapy. PROCEDURES We employed the fluorescently labeled σ(2) receptor probe, SW120, to evaluate σ(2) receptor expression in human stem cells (SC), including: bone marrow stromal, neural progenitor, amniotic fluid, hematopoetic, and embryonic stem cells. We concurrently evaluated the intensity of SW120 and 5-ethynyl-2'-deoxyuridine (EdU) relative to passage number and multi-potency. RESULTS We substantiated significantly higher σ(2) receptor density among proliferating SC relative to lineage-restricted cell types. Additionally, cellular internalization of the σ(2) receptor in SC was consistent with receptor-mediated endocytosis and confocal microscopy indicated SW120 specific co-localization with a fluorescent marker of lysosomes in all SC imaged. CONCLUSION These results suggest that σ(2) receptors may serve to monitor stem cell differentiation in future experimental studies.
Collapse
Affiliation(s)
- Jodi L Haller
- Frank Laboratory, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Clinical Center, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Rennie K, Gruslin A, Hengstschläger M, Pei D, Cai J, Nikaido T, Bani-Yaghoub M. Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012; 2012:721538. [PMID: 23093978 PMCID: PMC3474290 DOI: 10.1155/2012/721538] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022] Open
Abstract
The amniotic membrane (AM) and amniotic fluid (AF) have a long history of use in surgical and prenatal diagnostic applications, respectively. In addition, the discovery of cell populations in AM and AF which are widely accessible, nontumorigenic and capable of differentiating into a variety of cell types has stimulated a flurry of research aimed at characterizing the cells and evaluating their potential utility in regenerative medicine. While a major focus of research has been the use of amniotic membrane and fluid in tissue engineering and cell replacement, AM- and AF-derived cells may also have capabilities in protecting and stimulating the repair of injured tissues via paracrine actions, and acting as vectors for biodelivery of exogenous factors to treat injury and diseases. Much progress has been made since the discovery of AM and AF cells with stem cell characteristics nearly a decade ago, but there remain a number of problematic issues stemming from the inherent heterogeneity of these cells as well as inconsistencies in isolation and culturing methods which must be addressed to advance the field towards the development of cell-based therapies. Here, we provide an overview of the recent progress and future perspectives in the use of AM- and AF-derived cells for therapeutic applications.
Collapse
Affiliation(s)
- Kerry Rennie
- Neurogenesis and Brain Repair, National Research Council-Institute for Biological Sciences, Bldg. M-54, Ottawa, ON, Canada K1A 0R6
| | - Andrée Gruslin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada KIH 845
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada KIH 845
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Jinglei Cai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou 510530, China
| | - Toshio Nikaido
- Department of Regenerative Medicine, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mahmud Bani-Yaghoub
- Neurogenesis and Brain Repair, National Research Council-Institute for Biological Sciences, Bldg. M-54, Ottawa, ON, Canada K1A 0R6
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada KIH 845
| |
Collapse
|