1
|
Wang H, Gao Y, Wang J, Cao M, Dai G, Lu P, Sheng R, Zhang C, Wang Q, Li G, Ai QYH, Rui Y, Shi L. Nanoparticle-Driven Tendon Repair: Role of Vasoactive Intestinal Peptide in Immune Modulation and Stem Cell Enhancement. ACS NANO 2025; 19:13871-13888. [PMID: 40184556 DOI: 10.1021/acsnano.4c16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Tendon repair remains challenging owing to the limited capacity for endogenous repair. Vasoactive intestinal peptide (VIP) promotes bone tissue regeneration; however, its role in tendon repair remains unclear. In the present study, we demonstrated that VIP stimulated M2 polarization of macrophages and facilitated tendon regeneration by regulating immune homeostasis and maintaining the function of tendon stem/progenitor cells (TSPCs). Additionally, we established GelMa-loaded VIP@PLGA@ZIF-8 (VPZ) nanoparticles (VPZG) to enable the sustained and localized release of VIP at the site of patellar tendon injury in SD rats. The results of the in vitro experiments demonstrated that VPZG regulated the homeostasis of macrophage polarization by downregulating the NF-κB axis. VPZG also promoted efferocytosis and suppressed the release of proinflammatory factors. Additionally, VPZG enhanced the tenogenic differentiation of TSPCs when cocultured with macrophages. In vivo, we implanted VPZG at the site of patellar tendon injury, where it released VIP sustainably and slowly to promote tendon regeneration. This effect was achieved through the downregulation of the expression levels of various inflammatory factors, as well as the regulation of local immune homeostasis. In conclusion, our results demonstrated that VPZG facilitated tendon injury repair by regulating immune homeostasis and enhancing TSPC function. These findings suggest that VPZG is a promising avenue for the clinical improvement of tendon injury treatment.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yucheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Jinyu Wang
- Department of Rehabilitation, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Mumin Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Renwang Sheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 210009, PR China
| | - Gang Li
- Institute of Biomedicine and Biotechnology Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, PR China
| | - Qi Yong H Ai
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| |
Collapse
|
2
|
Li G, Luo Y, Hu Z, Shi Z, Cao X, Xu R, Mi Y, Yao Y, Mao H, Zhang H, Zhu Y. Recent Advances in Peptide-Functionalized Hydrogels for Bone Tissue Engineering. ACS Biomater Sci Eng 2025; 11:1970-1989. [PMID: 40178194 PMCID: PMC12002065 DOI: 10.1021/acsbiomaterials.4c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Efficient therapeutic approaches for bone regeneration are urgently required to address the significant challenges associated with the repair of large-scale or long-segment bone defects. Peptide-functionalized hydrogels (PFHs) have emerged as important bioactive materials in bone tissue engineering because they produce biomimetic microenvironments enriched with multiple biochemical signals. This review summarizes the key fabrication techniques for PFHs and discusses their diverse applications in different fields. Furthermore, we systematically highlighted the biochemical functionalization of PFHs, which includes basic functions such as cell adhesion, cell recruitment, and osteoinduction; improved functions such as angiogenesis, biomineralization, immune regulation, and hormone regulation; and other functions, including antimicrobial and antitumor effects. Finally, critical biosafety considerations associated with PFHs and perspectives on developing intelligent PFHs are addressed. This review aims to inspire further research on PFHs and accelerate their applications in bone tissue engineering.
Collapse
Affiliation(s)
- Guanrong Li
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yang Luo
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zeming Hu
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zheyuan Shi
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xu Cao
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Rong Xu
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yunfeng Mi
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yudong Yao
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haijiao Mao
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Hua Zhang
- Research
Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
- State
Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yingchun Zhu
- Department
of Orthopaedic Surgery, The First Affiliated
Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| |
Collapse
|
3
|
Liang TZ, Jin ZY, Lin YJ, Chen ZY, Li Y, Xu JK, Yang F, Qin L. Targeting the central and peripheral nervous system to regulate bone homeostasis: mechanisms and potential therapies. Mil Med Res 2025; 12:13. [PMID: 40108680 PMCID: PMC11924829 DOI: 10.1186/s40779-025-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The skeleton is innervated by different types of nerves and receives signaling from the nervous system to maintain homeostasis and facilitate regeneration or repair. Although the role of peripheral nerves and signals in regulating bone homeostasis has been extensively investigated, the intimate relationship between the central nervous system and bone remains less understood, yet it has emerged as a hot topic in the bone field. In this review, we discussed clinical observations and animal studies that elucidate the connection between the nervous system and bone metabolism, either intact or after injury. First, we explored mechanistic studies linking specific brain nuclei with bone homeostasis, including the ventromedial hypothalamus, arcuate nucleus, paraventricular hypothalamic nucleus, amygdala, and locus coeruleus. We then focused on the characteristics of bone innervation and nerve subtypes, such as sensory, sympathetic, and parasympathetic nerves. Moreover, we summarized the molecular features and regulatory functions of these nerves. Finally, we included available translational approaches that utilize nerve function to improve bone homeostasis and promote bone regeneration. Therefore, considering the nervous system within the context of neuromusculoskeletal interactions can deepen our understanding of skeletal homeostasis and repair process, ultimately benefiting future clinical translation.
Collapse
Affiliation(s)
- Tong-Zhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zhe-Yu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Yue-Jun Lin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Zi-Yi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, Guangdong, China.
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, the Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong, China.
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Sha Tin, 999077, Hong Kong, China.
| |
Collapse
|
4
|
Xia R, Peng H, Zhu X, Suolang W, Pambayi STL, Yang X, Zeng Y, Shen B. Autonomic Nervous System in Bone Remodeling: From Mechanisms to Novel Therapies in Orthopedic Diseases. Orthop Surg 2025. [PMID: 40071773 DOI: 10.1111/os.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025] Open
Abstract
Recent literature has increasingly demonstrated the significant function of autonomic nerves in regulating physiological and pathological changes associated with the skeletal system. Extensive studies have been conducted to understand the contribution of the autonomic nervous system (ANS) to skeletal metabolic homeostasis and resistance to aseptic inflammation, specifically from the viewpoint of skeletal neurobiology. There have been plenty of studies on how the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS), the two main branches of the ANS, regulate bone remodeling, which is the process of bone formation and resorption. The following studies have revealed critical neurological pathways that induce significant alterations in bone cell biology and uncover the intricate linkages between the ANS and the skeletal system. Furthermore, inspired by the connection between the ANS and bone remodeling, neuromodulation has been utilized as a therapeutic method for patients with orthopedic diseases: by directly influencing the ANS, it is possible to alter the excitability of nerve fibers and the release of neurotransmitters, which can lead to anti-inflammatory and analgesic effects, thereby directly or indirectly impacting bone formation and bone resorption. Our work aims to review the most recent findings on the impact of the ANS on bone remodeling, enhance the current understanding of the interaction between nerves and bones, and explore potential neuromodulation methods that could be used to treat orthopedic conditions, thereby drawing attention to the significant role of the ANS in the skeletal system.
Collapse
Affiliation(s)
- Ruihao Xia
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongjun Peng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xishan Zhu
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wangdui Suolang
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Steve T L Pambayi
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopaedic Surgery and Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Lin Q, Zhao B, Huang J, Chen R, Sun W, Ye Q, Yang L, Zhu X, Li X, Zhang R. Neuropeptides as regulators of bone metabolism: from molecular mechanisms to traditional Chinese medicine intervention strategies. Front Pharmacol 2025; 16:1516038. [PMID: 40093328 PMCID: PMC11906480 DOI: 10.3389/fphar.2025.1516038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Osteoporosis (OP) is a complex bone metabolism disorder disease that affects the skeleton, nervous system, muscles, and multiple tissues. Neuropeptides, which are endogenous substances derived from both bone and brain, play a critical role in maintaining the balance of bone metabolism. This review summarizes research conducted from 1986 to 2024 on the pathological mechanisms of neuropeptides and their receptors in the context of OP. Specifically, the roles of Neuropeptide Y, Vasoactive Intestinal Peptide, Calcitonin Gene-Related Peptide, and Substance P and their receptors in key processes of OP were examined, including their function of bone formation and resorption, osteoblast differentiation, and osteoclast differentiation. Our study showed that these neuropeptides could promote bone formation and inhibit bone resorption, while their receptors in osteocytes exhibit distinct functions, indicating complex regulatory mechanisms that require further investigation. Additionally, we summarize the progress of Traditional Chinese Medicine (TCM) formulae, single TCM herbs, and bioactive compounds derived from TCM in exerting anti-OP effects through neuropeptide modulation. These studies highlight the multi-targeted and multi-mechanistic pharmacological actions of TCM in treating OP. By integrating these findings, we aim to enhance the understanding of neuropeptides' roles in bone metabolism and to explore the development of neuropeptide-targeted TCM therapies for OP management. This comprehensive perspective highlights the potential of neuropeptides as therapeutic targets, paving the way for innovative approaches to treating OP.
Collapse
Affiliation(s)
- Qing Lin
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
| | - Biyi Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jiajia Huang
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Rumeng Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Weipeng Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Qianyun Ye
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Xiaofeng Zhu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- The First affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Ronghua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Wei X, Li M, You J, Luo J, Zhai J, Zhang J, Feng J, Wang H, Zhou Y. A Procedural Overview of the Involvement of Small Molecules in the Nervous System in the Regulation of Bone Healing. Int J Nanomedicine 2025; 20:1263-1284. [PMID: 39906525 PMCID: PMC11792627 DOI: 10.2147/ijn.s505677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Clinically, a multitude of factors can contribute to the development of bone defects. In the process of bone healing, the nervous system plays a vital role in bone regeneration. Small molecules from the nervous system, such as neurotrophic factors and neuropeptides, have been found to stimulate osteoblast proliferation and differentiation by activating signaling pathways associated with bone calcification and angiogenesis. These small molecules play a crucial regulatory role at various stages of bone healing. The systematic release mechanism of small molecules within the nervous system through diverse bone tissue engineering materials holds significant clinical implications for the controlled regulation of the bone healing process. This review provides an overview of the involvement of various nervous system small molecules at different stages of bone healing and discusses their regulatory mechanisms, aiming to establish a theoretical foundation for programmed regulation in bone regeneration and design of replacement materials in bone tissue engineering.
Collapse
Affiliation(s)
- Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mucong Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
8
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Castro‐Vázquez D, Arribas‐Castaño P, García‐López I, Gutiérrez‐Cañas I, Pérez‐García S, Lamana A, Villanueva‐Romero R, Cabrera‐Martín A, Tecza K, Martínez C, Juarranz Y, Gomariz RP, Carrión M. Vasoactive intestinal peptide exerts an osteoinductive effect in human mesenchymal stem cells. Biofactors 2024; 50:1148-1160. [PMID: 38733572 PMCID: PMC11627472 DOI: 10.1002/biof.2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Several neuropeptides present in bone tissues, produced by nerve fibers and bone cells, have been reported to play a role in regulating the fine-tuning of osteoblast and osteoclast functions to maintain bone homeostasis. This study aims to characterize the influence of the neuropeptide vasoactive intestinal peptide (VIP) on the differentiation process of human mesenchymal stem cells (MSCs) into osteoblasts and on their anabolic function. We describe the mRNA and protein expression profile of VIP and its receptors in MSCs as they differentiate into osteoblasts, suggesting the presence of an autocrine signaling pathway in these cells. Our findings reveal that VIP enhances the expression of early osteoblast markers in MSCs under osteogenic differentiation and favors both bone matrix formation and proper cytoskeletal reorganization. Finally, our data suggest that VIP could be exerting a direct modulatory role on the osteoblast to osteoclast signaling by downregulating the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio. These results highlight the potential of VIP as an osteoinductive differentiation factor, emerging as a key molecule in the maintenance of human bone homeostasis.
Collapse
Affiliation(s)
- David Castro‐Vázquez
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Paula Arribas‐Castaño
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Iván García‐López
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Irene Gutiérrez‐Cañas
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Selene Pérez‐García
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Amalia Lamana
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Raúl Villanueva‐Romero
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Alicia Cabrera‐Martín
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Karolina Tecza
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Carmen Martínez
- Departmental Section of Cell Biology, Faculty of MedicineComplutense University of MadridMadridSpain
| | - Yasmina Juarranz
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Rosa P. Gomariz
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| | - Mar Carrión
- Department of Cell Biology, Faculty of Biological ScienceComplutense University of MadridMadridSpain
| |
Collapse
|
10
|
Pi HJ, Huang B, Yuan Q, Jing JJ. Neural regulation of mesenchymal stem cells in craniofacial bone: development, homeostasis and repair. Front Physiol 2024; 15:1423539. [PMID: 39135707 PMCID: PMC11318092 DOI: 10.3389/fphys.2024.1423539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells endow various functions, including proliferation, multipotency, migration, etc. Craniofacial bones originate from the cranial neural crest and are developed mainly through intramembranous ossification, which are different from long bones. There are varied mesenchymal stem cells existing in the craniofacial bone, including Gli1 + cells, Axin2 + cells, Prx1 + cells, etc. Nerves distributed in craniofacial area are also derived from the neural crest, and the trigeminal nerve is the major sensory nerve in craniofacial area. The nerves and the skeleton are tightly linked spatially, and the skeleton is broadly innervated by sensory and sympathetic nerves, which also participate in bone development, homeostasis and healing process. In this review, we summarize mesenchymal stem cells located in craniofacial bone or, to be more specific, in jaws, temporomandibular joint and cranial sutures. Then we discuss the research advance concerning neural regulation of mesenchymal stem cells in craniofacial bone, mainly focused on development, homeostasis and repair. Discovery of neural regulation of mesenchymal stem cells may assist in treatment in the craniofacial bone diseases or injuries.
Collapse
Affiliation(s)
| | | | - Quan Yuan
- *Correspondence: Quan Yuan, ; Jun-Jun Jing,
| | | |
Collapse
|
11
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Li X, Cui Y, He X, Mao L. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy. Macromol Biosci 2024; 24:e2300484. [PMID: 38241425 DOI: 10.1002/mabi.202300484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/21/2024]
Abstract
Blood vessels and nerve fibers are distributed throughout the skeletal tissue, which enhance the development and function of each other and have an irreplaceable role in bone formation and remodeling. Despite significant progress in bone tissue engineering, the inadequacy of nerve-vascular network reconstruction remains a major limitation. This is partly due to the difficulty of integrating and regulating multiple tissue types with artificial materials. Thus, understanding the anatomy and underlying coupling mechanisms of blood vessels and nerve fibers within bone to further develop neuro-vascularized bone implant biomaterials is an extremely critical aspect in the field of bone regeneration. Hydrogels have good biocompatibility, controllable mechanical characteristics, and osteoconductive and osteoinductive properties, making them important candidates for research related to neuro-vascularized bone regeneration. This review reports the classification and physicochemical properties of hydrogels, with a focus on the application advantages and status of hydrogels for bone regeneration. The authors also highlight the effect of neurovascular coupling on bone repair and regeneration and the necessity of achieving neuro-vascularized bone regeneration. Finally, the recent progress and design strategies of hydrogel-based biomaterials for neuro-vascularized bone regeneration are discussed.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Ya Cui
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Xiaoya He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| | - Lixia Mao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200000, China
| |
Collapse
|
13
|
Zhang Y, Zhao X, Ge D, Huang Y, Yao Q. The impact and mechanism of nerve injury on bone metabolism. Biochem Biophys Res Commun 2024; 704:149699. [PMID: 38412668 DOI: 10.1016/j.bbrc.2024.149699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor β (TGF-β). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Dawei Ge
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals & Materials and Jiangsu Co-Innovation Center of Efficient Processing & Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China; Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China.
| |
Collapse
|
14
|
Zhao Y, Peng X, Wang Q, Zhang Z, Wang L, Xu Y, Yang H, Bai J, Geng D. Crosstalk Between the Neuroendocrine System and Bone Homeostasis. Endocr Rev 2024; 45:95-124. [PMID: 37459436 DOI: 10.1210/endrev/bnad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 01/05/2024]
Abstract
The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.
Collapse
Affiliation(s)
- Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhiyu Zhang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- Department of Orthopedics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230022, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University; Orthopedics Institute, Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
15
|
Gu Y, Song Y, Pan Y, Liu J. The essential roles of m 6A modification in osteogenesis and common bone diseases. Genes Dis 2024; 11:335-345. [PMID: 37588215 PMCID: PMC10425797 DOI: 10.1016/j.gendis.2023.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/30/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in the eukaryotic transcriptome and has a wide range of functions in coding and noncoding RNAs. It affects the fate of the modified RNA, including its stability, splicing, and translation, and plays an important role in post-transcriptional regulation. Bones play a key role in supporting and protecting muscles and other organs, facilitating the movement of the organism, ensuring blood production, etc. Bone diseases such as osteoarthritis, osteoporosis, and bone tumors are serious public health problems. The processes of bone development and osteogenic differentiation require the precise regulation of gene expression through epigenetic mechanisms including histone, DNA, and RNA modifications. As a reversible dynamic epigenetic mark, m6A modifications affect nearly every important biological process, cellular component, and molecular function, including skeletal development and homeostasis. In recent years, studies have shown that m6A modification is involved in osteogenesis and bone-related diseases. In this review, we summarized the proteins involved in RNA m6A modification and the latest progress in elucidating the regulatory role of m6A modification in bone formation and stem cell directional differentiation. We also discussed the pathological roles and potential molecular mechanisms of m6A modification in bone-related diseases like osteoporosis and osteosarcoma and suggested potential areas for new strategies that could be used to prevent or treat bone defects and bone diseases.
Collapse
Affiliation(s)
- Yuxi Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yidan Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
17
|
Zhong HL, Li PZ, Li D, Guan CX, Zhou Y. The role of vasoactive intestinal peptide in pulmonary diseases. Life Sci 2023; 332:122121. [PMID: 37742737 DOI: 10.1016/j.lfs.2023.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.
Collapse
Affiliation(s)
- Hong-Lin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Pei-Ze Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
18
|
Winiarska-Mieczan A, Muszyński S, Tomaszewska E, Kwiecień M, Donaldson J, Tomczyk-Warunek A, Blicharski T. The Impact of Tannic Acid Consumption on Bone Mineralization. Metabolites 2023; 13:1072. [PMID: 37887397 PMCID: PMC10609055 DOI: 10.3390/metabo13101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Tannic acid (TA) is an organic compound belonging to the tannin group. Like other tannins, it has an affinity for endogenous proteins, including digestive enzymes, which can result in the reduced digestibility and absorption of nutrients. It can also form complexes with mineral components, reducing their absorption. In some cases, this can be beneficial, such as in the case of toxic metals, but sometimes it may have a detrimental effect on the body when it involves essential mineral components like Ca, P, Mg, Na, K, or Fe. Therefore, the impact of TA on bone health should be considered from both perspectives. This relatively short review summarizes the available information and research findings on TA, with a particular focus on its potential impact on bone health. It is worth noting that future research and clinical studies may provide more detailed and precise information on this topic, allowing for a better understanding of the role of TA in maintaining the integrity of the musculoskeletal system. Despite its brevity, this paper represents a valuable contribution to the analysis of the potential benefits and challenges associated with TA in the context of bone health. We anticipate that future research will continue along this important research line, expanding our knowledge of the influence of this compound on the skeletal system and its potential therapeutic applications.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Małgorzata Kwiecień
- Department of Animal Nutrition, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor System Research, Department of Rehabilitation and Physiotherapy, Medical University in Lublin, 20-090 Lublin, Poland;
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University in Lublin, 20-090 Lublin, Poland;
| |
Collapse
|
19
|
Hassan MG, Horenberg AL, Coler-Reilly A, Grayson WL, Scheller EL. Role of the Peripheral Nervous System in Skeletal Development and Regeneration: Controversies and Clinical Implications. Curr Osteoporos Rep 2023; 21:503-518. [PMID: 37578676 PMCID: PMC10543521 DOI: 10.1007/s11914-023-00815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair. RECENT FINDINGS The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Allison L Horenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ariella Coler-Reilly
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, MO, St. Louis, USA.
- Department of Cell Biology and Physiology, Washington University, MO, St. Louis, USA.
| |
Collapse
|
20
|
Hao Z, Ren L, Zhang Z, Yang Z, Wu S, Liu G, Cheng B, Wu J, Xia J. A multifunctional neuromodulation platform utilizing Schwann cell-derived exosomes orchestrates bone microenvironment via immunomodulation, angiogenesis and osteogenesis. Bioact Mater 2023; 23:206-222. [DOI: 10.1016/j.bioactmat.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022] Open
|
21
|
Feng L, Yang Z, Hou N, Wang M, Lu X, Li Y, Wang H, Wang Y, Bai S, Zhang X, Lin Y, Yan X, Lin S, Tortorella MD, Li G. Long Non-Coding RNA Malat1 Increases the Rescuing Effect of Quercetin on TNFα-Impaired Bone Marrow Stem Cell Osteogenesis and Ovariectomy-Induced Osteoporosis. Int J Mol Sci 2023; 24:5965. [PMID: 36983039 PMCID: PMC10059267 DOI: 10.3390/ijms24065965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoporosis, a common systematic bone homeostasis disorder related disease, still urgently needs innovative treatment methods. Several natural small molecules were found to be effective therapeutics in osteoporosis. In the present study, quercetin was screened out from a library of natural small molecular compounds by a dual luciferase reporter system. Quercetin was found to upregulate Wnt/β-catenin while inhibiting NF-κB signaling activities, and thereby rescuing osteoporosis-induced tumor necrosis factor alpha (TNFα) impaired BMSCs osteogenesis. Furthermore, a putative functional lncRNA, Malat1, was shown to be a key mediator in quercetin regulated signaling activities and TNFα-impaired BMSCs osteogenesis, as mentioned above. In an ovariectomy (OVX)-induced osteoporosis mouse model, quercetin administration could significantly rescue OVX-induced bone loss and structure deterioration. Serum levels of Malat1 were also obviously rescued in the OVX model after quercetin treatment. In conclusion, our study demonstrated that quercetin could rescue TNFα-impaired BMSCs osteogenesis in vitro and osteoporosis-induced bone loss in vivo, in a Malat1-dependent manner, suggesting that quercetin may serve as a therapeutic candidate for osteoporosis treatment.
Collapse
Affiliation(s)
- Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Zhengmeng Yang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Nan Hou
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Haixing Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Shanshan Bai
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yuejun Lin
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Xu Yan
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
22
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
23
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
24
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
25
|
Qin Q, Lee S, Patel N, Walden K, Gomez-Salazar M, Levi B, James AW. Neurovascular coupling in bone regeneration. Exp Mol Med 2022; 54:1844-1849. [PMID: 36446849 PMCID: PMC9722927 DOI: 10.1038/s12276-022-00899-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian skeletal system is densely innervated by both neural and vascular networks. Peripheral nerves in the skeleton include sensory and sympathetic nerves. The crosstalk between skeletal and neural tissues is critical for skeletal development and regeneration. The cellular processes of osteogenesis and angiogenesis are coupled in both physiological and pathophysiological contexts. The cellular and molecular regulation of osteogenesis and angiogenesis have yet to be fully defined. This review will provide a detailed characterization of the regulatory role of nerves and blood vessels during bone regeneration. Furthermore, given the importance of the spatial relationship between nerves and blood vessels in bone, we discuss neurovascular coupling during physiological and pathological bone formation. A better understanding of the interactions between nerves and blood vessels will inform future novel therapeutic neural and vascular targeting for clinical bone repair and regeneration.
Collapse
Affiliation(s)
- Qizhi Qin
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seungyong Lee
- grid.260024.20000 0004 0627 4571Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308 USA ,grid.412977.e0000 0004 0532 7395Department of Physical Education, Incheon National University, Incheon, 22012 South Korea
| | - Nirali Patel
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Kalah Walden
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Mario Gomez-Salazar
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Benjamin Levi
- grid.267313.20000 0000 9482 7121Departments of Surgery, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Aaron W. James
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
26
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Liu S, Fu H, Lv Y, Jiao J, Guo R, Yang Y, Dong W, Mi H, Wang M, Liu M, Li R. α-Hemihydrate calcium sulfate/n-hydroxyapatite combined with metformin promotes osteogenesis in vitro and in vivo. Front Bioeng Biotechnol 2022; 10:899157. [PMID: 36246380 PMCID: PMC9563001 DOI: 10.3389/fbioe.2022.899157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to examine the effects of loading different concentrations of metformin onto an α-hemihydrate calcium sulfate/nano-hydroxyapatite (α-CSH/nHA) composite. The material characteristics, biocompatibility, and bone formation were compared as functions of the metformin concentration. X-ray diffraction results indicated that the metformin loading had little influence on the phase composition of the composite. The hemolytic potential of the composite was found to be low, and a CCK-8 assay revealed only weak cytotoxicity. However, the metformin-loaded composite was found to enhance the osteogenic ability of MC3T3-E1 cells, as revealed by alkaline phosphate and alizarin red staining, real-time PCR, and western blotting, and the optimal amount was 500 µM. RNA sequencing results also showed that the composite material increased the expression of osteogenic-related genes. Cranial bone lacks muscle tissue, and the low blood supply leads to poor bone regeneration. As most mammalian cranial and maxillofacial bones are membranous and of similar embryonic origin, the rat cranial defect model has become an ideal animal model for in vivo experiments in bone tissue engineering. Thus, we introduced a rat cranial defect with a diameter of 5 mm as an experimental defect model. Micro-computed tomography, hematoxylin and eosin staining, Masson staining, and immunohistochemical staining were used to determine the effectiveness of the composite as a scaffold in a rat skull defect model. The composite material loaded with 500 µM of metformin had the strongest osteoinduction ability under these conditions. These results are promising for the development of new methods for repairing craniofacial bone defects.
Collapse
Affiliation(s)
- Sirui Liu
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Haojie Fu
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Lv
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jing Jiao
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runying Guo
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University Zhengzhou, Zhengzhou, Henan, China
| | - Wenhang Dong
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Mi
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meiyue Wang
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mengzhe Liu
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Li
- Department of Stomatology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Rui Li,
| |
Collapse
|
28
|
Zhang Z, Hao Z, Xian C, Fang Y, Cheng B, Wu J, Xia J. Neuro-bone tissue engineering: Multiple potential translational strategies between nerve and bone. Acta Biomater 2022; 153:1-12. [PMID: 36116724 DOI: 10.1016/j.actbio.2022.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/01/2022]
Abstract
Numerous tissue regeneration paradigms show evident neurological dependence, including mammalian fingertip, skin, and bone regeneration. The mature skeleton is innervated by an abundant nervous system that infiltrates the developing axial and appendicular bones and maintains the stability of the systemic skeletal system by controlling blood flow, regulating bone metabolism, secreting neurotransmitters, and regulating stem cell behavior. In recent years, neurotization in tissue-engineered bone has been considered as a promising strategy to effectively overcome the challenge of vascularization and innervation regeneration in the central zone of "critical-sized bone defects" that conventional tissue-engineered scaffolds are unable to handle, however, further validation is needed in relevant clinical applications. Therefore, this study reviews the mechanisms by which the nervous system regulates bone metabolism and regeneration through a variety of neurogenic or non-neurogenic factors, as well as the recent progress and design strategies of neuralized tissue-engineered bone, to provide new ideas for further studies on subsequent neural bone tissue engineering. STATEMENT OF SIGNIFICANCE: The interaction of nerve and bone tissue during skeletal development and repair has attracted widespread attention, with emerging evidences highlighting the regulation of bone metabolism and regeneration by the nervous system, but the underlying mechanisms have not been elucidated. Thus, further applications of neuro-bone tissue engineering still needs careful consideration. In this review, we summarize the numerous neurogenic and non-neurogenic factors which are involved in bone repair and regeneration, and further explore the current status of their application and biomaterial design in neuro-bone tissue engineering, and finally discuss the challenge and prospective for neuro-bone tissue engineering to facilitate its further development.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhichao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China
| | - Caihong Xian
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, China.
| |
Collapse
|
29
|
Xu J, Zhang Z, Zhao J, Meyers CA, Lee S, Qin Q, James AW. Interaction between the nervous and skeletal systems. Front Cell Dev Biol 2022; 10:976736. [PMID: 36111341 PMCID: PMC9468661 DOI: 10.3389/fcell.2022.976736] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
The skeleton is one of the largest organ systems in the body and is richly innervated by the network of nerves. Peripheral nerves in the skeleton include sensory and sympathetic nerves. Crosstalk between bones and nerves is a hot topic of current research, yet it is not well understood. In this review, we will explore the role of nerves in bone repair and remodeling, as well as summarize the molecular mechanisms by which neurotransmitters regulate osteogenic differentiation. Furthermore, we discuss the skeleton’s role as an endocrine organ that regulates the innervation and function of nerves by secreting bone-derived factors. An understanding of the interactions between nerves and bone can help to prevent and treat bone diseases caused by abnormal innervation or nerve function, develop new strategies for clinical bone regeneration, and improve patient outcomes.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- Department of Physical Education, Incheon National University, Incheon, South Korea
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Aaron W. James,
| |
Collapse
|
30
|
Ramhorst R, Grasso E, Vota D, Gori S, Hauk V, Paparini D, Calo G, Leirós CP. From decidualization to pregnancy progression: An overview of immune and metabolic effects of VIP. Am J Reprod Immunol 2022; 88:e13601. [DOI: 10.1111/aji.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Rosanna Ramhorst
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Esteban Grasso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Daiana Vota
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Soledad Gori
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Vanesa Hauk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Daniel Paparini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Guillermina Calo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| | - Claudia Pérez Leirós
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET) Laboratorio de Inmunofarmacología Universidad de Buenos Aires (UBA) Buenos Aires Argentina
| |
Collapse
|
31
|
Yang J, Yang C, Yang Y, Jia N, Sun Q, Ji S. Endothelial Protection of Vasoactive Intestinal Peptide Enhances Angiogenesis Mediated by eNOS Pathway Following Focal Cerebral Ischemia in Rats. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Feng L, Yang Z, Li Y, Pan Q, Zhang X, Wu X, Lo JHT, Wang H, Bai S, Lu X, Wang M, Lin S, Pan X, Li G. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:328-341. [PMID: 35474736 PMCID: PMC9010521 DOI: 10.1016/j.omtn.2022.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/17/2022] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is the most common joint disease; thus, understanding the pathological mechanisms of OA initiation and progression is critical for OA treatment. MicroRNAs (miRNAs) have been shown to be involved in the progression of osteoarthritis, one candidate is microRNA-378 (miR-378), which is highly expressed in the synovium of OA patients during late-stage disease, but its function and the underlying mechanisms of how it contributes to disease progression remain poorly understood. In this study, miR-378 transgenic (TG) mice were used to study the role of miR-378 in OA development. miR-378 TG mice developed spontaneous OA and also exaggerated surgery-induced disease progression. Upon in vitro OA induction, miR-378 expression was upregulated and correlated with elevated inflammation and chondrocyte hypertrophy. Chondrocytes isolated from articular cartilage from miR-378 TG mice showed impaired chondrogenic differentiation. The bone marrow mesenchymal stem cells (BMSCs) collected from miR-378 TG mice also showed repressed chondrogenesis compared with the control group. The autophagy-related protein Atg2a, as well as chondrogenesis regulator Sox6, were identified as downstream targets of miR-378. Ectopic expression of Atg2a and Sox6 rescued miR-378-repressed chondrocyte autophagy and BMSC chondrogenesis, respectively. Anti-miR-378 lentivirus intra-articular injection in an established OA mouse model was shown to ameliorate OA progression, promote articular regeneration, and repress hypertrophy. Atg2a and Sox6 were again confirmed to be the target of miR-378 in vivo. In conclusion, miR-378 amplified OA development via repressing chondrocyte autophagy and by inhibiting BMSCs chondrogenesis, thus indicating miR-378 may be a potential therapeutic target for OA treatments.
Collapse
Affiliation(s)
- Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Yucong Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Qi Pan
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
- Department of Pediatric Orthopaedics, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, PR China
| | - Xiaoting Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaomin Wu
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Jessica Hiu Tung Lo
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Shanshan Bai
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Ming Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| | - Xiaohua Pan
- Department of Orthopaedics and Traumatology, People’s Hospital of Baoan District, The Second Affiliated Hospital of Shenzhen University, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, PR China
| |
Collapse
|
33
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
34
|
Xu Y, Jiang Y, Wang Y, Jia B, Gao S, Yu H, Zhang H, Lv C, Li H, Li T. LINC00473-modified bone marrow mesenchymal stem cells incorporated thermosensitive PLGA hydrogel transplantation for steroid-induced osteonecrosis of femoral head: A detailed mechanistic study and validity evaluation. Bioeng Transl Med 2022; 7:e10275. [PMID: 35600648 PMCID: PMC9115691 DOI: 10.1002/btm2.10275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) involves a glucocorticoid-induced imbalance of osteogenic and adipogenic differentiation, and apoptosis of bone marrow mesenchymal stem cells (BMSCs). An increasing number of genes, especially noncoding RNAs, have been implicated in the function of BMSCs. Our previous studies have confirmed the key role of LINC00473 and miR-23a-3p on the osteogenic, adipogenic differentiation, and apoptosis of BMSCs. However, the underlying mechanism of this process is still unclear. Based on bioinformatics analysis, here we investigated the effects of LINC00473 on the LRP5/Wnt/β-catenin signaling pathway in the osteogenesis and adipogenesis of BMSCs, as well as the PEBP1/Akt/Bad/Bcl-2 signaling pathway in dexamethasone- (Dex-) induced apoptosis of BMSCs. Our data showed that LINC00473 could promote osteogenesis and suppress the adipogenesis of BMSCs through the activation of the miR-23a-3p/LRP5/Wnt/β-catenin signaling pathway axis, while rescuing BMSCs from Dex-induced apoptosis by activating the miR-23a-3p/PEBP1/Akt/Bad/Bcl-2 signaling pathway axis. Notably, we observed that LINC00473 interacted with miR-23a-3p in an Argonaute 2 (AGO2)-dependent manner based on dual-luciferase reporter assay, AGO2-related RNA immunoprecipitation, and RNA antisense purification assay. Furthermore, injectable thermosensitive polylactic-co-glycolic acid (PLGA) hydrogel loaded with rat-derived BMSCs (rBMSCs) modified by LINC00473 were used for the treatment of SONFH in a rat model. Our results demonstrated that PLGA hydrogels provided a suitable environment for harboring rBMSCs. Besides, transplantation of PLGA hydrogels loaded with rBMSCs modified by LINC00473 could significantly promote the bone repair and reconstruction of the necrotic area at the femoral head in our SONFH rat model. Surprisingly, compared with the transplantation of BMSCs alone, the transplanted rBMSCs encapsulated within the PLGA hydrogel could migrate from the medullary cavity to the femoral head. In summary, LINC00473 promoted osteogenesis, inhibited adipogenesis, and antagonized Dex-induced apoptosis of BMSCs. Therefore, LINC00473 could provide a new strategy for the treatment of SONFH.
Collapse
Affiliation(s)
- Yingxing Xu
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Yaping Jiang
- Department of MedicineQingdao UniversityQingdaoChina
- Department of Oral ImplantologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yingzhen Wang
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Bin Jia
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Song Gao
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Haiyang Yu
- Department of RadiologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Haining Zhang
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Chengyu Lv
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| | - Haiyan Li
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Li
- Department of Joint SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Department of MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
35
|
Ding L, Gu S, Zhou B, Wang M, Zhang Y, Wu S, Zou H, Zhao G, Gao Z, Xu L. Ginsenoside Compound K Enhances Fracture Healing via Promoting Osteogenesis and Angiogenesis. Front Pharmacol 2022; 13:855393. [PMID: 35462912 PMCID: PMC9020191 DOI: 10.3389/fphar.2022.855393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fractures have an extraordinarily negative impact on an individual’s quality of life and functional status, particularly delayed or non-union fractures. Osteogenesis and angiogenesis are closely related to bone growth and regeneration, and bone modeling and remodeling. Recently Chinese medicine has been extensively studied to promote osteogenic differentiation in MSCs. Studies have found that Ginseng can be used as an alternative for tissue regeneration and engineering. Ginseng is a commonly used herbal medicine in clinical practice, and one of its components, Ginsenoside Compound K (CK), has received much attention. Evidence indicates that CK has health-promoting effects in inflammation, atherosclerosis, diabetics, aging, etc. But relatively little is known about its effect on bone regeneration and the underlying cellular and molecular mechanisms. In this study, CK was found to promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) by RT-PCR and Alizarin Red S staining in vitro. Mechanistically, we found CK could promote osteogenesis through activating Wnt/β-catenin signaling pathway by immunofluorescence staining and luciferase reporter assay. And we also showed that the tube formation capacity of human umbilical vein endothelial cells (HUVECs) was increased by CK. Furthermore, using the rat open femoral fracture model, we found that CK could improve fracture repair as demonstrated by Micro-CT, biomechanical and histology staining analysis. The formation of H type vessel in the fracture callus was also increased by CK. These findings provide a scientific basis for treating fractures with CK, which may expand its application in clinical practice.
Collapse
Affiliation(s)
- Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Gu
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bingyu Zhou
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| |
Collapse
|
36
|
Zhang FW, Peng LY, Shi CJ, Li JC, Pang FX, Fu WM, Pan XH, Zhang JF. Baicalein mediates the anti-tumor activity in Osteosarcoma through lncRNA-NEF driven Wnt/β-catenin signaling regulatory axis. J Orthop Translat 2022; 33:132-141. [PMID: 35330943 PMCID: PMC8919235 DOI: 10.1016/j.jot.2021.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/02/2023] Open
Abstract
Background Osteosarcoma (OS) is a common type of malignant bone tumor in adolescents with high risk of metastasis. However, the clinical management still remains unsatisfactory. Traditional Chinese medicine (TCM) has been widely considered as an alternative treatment, and their extracts have proved to possess great potential for drug discovery. Baicalein (BA), the active pharmaceutical ingredient of rhizoma coptidis, was proved to have anti-tumor properties in OS, but the mechanism remains poorly understood. Methods The potential anti-cancer effects on cell growth, cell cycle, apoptosis and migration were examined in OS cells. Moreover, the lncRNA-Neighboring Enhancer of FOXA2 (lncRNA-NEF) and Wnt/β-catenin signaling were detected by qPCR and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using a xenograft mice model. Results In the present study, BA was found to significantly suppress tumor growth in vitro and in vivo. And it was also found to inhibit the invasion and metastasis as well. As for the mechanism investigation, lncRNA-NEF was obviously upregulated by BA in OS cells, and thus induced the inactivation of Wnt/β-catenin signaling. Moreover, lncRNA-NEF knockdown partially reversed the BA-induced anti-cancer activities; and successfully compensated the suppressive effect on Wnt/β-catenin signaling. We therefore suggested that BA induced the inactivation of Wnt/β-catenin signaling through promoting lncRNA-NEF expression. Conclusions In conclude, our results demonstrated that BA suppressed tumor growth and metastasis in vitro and in vivo through an lncRNA-NEF driven Wnt/β-catenin regulatory axis, in which lncRNA-NEF was upregulated by BA, and thus induced the inactivation of Wnt/β-catenin signaling. The Translational potential of this article The findings derived from this study validates the anti-cancer activity of BA in OS and provides a novel underlying mechanism, which suggest that BA may be a potential candidate to develop the effective drug for OS patients.
Collapse
Affiliation(s)
- Feng-wei Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Li-yang Peng
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Jian-chi Li
- Department of Orthopaedics and Traumatology, Shenzhen Tenth People's Hospital Affiliated to Jinan University, University of Chinese Academy of Sciences Shenzhen Hospital (Guangming), Shenzhen, Guangdong, 518106, PR China
| | - Feng-xiang Pang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wei-ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Xiao-hua Pan
- Department of Orthopaedics, The Second School of Clinical Medicine, Southern Medical University, The Second Affiliated Hospital of Shenzhen University, The Clinical Medical College of Guangdong Medical University, People's Hospital of Shenzhen Baoan District, Shenzhen, PR China
- Corresponding author. Department of Orthopaedics , The Second School of Clinical Medicine, Southern Medical University, PR China.
| | - Jin-fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
- Corresponding author. Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
37
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
38
|
Liu S, Chen T, Wang R, Huang H, Fu S, Zhao Y, Wang S, Wan L. Exploring the effect of the "quaternary regulation" theory of "peripheral nerve-angiogenesis-osteoclast-osteogenesis" on osteoporosis based on neuropeptides. Front Endocrinol (Lausanne) 2022; 13:908043. [PMID: 35983518 PMCID: PMC9379541 DOI: 10.3389/fendo.2022.908043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is a common bone metabolic disease among the middle-aged and elderly, with its high incidence rate and a major cause of disability and mortality. Early studies found that bone metabolic homeostasis is achieved through osteogenesis-osteoclast coupling. Although current anti-osteoporosis drugs can attenuate bone loss caused by aging, they present specific side effects. With the discovery of CD31hi Emcnhi blood vessels in 2014, the effect of H-type blood vessels on bone metabolism has been valued by researchers, and the ternary regulation theory of bone metabolism of "Angiogenesis-Osteoclast-Osteogenesis" has also been recognized. Nowadays, more studies have confirmed that peripheral nerves substantially impact bone metabolism. However, due to the complex function of peripheral nerves, the crosstalk mechanism of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis" has not yet been fully revealed. Neuropeptide serves as signaling molecules secreted by peripheral nerves that regulate blood vessels, osteoblasts, and osteoclasts' functions. It is likely to be the breakthrough point of the quaternary regulation theory of "Peripheral nerve-Angiogenesis-Osteoclast-Osteogenesis". Here, we discuss the effect of peripheral nerves on osteoporosis based on neuropeptides.
Collapse
Affiliation(s)
- Shuhua Liu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tongying Chen
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruolin Wang
- Department of Nephrology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sai Fu
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- The Third Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Lei Wan,
| |
Collapse
|
39
|
Assefa F, Kim JA, Lim J, Nam SH, Shin HI, Park EK. The Neuropeptide Spexin Promotes the Osteoblast Differentiation of MC3T3-E1 Cells via the MEK/ERK Pathway and Bone Regeneration in a Mouse Calvarial Defect Model. Tissue Eng Regen Med 2021; 19:189-202. [PMID: 34951679 PMCID: PMC8782952 DOI: 10.1007/s13770-021-00408-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The neural regulation of bone regeneration has emerged recently. Spexin (SPX) is a novel neuropeptide and regulates multiple biological functions. However, the effects of SPX on osteogenic differentiation need to be further investigated. Therefore, the aim of this study is to investigate the effects of SPX on osteogenic differentiation, possible underlying mechanisms, and bone regeneration. METHODS In this study, MC3T3-E1 cells were treated with various concentrations of SPX. Cell proliferation, osteogenic differentiation marker expressions, alkaline phosphatase (ALP) activity, and mineralization were evaluated using the CCK-8 assay, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), ALP staining, and alizarin red S staining, respectively. To determine the underlying molecular mechanism of SPX, the phosphorylation levels of signaling molecules were examined via western blot analysis. Moreover, in vivo bone regeneration by SPX (0.5 and 1 µg/µl) was evaluated in a calvarial defect model. New bone formation was analyzed using micro-computed tomography (micro-CT) and histology. RESULTS The results indicated that cell proliferation was not affected by SPX. However, SPX significantly increased ALP activity, mineralization, and the expression of genes for osteogenic differentiation markers, including runt-related transcription factor 2 (Runx2), Alp, collagen alpha-1(I) chain (Col1a1), osteocalcin (Oc), and bone sialoprotein (Bsp). In contrast, SPX downregulated the expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). Moreover, SPX upregulated phosphorylated mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2). In vivo studies, micro-CT and histologic analysis revealed that SPX markedly increased a new bone formation. CONCLUSION Overall, these results demonstrated that SPX stimulated osteogenic differentiation in vitro and increased in vivo bone regeneration via the MEK/ERK pathway.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Hong-In Shin
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Korea.
| |
Collapse
|
40
|
Li H, Zhou W, Sun S, Zhang T, Zhang T, Huang H, Wang M. Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways. Mol Med 2021; 27:153. [PMID: 34865619 PMCID: PMC8647299 DOI: 10.1186/s10020-021-00413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. Methods We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/β-catenin and AMPK signaling proteins. Results At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of β-catenin, p-GSK-3β, AMPK, and p-AMPK were upregulated, while that of GSK-3β was downregulated, indicating that Wnt/β-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. Conclusions MFAP5 regulates osteogenesis via Wnt/β‑catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00413-0.
Collapse
Affiliation(s)
- Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haitian Huang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Shi L, Liu Y, Yang Z, Wu T, Lo HT, Xu J, Zhang J, Lin W, Zhang J, Feng L, Li G. Vasoactive Intestinal Peptide Promotes Fracture Healing in Sympathectomized Mice. Calcif Tissue Int 2021; 109:55-65. [PMID: 33999216 DOI: 10.1007/s00223-021-00820-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
Vasoactive intestinal peptide (VIP) as a neuromodulator and neurotransmitter played a significant role in modulating bone homeostasis. Our previous study reported an essential role of VIP in in vitro BMSCs osteogenesis and in vivo bone defect repair. VIP was also revealed to have a promoting effect on embryonic skeletal element development. However, the role of VIP in fracture healing is not known yet. We hypothesized that the disorder of sympathetic nervous system impairs bone structure and fracture healing, whereas VIP may rescue the sympathetic inhibition effects and promote fracture healing. We employed a 6-hydroxydopamine (6-OHDA) induced sympathectomy mice model (sympathectomized mice), in which successful sympathetic inhibition was confirmed by a decreased level of norephedrine (NE) in the spleen. In the sympathectomized mice, the femoral micro-architecture, bone density and mechanical properties were all impaired compared to the vehicle control mice. The femoral fracture was created in the vehicle or sympathectomized mice. Vehicle mice were locally injected with PBS as a negative control, and the sympathectomized mice were treated with injection of PBS or VIP. VIP expression at the fracture site was significantly decreased in sympathectomized mice. The fracture healing was repressed upon 6-OHDA treatment and rescued by VIP treatment. Micro-CT examination showed that the femoral bone micro-architecture at the fracture sites and mechanical properties were all impaired. Simultaneously, the expression level of osteogenic markers OCN and OPN were reduced in sympathectomized mice compared with vehicle group. While the VIP treatment rescued the repression effects of 6-OHDA on bone remodeling and significantly promoted bone quality and mechanical properties as well as increased osteogenesis marker expression in the sympathectomized mice. VIP administration promoted bone fracture healing by inhibiting bone resorption, making it a putative new alternative treatment strategy for fracture healing.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Trauma Center, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
| | - Tianyi Wu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hiu Tung Lo
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
| | - Jia Xu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
- Stem Cells and Regeneration Laboratory, Faculty of Medicine, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| | - Jiajun Zhang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
| | - Weiping Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, NT, People's Republic of China.
| | - Gang Li
- MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Room 501, Li Ka Shing Medical Sciences Building, Shatin, Hong Kong SAR, NT, People's Republic of China.
| |
Collapse
|
42
|
Liu M, Zhao G, Wei BF. Attenuated serum vasoactive intestinal peptide concentrations are correlated with disease severity of non-traumatic osteonecrosis of femoral head. J Orthop Surg Res 2021; 16:325. [PMID: 34016131 PMCID: PMC8136083 DOI: 10.1186/s13018-021-02486-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Background and objective The neuropeptide vasoactive intestinal peptide is a 28-amino acid neuropeptide that has been shown to stimulate bone repair and angiogenesis. The purpose of this study was to explore the potential role of serum VIP concentration in osteonecrosis of femoral trauma (ONFH). Methods One hundred five patients diagnosed with non-traumatic ONFH and 103 healthy individuals were enrolled in our study. Serum VIP, tumor necrosis factor-α (TNF-α), interluekin-1 beta (IL-1β), and macrophage colony-stimulating factor (M-CSF) levels also were detected using the commercial ELISA kit. Radiographic progression was evaluated using FICAT classification. The clinical severity of ONFH was assessed by visual analog score (VAS) and Harris Hip Score (HHS). Receiver-operating characteristic (ROC) curve was performed to test the potential diagnostic value of VIP in radiographic progression. Results The serum VIP level of patients with non-traumatic ONFH was significantly lower than that of healthy controls. There was no significant difference between the alcohol group, the steroid-induction group, and the idiopathic group. Serum VIP levels were significantly higher in ONFH patients with femoral head pre-collapse stage than collapse stage. Serum VIP levels were significantly lower. FICAT 4 non-traumatic ONFH patients had significantly lower serum concentrations of VIP when compared with FICAT 3 and FICAT 2. Moreover, serum VIP levels were significantly lower in ONFH patients with FICAT 3 than FICAT 2. Serum VIP levels were negatively related to FICAT stage. In addition, serum VIP levels were negatively associated with VAS score and positively associated with HHS score. Last, we found serum VIP levels were negatively associated with serum TNF-α and IL-1β levels. ROC curve analysis indicated that decreased serum VIP could serve as a decent biomarker with regard to the diagnosis of radiographic progression. Conclusion Attenuated serum VIP concentrations are correlated with disease severity of non-traumatic ONFH. Decreased serum VIP may serve as a potential indicator of non-traumatic ONFH.
Collapse
Affiliation(s)
- Ming Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.,Department of Pain, Linyi People's Hospital, Linyi, Shandong Province, China
| | - Gan Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.,Department of Sports Medicine, Linyi Traditional Chinese Medicine Hospital, Linyi, Shandong Province, China
| | - Biao-Fang Wei
- Department of Orthopedics, Linyi People's Hospital, Jie Fang Road East, No.27, Linyi, 276003, Shandong Province, China.
| |
Collapse
|
43
|
Harris LK. VIP: The big shot peptide in pregnancy and beyond? Acta Physiol (Oxf) 2021; 232:e13636. [PMID: 33630381 DOI: 10.1111/apha.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lynda K. Harris
- Division of Pharmacy & Optometry School of Health Sciences The University of Manchester Manchester UK
- Maternal and Fetal Health Research Centre School of Medical Sciences The University of ManchesterSt Mary's Hospital Manchester UK
- St Mary’s HospitalManchester Foundation TrustManchester Academic Health Science Centre Manchester UK
| |
Collapse
|
44
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
45
|
Chen M, Han H, Zhou S, Wen Y, Chen L. Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/β-catenin pathway and prevents bone loss in an ovariectomized rat model. Stem Cell Res Ther 2021; 12:173. [PMID: 33712069 PMCID: PMC7953707 DOI: 10.1186/s13287-021-02239-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a metabolic bone disease due to the imbalance of osteogenesis and bone resorption, in which, bone marrow mesenchymal stem cells (BMSCs) have a significant effect as the seed cells. Recent research has shown the function of Morusin on inhibiting osteoclast differentiation in vitro. However, whether Morusin can regulate the osteogenic differentiation in addition to the proliferation of BMSCs remains unclear. METHODS BMSCs were isolated from 4-week-old Wistar rats and then treated with different concentrations of Morusin for 3, 5, 7, and 14 days. The proliferation of BMSCs was detected by MTT assay. The effect of Morusin on osteogenic differentiation of BMSCs was detected by RT-qPCR, Western blotting, ALP, and Alizarin Red staining. The effect of Morusin on Wnt/β-catenin signaling pathway was analyzed by RT-qPCR, Western blotting, and immunofluorescence. Finally, in the ovariectomy-induced osteoporosis model, the anti-osteoporosis activity of Morusin was determined by micro-CT, HE, and immunohistochemistry. RESULTS The results showed the function of 2.5-10 μM Morusin in the promotion of the proliferation in addition to osteogenic differentiation of BMSCs. Moreover, it also has an impact in activating the Wnt/β-catenin signaling pathway via inhibition of β-catenin phosphorylation as well as promotion of its nuclear translocation. Upon Dickkopf-related protein-1 (DKK-1, an inhibitor of the Wnt/β-catenin signaling pathway) was added to the Morusin, Morusin had a decreased stimulatory osteogenic effect on BMSCs. Finally, in the rat OP model, we found that Morusin could also exert anti-osteoporosis activity in vivo. CONCLUSIONS This study indicates the ability of Morusin in the promotion of osteogenic differentiation of BMSCs via the activation of Wnt/β-catenin signaling pathway and also shows the potential of Morusin to be an agent for osteoporosis treatment.
Collapse
Affiliation(s)
- Ming Chen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Han
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Siqi Zhou
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
- Department of Orthopedics Department, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yinxian Wen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Joint Surgery and Sports medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
46
|
Wang J, Dai P, Zou T, Lv Y, Zhao W, Zhang X, Zhang Y. Transcriptome analysis of the transdifferentiation of canine BMSCs into insulin producing cells. BMC Genomics 2021; 22:134. [PMID: 33632121 PMCID: PMC7905582 DOI: 10.1186/s12864-021-07426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells are a potential resource for the clinical therapy of certain diseases. Canine, as a companion animal, living in the same space with human, is an ideal new model for human diseases research. Because of the high prevalence of diabetes, alternative transplantation islets resource (i.e. insulin producing cells) for diabetes treatment will be in urgent need, which makes our research on the transdifferentiation of Bone marrow mesenchymal stem cells into insulin producing cells become more important. Result In this study, we completed the transdifferentiation process and achieved the transcriptome profiling of five samples with two biological duplicates, namely, “BMSCs”, “islets”, “stage 1”, “stage 2” and “stage 3”, and the latter three samples were achieved on the second, fifth and eighth day of induction. A total of 11,530 differentially expressed transcripts were revealed in the profiling data. The enrichment analysis of differentially expressed genes revealed several signaling pathways that are essential for regulating proliferation and transdifferentiation, including focal adhesion, ECM-receptor interaction, tight junction, protein digestion and absorption, and the Rap1 signaling pathway. Meanwhile, the obtained protein–protein interaction network and functional identification indicating involvement of three genes, SSTR2, RPS6KA6, and VIP could act as a foundation for further research. Conclusion In conclusion, to the best of our knowledge, this is the first survey of the transdifferentiation of canine BMSCs into insulin-producing cells according with the timeline using next-generation sequencing technology. The three key genes we pick out may regulate decisive genes during the development of transdifferentiation of insulin producing cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07426-3.
Collapse
Affiliation(s)
- Jinglu Wang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Pengxiu Dai
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Tong Zou
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yangou Lv
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Wen Zhao
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Xinke Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yihua Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
47
|
Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, Wang L, He Z, Zhang W, Zhang T, Yuan X. Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells Dev 2020; 30:17-28. [PMID: 33231507 DOI: 10.1089/scd.2020.0157] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Thus far, there are more than known 150 modifications to RNA, in which common internal modifications of mRNA include N6-methyladenosine (m6A), N1-methyladenosine, and 5-methylcytosine. Among them, m6A RNA modification is one of the highest abundance modifications in eukaryotes, regulating mechanisms controlling gene expression at the post-transcription level. As an invertible and dynamic epigenetic marker, m6A base modification influences almost all vital biological processes, cellular components, and molecular functions. Once the m6A modification process is abnormal, a series of diseases-including cancer, neurological diseases, and growth disorders-will be caused. Besides, several base modification activities also have been created by noncoding RNAs (ncRNAs), for instance, microRNAs, and circular RNAs, long ncRNAs, which were dynamically regulated during bone and cartilage pathophysiology processes. Therefore, it has now been clear that dynamic modification on coding RNAs and ncRNAs represents a completely new way to modulate genetic information. In this review, we highlight up-to-date progress and applications of m6A RNA modification in bone and cartilage pathophysiology, and we discuss the pathological roles and underlying molecular mechanism of m6A modifications in osteoarthritis and osteoporosis and osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Junbo Chen
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Yihong Tian
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingzhi Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Zijing He
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Wei Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Tianzhen Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
49
|
Assefa F, Lim J, Kim JA, Ihn HJ, Lim S, Nam SH, Bae YC, Park EK. Secretoneurin, a Neuropeptide, Enhances Bone Regeneration in a Mouse Calvarial Bone Defect Model. Tissue Eng Regen Med 2020; 18:315-324. [PMID: 33145742 DOI: 10.1007/s13770-020-00304-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study investigates the effects of a neuropeptide, secretoneurin (SN), on bone regeneration in an experimental mouse model. METHODS The effects of SN on cell proliferation, osteoblast marker genes expression, and mineralization were evaluated using the CCK-8 assay, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and alizarin red S staining, respectively. To examine the effects of SN on bone regeneration in vivo, bone defects were created in the calvaria of ICR mice, and 0.5 or 1 µg/ml SN was applied. New bone formation was analyzed by micro-computed tomography (micro-CT) and histology. New blood vessel formation was assessed by CD34 immunohistochemistry. RESULTS SN had no significant effect on proliferation and mineralization of MC3T3-E1 cells. However, SN partially induced the gene expression of osteoblast differentiation markers such as runt-related transcription factor 2, alkaline phosphatase, collagen type I alpha 1, and osteopontin. A significant increase of bone regeneration was observed in SN treated calvarial defects. The bone volume (BV), BV/tissue volume, trabecular thickness and trabecular number values were significantly increased in the collagen sponge plus 0.5 or 1 µg/ml SN group (p < 0.01) compared with the control group. Histologic analysis also revealed increased new bone formation in the SN-treated groups. Immunohistochemical staining of CD34 showed that the SN-treated groups contained more blood vessels compared with control in the calvarial defect area. CONCLUSION SN increases new bone and blood vessel formation in a calvarial defect site. This study suggests that SN may enhance new bone formation through its potent angiogenic activity.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea
| | - Ju-Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea
| | - Hye Jung Ihn
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Soomin Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41940, South Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
50
|
Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G. Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 2020; 83:102077. [PMID: 32839008 DOI: 10.1016/j.npep.2020.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Embryonic bone development is a complicated procedure and modulated by neuro-osteogenic interaction. Vasoactive intestinal peptide (VIP) was first identified as a neural vasodilator and further proved to possess multiple biological functions such as neurotransmitter and immune regulator. However, as a key peptide regulator presented in skeletal nerve fibers, the function of VIP on innervation and early bone development regulation has not fully been uncovered yet. In this study, the chick embryo has been used as an experimental model to address the effect of VIP on embryonic bone development. Our study results confirmed the innervation of peripheral nerve fibers into limb bone tissue, which was revealed by the detection of neurofilament (NF) and class III β-tubulin (TUJ-1) in bone tissue at various developing stages. The VIP mRNA and peptide expression level in bone tissue were also increased upon innervation progress. A chick embryonic chemical sympathectomy model was constructed by exposing chick embryos with neurotoxin 6-OHDA. The 6-OHDA exposure of the early chick embryo caused the reduction of neural crest formation and NF expression. 6-OHDA treatment also inhibited distal limb bone development as well as VIP expression. Furthermore, co-application of VIP with 6-OHDA exposure could rescue the inhibited osteogenesis activity and delayed bone development during embryogenesis. Taken together, these results reveal that VIP played an important role during innervation at early stage of bone development. VIP could restore chemical sympathectomy induced osteogenesis inhibition and bone development impair in chick embryos.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China; School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China
| | - Chaojie Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, PR China.
| |
Collapse
|