1
|
Lai S, Guo Z. Stem cell therapies for chronic obstructive pulmonary disease: mesenchymal stem cells as a promising treatment option. Stem Cell Res Ther 2024; 15:312. [PMID: 39300523 DOI: 10.1186/s13287-024-03940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is an inflammatory disease characterized by the progressive and irreversible structural and functional damage of lung tissue. Although COPD is a significant global disease burden, the available treatments only ameliorate the symptoms, but cannot reverse lung damage. Researchers in regenerative medicine have examined the use of stem cell transplantation for treatment of COPD and other diseases because these cells have the potential for unlimited self-renewal and the ability to undergo directed differentiation. Stem cells are typically classified as embryonic stem cells, induced pluripotent stem cells, and adult stem cells (which includes mesenchymal stem cells [MSCs]), each with its own advantages and disadvantages regarding applications in regenerative medicine. Although the heterogeneity and susceptibility to senescence of MSCs make them require careful consideration for clinical applications. However, the low tumourigenicity and minimal ethical concerns of MSCs make them appear to be excellent candidates. This review summarizes the characteristics of various stem cell types and describes their therapeutic potential in the treatment of COPD, with a particular emphasis on MSCs. We aim to facilitate subsequent in-depth research and preclinical applications of MSCs by providing a comprehensive overview.
Collapse
Affiliation(s)
- Sumei Lai
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Zhifeng Guo
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Maria OM, Maria AM, Ybarra N, Jeyaseelan K, Lee S, Perez J, Shalaby MY, Lehnert S, Faria S, Serban M, Seuntjens J, El Naqa I. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions. Appl Immunohistochem Mol Morphol 2016. [PMID: 26200842 DOI: 10.1097/pai.0000000000000180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.
Collapse
Affiliation(s)
- Ola M Maria
- *Medical Physics Unit, Department of Oncology, Radiation Oncology Division, McGill University, Montreal General Hospital ‡Department of Oncology, Radiation Oncology Division, McGill University Health Centre ∥International Baccalaureate, Marymount Academy, Montreal, QC, Canada †Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura §Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Shi C, Lv T, Xiang Z, Sun Z, Qian W, Han X. Role of Wnt/β-Catenin Signaling in Epithelial Differentiation of Lung Resident Mesenchymal Stem Cells. J Cell Biochem 2016; 116:1532-9. [PMID: 25546504 DOI: 10.1002/jcb.25069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has demonstrated that stem cells have the ability to repair the lung tissue injuries following either injection of cultured cells or bone marrow transplantation. As a result, increasing attention has focused on the lung resident mesenchymal stem cells (LR-MSCs) for repairing damaged lung tissues. Meanwhile, some studies have revealed that Wnt/β-catenin signaling plays an important role in the epithelial differentiation of mesenchymal stem cells (MSCs). In the current study, our aim was to explore the roles of Wnt/β-catenin signaling on cell proliferation and epithelial differentiation of LR-MSCs. We have successfully isolated the stem cell antigen (Sca)-1(+) CD45(-) CD31(-) cells which were proposed to be LR-MSCs by magnetic-activated cell sorting (MACS). Furthermore, we demonstrated the expression of epithelial markers on LR-MSCs following indirect co-culture of these cells with alveolar epithelial type II (ATII) cells, confirming the epithelial phenotype of LR-MSCs following co-culture. In order to clarify the regulatory mechanisms of Wnt/β-catenin signaling in epithelial differentiation of LR-MSCs, we measured the protein levels of several important members involved in Wnt/β-catenin signaling in the presence or absence of some canonical activators and inhibitors of the β-catenin pathways. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of epithelial differentiation of LR-MSCs.
Collapse
Affiliation(s)
- Chaowen Shi
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Tengfei Lv
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zou Xiang
- Department of Microbiology and Immunology, Mucosal Immunobiology and Vaccine Research Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Zhaorui Sun
- Department of Emergency, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, PR China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproductive Biology Laboratory, Medical School of Nanjing University, Nanjing, 210093, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
5
|
Zhang H, Fu W, Xu Z. Re-epithelialization: a key element in tracheal tissue engineering. Regen Med 2015; 10:1005-23. [PMID: 26388452 DOI: 10.2217/rme.15.68] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Trachea-tissue engineering is a thriving new field in regenerative medicine that is reaching maturity and yielding numerous promising results. In view of the crucial role that the epithelium plays in the trachea, re-epithelialization of tracheal substitutes has gradually emerged as the focus of studies in tissue-engineered trachea. Recent progress in our understanding of stem cell biology, growth factor interactions and transplantation immunobiology offer the prospect of optimization of a tissue-engineered tracheal epithelium. In addition, advances in cell culture technology and successful applications of clinical transplantation are opening up new avenues for the construction of a tissue-engineered tracheal epithelium. Therefore, this review summarizes current advances, unresolved obstacles and future directions in the reconstruction of a tissue-engineered tracheal epithelium.
Collapse
Affiliation(s)
- Hengyi Zhang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Zhiwei Xu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| |
Collapse
|
6
|
Fox E, Shojaie S, Wang J, Tseu I, Ackerley C, Bilodeau M, Post M. Three-dimensional culture and FGF signaling drive differentiation of murine pluripotent cells to distal lung epithelial cells. Stem Cells Dev 2015; 24:21-35. [PMID: 25079436 DOI: 10.1089/scd.2014.0227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reciprocal signaling between the lung mesenchyme and epithelium is crucial for differentiation and branching morphogenesis. We hypothesized that the combination of signaling pathways comprising early epithelial-mesenchymal interactions and a 3D spatial environment are necessary for an efficient induction of embryonic and induced pluripotent stem cells (ESCs and iPSCs) into a lung cell phenotype with hallmarks of the distal niche. Aggregating early, but not late, embryonic lung mesenchyme with endoderm-induced mouse ESCs and iPSCs for 6 days resulted in organization into tubular structures and differentiation of the tubular lining cells to an NKX2-1(+)/SOX2(-)/SOX9(+)/proSFTPC(+) lineage. Over 80% of the endoderm-induced cells committed to an NKX2-1(+) lineage. Electron microscopy analysis demonstrated numerous multivesicular bodies and glycogen deposits in the tubular lining cells, characteristic features of type II epithelial cell progenitors. Using soluble FGFR2 receptor antagonists, we demonstrate that reciprocal fibroblast growth factor (FGF) 2, 7, and 10 signaling is essential for differentiation of endoderm-induced cells to an NKX2-1(+)/proSFTPC(+) phenotype within 3D aggregates. Only FGF2 was able to commit endoderm-induced cells in monolayer cultures to an NKX2-1(+) lineage, however with a significant lower efficiency (∼16%) than seen with mesenchyme. Thus, while FGF2 signaling alone can induce a primed population of ESCs and iPSCs, the cells do not differentiate to distal lung epithelial progenitors with the same efficiency and level of maturity that is achieved when the complex tissue and 3D environment of the developing lung is more accurately recapitulated.
Collapse
Affiliation(s)
- Emily Fox
- 1 Physiology and Experimental Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children , Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
7
|
Wong AP, Chin S, Xia S, Garner J, Bear CE, Rossant J. Efficient generation of functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. Nat Protoc 2015; 10:363-81. [DOI: 10.1038/nprot.2015.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Mondrinos MJ, Jones PL, Finck CM, Lelkes PI. Engineering de novo assembly of fetal pulmonary organoids. Tissue Eng Part A 2014; 20:2892-907. [PMID: 24825442 DOI: 10.1089/ten.tea.2014.0085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induction of morphogenesis by competent lung progenitor cells in a 3D environment is a central goal of pulmonary tissue engineering, yet little is known about the microenvironmental signals required to induce de novo assembly of alveolar-like tissue in vitro. In extending our previous reports of alveolar-like tissue formation by fetal pulmonary cells stimulated by exogenous fibroblast growth factors (FGFs), we identified some of the key endogenous mediators of FGF-driven morphogenesis (organoid assembly), for example, epithelial sacculation, endothelial network assembly, and epithelial-endothelial interfacing. Sequestration of endogenously secreted vascular endothelial growth factor-A (VEGF-A) potently inhibited endothelial network formation, with little or no effect on epithelial morphogenesis. Inhibition of endogenous sonic hedgehog (SHH) partially attenuated FGF-driven endothelial network formation, while the addition of exogenous SHH in the absence of FGFs was able to induce epithelial and endothelial morphogenesis, although with distinct morphological characteristics. Notably, SHH-induced endothelial networks exhibited fewer branch points, reduced sprouting behavior, and a periendothelial extracellular matrix (ECM) virtually devoid of tenascin-C (TN-C). By contrast, focal deposition of endogenous TN-C was observed in the ECM-surrounding endothelial networks of FGF-induced organoids, especially around sprouting tips. In the FGF-induced organoids, TN-C was also observed in the clefts of sacculated epithelium and at the epithelial-endothelial interface. In support of a critical role in the formation of alveolar-like tissue in vitro, TN-C blocking inhibited endothelial network formation and epithelial sacculation. Upon engraftment of in-vitro-generated pulmonary organoids beneath the renal capsule of syngeneic mice, robust neovascularization occurred in 5 days with a large contribution of patent vessels from engrafted organoids, providing proof of principle for exploring intrapulmonary engraftment of prevascularized hydrogel constructs. Expression of proSpC, VEGF-A, and TN-C following 1 week in vivo mirrored the patterns observed in vitro. Taken together, these findings advance our understanding of endogenous growth factor and ECM signals important for de novo formation of pulmonary tissue structures in vitro and demonstrate the potential of an organoid-based approach to lung tissue augmentation.
Collapse
Affiliation(s)
- Mark J Mondrinos
- 1 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
9
|
Quan Y, Wang D. Clinical potentials of human pluripotent stem cells in lung diseases. Clin Transl Med 2014; 3:15. [PMID: 24995122 PMCID: PMC4072658 DOI: 10.1186/2001-1326-3-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future.
Collapse
Affiliation(s)
- Yuan Quan
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, 1825 Pressler Street/IMM 437D, Houston, TX 77030, USA
| | - Dachun Wang
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, 1825 Pressler Street/IMM 437D, Houston, TX 77030, USA
| |
Collapse
|
10
|
Picanço-Castro V, Moreira LF, Kashima S, Covas DT. Can pluripotent stem cells be used in cell-based therapy? Cell Reprogram 2014; 16:98-107. [PMID: 24606201 DOI: 10.1089/cell.2013.0072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pluripotent stem cells, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have the ability to differentiate into several cell types that can be used in drug testing and also in the study and treatment of diseases. These cells can be differentiated by in vitro systems, which may serve as models for human diseases and for cell transplantation. In this review, we address the pluripotent cell types, how to obtain and characterize these cells, and differentiation assays. We also focus on the potential of these cells in clinical trials, and we describe the clinical trials that are underway.
Collapse
|
11
|
Paschos NK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 2014; 9:488-503. [PMID: 24493315 DOI: 10.1002/term.1870] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 12/13/2022]
Abstract
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use.
Collapse
Affiliation(s)
- Nikolaos K Paschos
- Department of Biomedical Engineering and Orthopedic Surgery, University of California at Davis, CA, 95616, USA
| | | | | | | | | |
Collapse
|
12
|
Sun H, Quan Y, Yan Q, Peng X, Mao Z, Wetsel RA, Wang D. Isolation and characterization of alveolar epithelial type II cells derived from mouse embryonic stem cells. Tissue Eng Part C Methods 2013; 20:464-72. [PMID: 24102479 DOI: 10.1089/ten.tec.2013.0415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The use of embryonic stem cells (ESCs) to regenerate distal lung epithelia damaged by injuries or diseases requires development of safe and efficient methodologies that direct ESC differentiation into transplantable distal lung epithelial progenitors. Time-consuming culture procedure and low differentiation efficiency are major problems that are associated with conventional differentiation approaches via embryoid body formation. The use of a growth factor cocktail or a lung-specific cell-conditioned medium to enrich definitive endoderm for efficient differentiation of mouse ESCs (mESC) into alveolar epithelial progenitor type II cells (ATIICs) has been reported, but not yet successful for generating a homogenous population of ATIICs for tissue regeneration purpose, and it remains unclear whether or not those mESC-derived ATIICs possess normal biological functions. Here, we report a novel method using a genetically modified mESC line harboring an ATIIC-specific neomycin(R) transgene in Rosa 26 locus. We showed that ATIICs can be efficiently differentiated from mESCs as early as day 7 by culturing them directly on Matrigel-coated plates in DMEM containing 15% knockout serum replacement. With this culture condition, the genetically modified mESCs can be selectively differentiated into a homogenous population (>99%) of ATIICs. Importantly, the mESC-derived ATIICs (mESC-ATIICs) exhibited typical lamellar bodies and expressed surfactant protein A, B, and C as normal control ATIICs. When cultured with an air-liquid-interface culture system in Small Airway Epithelial Cell Growth Medium, the mESC-ATIICs can be induced to secrete surfactant proteins after being treated with dibutyryl cAMP+dexamethasone. These mESC-ATIICs can synthesize and secrete surfactant lipid in response to secretagogue, demonstrating active surfactant metabolism in mESC-ATIICs as that seen in normal control ATIICs. In addition, we demonstrated that the selected mESC-ATIICs can be maintained on Matrigel-coated plates for at least 4 days with robust proliferative capacity. When cultured in DMEM medium containing 10% FBS, mESC-ATIICs spontaneously differentiated into alveolar epithelial type I cells. Collectively, these data demonstrate that the genetically modified mESCs can be selectively differentiated into a homogenous population of functional ATIICs, providing a reliable cell source to explore their therapeutic potential in lung tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Sun
- 1 Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston , Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
13
|
Chung SS, Koh CJ. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling. In Vitro Cell Dev Biol Anim 2013; 49:746-51. [PMID: 23949743 DOI: 10.1007/s11626-013-9662-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/05/2013] [Indexed: 02/08/2023]
Abstract
Fibroblast growth factor 10 (FGF10) is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. In this study, we investigated the role of FGF10 as a lead induction factor for stem cell differentiation toward urothelial cell. To this end, human multipotent stem cell in vitro system was employed. Human amniotic fluid stem cells were co-cultured with immortalized bladder cancer lines to induce directed differentiation into urothelial cells. Urothelial markers, uroplakin II, III, and cytokeratin 8, were monitored by RT-PCR, immunocytochemistry, and Western blot analysis. Co-cultured stem cells began to express uroplakin II, III, and cytokeratin 8. Targeted FGF10 gene knockdown from bladder cancer cells abolished the directed differentiation. In addition, when FGF10 downstream signaling was blocked with the Mek inhibitor, the co-culture system lost the capacity to induce urothelial differentiation. Exogenous addition of recombinant FGF10 protein promoted stem cell differentiation into urothelium cell lineage. Together, this report suggests that paracrine FGF10 signaling stimulates the differentiation of human stem cell into urothelial cells. Current study provides insight into the potential role of FGF10 as a lead growth factor for bladder regeneration and its therapeutic application for bladder transplantation.
Collapse
Affiliation(s)
- Seyung S Chung
- Developmental Biology Program, Saban Institute for Research, Children's Hospital in L.A. Keck School of Medicine, University of Southern California, Los Angeles, 90027, CA, USA,
| | | |
Collapse
|
14
|
He X, Fu W, Zheng J. Cell sources for trachea tissue engineering: past, present and future. Regen Med 2013; 7:851-63. [PMID: 23164084 DOI: 10.2217/rme.12.96] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Trachea tissue engineering has been one of the most promising approaches to providing a potential clinical application for the treatment of long-segment tracheal stenosis. The sources of the cells are particularly important as the primary factor for tissue engineering. The use of appropriate cells seeded onto scaffolds holds huge promise as a means of engineering the trachea. Furthermore, appropriate cells would accelerate the regeneration of the tissue even without scaffolds. Besides autologous mature cells, various stem cells, including bone marrow-derived mesenchymal stem cells, adipose tissue-derived stem cells, umbilical cord blood-derived mesenchymal stem cells, amniotic fluid stem cells, embryonic stem cells and induced pluripotent stem cells, have received extensive attention in the field of trachea tissue engineering. Therefore, this article reviews the progress on different cell sources for engineering tracheal cartilage and epithelium, which can lead to a better selection and strategy for engineering the trachea.
Collapse
Affiliation(s)
- Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, China
| | | | | |
Collapse
|
15
|
Liu AR, Liu L, Chen S, Yang Y, Zhao HJ, Liu L, Guo FM, Lu XM, Qiu HB. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 2013; 228:1270-83. [PMID: 23154940 DOI: 10.1002/jcp.24282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/02/2012] [Indexed: 01/31/2023]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI.
Collapse
Affiliation(s)
- Ai-Ran Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schmeckebier S, Mauritz C, Katsirntaki K, Sgodda M, Puppe V, Duerr J, Schubert SC, Schmiedl A, Lin Q, Paleček J, Draeger G, Ochs M, Zenke M, Cantz T, Mall MA, Martin U. Keratinocyte growth factor and dexamethasone plus elevated cAMP levels synergistically support pluripotent stem cell differentiation into alveolar epithelial type II cells. Tissue Eng Part A 2013; 19:938-51. [PMID: 23176317 DOI: 10.1089/ten.tea.2012.0066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alveolar epithelial type II (ATII)-like cells can be generated from murine embryonic stem cells (ESCs), although to date, no robust protocols applying specific differentiation factors are established. We hypothesized that the keratinocyte growth factor (KGF), an important mediator of lung organogenesis and primary ATII cell maturation and proliferation, together with dexamethasone, 8-bromoadenosine-cAMP, and isobutylmethylxanthine (DCI), which induce maturation of primary fetal ATII cells, also support the alveolar differentiation of murine ESCs. Here we demonstrate that the above stimuli synergistically potentiate the alveolar differentiation of ESCs as indicated by increased expression of the surfactant proteins (SP-) C and SP-B. This effect is most profound if KGF is supplied not only in the late stage, but at least also during the intermediate stage of differentiation. Our results indicate that KGF most likely does not enhance the generation of (mes)endodermal or NK2 homeobox 1 (Nkx2.1) expressing progenitor cells but rather, supported by DCI, accelerates further differentiation/maturation of respiratory progeny in the intermediate phase and maturation/proliferation of emerging ATII cells in the late stage of differentiation. Ultrastructural analyses confirmed the presence of ATII-like cells with intracellular composite and lamellar bodies. Finally, induced pluripotent stem cells (iPSCs) were generated from transgenic mice with ATII cell-specific lacZ reporter expression. Again, KGF and DCI synergistically increased SP-C and SP-B expression in iPSC cultures, and lacZ expressing ATII-like cells developed. In conclusion, ATII cell-specific reporter expression enabled the first reliable proof for the generation of murine iPSC-derived ATII cells. In addition, we have shown KGF and DCI to synergistically support the generation of ATII-like cells from ESCs and iPSCs. Combined application of these factors will facilitate more efficient generation of stem cell-derived ATII cells for future basic research and potential therapeutic application.
Collapse
Affiliation(s)
- Sabrina Schmeckebier
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lung. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Hayes M, Curley G, Ansari B, Laffey JG. Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:205. [PMID: 22424108 PMCID: PMC3681334 DOI: 10.1186/cc10570] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing understanding of the complexity of the pathophysiology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), coupled with advances in stem cell biology, has led to a renewed interest in the therapeutic potential of stem cells for this devastating disease. Mesenchymal stem cells appear closest to clinical translation, given the evidence that they may favourably modulate the immune response to reduce lung injury, while maintaining host immune-competence and also facilitating lung regeneration and repair. The demonstration that human mesenchymal stem cells exert benefit in the endotoxin-injured human lung is particularly persuasive. Endothelial progenitor cells also demonstrate promise in reducing endothelial damage, which is a key pathophysiological feature of ALI. Embryonic and induced pluripotent stem cells are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. The lung itself also contains endogenous stem cells, which may ultimately offer the greatest hope for lung diseases, given their physiologic role in replacing and regenerating native lung tissues. However, significant deficits remain in our knowledge regarding the mechanisms of action of stem cells, their efficacy in relevant pre-clinical models, and their safety, particularly in critically ill patients. These gaps need to be addressed before the enormous therapeutic potential of stem cells for ALI/ARDS can be realised.
Collapse
Affiliation(s)
- Mairead Hayes
- Lung Biology Group, Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
19
|
Nichols JE, Niles JA, Cortiella J. Design and development of tissue engineered lung: Progress and challenges. Organogenesis 2012; 5:57-61. [PMID: 19794900 DOI: 10.4161/org.5.2.8564] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/27/2009] [Indexed: 11/19/2022] Open
Abstract
Before we can realize our long term goal of engineering lung tissue worthy of clinical applications, advances in the identification and utilization of cell sources, development of standardized procedures for differentiation of cells, production of matrix tailored to meet the needs of the lung and design of methods or techniques of applying the engineered tissues into the injured lung environment will need to occur. Design of better biomaterials with the capacity to guide stem cell behavior and facilitate lung lineage choice as well as seamlessly integrate with living lung tissue will be achieved through advances in the development of decellularized matrices and new understandings related to the influence of extracellular matrix on cell behavior and function. We have strong hopes that recent developments in the engineering of conducting airway from decellularized trachea will lead to similar breakthroughs in the engineering of distal lung components in the future.
Collapse
|
20
|
Patel B, Gauvin R, Absar S, Gupta V, Gupta N, Nahar K, Khademhosseini A, Ahsan F. Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. Am J Physiol Lung Cell Mol Physiol 2012; 303:L733-47. [PMID: 22886505 DOI: 10.1152/ajplung.00076.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, Sicilian L, Izvolsky K, Musunuru K, Cowan C, Rajagopal J. Generation of multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic fibrosis iPSCs. Cell Stem Cell 2012; 10:385-97. [PMID: 22482504 DOI: 10.1016/j.stem.2012.01.018] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/15/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
Abstract
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.
Collapse
Affiliation(s)
- Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sasselli V, Micci MA, Kahrig KM, Pasricha PJ. Evaluation of ES-derived neural progenitors as a potential source for cell replacement therapy in the gut. BMC Gastroenterol 2012; 12:81. [PMID: 22735038 PMCID: PMC3412704 DOI: 10.1186/1471-230x-12-81] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 06/26/2012] [Indexed: 01/28/2023] Open
Abstract
Background Stem cell-based therapy has recently been explored for the treatment of disorders of the enteric nervous system (ENS). Pluripotent embryonic stem (ES) cells represent an attractive cell source; however, little or no information is currently available on how ES cells will respond to the gut environment. In this study, we investigated the ability of ES cells to respond to environmental cues derived from the ENS and related tissues, both in vitro and in vivo. Methods Neurospheres were generated from mouse ES cells (ES-NS) and co-cultured with organotypic preparations of gut tissue consisting of the longitudinal muscle layers with the adherent myenteric plexus (LM-MP). Results LM-MP co-culture led to a significant increase in the expression of pan-neuronal markers (βIII-tubulin, PGP 9.5) as well as more specialized markers (peripherin, nNOS) in ES-NS, both at the transcriptional and protein level. The increased expression was not associated with increased proliferation, thus confirming a true neurogenic effect. LM-MP preparations exerted also a myogenic effect on ES-NS, although to a lesser extent. After transplantation in vivo into the mouse pylorus, grafted ES-NS failed to acquire a distinct phenotype al least 1 week following transplantation. Conclusions This is the first study reporting that the gut explants can induce neuronal differentiation of ES cells in vitro and induce the expression of nNOS, a key molecule in gastrointestinal motility regulation. The inability of ES-NS to adopt a neuronal phenotype after transplantation in the gastrointestinal tract is suggestive of the presence of local inhibitory influences that prevent ES-NS differentiation in vivo.
Collapse
Affiliation(s)
- Valentina Sasselli
- Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
23
|
Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 2012; 10:398-411. [PMID: 22482505 PMCID: PMC3322392 DOI: 10.1016/j.stem.2012.01.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/18/2011] [Accepted: 01/25/2012] [Indexed: 11/17/2022]
Abstract
Two populations of Nkx2-1(+) progenitors in the developing foregut endoderm give rise to the entire postnatal lung and thyroid epithelium, but little is known about these cells because they are difficult to isolate in a pure form. We demonstrate here the purification and directed differentiation of primordial lung and thyroid progenitors derived from mouse embryonic stem cells (ESCs). Inhibition of TGFβ and BMP signaling, followed by combinatorial stimulation of BMP and FGF signaling, can specify these cells efficiently from definitive endodermal precursors. When derived using Nkx2-1(GFP) knockin reporter ESCs, these progenitors can be purified for expansion in culture and have a transcriptome that overlaps with developing lung epithelium. Upon induction, they can express a broad repertoire of markers indicative of lung and thyroid lineages and can recellularize a 3D lung tissue scaffold. Thus, we have derived a pure population of progenitors able to recapitulate the developmental milestones of lung/thyroid development.
Collapse
Affiliation(s)
- Tyler A. Longmire
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Finn Hawkins
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Constantina Christodoulou
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yuxia Cao
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - JC Jean
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Letty W. Kwok
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA02114, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA02114, USA
| | - Steven S. Shen
- Section of Computational Biomedicine, and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USAw
- Center for Health Informatics and Bioinformatics, Department of Biochemistry and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Anne A. Dowton
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Maria Serra
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Daniel J. Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Michael D. Green
- Mount Sinai School of Medicine, Department of Oncological Science, New York, NY 10029, USA
| | - Hans-Willem Snoeck
- Mount Sinai School of Medicine, Department of Oncological Science, New York, NY 10029, USA
| | - Maria I. Ramirez
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
24
|
Swaminathan V, Tchao R, Jonnalagadda S. Physical characterization of thin semi-porous poly(L-lactic acid)/poly(ethylene glycol) membranes for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 18:1321-33. [DOI: 10.1163/156856207782177864] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- V. Swaminathan
- a Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd Street, Box 80, Philadelphia, PA 19104, USA
| | - R. Tchao
- b Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd Street, Box 80, Philadelphia, PA 19104, USA
| | - S. Jonnalagadda
- c Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, 600 S 43rd Street, Box 80, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Siti-Ismail N, Samadikuchaksaraei A, Bishop AE, Polak JM, Mantalaris A. Development of a Novel Three-Dimensional, Automatable and Integrated Bioprocess for the Differentiation of Embryonic Stem Cells into Pulmonary Alveolar Cells in a Rotating Vessel Bioreactor System. Tissue Eng Part C Methods 2012; 18:263-72. [DOI: 10.1089/ten.tec.2011.0299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Norhayati Siti-Ismail
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, United Kingdom
- Stem Cells and Regenerative Medicine, Department of Experimental Medicine and Toxicology, Imperial College London, London, United Kingdom
| | - Ali Samadikuchaksaraei
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Anne E. Bishop
- Stem Cells and Regenerative Medicine, Department of Experimental Medicine and Toxicology, Imperial College London, London, United Kingdom
| | - Julia M. Polak
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 2012; 20:1116-30. [PMID: 22395528 DOI: 10.1038/mt.2012.37] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Genetics, Stem Cell Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
27
|
Abstract
End-stage lung disease is a major health care challenge. Lung transplantation remains the definitive treatment, yet rejection and donor organ shortage limit its broader clinical impact. Engineering bioartificial lung grafts from patient-derived cells could theoretically lead to alternative treatment strategies. Although many challenges on the way to clinical application remain, important early milestones toward translation have been met. Key endodermal progenitors can be derived from patients and expanded in vitro. Advanced culture conditions facilitate the formation of three-dimensional functional tissues from lineage-committed cells. Bioartificial grafts that provide gas exchange have been generated and transplanted into animal models. Looking ahead, current challenges in bioartificial lung engineering include creation of ideal scaffold materials, differentiation and expansion of lung-specific cell populations and full maturation of engineered constructs to provide graft longevity after implantation in vivo. A multidisciplinary collaborative effort will not only bring us closer to the ultimate goal of engineering patient-derived lung grafts, but also generate a series of clinically valuable translational milestones such as airway grafts and disease models. This review summarizes achievements to date, current challenges and ongoing research in bioartificial lung engineering.
Collapse
Affiliation(s)
- J J Song
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
28
|
Badri L, Walker NM, Ohtsuka T, Wang Z, Delmar M, Flint A, Peters-Golden M, Toews GB, Pinsky DJ, Krebsbach PH, Lama VN. Epithelial interactions and local engraftment of lung-resident mesenchymal stem cells. Am J Respir Cell Mol Biol 2011; 45:809-16. [PMID: 21378261 PMCID: PMC3208618 DOI: 10.1165/rcmb.2010-0446oc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/25/2011] [Indexed: 01/08/2023] Open
Abstract
Multipotent mesenchymal progenitor cells, termed "mesenchymal stem cells" (MSCs), have been demonstrated to reside in human adult lungs. However, there is little information regarding the associations of these local mesenchymal progenitors with other resident somatic cells and their potential for therapeutic use. Here we provide in vivo and in vitro evidence for the ability of human adult lung-resident MSCs (LR-MSCs) to interact with the local epithelial cells. The in vivo retention and localization of human LR-MSCs in an alveolar microenvironment was investigated by placing PKH-26 or DsRed lentivirus-labeled human LR-MSCs in the lungs of immunodeficient (SCID) mice. At 3 weeks after intratracheal administration, 19.3 ± 3.21% of LR-MSCs were recovered, compared with 3.47 ± 0.51% of control fibroblasts, as determined by flow cytometry. LR-MSCs were found to persist in murine lungs for up to 6 months and demonstrated preferential localization to the corners of the alveoli in close proximity to type II alveolar epithelial cells, the progenitor cells of the alveolar epithelium. In vitro, LR-MSCs established gap junction communications with lung alveolar and bronchial epithelial cells and demonstrated an ability to secrete keratinocyte growth factor, an important modulator of epithelial cell proliferation and differentiation. Gap junction communications were also demonstrable between LR-MSCs and resident murine cells in vivo. This study demonstrates, for the first time, an ability of tissue-specific MSCs to engraft in their organ of origin and establishes a pathway of bidirectional interaction between these mesenchymal progenitors and adult somatic epithelial cells in the lung.
Collapse
Affiliation(s)
| | | | | | - Zhuo Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | | | - Andrew Flint
- Divisions of Pulmonary and Critical Care Medicine and Cardiovascular Medicine, and Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan; and
| | | | | | | | - Paul H. Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | | |
Collapse
|
29
|
Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 2011; 16:2565-80. [PMID: 20408765 DOI: 10.1089/ten.tea.2009.0730] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report here the first attempt to produce and use whole acellular (AC) lung as a matrix to support development of engineered lung tissue from murine embryonic stem cells (mESCs). We compared the influence of AC lung, Gelfoam, Matrigel, and a collagen I hydrogel matrix on the mESC attachment, differentiation, and subsequent formation of complex tissue. We found that AC lung allowed for better retention of cells with more differentiation of mESCs into epithelial and endothelial lineages. In constructs produced on whole AC lung, we saw indications of organization of differentiating ESC into three-dimensional structures reminiscent of complex tissues. We also saw expression of thyroid transcription factor-1, an immature lung epithelial cell marker; pro-surfactant protein C, a type II pneumocyte marker; PECAM-1/CD31, an endothelial cell marker; cytokeratin 18; alpha-actin, a smooth muscle marker; CD140a or platelet-derived growth factor receptor-alpha; and Clara cell protein 10. There was also evidence of site-specific differentiation in the trachea with the formation of sheets of cytokeratin-positive cells and Clara cell protein 10-expressing Clara cells. Our findings support the utility of AC lung as a matrix for engineering lung tissue and highlight the critical role played by matrix or scaffold-associated cues in guiding ESC differentiation toward lung-specific lineages.
Collapse
Affiliation(s)
- Joaquin Cortiella
- Department of Anesthesiology, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lung. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Piro D, Rejman J, Conese M. Stem cell therapy for cystic fibrosis: current status and future prospects. Expert Rev Respir Med 2010; 2:365-80. [PMID: 20477199 DOI: 10.1586/17476348.2.3.365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although cystic fibrosis (CF), an autosomal recessive disease caused by mutations in the gene encoding for the CF transmembrane conductance regulator (CFTR), seems a good candidate for gene therapy, 15 years of intense investigation and a number of clinical trials have not yet produced a viable clinical gene-therapy strategy. In addition, the duration of gene expression has been shown to be limited, only lasting 1-4 weeks. Therefore, alternative approaches involve the search for, and use of, stem cell populations. Bone marrow contains different stem cell types, including hematopoietic stem cells and multipotent mesenchymal stromal cells. Numerous studies have now demonstrated the ability of hematopoietic stem cells and mesenchymal stromal cells to home to the lung and differentiate into epithelial cells of both the conducting airways and the alveolar region. However, engraftment of bone marrow-derived stem cells into the airways is a very inefficient process. Detailed knowledge of the cellular and molecular determinants governing homing to the lung and transformation of marrow cells into lung epithelial cells would benefit this process. Despite a very low level of engraftment of donor cells into the nose and gut, significant CFTR mRNA expression and a measurable level of correction of the electrophysiological defect were observed after transplantation of wild-type marrow cells into CF mice. It is uncertain whether this effect is due to the presence of CFTR-expressing epithelial cells derived from donor cells or to the immunomodulatory role of transplanted cells. Finally, initial studies on the usefulness of umbilical cord blood and embryonic stem cells in the generation of airway epithelial cells will be discussed in this review.
Collapse
Affiliation(s)
- Donatella Piro
- Department of Biomedical Sciences, University of Foggia, c/o Ospedali Riuniti, Viale L. Pinto 1, 71100 Foggia, Italy.
| | | | | |
Collapse
|
32
|
Saxena AK. Tissue engineering and regenerative medicine research perspectives for pediatric surgery. Pediatr Surg Int 2010; 26:557-73. [PMID: 20333389 DOI: 10.1007/s00383-010-2591-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2010] [Indexed: 01/28/2023]
Abstract
Tissue engineering and regenerative medicine research is being aggressively pursued in attempts to develop biological substitutes to replace lost tissue or organs. Remarkable degrees of success have been achieved in the generation of a variety of tissues and organs as a result of concerted contributions by multidisciplinary groups in the field of biotechnology. Engineering of an organ is a complex process which is initiated by appropriate sourcing of cells and their controlled proliferation to achieve critical numbers for seeding on biodegradable scaffolds in order to create cell-scaffold constructs, which are thereafter maintained in bioreactors to generate tissues identical to those required for replacement. Extensive efforts in understanding the characteristics of cells and their interaction with specifically tailored scaffolds holds the key to their attachment, controlled proliferation and differentiation, intercommunication, and organization to form tissues. The demand for tissue-engineered organs is enormous and this technology holds the promise to supply customized organs to overcome the severe shortages that are currently faced by the pediatric patient, especially due to organ-size mismatch. The contemporary state of tissue-engineering technology presented in this review summarizes the advances in the various areas of regenerative medicine and addresses issues that are associated with its future implementation in the pediatric surgical patient.
Collapse
Affiliation(s)
- Amulya K Saxena
- Experimental Fetal Surgery and Tissue Engineering Unit, Department of Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz-34, 8036, Graz, Austria.
| |
Collapse
|
33
|
Lin YM, Zhang A, Rippon HJ, Bismarck A, Bishop AE. Tissue Engineering of Lung: The Effect of Extracellular Matrix on the Differentiation of Embryonic Stem Cells to Pneumocytes. Tissue Eng Part A 2010; 16:1515-26. [DOI: 10.1089/ten.tea.2009.0232] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Yuan-Min Lin
- Stem Cells and Regenerative Medicine, Department of Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, London, United Kingdom
- Polymer and Composite Engineering Group, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Alison Zhang
- Stem Cells and Regenerative Medicine, Department of Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Helen J. Rippon
- Stem Cells and Regenerative Medicine, Department of Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alexander Bismarck
- Polymer and Composite Engineering Group, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Anne E. Bishop
- Stem Cells and Regenerative Medicine, Department of Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Roszell B, Seaton A, Fong GH, Finck CM. Cell-based therapy improves cell viability and increases airway size in an explant model. Exp Lung Res 2010; 35:501-13. [PMID: 19842834 DOI: 10.1080/01902140902718353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cell-based therapy is a promising treatment option for lung disease, but no studies have demonstrated its benefit in promoting perinatal lung growth. Embryonic day 18 (E18) fetal lungs treated with vascular inhibitors were grown as explant organ cultures to inhibit endothelial growth in the explant cultures. Disruption of pulmonary vasculature decreased explant mean cord length and viability, whereas coculture with fetal pulmonary or predifferentiated embryonic stem cells rescued both parameters. These results demonstrate in a model of perinatal lung growth, exogenous addition of fetal pulmonary cells or differentiated embryonic stem (ES) cells promotes survival and alveolar morphogenesis. These experiments represent the first evidence of the benefits of cell-based therapy for perinatal lung growth.
Collapse
Affiliation(s)
- Blair Roszell
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | |
Collapse
|
35
|
Wang D, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010; 18:625-34. [PMID: 20087316 DOI: 10.1038/mt.2009.317] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Collapse
Affiliation(s)
- Dachun Wang
- Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The greatest therapeutic promise of human embryonic stem cells (hESC) is to generate specialized cells to replace damaged tissue in patients suffering from various degenerative diseases. However, the signaling mechanisms involved in lineage restriction of ESC to adopt various cellular phenotypes are still under investigation. Furthermore, for progression of hESC-based therapies towards clinical applications, appropriate culture conditions must be developed to generate genetically stable homogenous populations of cells, to hinder possible adverse effects following transplantation. Other critical challenges that must be addressed for successful cell implantation include problems related to survival and functional efficacy of the grafted cells. This review initially describes the derivation of hESC and focuses on recent advances in generation, characterization, and maintenance of these cells. We also give an overview of original and emerging differentiation strategies used to convert hESC to different cell types. Finally, we will discuss transplantation studies of hESC-derived cells with respect to safety and functional recovery.
Collapse
Affiliation(s)
- Tandis Vazin
- Development and Plasticity Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.
| | | |
Collapse
|
37
|
Roszell B, Mondrinos MJ, Seaton A, Simons DM, Koutzaki SH, Fong GH, Lelkes PI, Finck CM. Efficient derivation of alveolar type II cells from embryonic stem cells for in vivo application. Tissue Eng Part A 2009; 15:3351-65. [PMID: 19388834 PMCID: PMC2811058 DOI: 10.1089/ten.tea.2008.0664] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 04/23/2009] [Indexed: 11/12/2022] Open
Abstract
In the present study, mouse embryonic stem cells (ESCs) were differentiated into alveolar epithelial type II (AEII) cells for endotracheal injection. These enriched lung-like populations expressed lung epithelial markers SP-A, SP-B, SP-C, and CC10. First we show that rapid differentiation of ESCs requires a dissociated seeding method instead of an embryoid body culture method. We then investigated a two-step differentiation of ESCs into definitive endoderm by activin or A549-conditioned medium as a precursor to lung epithelial cells. When conditioned medium from A549 cells was used to derive endoderm, yield was increased above that of activin alone. Further studies showed that Wnt3a may be one of the secreted factors produced by A549 cells and promotes definitive endoderm differentiation, in part, through suppression of primitive endoderm. Activin and Wnt3a together at appropriate doses with dissociated cell seeding promoted greater endoderm yield than activin alone. Next, fibroblast growth factor 2 was shown to induce a dose-dependent expression of SPC, and these cells contained lamellar bodies characteristic of mature AEII cells from ESC-derived endoderm. Finally, ES-derived lung cells were endotracheally injected into preterm mice with evidence of AEII distribution within the lung parenchyma. This study concludes that a recapitulation of development may enhance derivation of an enriched population of lung-like cells for use in cell-based therapy.
Collapse
Affiliation(s)
- Blair Roszell
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
- University of Connecticut Health Center, Farmington, Connecticut
| | - Mark J. Mondrinos
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Ariel Seaton
- University of Connecticut Health Center, Farmington, Connecticut
| | - Donald M. Simons
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Sirma H. Koutzaki
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Guo-Hua Fong
- University of Connecticut Health Center, Farmington, Connecticut
| | - Peter I. Lelkes
- School of Biomedical Engineering, Sciences, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Christine M. Finck
- University of Connecticut Health Center, Farmington, Connecticut
- Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
38
|
Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochem Biophys Res Commun 2009; 390:931-6. [PMID: 19852942 DOI: 10.1016/j.bbrc.2009.10.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 10/15/2009] [Indexed: 12/24/2022]
Abstract
Human adipose-derived stromal cells (hASCs) are capable of multi-lineage differentiation. Co-culture of stem cells with mature cells or tissues can drive their differentiation toward required lineages. We investigated whether direct cell-to-cell contact between hASCs and human UCs, or soluble signaling molecules, could induce the differentiation of hASCs into urothelium-like cells in vitro. hASCs were isolated from human subcutaneous adipose tissue and amplified in vitro. After labeled by green fluorescent protein, hASCs were cultured with human UCs in direct co-culture, indirect co-culture and conditioned culture, respectively. Two weeks later, expressions of specific urothelial differentiation markers were analyzed by RT-PCR and immunofluorescence. We found that hASCs in direct co-culture expressed urothelial-specific genes uroplakin Ib, uroplakin II and cytokeratin 18. However, uroplakin III gene was not detected during the experimental period. Additionally, uroplakin Ib and cytokeratin 18 were observed in differentiated hASCs by immunofluorescence. Notably, none of these markers were detected in hASCs cultured in indirect co-culture and conditioned culture. These findings suggest that direct cell-to-cell contact between hASCs and human UCs can induce the differentiation of hASCs along urothelial lineage.
Collapse
|
39
|
van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, Rey-Parra GJ, Galipeau J, Haromy A, Eaton F, Chen M, Hashimoto K, Abley D, Korbutt G, Archer SL, Thébaud B. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 2009; 180:1131-42. [PMID: 19713449 DOI: 10.1164/rccm.200902-0179oc] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. OBJECTIVES We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. METHODS In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. MEASUREMENTS AND MAIN RESULTS In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. CONCLUSIONS BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.
Collapse
Affiliation(s)
- Timothy van Haaften
- Department of Pediatrics, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lim SM, Pereira L, Wong MS, Hirst CE, Van Vranken BE, Pick M, Trounson A, Elefanty AG, Stanley EG. Enforced expression of Mixl1 during mouse ES cell differentiation suppresses hematopoietic mesoderm and promotes endoderm formation. Stem Cells 2009; 27:363-74. [PMID: 19038793 DOI: 10.1634/stemcells.2008-1008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Mixl1 gene encodes a homeodomain transcription factor that is required for normal mesoderm and endoderm development in the mouse. We have examined the consequences of enforced Mixl1 expression during mouse embryonic stem cell (ESC) differentiation. We show that three independently derived ESC lines constitutively expressing Mixl1 (Mixl1(C) ESCs) differentiate into embryoid bodies (EBs) containing a higher proportion of E-cadherin (E-Cad)(+) cells. Our analysis also shows that this differentiation occurs at the expense of hematopoietic mesoderm differentiation, with Mixl1(C) ESCs expressing only low levels of Flk1 and failing to develop hemoglobinized cells. Immunohistochemistry and immunofluorescence studies revealed that Mixl1(C) EBs have extensive areas containing cells with an epithelial morphology that express E-Cad, FoxA2, and Sox17, consistent with enhanced endoderm formation. Luciferase reporter transfection experiments indicate that Mixl1 can transactivate the Gsc, Sox17, and E-Cad promoters, supporting the hypothesis that Mixl1 has a direct role in definitive endoderm formation. Taken together, these studies suggest that high levels of Mixl1 preferentially allocate cells to the endoderm during ESC differentiation.
Collapse
Affiliation(s)
- Sue Mei Lim
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Meier K, Lehr CM, Daum N. Differentiation potential of human pancreatic stem cells for epithelial- and endothelial-like cell types. Ann Anat 2009; 191:70-82. [DOI: 10.1016/j.aanat.2008.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/14/2008] [Accepted: 04/16/2008] [Indexed: 01/31/2023]
|
43
|
Van Vranken BE, Rippon HJ, Samadikuchaksaraei A, Trounson AO, Bishop AE. The differentiation of distal lung epithelium from embryonic stem cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2008; Chapter 1:Unit 1G.1. [PMID: 18785171 DOI: 10.1002/9780470151808.sc01g01s2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The potential for embryonic stem (ES) cells to differentiate into cells with a distal lung epithelial phenotype has been demonstrated using different in vitro culture methods. Three separate protocols are described here that utilize both murine and human ES cells. The distal lung epithelial phenotype is induced through the use of embryonic distal lung mesenchyme in coculture systems with differentiating embryoid bodies or the use of soluble factors in defined media to maximize definitive endoderm formation and select and maintain the desired phenotype. Phenotypic analysis is demonstrated using immunocytochemistry and SP-C promoter-eGFP reporter gene expression in transgenic ES cells. These methods provide an increased efficiency of distal lung epithelial derivation from ES cells and, therefore, they provide the foundation for the development of a cell replacement product to treat chronic lung disease or a useful in vitro model for the study of lung disease and development.
Collapse
|
44
|
Varanou A, Page CP, Minger SL. Human embryonic stem cells and lung regeneration. Br J Pharmacol 2008; 155:316-25. [PMID: 18724383 PMCID: PMC2567888 DOI: 10.1038/bjp.2008.333] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/14/2008] [Accepted: 07/30/2008] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells are pluripotent cells derived from the inner cell mass of preimplantation stage embryos. Their unique potential to give rise to all differentiated cell types has generated great interest in stem cell research and the potential that it may have in developmental biology, medicine and pharmacology. The main focus of stem cell research has been on cell therapy for pathological conditions with no current methods of treatment, such as neurodegenerative diseases, cardiac pathology, retinal dysfunction and lung and liver disease. The overall aim is to develop methods of application either of pure cell populations or of whole tissue parts to the diseased organ under investigation. In the field of pulmonary research, studies using human embryonic stem cells have succeeded in generating enriched cultures of type II pneumocytes in vitro. On account of their potential of indefinite proliferation in vitro, embryonic stem cells could be a source of an unlimited supply of cells available for transplantation and for use in gene therapy. Uncovering the ability to generate such cell types will expand our understanding of biological processes to such a degree that disease understanding and management could change dramatically.
Collapse
Affiliation(s)
- A Varanou
- King's College London, Stem Cell Biology Laboratory, Wolfson Centre for Age-Related Diseases, London, UK.
| | | | | |
Collapse
|
45
|
Lee HJ, Yu C, Chansakul T, Varghese S, Hwang NS, Elisseeff JH. Enhanced chondrogenic differentiation of embryonic stem cells by coculture with hepatic cells. Stem Cells Dev 2008; 17:555-63. [PMID: 18513166 DOI: 10.1089/scd.2007.0177] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhancing the specific differentiation of pluripotent embryonic stem (ES) cells has been a challenge in the field of tissue engineering. Previously, hepatic cells have been shown to secrete various soluble morphogenic factors to direct mesodermal differentiation of ES cells. In this study, we hypothesized that factors secreted by hepatic cells possess chondrogenic-differentiating effects, and, therefore, the co-culture of hepatic cells would enhance chondrogenesis of ES cells. ES-derived cells(ESDCs) were co-cultured with hepatic cells (HEPA-1C1c7) in three-dimensional bilayered hydrogels. After 3 weeks culture, the histological and biochemical analysis of the HEPA-co-cultured ESDCs revealed a four-fold increase in glycosaminoglycan (GAG) compared to ESDCs cultured alone. This result was supported by real-time PCR analysis, which demonstrated an 80-fold increase in aggrecan expression in co-cultured ESDCs. Additionally, type IIB collagen expression was observed only with co-cultured ESDCs, and immunohistochemical analysis resulted in significantly more positive type II collagen staining with co-cultured ESDCs. Moreover, at day 21, gene expression of other lineages in HEPA-co-cultured ESDCs was either comparable to or lower than those of ESDCs cultured alone. These results indicated that co-culture of ESDCs with hepatic cells significantly enhanced specific chondrogenic differentiation of ESDCs.
Collapse
Affiliation(s)
- H Janice Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rippon HJ, Lane S, Qin M, Ismail NS, Wilson MR, Takata M, Bishop AE. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2008; 5:717-22. [PMID: 18684724 PMCID: PMC2643225 DOI: 10.1513/pats.200801-008aw] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/04/2008] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells (ESCs) derived from the preimplantation blastocyst are pluripotent and capable of indefinite expansion in vitro. As such, they present a cell source to derive a potentially inexhaustible supply of pulmonary cells and tissue. ESC-derived pulmonary epithelium could be used for in vitro cell or tissue models or, in the future, implanted into the damaged or diseased lung to effect repair. Efforts to date have largely focused on obtaining distal lung epithelial phenotypes from ESCs, notably alveolar epithelium. Several disparate methods have been developed to enhance differentiation of ESCs into pulmonary epithelial lineages; these are broadly based on recapitulating developmental signaling events, mimicking the physical environment, or forcibly reprogramming the ESC nucleus. Early findings of our preclinical experiments implanting differentiated ESCs into the injured lung are also described here. Future efforts will focus on maximizing ESC differentiation efficiency and yield of the target phenotype, as well as characterizing the function of derived cells in vivo and in vitro.
Collapse
Affiliation(s)
- Helen J. Rippon
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| | - Síle Lane
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| | - Mingde Qin
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| | - N.-Siti Ismail
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael R. Wilson
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| | - Anne E. Bishop
- Section on Experimental Medicine and Toxicology, Faculty of Medicine, Imperial College London, and Hammersmith Hospital, London, United Kingdom; and Department of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, and Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
47
|
Winkler ME, Mauritz C, Groos S, Kispert A, Menke S, Hoffmann A, Gruh I, Schwanke K, Haverich A, Martin U. Serum-free differentiation of murine embryonic stem cells into alveolar type II epithelial cells. CLONING AND STEM CELLS 2008; 10:49-64. [PMID: 18241124 DOI: 10.1089/clo.2007.0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alveolar type II (AT2) epithelial cells have important functions including the production of surfactant and regeneration of lost alveolar type I epithelial cells. The ability of in vitro production of AT2 cells would offer new therapeutic options in treating pulmonary injuries and disorders including genetically based surfactant deficiencies. Aiming at the generation of AT2-like cells, the differentiation of murine embryonic stem cells (mESCs) toward mesendodermal progenitors (MEPs) was optimized using a "Brachyury-eGFP-knock in" mESC line. eGFP expression demonstrated generation of up to 65% MEPs at day 4 after formation of embryoid bodies (EBs) under serum-free conditions. Plated EBs were further differentiated into AT2-like cells for a total of 25 days in serum-free media resulting in the expression of endodermal marker genes (FoxA2, Sox17, TTR, TTF-1) and of markers for distal lung epithelium (surfactant proteins (SP-) A, B, C, and D, CCSP, aquaporin 5). Notably, expression of SP-C as the only known AT2 cell specific marker could be detected after serum-induction as well as under serum-free conditions. Cytoplasmic localization of SP-C was demonstrated by confocal microscopy. The presence of AT2-like cells was confirmed by electron microscopy providing evidence for polarized cells with apical microvilli and lamellar body-like structures. Our results demonstrate the differentiation of AT2-like cells from mESCs after serum-induction and under serum-free conditions. The established serum-free differentiation protocol will facilitate the identification of key differentiation factors leading to a more specific and effective generation of AT2-like cells from ESCs.
Collapse
Affiliation(s)
- Monica E Winkler
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Barthelery M, Salli U, Vrana KE. Nuclear proteomics and directed differentiation of embryonic stem cells. Stem Cells Dev 2008; 16:905-19. [PMID: 17999636 DOI: 10.1089/scd.2007.0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the past decade, regenerative medicine has been the subject of intense interest due, in large part, to our growing knowledge of embryonic stem (ES) cell biology. ES cells give rise to cell lineages from the three primordial germ layers--endoderm, mesoderm, and ectoderm. This process needs to be channeled if these cells are to be differentiated efficiently and used subsequently for therapeutic purposes. Indeed, an important area of investigation involves directed differentiation to influence the lineage commitment of these pluripotent cells in vitro. Various strategies involving timely growth factor supplementation, cell co-cultures, and gene transfection are used to drive lineage specific emergence. The underlying goal is to control directly the center of gene expression and cellular programming--the nucleus. Gene expression is enabled, managed, and sustained by the collective actions and interactions of proteins found in the nucleus--the nuclear proteome--in response to extracellular signaling. Nuclear proteomics can inventory these nuclear proteins in differentiating cells and decipher their dynamics during cellular phenotypic commitment. This review details what is currently known about nuclear effectors of stem cell differentiation and describes emerging techniques in the discovery of nuclear proteomics that will illuminate new transcription factors and modulators of gene expression.
Collapse
Affiliation(s)
- Miguel Barthelery
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
49
|
Parashurama N, Nahmias Y, Cho CH, van Poll D, Tilles AW, Berthiaume F, Yarmush ML. Activin alters the kinetics of endoderm induction in embryonic stem cells cultured on collagen gels. Stem Cells 2008; 26:474-84. [PMID: 18065398 PMCID: PMC2802581 DOI: 10.1634/stemcells.2007-0303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Embryonic stem cell-derived endoderm is critical for the development of cellular therapies for the treatment of disease such as diabetes, liver cirrhosis, or pulmonary emphysema. Here, we describe a novel approach to induce endoderm from mouse embryonic stem (mES) cells using fibronectin-coated collagen gels. This technique results in a homogeneous endoderm-like cell population, demonstrating endoderm-specific gene and protein expression, which remains committed following in vivo transplantation. In this system, activin, normally an endoderm inducer, caused an 80% decrease in the Foxa2-positive endoderm fraction, whereas follistatin increased the Foxa2-positive endoderm fraction to 78%. Our work suggests that activin delays the induction of endoderm through its transient precursors, the epiblast and mesendoderm. Long-term differentiation displays a twofold reduction in hepatic gene expression and threefold reduction in hepatic protein expression of activin-treated cells compared with follistatin-treated cells. Moreover, subcutaneous transplantation of activin-treated cells in a syngeneic mouse generated a heterogeneous teratoma-like mass, suggesting that these were a more primitive population. In contrast, follistatin-treated cells resulted in an encapsulated epithelial-like mass, suggesting that these cells remained committed to the endoderm lineage. In conclusion, we demonstrate a novel technique to induce the direct differentiation of endoderm from mES cells without cell sorting. In addition, our work suggests a new role for activin in induction of the precursors to endoderm and a new endoderm-enrichment technique using follistatin.
Collapse
Affiliation(s)
- Natesh Parashurama
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
- Rutgers, The State University of New Jersey, Department of Chemical and Biochemical Engineering, Rutgers University, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, U.S.A
| | - Yaakov Nahmias
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
| | - Cheul H. Cho
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
| | - Daan van Poll
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
| | - Arno W. Tilles
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
| | - François Berthiaume
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
| | - Martin L. Yarmush
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, U.S.A
- Rutgers, The State University of New Jersey, Department of Chemical and Biochemical Engineering, Rutgers University, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, U.S.A
| |
Collapse
|
50
|
Wunderlich S, Gruh I, Winkler ME, Beier J, Radtke K, Schmiedl A, Groos S, Haverich A, Martin U. Type II Pneumocyte-Restricted Green Fluorescent Protein Expression After Lentiviral Transduction of Lung Epithelial Cells. Hum Gene Ther 2008; 19:39-52. [DOI: 10.1089/hum.2006.0180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
| | - Ina Gruh
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
| | - Monica E. Winkler
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
| | - Jennifer Beier
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
| | - Kerstin Radtke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Schmiedl
- Department of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Stephanie Groos
- Department of Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, 30659 Hannover, Germany
| |
Collapse
|