1
|
Wysong A, Ortiz P, Bittel D, Ott L, Karanu F, Filla M, Stehno-Bittel L. Viability, yield and expansion capability of feline MSCs obtained from subcutaneous and reproductive organ adipose depots. BMC Vet Res 2021; 17:244. [PMID: 34266445 PMCID: PMC8281647 DOI: 10.1186/s12917-021-02948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The source of multipotent stromal cells (MSC) can have a significant influence on the health and expansion capacity of the cells. As the applications for allogeneic MSCs in the treatment of feline diseases increase, the location of the initial donor tissue must be analyzed. To date, comparisons have only been made between feline MSCs collected from bone marrow or abdominal fat. This is the first report to compare cells obtained from different adipose depots in the cat with a focus on clinically relevant donor tissues. The tissue was collected from 34 healthy cats undergoing spaying (fat around the ovaries and uterine horn) or subcutaneous fat collected during surgical procedures. RESULTS The amount of starting material is essential to isolate sufficient MSCs. The total tissue yield from the subcutaneous fat was significantly greater than could be obtained from around the reproductive organs, leading to 3 times more MSCs per donor. However, the concentration of MSCs obtained from reproductive fat was higher than from subcutaneous fat. In addition, the viability of the MSCs from the reproductive fat was significantly higher than the subcutaneous fat. Since most spaying occurs in young cats (under 18 months) reproductive fat was collected from adult cats during spaying, illustrating that age did not alter the yield or viability of the MSCs. When sufficient tissue was collected, it was digested either mechanically or enzymatically. Mechanical digestion further decreased the viability and yield of MSCs from subcutaneous fat compared to enzymatic digestion. Biomarkers of stem cell characterization, expansion capacity and function were detected using qPCR. CD70, CD90 and CD105 were all expressed in high levels in the 3 groups. However, the reproductive fat had higher levels of CD73 with the mechanically digested subcutaneous fat having the least. Gata6 was detected in all samples while Sox2 and Sox17 were also detected with higher quantities found in the enzymatically digested subcutaneous fat. Negative control genes of Gata4 and Pdx1 showed no detection prior to 50 cycles. During the first three passages, age of the donor, location of the donor tissue, or digestion protocol had no effect on cell culture doubling times or cell viability. CONCLUSIONS While MSCs from reproductive fat had superior cells/tissue weight and initial viability, there were still dramatically fewer cells obtained compared to subcutaneous fat due to the limited amount of tissue surrounding the reproductive organs. Further, in P1-P3 cultures there were no differences noted in doubling time or cell viability between tissue obtained from reproductive or subcutaneous fat depots.
Collapse
Affiliation(s)
- Amy Wysong
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | | | - Douglas Bittel
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lindsey Ott
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Francis Karanu
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA
| | - Michael Filla
- College of Biology, Kansas City University, 1750 Independence Ave, Kansas City, MO, USA
| | - Lisa Stehno-Bittel
- Likarda LLC, 10330 Hickman Mills Drive, Kansas City, MO, USA.
- Department of Rehabilitation Science, University of Kansas Medical Center, 3901 Rainbow Blvd, KS, 66160, Kansas City, USA.
| |
Collapse
|
2
|
Jin L, Tang Q, Hu S, Chen Z, Zhou X, Zeng B, Wang Y, He M, Li Y, Gui L, Shen L, Long K, Ma J, Wang X, Chen Z, Jiang Y, Tang G, Zhu L, Liu F, Zhang B, Huang Z, Li G, Li D, Gladyshev VN, Yin J, Gu Y, Li X, Li M. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat Commun 2021; 12:3715. [PMID: 34140474 PMCID: PMC8211698 DOI: 10.1038/s41467-021-23560-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive transcriptomic survey of pigs can provide a mechanistic understanding of tissue specialization processes underlying economically valuable traits and accelerate their use as a biomedical model. Here we characterize four transcript types (lncRNAs, TUCPs, miRNAs, and circRNAs) and protein-coding genes in 31 adult pig tissues and two cell lines. We uncover the transcriptomic variability among 47 skeletal muscles, and six adipose depots linked to their different origins, metabolism, cell composition, physical activity, and mitochondrial pathways. We perform comparative analysis of the transcriptomes of seven tissues from pigs and nine other vertebrates to reveal that evolutionary divergence in transcription potentially contributes to lineage-specific biology. Long-range promoter–enhancer interaction analysis in subcutaneous adipose tissues across species suggests evolutionarily stable transcription patterns likely attributable to redundant enhancers buffering gene expression patterns against perturbations, thereby conferring robustness during speciation. This study can facilitate adoption of the pig as a biomedical model for human biology and disease and uncovers the molecular bases of valuable traits. A comprehensive transcriptomic survey of the pig could enable mechanistic understanding of tissue specialization and accelerate its use as a biomedical model. Here the authors characterize four distinct transcript types in 31 adult pig tissues to dissect their distinct structural and transcriptional features and uncover transcriptomic variability related to tissue physiology.
Collapse
Affiliation(s)
- Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan, China
| | - Xuming Zhou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuhao Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan, China
| | - Linyuan Shen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Guoqing Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fei Liu
- Information and Educational Technology Center, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zhang
- Ya'an Digital Economy Operation Company, Ya'an, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Wei H, Zhou W, Hu G, Shi C. Induction of mesenchymal stem cell‑like transformation in rat primary glial cells using hypoxia, mild hypothermia and growth factors. Mol Med Rep 2020; 23:121. [PMID: 33300053 PMCID: PMC7751450 DOI: 10.3892/mmr.2020.11760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The transformation of rat primary glial cells into mesenchymal stem cells (MSCs) is intriguing as more seed cells can be harvested. The present study aimed to evaluate the effects of growth factors, hypoxia and mild hypothermia on the transformation of primary glial cells into MSCs. Rat primary glial cells were induced to differentiate by treatment with hypoxia, mild hypothermia and basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Immunohistochemistry and western blotting were then used to determine the expression levels of glial fibrillary acidic protein (GFAP), nestin, musashi-1, neuron specific enolase (NSE) and neuronal nuclei (NeuN), in each treatment group. bFGF and EGF increased the proportion of CD44+ and CD105+ cells, while anaerobic mild hypothermia increased the proportion of CD90+ cells. The combination of bFGF and EGF, and anaerobic mild hypothermia increased the proportion of CD29+ cells and significantly decreased the proportions of GFAP+ cells and NSE+ cells. Treatment of primary glial cells with bFGF and EGF increased the expression levels of nestin, Musashi-1, NSE and NeuN. Anaerobic mild hypothermia increased the expression levels of Musashi-1 and decreased the expression levels of NSE and NeuN in glial cells. The results of the present study demonstrated that bFGF, EGF and anaerobic mild hypothermia treatments may promote the transformation of glial cells into MSC-like cells, and that the combination of these two treatments may have the optimal effect.
Collapse
Affiliation(s)
- Huiping Wei
- Department of Health Care for Cadres, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenyun Zhou
- Department of Prevention and Health Care, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guozhu Hu
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunhua Shi
- Department of Rheumatology and Immunology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Hámori L, Kudlik G, Szebényi K, Kucsma N, Szeder B, Póti Á, Uher F, Várady G, Szüts D, Tóvári J, Füredi A, Szakács G. Establishment and Characterization of a Brca1 -/-, p53 -/- Mouse Mammary Tumor Cell Line. Int J Mol Sci 2020; 21:ijms21041185. [PMID: 32053991 PMCID: PMC7072850 DOI: 10.3390/ijms21041185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women and the second most common cancer overall. By the age of 80, the estimated risk for breast cancer for women with germline BRCA1 or BRCA2 mutations is around 80%. Genetically engineered BRCA1-deficient mouse models offer a unique opportunity to study the pathogenesis and therapy of triple negative breast cancer. Here we present a newly established Brca1−/−, p53−/− mouse mammary tumor cell line, designated as CST. CST shows prominent features of BRCA1-mutated triple-negative breast cancers including increased motility, high proliferation rate, genome instability and sensitivity to platinum chemotherapy and PARP inhibitors (olaparib, veliparib, rucaparib and talazoparib). Genomic instability of CST cells was confirmed by whole genome sequencing, which also revealed the presence of COSMIC (Catalogue of Somatic Mutations in Cancer) mutation signatures 3 and 8 associated with homologous recombination (HR) deficiency. In vitro sensitivity of CST cells was tested against 11 chemotherapy agents. Tumors derived from orthotopically injected CST-mCherry cells in FVB-GFP mice showed sensitivity to cisplatin, providing a new model to study the cooperation of BRCA1-KO, mCherry-positive tumor cells and the GFP-expressing stromal compartment in therapy resistance and metastasis formation. In summary, we have established CST cells as a new model recapitulating major characteristics of BRCA1-negative breast cancers.
Collapse
Affiliation(s)
- Lilla Hámori
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Ferenc Uher
- Central Hospital of Southern Pest—National Institute of Hematology and Infectious Diseases, 1097 Budapest, Hungary;
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122, Budapest, Hungary;
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (A.F.); (G.S.)
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (L.H.); (G.K.); (K.S.); (N.K.); (B.S.); (Á.P.); (G.V.); (D.S.)
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (A.F.); (G.S.)
| |
Collapse
|
5
|
Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World J Stem Cells 2020; 12:1-7. [PMID: 32110271 PMCID: PMC7031762 DOI: 10.4252/wjsc.v12.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
This article presents the stem and progenitor cells from subcutaneous adipose tissue, briefly comparing them with their bone marrow counterparts, and discussing their potential for use in regenerative medicine. Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells (MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels. Pre-adipocytes are present both in the stromal-vascular fraction (SVF; freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells (ASCs; in vitro expanded cells), and have an active role on the chronic inflammation environment established in obesity, likely due their monocytic-macrophage lineage identity. The SVF and ASCs have been explored in cell therapy protocols with relative success, given their paracrine and immunomodulatory effects. Importantly, the widely explored multipotentiality of ASCs has direct application in bone, cartilage and adipose tissue engineering. The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering. Innovative cell culture techniques, in particular 3D scaffold-free cultures such as spheroids, are now available to increase the potential for regeneration and differentiation of mesenchymal lineages. Spheroids are being explored not only as a model for cell differentiation, but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| |
Collapse
|
6
|
Transcription factor Tlx1 marks a subset of lymphoid tissue organizer-like mesenchymal progenitor cells in the neonatal spleen. Sci Rep 2019; 9:20408. [PMID: 31892733 PMCID: PMC6938487 DOI: 10.1038/s41598-019-56984-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The spleen is comprised of spatially distinct compartments whose functions, such as immune responses and removal of aged red blood cells, are tightly controlled by the non-hematopoietic stromal cells that provide regionally-restricted signals to properly activate hematopoietic cells residing in each area. However, information regarding the ontogeny and relationships of the different stromal cell types remains limited. Here we have used in vivo lineage tracing analysis and in vitro mesenchymal stromal cell assays and found that Tlx1, a transcription factor essential for embryonic spleen organogenesis, marks neonatal stromal cells that are selectively localized in the spleen and retain mesenchymal progenitor potential to differentiate into mature follicular dendritic cells, fibroblastic reticular cells and marginal reticular cells. Furthermore, by establishing a novel three-dimensional cell culture system that enables maintenance of Tlx1-expressing cells in vitro, we discovered that signals from the lymphotoxin β receptor and TNF receptor promote differentiation of these cells to express MAdCAM-1, CCL19 and CXCL13, representative functional molecules expressed by different subsets of mature stromal cells in the spleen. Taken together, these findings indicate that mesenchymal progenitor cells expressing Tlx1 are a subset of lymphoid tissue organizer-like cells selectively found in the neonatal spleen.
Collapse
|
7
|
He X, Yang Y, Yao MW, Ren TT, Guo W, Li L, Xu X. Full title: High glucose protects mesenchymal stem cells from metformin-induced apoptosis through the AMPK-mediated mTOR pathway. Sci Rep 2019; 9:17764. [PMID: 31780804 PMCID: PMC6882892 DOI: 10.1038/s41598-019-54291-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Micro- and macro-vascular events are directly associated with hyperglycemia in patients with type 2 diabetes mellitus (T2DM), but whether intensive glucose control decreases the risk of diabetic cardiovascular complications remains uncertain. Many studies have confirmed that impaired quality and quantity of mesenchymal stem cells (MSCs) plays a pathogenic role in diabetes. Our previous study found that the abundance of circulating MSCs was significantly decreased in patients with T2DM, which was correlated with the progression of diabetic complications. In addition, metformin-induced MSC apoptosis is one of the reasons for the decreased quantity of endogenous or exogenous MSCs during intensive glucose control. However, the role of glucose in metformin-induced MSC apoptosis during intensive glucose control in T2DM remains unknown. In this study, we found that metformin induces MSC apoptosis during intensive glucose control, while high glucose (standard glucose control) could significantly reverse its adverse effect in an AMPK-mTOR pathway dependent manner. Thus, our results indicate that the poorer clinical benefit of the intensive glucose control strategy may be related to an adverse effect due to metformin-induced MSC apoptosis during intensive glucose control therapy in patients with T2DM.
Collapse
Affiliation(s)
- Xiao He
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Yi Yang
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
| | - Meng-Wei Yao
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| | - Ting-Ting Ren
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Department of Histology and Embryology, Qingdao University Medical College, Qingdao, Shandong, P.R. China
| | - Wei Guo
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
| | - Ling Li
- Department of Histology and Embryology, Qingdao University Medical College, Qingdao, Shandong, P.R. China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China.
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China.
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
8
|
Qiryaqoz Z, Timilsina S, Czarnowski D, Krebsbach PH, Villa‐Diaz LG. Identification of biomarkers indicative of functional skeletal stem cells. Orthod Craniofac Res 2019; 22 Suppl 1:192-198. [DOI: 10.1111/ocr.12260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zeena Qiryaqoz
- Department of Biological SciencesOakland University Rochester Michigan
| | - Suraj Timilsina
- Department of Biological SciencesOakland University Rochester Michigan
| | - Daniel Czarnowski
- Department of Biological SciencesOakland University Rochester Michigan
| | - Paul H. Krebsbach
- School of DentistryUniversity of California, Los Angeles Los Angeles California
| | | |
Collapse
|
9
|
A Case of Identity: HOX Genes in Normal and Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11040512. [PMID: 30974862 PMCID: PMC6521190 DOI: 10.3390/cancers11040512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cells are undifferentiated cells that have the unique ability to self-renew and differentiate into many different cell types. Their function is controlled by core gene networks whose misregulation can result in aberrant stem cell function and defects of regeneration or neoplasia. HOX genes are master regulators of cell identity and cell fate during embryonic development. They play a crucial role in embryonic stem cell differentiation into specific lineages and their expression is maintained in adult stem cells along differentiation hierarchies. Aberrant HOX gene expression is found in several cancers where they can function as either oncogenes by sustaining cell proliferation or tumor-suppressor genes by controlling cell differentiation. Emerging evidence shows that abnormal expression of HOX genes is involved in the transformation of adult stem cells into cancer stem cells. Cancer stem cells have been identified in most malignancies and proved to be responsible for cancer initiation, recurrence, and metastasis. In this review, we consider the role of HOX genes in normal and cancer stem cells and discuss how the modulation of HOX gene function could lead to the development of novel therapeutic strategies that target cancer stem cells to halt tumor initiation, progression, and resistance to treatment.
Collapse
|
10
|
Current Strategies to Generate Human Mesenchymal Stem Cells In Vitro. Stem Cells Int 2018; 2018:6726185. [PMID: 30224922 PMCID: PMC6129345 DOI: 10.1155/2018/6726185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are heterogeneous multipotent stem cells that are involved in the development of mesenchyme-derived evolving structures and organs during ontogeny. In the adult organism, reservoirs of MSCs can be found in almost all tissues where MSCs contribute to the maintenance of organ integrity. The use of these different MSCs for cell-based therapies has been extensively studied over the past years, which highlights the use of MSCs as a promising option for the treatment of various diseases including autoimmune and cardiovascular disorders. However, the proportion of MSCs contained in primary isolates of adult tissue biopsies is rather low and, thus, vigorous ex vivo expansion is needed especially for therapies that may require extensive and repetitive cell substitution. Therefore, more easily and accessible sources of MSCs are needed. This review summarizes the current knowledge of the different strategies to generate human MSCs in vitro as an alternative method for their applications in regenerative therapy.
Collapse
|
11
|
Buechler MB, Turley SJ. A short field guide to fibroblast function in immunity. Semin Immunol 2017; 35:48-58. [PMID: 29198601 DOI: 10.1016/j.smim.2017.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022]
Abstract
Fibroblasts in secondary lymphoid organs, or fibroblastic reticular cells (FRC), are gate-keepers of immune responses. Here, we frame how these cells regulate immune responses via a three-part scheme in which FRC can setup, support or suppress immune responses. We also review how fibroblasts from non-lymphoid tissues influence immunity and highlight how they resemble and differ from FRC. Overall, we aim to focus attention on the emerging roles of lymphoid tissue and non-lymphoid tissue fibroblasts in control of innate and adaptive immunity.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, United States
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, United States.
| |
Collapse
|
12
|
Ryan D, Sinha A, Bogan D, Davies J, Koziol J, ElShamy WM. A niche that triggers aggressiveness within BRCA1-IRIS overexpressing triple negative tumors is supported by reciprocal interactions with the microenvironment. Oncotarget 2017; 8:103182-103206. [PMID: 29262555 PMCID: PMC5732721 DOI: 10.18632/oncotarget.20892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Production of metastasis capable precursors begins within the primary tumor. Here, we define the bidirectional interactions with stromal cells involved in promoting these precursors within BRCA1-IRIS (hereafter IRIS) overexpressing (IRISOE) TNBC tumors. We define an aggressiveness niche, functionally defined as the necrotic/hypoxic core of the tumor, in which metabolically stressed, hypoxic, and inflamed IRISOE TNBC cells secrete higher levels of cytokines, chemokines and growth factors. One cytokine; IL-1β attracts mesenchymal stem cells (MSCs) to the niche and activates them to secrete CXCL1 that entrains IRISOE cells to secrete higher levels of CCL2 and VEGF. CCL2 attracts macrophages (TAMs) to the niche and activates them to secrete S100A8, and VEGF attracts endothelial cells (ECs) and activates them to secrete IL-8. In concert, CXCL1, S100A8 and IL-8 entrain aggressiveness in IRISOE TNBC cells within the niche. Indeed, compared to IRISOE cells alone, tumors developed by co-injecting IRISOE cells admixed with MSCs (10:1) in athymic mice were bigger and more aggressive. They contained more TAMs and ECs, expressed higher-levels of basal, epithelial to mesenchymal transition, and stemness biomarkers, quickly progressed to lymph-node or visceral metastases, and were highly sensitive to the IL-1β inhibitor “Anakinra”. Our findings supported by human data show that breast cancer patients with high-levels of IL-1β, CXCL1, CCL2, S100A8, VEGF, and IL-8 would show worse clinical outcomes. Our findings argue that this cytokine set is a diagnostic biomarker for patients who may benefit from an IRIS inhibitor-based therapy, and is a blue print for translation of approaches to combining that therapy with inhibitors of these bidirectional interactions to overcome TNBC metastasis.
Collapse
Affiliation(s)
- Daniel Ryan
- Breast Cancer Program, San Diego Biomedical Research Institute, San Diego, CA, USA
| | | | - Danielle Bogan
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanna Davies
- Breast Cancer Program, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Jim Koziol
- Department of Molecular and Experimental Medicine, Scripps Research Institute, San Diego, CA, USA
| | - Wael M ElShamy
- Breast Cancer Program, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
13
|
Kamkar F, Xaymardan M, Asli NS. Hox-Mediated Spatial and Temporal Coding of Stem Cells in Homeostasis and Neoplasia. Stem Cells Dev 2017; 25:1282-9. [PMID: 27462829 DOI: 10.1089/scd.2015.0352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hox genes are fundamental components of embryonic patterning and morphogenesis with expression persisting into adulthood. They are also implicated in the development of diseases, particularly neoplastic transformations. The tight spatio-temporal regulation of Hox genes in concordance with embryonic patterning is an outstanding feature of these genes. In this review we have systematically analyzed Hox functions within the stem/progenitor cell compartments and asked whether their temporo-spatial topography is retained within the stem cell domain throughout development and adulthood. In brief, evidence support involvement of Hox genes at several levels along the stem cell hierarchy, including positional identity, stem cell self-renewal, and differentiation. There is also strong evidence to suggest a role for Hox genes during neoplasia. Although fundamental questions are yet to be addressed through more targeted and high- throughput approaches, existing evidence suggests a central role for Hox genes within a continuum along the developmental axes persisting into adult homeostasis and disease.
Collapse
Affiliation(s)
- Fatemeh Kamkar
- 1 Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa , Ontario, Canada
| | - Munira Xaymardan
- 2 Discipline of Life Sciences, Faculty of Dentistry, University of Sydney , Westmead Hospital, Westmead, Australia
| | - Naisana S Asli
- 2 Discipline of Life Sciences, Faculty of Dentistry, University of Sydney , Westmead Hospital, Westmead, Australia
| |
Collapse
|
14
|
Steens J, Zuk M, Benchellal M, Bornemann L, Teichweyde N, Hess J, Unger K, Görgens A, Klump H, Klein D. In Vitro Generation of Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature from Murine Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 8:919-932. [PMID: 28366456 PMCID: PMC5390238 DOI: 10.1016/j.stemcr.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. In vitro generation of (VW)-typical MSCs from iPSCs based on a specific HOX code Reprogrammed fibroblasts (NEST-iPSCs) facilitated lineage tracing A lentiviral vector expressing HOXB7, HOXC6, and HOXC8 induced MSC differentiation Generated VW-MSCs showed classical MSC characteristics in vitro and in vivo
Collapse
Affiliation(s)
- Jennifer Steens
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Melanie Zuk
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mohamed Benchellal
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Lea Bornemann
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany.
| |
Collapse
|
15
|
Itoh T, Nishinakamura H, Kumano K, Takahashi H, Kodama S. The Spleen Is an Ideal Site for Inducing Transplanted Islet Graft Expansion in Mice. PLoS One 2017; 12:e0170899. [PMID: 28135283 PMCID: PMC5279780 DOI: 10.1371/journal.pone.0170899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Alternative islet transplantation sites have the potential to reduce the marginal number of islets required to ameliorate hyperglycemia in recipients with diabetes. Previously, we reported that T cell leukemia homeobox 1 (Tlx1)+ stem cells in the spleen effectively regenerated into insulin-producing cells in the pancreas of non-obese diabetic mice with end-stage disease. Thus, we investigated the spleen as a potential alternative islet transplantation site. Streptozotocin-induced diabetic C57BL/6 mice received syngeneic islets into the portal vein (PV), beneath the kidney capsule (KC), or into the spleen (SP). The marginal number of islets by PV, KC, or SP was 200, 100, and 50, respectively. Some plasma inflammatory cytokine levels in the SP group were significantly lower than those of the PV group after receiving a marginal number of islets, indicating reduced inflammation in the SP group. Insulin contents were increased 280 days after islet transplantation compared with those immediately following transplantation (p<0.05). Additionally, Tlx1-related genes, including Rrm2b and Pla2g2d, were up-regulated, which indicates that islet grafts expanded in the spleen. The spleen is an ideal candidate for an alternative islet transplantation site because of the resulting reduced inflammation and expansion of the islet graft.
Collapse
Affiliation(s)
- Takeshi Itoh
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Hitomi Nishinakamura
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kenjiro Kumano
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Takahashi
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Gastroenterological Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
16
|
Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci U S A 2016; 113:7551-6. [PMID: 27317748 DOI: 10.1073/pnas.1600363113] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare.
Collapse
|
17
|
|
18
|
Uzbas F, May ID, Parisi AM, Thompson SK, Kaya A, Perkins AD, Memili E. Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev Rep 2016; 11:298-308. [PMID: 25504377 DOI: 10.1007/s12015-014-9578-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipose-derived stromal/stem cells (ASC) are multipotent with abilities to differentiate into multiple lineages including connective tissue and neural cells. Despite unlimited opportunity and needs for human and veterinary regenerative medicine, applications of adipose-derived stromal/stem cells are at present very limited. Furthermore, the fundamental biological factors regulating stemness in ASC and their stable differentiation into other tissue cells are not fully understood. The objective of this review was to provide an update on the current knowledge of the nature and isolation, molecular and epigenetic determinants of the potency, and applications of adipose-derived stromal/stem cells, as well as challenges and future directions. The first quarter of the review focuses on the nature of ASC, namely their definition, origin, isolation and sorting methods and multilineage differentiation potential, often with a comparison to mesenchymal stem cells of bone marrow. Due to the indisputable role of epigenetic regulation on cell identities, epigenetic modifications (DNA methylation, chromatin remodeling and microRNAs) are described broadly in stem cells but with a focus on ASC. The final sections provide insights into the current and potential applications of ASC in human and veterinary regenerative medicine.
Collapse
Affiliation(s)
- F Uzbas
- Helmholtz Zentrum München, Institute of Stem Cell Research, Neuherberg, München, 85764, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Jones E, Schäfer R. Where is the common ground between bone marrow mesenchymal stem/stromal cells from different donors and species? Stem Cell Res Ther 2015; 6:143. [PMID: 26282627 PMCID: PMC4539918 DOI: 10.1186/s13287-015-0144-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) feature promising potential for cellular therapies, yet significant progress in development of MSC therapeutics and assays is hampered because of remarkable MSC heterogeneity in vivo and in vitro. This heterogeneity poses challenges for standardization of MSC characterization and potency assays as well as for MSC study comparability and manufacturing. This review discusses promising marker combinations for prospective MSC subpopulation enrichment and expansion, and reflects MSC phenotype changes due to environment and age. In order to address animal modelling in MSC biology, comparison of mouse and human MSC markers highlights current common ground of MSCs between species.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, St James's University Hospital, Leeds, LS9 7TF, UK.
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service, Baden-Württemberg-Hessen gGmbH, Johann-Wolfgang-Goethe University Hospital, Sandhofstrasse 1, D-60528, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Vo NTK, Bender AW, Ammendolia DA, Lumsden JS, Dixon B, Bols NC. Development of a walleye spleen stromal cell line sensitive to viral hemorrhagic septicemia virus (VHSV IVb) and to protection by synthetic dsRNA. FISH & SHELLFISH IMMUNOLOGY 2015; 45:83-93. [PMID: 25701636 DOI: 10.1016/j.fsi.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
A cell line, WE-spleen6, has been developed from the stromal layer of primary spleen cell cultures. On conventional plastic, WE-spleen6 cells had a spindle-shaped morphology at low cell density but grew to become epithelial-like at confluency. On the commercial extracellular matrix (ECM), Matrigel, the cells remained spindle-shaped and formed lumen-like structures. WE-spleen6 cells had intermediate filament protein, vimentin and the ECM protein, collagen I, but not smooth muscle α-actin (SMA) and von Willebrand factor (vWF) and lacked alkaline phosphatase and phagocytic activities. WE-spleen6 was more susceptible to infection with VHSV IVb than a fibroblast and epithelial cell lines from the walleye caudal fin, WE-cfin11f and WE-cfin11e, respectively. Viral transcripts and proteins appeared earlier in WE-spleen6 cultures as did cytopathic effect (CPE) and significant virus production. The synthetic double-stranded RNA (dsRNA), polyinosinic: polycytidylic acid (pIC), induced the antiviral protein Mx in both cell lines. Treating WE-spleen6 cultures with pIC prior to infection with VHSV IVb inhibited the early accumulation of viral transcripts and proteins and delayed the appearance of CPE and significant viral production. Of particular note, pIC caused the disappearance of viral P protein 2 days post infection. WE-spleen6 should be useful for investigating the impact of VHSV IVb on hematopoietic organs and the actions of pIC on the rhabdovirus life cycle.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aaron W Bender
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - John S Lumsden
- Ontario Veterinary College, Pathobiology, University of Guelph, Guelph, ON N2G 2W1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
21
|
Buchtova M, Oralova V, Aklian A, Masek J, Vesela I, Ouyang Z, Obadalova T, Konecna Z, Spoustova T, Pospisilova T, Matula P, Varecha M, Balek L, Gudernova I, Jelinkova I, Duran I, Cervenkova I, Murakami S, Kozubik A, Dvorak P, Bryja V, Krejci P. Fibroblast growth factor and canonical WNT/β-catenin signaling cooperate in suppression of chondrocyte differentiation in experimental models of FGFR signaling in cartilage. Biochim Biophys Acta Mol Basis Dis 2015; 1852:839-50. [PMID: 25558817 DOI: 10.1016/j.bbadis.2014.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/30/2014] [Accepted: 12/27/2014] [Indexed: 11/29/2022]
Abstract
Aberrant fibroblast growth factor (FGF) signaling disturbs chondrocyte differentiation in skeletal dysplasia, but the mechanisms underlying this process remain unclear. Recently, FGF was found to activate canonical WNT/β-catenin pathway in chondrocytes via Erk MAP kinase-mediated phosphorylation of WNT co-receptor Lrp6. Here, we explore the cellular consequences of such a signaling interaction. WNT enhanced the FGF-mediated suppression of chondrocyte differentiation in mouse limb bud micromass and limb organ cultures, leading to inhibition of cartilage nodule formation in micromass cultures, and suppression of growth in cultured limbs. Simultaneous activation of the FGF and WNT/β-catenin pathways resulted in loss of chondrocyte extracellular matrix, expression of genes typical for mineralized tissues and alteration of cellular shape. WNT enhanced the FGF-mediated downregulation of chondrocyte proteoglycan and collagen extracellular matrix via inhibition of matrix synthesis and induction of proteinases involved in matrix degradation. Expression of genes regulating RhoA GTPase pathway was induced by FGF in cooperation with WNT, and inhibition of the RhoA signaling rescued the FGF/WNT-mediated changes in chondrocyte cellular shape. Our results suggest that aberrant FGF signaling cooperates with WNT/β-catenin in suppression of chondrocyte differentiation.
Collapse
Affiliation(s)
- Marcela Buchtova
- Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; Institute of Animal Physiology and Genetics AS CR, v.v.i., Brno, Czech Republic
| | - Veronika Oralova
- Institute of Animal Physiology and Genetics AS CR, v.v.i., Brno, Czech Republic
| | - Anie Aklian
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jan Masek
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Iva Vesela
- Department of Anatomy, Histology and Embryology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Zhufeng Ouyang
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Tereza Obadalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zaneta Konecna
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tereza Spoustova
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Tereza Pospisilova
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Petr Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Balek
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Iveta Cervenkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Shunichi Murakami
- Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA
| | - Alois Kozubik
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics AS CR, v.v.i., Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vitezslav Bryja
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics AS CR, v.v.i., Brno, Czech Republic
| | - Pavel Krejci
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
22
|
Popov B, Petrov N. pRb-E2F signaling in life of mesenchymal stem cells: Cell cycle, cell fate, and cell differentiation. Genes Dis 2014; 1:174-187. [PMID: 30258863 PMCID: PMC6150080 DOI: 10.1016/j.gendis.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various mesodermal lines forming fat, muscle, bone, and other lineages of connective tissue. MSCs possess plasticity and under special metabolic conditions may transform into cells of unusual phenotypes originating from ecto- and endoderm. After transplantation, MSCs release the humoral factors promoting regeneration of the damaged tissue. During last five years, the numbers of registered clinical trials of MSCs have increased about 10 folds. This gives evidence that MSCs present a new promising resource for cell therapy of the most dangerous diseases. The efficacy of the MSCs therapy is limited by low possibilities to regulate their conversion into cells of damaged tissues that is implemented by the pRb-E2F signaling. The widely accepted viewpoint addresses pRb as ubiquitous regulator of cell cycle and tumor suppressor. However, current publications suggest that basic function of the pRb-E2F signaling in development is to regulate cell fate and differentiation. Through facultative and constitutive chromatin modifications, pRb-E2F signaling promotes transient and stable cells quiescence, cell fate choice to differentiate, to senesce, or to die. Loss of pRb is associated with cancer cell fate. pRb regulates cell fate by retaining quiescence of one cell population in favor of commitment of another or by suppression of genes of different cell phenotype. pRb is the founder member of the "pocket protein" family possessing functional redundancy. Critical increase in the efficacy of the MSCs based cell therapy will depend on precise understanding of various aspects of the pRb-E2F signaling.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, Russia
| | | |
Collapse
|
23
|
Nakahara R, Kawai Y, Oda A, Nishimura M, Murakami A, Azuma T, Kaifu T, Goitsuka R. Generation of a Tlx1(CreER-Venus) knock-in mouse strain for the study of spleen development. Genesis 2014; 52:916-23. [PMID: 25283275 DOI: 10.1002/dvg.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/02/2014] [Indexed: 12/15/2022]
Abstract
The spleen is a lymphoid organ that serves as a unique niche for immune reactions, extramedullary hematopoiesis, and the removal of aged erythrocytes from the circulation. While much is known about the immunological functions of the spleen, the mechanisms governing the development and organization of its stromal microenvironment remain poorly understood. Here we report the generation and analysis of a Tlx1(Cre) (ER) (-Venus) knock-in mouse strain engineered to simultaneously express tamoxifen-inducible CreER(T2) and Venus fluorescent protein under the control of regulatory elements of the Tlx1 gene, which encodes a transcription factor essential for spleen development. We demonstrated that Venus as well as CreER expression recapitulates endogenous Tlx1 transcription within the spleen microenvironment. When Tlx1(Cre) (ER) (-Venus) mice were crossed with the Cre-inducible reporter strain, Tlx1-expressing cells as well as their descendants were specifically labeled following tamoxifen administration. We also showed by cell lineage tracing that asplenia caused by Tlx1 deficiency is attributable to altered contribution of mesenchymal cells in the spleen anlage to the pancreatic mesenchyme. Thus, Tlx1(Cre) (ER) (-Venus) mice represent a new tool for lineage tracing and conditional gene manipulation of spleen mesenchymal cells, essential approaches for understanding the molecular mechanisms of spleen development.
Collapse
Affiliation(s)
- Ryo Nakahara
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Verardo R, Piazza S, Klaric E, Ciani Y, Bussadori G, Marzinotto S, Mariuzzi L, Cesselli D, Beltrami AP, Mano M, Itoh M, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest ARR, Beltrami CA, Schneider C. Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High-Grade Serous Ovarian Cancer. Stem Cells 2014; 32:2998-3011. [DOI: 10.1002/stem.1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 04/17/2014] [Accepted: 05/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Roberto Verardo
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Silvano Piazza
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Enio Klaric
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Yari Ciani
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Giulio Bussadori
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
| | - Stefania Marzinotto
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Laura Mariuzzi
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Daniela Cesselli
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Antonio P. Beltrami
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - Miguel Mano
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Masayoshi Itoh
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Hideya Kawaji
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Timo Lassmann
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | - Piero Carninci
- RIKEN Omics Science Center (OSC); Tsurumi-ku Yokohama Japan
| | | | | | - Carlo A. Beltrami
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | - Claudio Schneider
- Laboratorio Nazionale-Consorzio Interuniversitario Biotecnologie (LNCIB); Area Science Park Trieste Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB); Area Science Park Trieste Italy
| | | |
Collapse
|
25
|
Hegyi B, Környei Z, Ferenczi S, Fekete R, Kudlik G, Kovács KJ, Madarász E, Uher F. Regulation of mouse microglia activation and effector functions by bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2014; 23:2600-12. [PMID: 24870815 DOI: 10.1089/scd.2014.0088] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stems or stromal cells (MSCs) are rare multipotent cells with potent regenerative and immunomodulatory properties. Microglial cells (MGs) are specialized tissue macrophages of the central nervous system (CNS) that continuously survey their environment with highly motile extensions. Recently, several studies have shown that MSCs are capable of reprogramming microglia into an "M2-like" phenotype characterized by increased phagocytic activity and upregulated expression of anti-inflammatory mediators in vitro. However, the precise polarization states of microglia in the presence of MSCs under physiological or under inflammatory conditions remain largely unknown. In this study, we found that MSCs induce a mixed microglia phenotype defined as Arg1-high, CD86-high, CD206-high, IL-10-high, PGE2-high, MCP-1/CCL2-high, IL-1β-moderate, NALP-3-low, and TNF-α-low cells. These MSC-elicited MGs have high phagocytic activity and antigen-presenting ability. Lipopolysaccharide is able to shape this microglia phenotype quantitatively, but not qualitatively in the presence of MSCs. This unique polarization state resembles a novel regulatory microglia phenotype, which might contribute to the resolution of inflammation and to tissue repair in the CNS.
Collapse
Affiliation(s)
- Beáta Hegyi
- 1 Laboratory of Molecular Cell Biology, Institute of Molecular Pharmacology, Research Center for Natural Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Osathanon T, Ritprajak P, Nowwarote N, Manokawinchoke J, Giachelli C, Pavasant P. Surface-bound orientated Jagged-1 enhances osteogenic differentiation of human periodontal ligament-derived mesenchymal stem cells. J Biomed Mater Res A 2012; 101:358-67. [PMID: 22847978 DOI: 10.1002/jbm.a.34332] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
Notch signaling plays critical roles in various cell types by regulating cell fate determination and differentiation. Here, we investigated the ability to control differentiation of human periodontal ligament derived mesenchymal stem cells using modified surfaces containing the affinity immobilized Notch ligand, Jagged-1. After seeding human periodontal ligament derived mesenchymal stem cells (HPDLs) on Jagged-1 modified surfaces, expression of Notch signaling target genes, Hes-1 and Hey-1, was higher than those exposed to soluble Jagged-1 or control surfaces. Upregulation of Notch signaling target genes was attenuated after treatment with the γ secretase inhibitor. Upon seeding the cells on Jagged-1 immobilized surface and maintained in osteogenic medium, alkaline phosphatase enzymatic activity and mineralization as well as mRNA expression of alkaline phosphatase (ALP), collagen type I (COL I) and osteopontin (OPN) were significantly increased compared to those of controls. However, osteocalcin (OCN) mRNA expression level was decreased when cells were exposed to Jagged-1 modified surfaces. HPDLs on Jagged-1 modified surfaces expressed lower TWIST2 mRNA levels than the control, suggesting that the mechanism whereby Jagged-1 enhances osteogenic differentiation of HPDLs may occur through Notch signaling and TWIST regulation. In summary, an alteration of biomaterial interface using Notch ligands illustrates a promising system to control HPDLs differentiation toward osteogenic lineage.
Collapse
Affiliation(s)
- Thanaphum Osathanon
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|