1
|
Li J, Isaakidou A, van Zanten LJ, Tas RP, Mirzaali MJ, Fratila-Apachitei LE, Zadpoor AA. Multi-scale additive manufacturing of 3D porous networks integrated with hydrogel for sustained in vitro tissue growth. Acta Biomater 2025; 196:198-212. [PMID: 40049309 DOI: 10.1016/j.actbio.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
The development of high-fidelity three-dimensional (3D) tissue models can minimize the need for animal models in clinical medicine and drug development. However, physical limitations regarding the distances within which diffusion processes are effective impose limitations on the size of such constructs. That is because larger-size constructs experience necrosis, especially in their centers, due to the cells residing deep inside such constructs not receiving enough oxygen and nutrients. This hampers the sustained in vitro growth of the tissues which is required for achieving functional microtissues. To address this challenge, we used three types of 3D printing technologies to create perfusable networks at different length scales and integrate them into such constructs. Toward this aim, networks incorporating porous conduits with increasingly complex configurations were designed and fabricated using fused deposition modeling, stereolithography, and two-photon polymerization while optimizing the printing conditions for each of these technologies. Furthermore, following network embedding in hydrogels, contrast agent-enhanced micro-computed tomography and confocal fluorescence microscopy were employed to characterize one of the essential network functionalities, namely the diffusion function. The investigations revealed the effects of various design parameters on the diffusion behavior of the porous conduits over 24 h. We found that the number of pores exerts the most significant influence on the diffusion behavior of the contrast agent, followed by variations in the pore size and hydrogel concentration. The analytical approach and the findings of this study establish a solid base for a new technological platform to fabricate perfusable multiscale 3D porous networks with complex designs while enabling the customization of diffusion characteristics to meet specific requirements for sustained in vitro tissue growth. STATEMENT OF SIGNIFICANCE: This study addresses an essential limitation of current 3D tissue engineering, namely, sustaining tissue viability in larger constructs through optimized nutrient and oxygen delivery. By utilizing advanced 3D printing techniques this research proposes the fabrication of perfusable, multiscale and customizable networks that enhance diffusion and enable cell access to essential nutrients throughout the construct. The findings highlighted the role of network characteristics on the diffusion of a model compound within a hydrogel matrix. This work represents a promising technological platform for creating advanced in vitro 3D tissue models that can reduce the use of animal models in research involving tissue regeneration, disease models and drug development.
Collapse
Affiliation(s)
- J Li
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - A Isaakidou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - L J van Zanten
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - R P Tas
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft 2628 CD, The Netherlands
| |
Collapse
|
2
|
Butch E, Prideaux M, Holland M, Phan JT, Trent C, Soon V, Hutchins G, Smith L. The 'bIUreactor': An Open-Source 3D Tissue Research Platform. Ann Biomed Eng 2024; 52:1678-1692. [PMID: 38532173 PMCID: PMC11082015 DOI: 10.1007/s10439-024-03481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024]
Abstract
We developed the open-source bIUreactor research platform for studying 3D structured tissues. The versatile and modular platform allows a researcher to generate 3D tissues, culture them with oxygenated perfusion, and provide cyclic loading, all in their own lab (in laboratorium) for an all in cost of $8,000 including 3D printer, printing resin, and electronics. We achieved this by applying a design philosophy that leverages 3D printing, open-source software and hardware, and practical techniques to produce the following: 1. perfusible 3D tissues, 2. a bioreactor chamber for tissue culture, 3. a module for applying cyclic compression, 4. a peristaltic pump for providing oxygenated perfusion to 3D tissues, 5. motor control units, and 6. open-source code for running the control units. By making it widely available for researchers to investigate 3D tissue models and easy for them to use, we intend for the bIUreactor to democratize 3D tissue research, therefore increasing the pace and scale of biomedical research discoveries using 3D tissue models.
Collapse
Affiliation(s)
- Elizabeth Butch
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Holland
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin-Thuy Phan
- Smith BioFab Lab, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cole Trent
- Smith BioFab Lab, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victor Soon
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gary Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester Smith
- Smith BioFab Lab, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Ruiter FAA, King J, Swapnasrita S, Giselbrecht S, Truckenmüller R, LaPointe VLS, Baker MB, Carlier A. Optimization of Media Change Intervals through Hydrogels Using Mathematical Models. Biomacromolecules 2023; 24:604-612. [PMID: 36724373 PMCID: PMC9930106 DOI: 10.1021/acs.biomac.2c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three-dimensional cell culture in engineered hydrogels is increasingly used in tissue engineering and regenerative medicine. The transfer of nutrients, gases, and waste materials through these hydrogels is of utmost importance for cell viability and response, yet the translation of diffusion coefficients into practical guidelines is not well established. Here, we combined mathematical modeling, fluorescent recovery after photobleaching, and hydrogel diffusion experiments on cell culture inserts to provide a multiscale practical approach for diffusion. We observed a dampening effect of the hydrogel that slowed the response to concentration changes and the creation of a diffusion gradient in the hydrogel by media refreshment. Our designed model combined with measurements provides a practical point of reference for diffusion coefficients in real-world culture conditions, enabling more informed choices on hydrogel culture conditions. This model can be improved in the future to simulate more complicated intrinsic hydrogel properties and study the effects of secondary interactions on the diffusion of analytes through the hydrogel.
Collapse
Affiliation(s)
- Floor A A Ruiter
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Jasia King
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.,MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Sangita Swapnasrita
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Matthew B Baker
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
4
|
Ni R, Luo C, Ci H, Sun D, An R, Wang Z, Yang J, Li Y, Sun J. Construction of vascularized tissue-engineered breast with dual angiogenic and adipogenic micro-tissues. Mater Today Bio 2022; 18:100539. [PMID: 36686035 PMCID: PMC9850046 DOI: 10.1016/j.mtbio.2022.100539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogel-based micro-tissue engineering technique, a bottom-up approach, is promising in constructing soft tissue of large size with homogeneous spatial distribution and superior regeneration capacity compared to the top-down approach. However, most of the studies employed micro-tissues with simple mesenchymal stem cells, which could hardly meet the growth of matrix and vessels. Therefore, we recommend a dual micro-tissues assembly strategy to construct vascularized tissue-engineered breast grafts (TEBGs). Adipose micro-tissues (AMs) and vessel micro-tissues (VMs) were fabricated by seeding adipose-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) on collagen microgels (COLs) with a uniform diameter of ∼250 μm, respectively. TEBGs were constructed by injecting the dual micro-tissues into 3D printed breast-like Thermoplastic Urethane (TPU) scaffolds, then implanted into the subcutaneous pockets on the back of nude mice. After 3 months of implantation, TEBGs based on dual micro-tissues performed larger volume of adipose tissue regeneration and neo-vessel formation compared to TEBGs based on single AMs. This study extends the application of micro-tissue engineering technique for the construction of soft grafts, and is expected to be useful for creating heterogeneous tissue constructs in the future.
Collapse
Affiliation(s)
- Ruopiao Ni
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Luo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Hai Ci
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Di Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Ran An
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, China,Corresponding author. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
5
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
6
|
Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues. Int J Mol Sci 2022; 23:ijms23020924. [PMID: 35055112 PMCID: PMC8781121 DOI: 10.3390/ijms23020924] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/02/2023] Open
Abstract
In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.
Collapse
|
7
|
Dudman J, Ferreira AM, Gentile P, Wang X, Dalgarno K. Microvalve Bioprinting of MSC-Chondrocyte Co-Cultures. Cells 2021; 10:cells10123329. [PMID: 34943837 PMCID: PMC8699323 DOI: 10.3390/cells10123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 12/05/2022] Open
Abstract
Recent improvements within the fields of high-throughput screening and 3D tissue culture have provided the possibility of developing in vitro micro-tissue models that can be used to study diseases and screen potential new therapies. This paper reports a proof-of-concept study on the use of microvalve-based bioprinting to create laminar MSC-chondrocyte co-cultures to investigate whether the use of MSCs in ACI procedures would stimulate enhanced ECM production by chondrocytes. Microvalve-based bioprinting uses small-scale solenoid valves (microvalves) to deposit cells suspended in media in a consistent and repeatable manner. In this case, MSCs and chondrocytes have been sequentially printed into an insert-based transwell system in order to create a laminar co-culture, with variations in the ratios of the cell types used to investigate the potential for MSCs to stimulate ECM production. Histological and indirect immunofluorescence staining revealed the formation of dense tissue structures within the chondrocyte and MSC-chondrocyte cell co-cultures, alongside the establishment of a proliferative region at the base of the tissue. No stimulatory or inhibitory effect in terms of ECM production was observed through the introduction of MSCs, although the potential for an immunomodulatory benefit remains. This study, therefore, provides a novel method to enable the scalable production of therapeutically relevant micro-tissue models that can be used for in vitro research to optimise ACI procedures.
Collapse
Affiliation(s)
- Joseph Dudman
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
| | - Xiao Wang
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Kenneth Dalgarno
- School of Engineering, Newcastle University, Newcastle upon Tyne NE3 1PS, UK; (J.D.); (A.M.F.); (P.G.)
- Correspondence:
| |
Collapse
|
8
|
Gilchrist AE, Serrano JF, Ngo MT, Hrnjak Z, Kim S, Harley BAC. Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel. Acta Biomater 2021; 131:138-148. [PMID: 34161871 PMCID: PMC8373770 DOI: 10.1016/j.actbio.2021.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 02/09/2023]
Abstract
Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli through cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), thereby reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report the insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of Sortase A, a mammalian-inert enzyme. Notably, Sortase A exposure preserves stem cell surface markers, which are an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to produce artificial stem cell niches with tunable biophysical properties, intrinsic cell-interaction motifs, and orthogonal addition of bioactive crosslinks. STATEMENT OF SIGNIFICANCE: We describe a maleimide-functionalized gelatin hydrogel that can be crosslinked via a thiol-maleimide mediated click reaction to form a stable hydrogel without the production of reactive oxygen species typical in light-based crosslinking. The mechanical properties can be tuned to match the in vivo bone marrow microenvironment for hematopoietic stem cell culture. Additionally, we report inclusion of a peptide crosslinker that can be cleaved via the proteolytic action of Sortase A and show that Sortase A exposure does not degrade sensitive surface marker expression patterns. Together, this approach reduces stem cell exposure to reactive oxygen species during hydrogel gelation and enables post-culture quantitative assessment of stem cell phenotype.
Collapse
Affiliation(s)
- Aidan E Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Julio F Serrano
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mai T Ngo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zona Hrnjak
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sanha Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Pössl A, Hartzke D, Schlupp P, Runkel FE. Calculation of Mass Transfer and Cell-Specific Consumption Rates to Improve Cell Viability in Bioink Tissue Constructs. MATERIALS 2021; 14:ma14164387. [PMID: 34442913 PMCID: PMC8401414 DOI: 10.3390/ma14164387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
Biofabrication methods such as extrusion-based bioprinting allow the manufacture of cell-laden structures for cell therapy, but it is important to provide a sufficient number of embedded cells for the replacement of lost functional tissues. To address this issue, we investigated mass transfer rates across a bioink hydrogel for the essential nutrients glucose and glutamine, their metabolites lactate and ammonia, the electron acceptor oxygen, and the model protein bovine serum albumin. Diffusion coefficients were calculated for these substances at two temperatures. We could confirm that diffusion depends on the molecular volume of the substances if the bioink has a high content of polymers. The analysis of pancreatic 1.1B4 β-cells revealed that the nitrogen source glutamine is a limiting nutrient for homeostasis during cultivation. Taking the consumption rates of 1.1B4 β-cells into account during cultivation, we were able to calculate the cell numbers that can be adequately supplied by the cell culture medium and nutrients in the blood using a model tissue construct. For blood-like conditions, a maximum of ~106 cells·mL−1 was suitable for the cell-laden construct, as a function of the diffused substrate and cell consumption rate for a given geometry. We found that oxygen and glutamine were the limiting nutrients in our model.
Collapse
Affiliation(s)
- Axel Pössl
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
| | - David Hartzke
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
| | - Peggy Schlupp
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
- Correspondence: (P.S.); (F.E.R.)
| | - Frank E. Runkel
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen—University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany; (A.P.); (D.H.)
- Department of Biology and Chemistry, Justus Liebig University, Ludwigstrasse 23, 35390 Giessen, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps University, Robert-Koch-Strasse 4, 35037 Marburg, Germany
- Correspondence: (P.S.); (F.E.R.)
| |
Collapse
|
10
|
Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. BIOPHYSICS REVIEWS 2021; 2:021305. [PMID: 38505119 PMCID: PMC10903443 DOI: 10.1063/5.0048837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 03/21/2024]
Abstract
Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
11
|
Horder H, Guaza Lasheras M, Grummel N, Nadernezhad A, Herbig J, Ergün S, Teßmar J, Groll J, Fabry B, Bauer-Kreisel P, Blunk T. Bioprinting and Differentiation of Adipose-Derived Stromal Cell Spheroids for a 3D Breast Cancer-Adipose Tissue Model. Cells 2021; 10:cells10040803. [PMID: 33916870 PMCID: PMC8066030 DOI: 10.3390/cells10040803] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Biofabrication, including printing technologies, has emerged as a powerful approach to the design of disease models, such as in cancer research. In breast cancer, adipose tissue has been acknowledged as an important part of the tumor microenvironment favoring tumor progression. Therefore, in this study, a 3D-printed breast cancer model for facilitating investigations into cancer cell-adipocyte interaction was developed. First, we focused on the printability of human adipose-derived stromal cell (ASC) spheroids in an extrusion-based bioprinting setup and the adipogenic differentiation within printed spheroids into adipose microtissues. The printing process was optimized in terms of spheroid viability and homogeneous spheroid distribution in a hyaluronic acid-based bioink. Adipogenic differentiation after printing was demonstrated by lipid accumulation, expression of adipogenic marker genes, and an adipogenic ECM profile. Subsequently, a breast cancer cell (MDA-MB-231) compartment was printed onto the adipose tissue constructs. After nine days of co-culture, we observed a cancer cell-induced reduction of the lipid content and a remodeling of the ECM within the adipose tissues, with increased fibronectin, collagen I and collagen VI expression. Together, our data demonstrate that 3D-printed breast cancer-adipose tissue models can recapitulate important aspects of the complex cell–cell and cell–matrix interplay within the tumor-stroma microenvironment.
Collapse
Affiliation(s)
- Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Mar Guaza Lasheras
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Nadine Grummel
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Ali Nadernezhad
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Johannes Herbig
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Süleyman Ergün
- Department of Medicine, Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany;
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry, Bavarian Polymer Institute, University of Würzburg, 97080 Würzburg, Germany; (A.N.); (J.H.); (J.T.); (J.G.)
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany; (N.G.); (B.F.)
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, 97080 Würzburg, Germany; (H.H.); (M.G.L.); (P.B.-K.)
- Correspondence: ; Tel.: +49-931-201-37115
| |
Collapse
|
12
|
Cortesi M, Liverani C, Mercatali L, Ibrahim T, Giordano E. Development and validation of an in-silico tool for the study of therapeutic agents in 3D cell cultures. Comput Biol Med 2021; 130:104211. [PMID: 33476993 DOI: 10.1016/j.compbiomed.2021.104211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
Computational models constitute a fundamental asset for cancer research and drug R&D, as they provide controlled environments for testing of hypotheses and are characterized by the total knowledge of the system. These features are particularly useful for 3D cell culture models where a complex interaction among cells and their environments ensues. In this work, we present a programmable simulator capable of reproducing the behavior of cells cultured in 3D scaffolds and their response to pharmacological treatment. This system will be shown to be able to accurately describe the temporal evolution of the density of a population of MDA-MB-231 cells following their treatment with different concentrations of doxorubicin, together with a newly described drug-resistance mechanism and potential re-sensitization strategy. An extensive technical description of this model will be coupled to its experimental validation and to an analysis aimed at identifying which variables and behaviors account for differences in the response to treatment. Comprehensively, this work contributes to the growing field of integrated in-silico/in-vitro analysis of biological processes which has great potential for both the increase of our scientific knowledge and the development of novel, more effective treatments.
Collapse
Affiliation(s)
- M Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Italy.
| | - C Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - L Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - T Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - E Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Ozzano Emilia, Italy; Laboratory of Cellular and Molecular Engineering "S.Cavalcanti", Department of Electrical, Electronic and Information Engineering "G.Marconi" (DEI), Alma Mater Studiorum - University of Bologna, Cesena, Italy; Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum - University of Bologna, Italy.
| |
Collapse
|
13
|
Albanese A, Swaney JM, Yun DH, Evans NB, Antonucci JM, Velasco S, Sohn CH, Arlotta P, Gehrke L, Chung K. Multiscale 3D phenotyping of human cerebral organoids. Sci Rep 2020; 10:21487. [PMID: 33293587 PMCID: PMC7723053 DOI: 10.1038/s41598-020-78130-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 01/28/2023] Open
Abstract
Brain organoids grown from human pluripotent stem cells self-organize into cytoarchitectures resembling the developing human brain. These three-dimensional models offer an unprecedented opportunity to study human brain development and dysfunction. Characterization currently sacrifices spatial information for single-cell or histological analysis leaving whole-tissue analysis mostly unexplored. Here, we present the SCOUT pipeline for automated multiscale comparative analysis of intact cerebral organoids. Our integrated technology platform can rapidly clear, label, and image intact organoids. Algorithmic- and convolutional neural network-based image analysis extract hundreds of features characterizing molecular, cellular, spatial, cytoarchitectural, and organoid-wide properties from fluorescence microscopy datasets. Comprehensive analysis of 46 intact organoids and ~ 100 million cells reveals quantitative multiscale "phenotypes" for organoid development, culture protocols and Zika virus infection. SCOUT provides a much-needed framework for comparative analysis of emerging 3D in vitro models using fluorescence microscopy.
Collapse
Affiliation(s)
- Alexandre Albanese
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | | | - Dae Hee Yun
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Nicholas B Evans
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Jenna M Antonucci
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Silvia Velasco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chang Ho Sohn
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Chemical Engineering, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Dayekh K, Mequanint K. The effects of progenitor and differentiated cells on ectopic calcification of engineered vascular tissues. Acta Biomater 2020; 115:288-298. [PMID: 32853805 DOI: 10.1016/j.actbio.2020.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
Ectopic vascular calcification associated with aging, diabetes mellitus, atherosclerosis, and chronic kidney disease is a considerable risk factor for cardiovascular events and death. Although vascular smooth muscle cells are primarily implicated in calcification, the role of progenitor cells is less known. In this study, we engineered tubular vascular tissues from embryonic multipotent mesenchymal progenitor cells either without differentiating or after differentiating them into smooth muscle cells and studied ectopic calcification through targeted gene analysis. Tissues derived from both differentiated and undifferentiated cells calcified in response to hyperphosphatemic inorganic phosphate (Pi) treatment suggesting that a single cell-type (progenitor cells or differentiated cells) may not be the sole cause of the process. We also demonstrated that Vitamin K, which is the matrix gla protein activator, had a protective role against calcification in engineered vascular tissues. Addition of partially-soluble elastin upregulated osteogenic marker genes suggesting a calcification process. Furthermore, partially-soluble elastin downregulated smooth muscle myosin heavy chain (Myh11) gene which is a late-stage differentiation marker. This latter point, in turn, suggests that SMC may be switching into a synthetic phenotype which is one feature of vascular calcification. Taken together, our approach presents a valuable tool to study ectopic calcification and associated gene expressions relevant to clinical therapeutic targets.
Collapse
|
15
|
Hauptstein J, Böck T, Bartolf‐Kopp M, Forster L, Stahlhut P, Nadernezhad A, Blahetek G, Zernecke‐Madsen A, Detsch R, Jüngst T, Groll J, Teßmar J, Blunk T. Hyaluronic Acid-Based Bioink Composition Enabling 3D Bioprinting and Improving Quality of Deposited Cartilaginous Extracellular Matrix. Adv Healthc Mater 2020; 9:e2000737. [PMID: 32757263 DOI: 10.1002/adhm.202000737] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Indexed: 12/13/2022]
Abstract
In 3D bioprinting, bioinks with high concentrations of polymeric materials are frequently used to enable fabrication of 3D cell-hydrogel constructs with sufficient stability. However, this is often associated with restricted cell bioactivity and an inhomogeneous distribution of newly produced extracellular matrix (ECM). Therefore, this study investigates bioink compositions based on hyaluronic acid (HA), an attractive material for cartilage regeneration, which allow for reduction of polymer content. Thiolated HA and allyl-modified poly(glycidol) in varying concentrations are UV-crosslinked. To adapt bioinks to poly(ε-caprolactone) (PCL)-supported 3D bioprinting, the gels are further supplemented with 1 wt% unmodified high molecular weight HA (hmHA) and chondrogenic differentiation of incorporated human mesenchymal stromal cells is assessed. Strikingly, addition of hmHA to gels with a low polymer content (3 wt%) results in distinct increase of construct quality with a homogeneous ECM distribution throughout the constructs, independent of the printing process. Improved ECM distribution in those constructs is associated with increased construct stiffness after chondrogenic differentiation, as compared to higher concentrated constructs (10 wt%), which only show pericellular matrix deposition. The study contributes to effective bioink development, demonstrating dual function of a supplement enabling PCL-supported bioprinting and at the same time improving biological properties of the resulting constructs.
Collapse
Affiliation(s)
- Julia Hauptstein
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Würzburg 97080 Würzburg Germany
| | - Thomas Böck
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Michael Bartolf‐Kopp
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Leonard Forster
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Philipp Stahlhut
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Ali Nadernezhad
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Gina Blahetek
- Institute of Experimental Biomedicine IIUniversity Hospital Würzburg 97080 Würzburg Germany
| | - Alma Zernecke‐Madsen
- Institute of Experimental Biomedicine IIUniversity Hospital Würzburg 97080 Würzburg Germany
| | - Rainer Detsch
- Institute of BiomaterialsDepartment of Materials Science and EngineeringUniversity of Erlangen‐Nuremberg 91058 Erlangen Germany
| | - Tomasz Jüngst
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer InstituteUniversity of Würzburg 97070 Würzburg Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive SurgeryUniversity of Würzburg 97080 Würzburg Germany
| |
Collapse
|
16
|
Abstract
Organoids form through self-organization processes in which initially homogeneous populations of stem cells spontaneously break symmetry and undergo in-vivo-like pattern formation and morphogenesis, though the processes controlling this are poorly characterized. While these in vitro self-organized tissues far exceed the microscopic and functional complexity obtained by current tissue engineering technologies, they are non-physiological in shape and size and have limited function and lifespan. Here, we discuss how engineering efforts for guiding stem-cell-based development at multiple stages can form the basis for the assembly of highly complex and rationally designed self-organizing multicellular systems with increased robustness and physiological relevance.
Collapse
|
17
|
Smith BT, Bittner SM, Watson E, Smoak MM, Diaz-Gomez L, Molina ER, Kim YS, Hudgins CD, Melchiorri AJ, Scott DW, Grande-Allen KJ, Yoo JJ, Atala A, Fisher JP, Mikos AG. Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation. Tissue Eng Part A 2019; 26:239-252. [PMID: 31696784 DOI: 10.1089/ten.tea.2019.0204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study of three-dimensional (3D) printed composite β-tricalcium phosphate (β-TCP)-/hydroxyapatite/poly(ɛ-caprolactone)-based constructs, the effects of vertical compositional ceramic gradients and architectural porosity gradients on the osteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs) were investigated. Specifically, three different concentrations of β-TCP (0, 10, and 20 wt%) and three different porosities (33% ± 4%, 50% ± 4%, and 65% ± 3%) were examined to elucidate the contributions of chemical and physical gradients on the biochemical behavior of MSCs and the mineralized matrix production within a 3D culture system. By delaminating the constructs at the gradient transition point, the spatial separation of cellular phenotypes could be specifically evaluated for each construct section. Results indicated that increased concentrations of β-TCP resulted in upregulation of osteogenic markers, including alkaline phosphatase activity and mineralized matrix development. Furthermore, MSCs located within regions of higher porosity displayed a more mature osteogenic phenotype compared to MSCs in lower porosity regions. These results demonstrate that 3D printing can be leveraged to create multiphasic gradient constructs to precisely direct the development and function of MSCs, leading to a phenotypic gradient. Impact Statement In this study, three-dimensional (3D) printed ceramic/polymeric constructs containing discrete vertical gradients of both composition and porosity were fabricated to precisely control the osteogenic differentiation of mesenchymal stem cells. By making simple alterations in construct architecture and composition, constructs containing heterogenous populations of cells were generated, where gradients in scaffold design led to corresponding gradients in cellular phenotype. The study demonstrates that 3D printed multiphasic composite constructs can be leveraged to create complex heterogeneous tissues and interfaces.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Sean M Bittner
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Mollie M Smoak
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Eric R Molina
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Carrigan D Hudgins
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Anthony J Melchiorri
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - David W Scott
- Department of Statistics, Rice University, Houston, Texas
| | | | - James J Yoo
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anthony Atala
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - John P Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| |
Collapse
|
18
|
Maussion G, Rocha C, Bernard G, Beitel LK, Durcan TM. Patient-Derived Stem Cells, Another in vitro Model, or the Missing Link Toward Novel Therapies for Autism Spectrum Disorders? Front Pediatr 2019; 7:225. [PMID: 31245336 PMCID: PMC6562499 DOI: 10.3389/fped.2019.00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) is a multigenic and multifactorial neurodevelopmental group of disorders diagnosed in early childhood, leading to deficits in social interaction, verbal and non-verbal communication and characterized by restricted and repetitive behaviors and interests. To date, genetic, descriptive and mechanistic aspects of the ASDs have been investigated using mouse models and post-mortem brain tissue. More recently, the technology to generate stem cells from patients' samples has brought a new avenue for modeling ASD through 2D and 3D neuronal models that are derived from a patient's own cells, with the goal of building new therapeutic strategies for treating ASDs. This review analyses how studies performed on mouse models and human samples can complement each other, advancing our current knowledge into the pathophysiology of the ASDs. Regardless of the genetic and phenotypic heterogeneities of ASDs, convergent information regarding the molecular and cellular mechanisms involved in these disorders can be extracted from these models. Thus, considering the complexities of these disorders, patient-derived models have immense potential to elucidate molecular deregulations that contributed to the different autistic phenotypes. Through these direct investigations with the human in vitro models, they offer the potential for opening new therapeutic avenues that can be translated into the clinic.
Collapse
Affiliation(s)
- Gilles Maussion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Cecilia Rocha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Internal Medicine, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- MyeliNeuroGene Laboratory, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Lenore K. Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Cargo diffusion shortens single-kinesin runs at low viscous drag. Sci Rep 2019; 9:4104. [PMID: 30858425 PMCID: PMC6411862 DOI: 10.1038/s41598-019-40550-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Molecular motors such as kinesin-1 drive active, long-range transport of cargos along microtubules in cells. Thermal diffusion of the cargo can impose a randomly directed, fluctuating mechanical load on the motor carrying the cargo. Recent experiments highlighted a strong asymmetry in the sensitivity of single-kinesin run length to load direction, raising the intriguing possibility that cargo diffusion may non-trivially influence motor run length. To test this possibility, here we employed Monte Carlo-based simulations to evaluate the transport of cargo by a single kinesin. Our simulations included physiologically relevant viscous drag on the cargo and interrogated a large parameter space of cytoplasmic viscosities, cargo sizes, and motor velocities that captures their respective ranges in living cells. We found that cargo diffusion significantly shortens single-kinesin runs. This diffusion-based shortening is countered by viscous drag, leading to an unexpected, non-monotonic variation in run length as viscous drag increases. To our knowledge, this is the first identification of a significant effect of cargo diffusion on motor-based transport. Our study highlights the importance of cargo diffusion and load-detachment kinetics on single-motor functions under physiologically relevant conditions.
Collapse
|
20
|
Increased expression of BDNF mRNA in the frontal cortex of autistic patients. Behav Brain Res 2019; 359:903-909. [DOI: 10.1016/j.bbr.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022]
|
21
|
Kaushik G, Gil DA, Torr E, Berge ES, Soref C, Uhl P, Fontana G, Antosiewicz-Bourget J, Edington C, Schwartz MP, Griffith LG, Thomson JA, Skala MC, Daly WT, Murphy WL. Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels. Adv Healthc Mater 2019; 8:e1801186. [PMID: 30565891 PMCID: PMC6601624 DOI: 10.1002/adhm.201801186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Indexed: 12/17/2022]
Abstract
Vascularization is an important strategy to overcome diffusion limits and enable the formation of complex, physiologically relevant engineered tissues and organoids. Self-assembly is a technique to generate in vitro vascular networks, but engineering the necessary network morphology and function remains challenging. Here, autofluorescence multiphoton microscopy (aMPM), a label-free imaging technique, is used to quantitatively evaluate in vitro vascular network morphology. Vascular networks are generated using human embryonic stem cell-derived endothelial cells and primary human pericytes encapsulated in synthetic poly(ethylene glycol)-based hydrogels. Two custom-built bioreactors are used to generate distinct fluid flow patterns during vascular network formation: recirculating flow or continuous flow. aMPM is used to image these 3D vascular networks without the need for fixation, labels, or dyes. Image processing and analysis algorithms are developed to extract quantitative morphological parameters from these label-free images. It is observed with aMPM that both bioreactors promote formation of vascular networks with lower network anisotropy compared to static conditions, and the continuous flow bioreactor induces more branch points compared to static conditions. Importantly, these results agree with trends observed with immunocytochemistry. These studies demonstrate that aMPM allows label-free monitoring of vascular network morphology to streamline optimization of growth conditions and provide quality control of engineered tissues.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Daniel A Gil
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Elizabeth Torr
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Elizabeth S Berge
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Cheryl Soref
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Peyton Uhl
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - Jessica Antosiewicz-Bourget
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Collin Edington
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - James A Thomson
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Morgridge Institute for Research, 330 North Orchard Street, Madison, WI, 53715, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - William T Daly
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Human Models for Analysis of Pathways (HMAPs) Center, University of Wisconsin-Madison, 1111 Highland Avenue, WIMR 5418, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Mol Biotechnol 2018; 60:843-861. [DOI: 10.1007/s12033-018-0113-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Preparation of high bioactivity multilayered bone-marrow mesenchymal stem cell sheets for myocardial infarction using a 3D-dynamic system. Acta Biomater 2018; 72:182-195. [PMID: 29627677 DOI: 10.1016/j.actbio.2018.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs). The multilayered structure, stem cell bioactivity, and ultrastructure of DCcs and SCcs were assessed. The DCcs exhibited lower apoptosis, lower differentiation, and an improved paracrine effect after a 48 h culture in vitro compared to the SCcs. Four groups were set to evaluate the cell sheet effect in rat MI model: sham group, MI control group, DCcs group, and SCcs group. The DCcs group improved cardiac function and decreased the infarcted area compared to the MI control group, while no significant improvements were observed in the SCcs group. Improved cell survival, angiogenesis, and Sca-1+ cell and c-kit+ cell amounts were observed in the DCcs group. In conclusion, the DCcs maintained higher stem cell bioactivity by using the 3D-dynamic system to provide sufficient nutrition, and transplanting DCcs significantly improved the cardiac function and angiogenesis. STATEMENT OF SIGNIFICANCE This study provides an efficient method to prepare vascular endothelial growth factor covalent decellularized pericardium scaffold with aspartic acid, and a multilayered bone marrow mesenchymal stem cell (BMSC) sheet is constructed on it using a 3D-dynamic system. The dynamic nutrition supply showed a significant benefit on BMSC bioactivity in vitro, including decreasing cell apoptosis, reducing stem cell differentiation, and improving growth factor secretion. These favorable bioactivity improved BMSC survival, angiogenesis, and cardiac function of the infarcted myocardium. The study highlights the importance of dynamic nutrition supply on maintaining stem cell bioactivity within cell sheet, and it stresses the necessity and significance of setting a standard for assessing cell sheet products before transplantation in the future application.
Collapse
|
24
|
Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, Wehland M, Wise P, Infanger M, Mann V, Sundaresan A. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells. Stem Cells Dev 2018; 27:787-804. [PMID: 29596037 DOI: 10.1089/scd.2017.0242] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.
Collapse
Affiliation(s)
- Daniela Grimm
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Marcel Egli
- 3 Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts , Hergiswil, Switzerland
| | - Marcus Krüger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Stefan Riwaldt
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| | - Thomas J Corydon
- 1 Department of Biomedicine, Aarhus University , Aarhus C, Denmark .,4 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | - Sascha Kopp
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Markus Wehland
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Petra Wise
- 5 Hematology/Oncology, University of Southern California , Children's Hospital Los Angeles, Los Angeles, California
| | - Manfred Infanger
- 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University , Magdeburg, Germany
| | - Vivek Mann
- 6 Department of Biology, Texas Southern University , Houston, Texas
| | | |
Collapse
|
25
|
Mazzarella L, Curigliano G. A new approach to assess drug sensitivity in cells for novel drug discovery. Expert Opin Drug Discov 2018; 13:339-346. [PMID: 29415581 DOI: 10.1080/17460441.2018.1437136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a pressing need to improve strategies to select candidate drugs early on in the drug development pipeline, especially in oncology, as the efficiency of new drug approval has steadily declined these past years. Traditional methods of drug screening have relied on low-cost assays on cancer cell lines growing on plastic dishes. Recent massive-scale screens have generated big data amenable for sophisticated computational modeling and integration with clinical data. However, 2D culturing has several intrinsic limitations and novel methodologies have been devised for culturing in three dimensions, to include cells from the tumor immune microenvironment. These major improvements are bringing in vitro systems even closer to a physiological, more clinically relevant state. Areas covered: In this article, the authors review the literature on methodologies for early-phase drug screening, focusing on in vitro systems and analyzing both novel experimental and statistical approaches. The article does not cover the expanding literature on in vivo systems. Expert opinion: The popularity of three-dimensional systems is exploding, driven by the development of 'organoid' derivation technology in 2009. These assays are growing in sophistication to accommodate the increasing need by modern oncology to develop drugs that target the microenvironment.
Collapse
Affiliation(s)
- Luca Mazzarella
- a Division of Early Drug Development , European Institute of Oncology , Milano , Italy
| | - Giuseppe Curigliano
- a Division of Early Drug Development , European Institute of Oncology , Milano , Italy.,b Department of Oncology and Hemato-Oncology , University of Milano , Milano , Italy
| |
Collapse
|