1
|
Gao C, Yuan W, Wang D, Zhang X, Zhang T, Zhou Z. Adipose-derived mesenchymal stem cell-incorporated PLLA porous microspheres for cartilage regeneration. Animal Model Exp Med 2024; 7:685-695. [PMID: 38785141 PMCID: PMC11528392 DOI: 10.1002/ame2.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In facial plastic surgery, patients with nasal deformity are often treated by rib cartilage transplantation. In recent years, cartilage tissue engineering has developed as an alternative to complex surgery for patients with minor nasal defects via injection of nasal filler material. In this study, we prepared an injectable nasal filler material containing poly-L-lactic acid (PLLA) porous microspheres (PMs), hyaluronic acid (HA) and adipose-derived mesenchymal stem cells (ADMSCs). METHODS We seeded ADMSCs into as-prepared PLLA PMs using our newly invented centrifugation perfusion technique. Then, HA was mixed with ADMSC-incorporated PLLA PMs to form a hydrophilic and injectable cell delivery system (ADMSC-incorporated PMH). RESULTS We evaluated the biocompatibility of PMH in vitro and in vivo. PMH has good injectability and provides a favorable environment for the proliferation and chondrogenic differentiation of ADMSCs. In vivo experiments, we observed that PMH has good biocompatibility and cartilage regeneration ability. CONCLUSION In this study, a injectable cell delivery system was successfully constructed. We believe that PMH has potential application in cartilage tissue engineering, especially in nasal cartilage regeneration.
Collapse
Affiliation(s)
- Chang Gao
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Wenlong Yuan
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Dongcheng Wang
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Xin Zhang
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Tong Zhang
- Clinical LaboratoryTianjin HospitalTianjinChina
| | - Zhimin Zhou
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| |
Collapse
|
2
|
Roberts EL, Lepage SIM, Koch TG, Kallos MS. Bioprocess development for cord blood mesenchymal stromal cells on microcarriers in Vertical-Wheel bioreactors. Biotechnol Bioeng 2024; 121:192-205. [PMID: 37772415 DOI: 10.1002/bit.28557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023]
Abstract
Equine mesenchymal stromal cells (MSCs) have been found to be beneficial for the treatment of many ailments, including orthopedic injuries, due to their superior differentiation potential and immunomodulating properties. Cell therapies require large cell numbers, which are not efficiently generated using conventional static expansion methods. Expansion of equine cord blood-derived MSCs (eCB-MSCs) in bioreactors, using microcarriers as an attachment surface, has the potential to generate large numbers of cells with increased reproducibility and homogeneity compared with static T-flask expansion. This study investigated the development of an expansion process using Vertical-Wheel (VW) bioreactors, a single-use bioreactor technology that incorporates a wheel instead of an impeller. Initially, microcarriers were screened at small scale to assess eCB-MSC attachment and growth and then in bioreactors to assess cell expansion and harvesting. The effect of different donors, serial passaging, and batch versus fed batch were all examined in 0.1 L VW bioreactors. The use of VW bioreactors with an appropriate microcarrier was shown to be able to produce cell densities of up to 1E6 cells/mL, while maintaining cell phenotype and functionality, thus demonstrating great potential for the use of these bioreactors to produce large cell numbers for cell therapies.
Collapse
Affiliation(s)
- Erin L Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Sarah I M Lepage
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Song D, Yu M, Liu J, Xu W, Li J, Li B, Cao Y, Zhou G, Hua Y, Liu Y. Cartilage Regeneration Units Based on Hydrogel Microcarriers for Injectable Cartilage Regeneration in an Autologous Goat Model. ACS Biomater Sci Eng 2023; 9:4969-4979. [PMID: 37395578 DOI: 10.1021/acsbiomaterials.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite numerous studies on tissue-engineered injectable cartilage, it is still difficult to realize stable cartilage formation in preclinical large animal models because of suboptimal biocompatibility, which hinders further application in clinical settings. In this study, we proposed a novel concept of cartilage regeneration units (CRUs) based on hydrogel microcarriers for injectable cartilage regeneration in goats. To achieve this goal, hyaluronic acid (HA) was chosen as the microparticle to integrate gelatin (GT) chemical modification and a freeze-drying technology to create biocompatible and biodegradable HA-GT microcarriers with suitable mechanical strength, uniform particle size, a high swelling ratio, and cell adhesive ability. CRUs were then prepared by seeding goat autologous chondrocytes on the HA-GT microcarriers and culturing in vitro. Compared with traditional injectable cartilage methods, the proposed method forms relatively mature cartilage microtissue in vitro and improves the utilization rate of the culture space to facilitate nutrient exchange, which is necessary for mature and stable cartilage regeneration. Finally, these precultured CRUs were used to successfully regenerate mature cartilage in nude mice and in the nasal dorsum of autologous goats for cartilage filling. This study provides support for the future clinical application of injectable cartilage.
Collapse
Affiliation(s)
- Daiying Song
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Mengyuan Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- Institute of Regenerative Medicine and Orthopedics, Xinxiang Medical College, Zhongyuan Institute of Health, Xinxiang 453000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Jingwen Liu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Wei Xu
- Department of Plastic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266011, China
| | - Juncen Li
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Baihui Li
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yilin Cao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- Institute of Regenerative Medicine and Orthopedics, Xinxiang Medical College, Zhongyuan Institute of Health, Xinxiang 453000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- Institute of Regenerative Medicine and Orthopedics, Xinxiang Medical College, Zhongyuan Institute of Health, Xinxiang 453000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang 261000, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| |
Collapse
|
4
|
Zhang H, Li Q, Xu X, Zhang S, Chen Y, Yuan T, Zeng Z, Zhang Y, Mei Z, Yan S, Zhang L, Wei S. Functionalized Microscaffold-Hydrogel Composites Accelerating Osteochondral Repair through Endochondral Ossification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52599-52617. [PMID: 36394998 DOI: 10.1021/acsami.2c12694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteochondral regeneration remains a key challenge because of the limited self-healing ability of the bone and its complex structure and composition. Biomaterials based on endochondral ossification (ECO) are considered an attractive candidate to promote bone repair because they can effectively address the difficulties in establishing vascularization and poor bone regeneration via intramembranous ossification (IMO). However, its clinical application is limited by the complex cellular behavior of ECO and the long time required for induction of the cell cycle. Herein, functionalized microscaffold-hydrogel composites are developed to accelerate the developmental bone growth process via recapitulating ECO. The design comprises arginine-glycine-aspartic acid (RGD)-peptide-modified microscaffolds loaded with kartogenin (KGN) and wrapped with a layer of RGD- and QK-peptide-comodified alginate hydrogel. These microscaffolds enhance the proliferation and aggregation behavior of the human bone marrow mesenchymal stem cells (hBMSCs); the controlled release of kartogenin induces the differentiation of hBMSCs into chondrocytes; and the hydrogel grafted with RGD and QK peptide facilitates chondrocyte hypertrophy, which creates a vascularized niche for osteogenesis and finally accelerates osteochondral repair in vivo. The findings provide an efficient bioengineering approach by sequentially modulating cellular ECO behavior for osteochondral defect repair.
Collapse
Affiliation(s)
- He Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Xiangliang Xu
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Siqi Zhang
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - Tao Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tumor Biology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Ziqian Zeng
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Yifei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Zi Mei
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Shuang Yan
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Lei Zhang
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
| | - Shicheng Wei
- Central Laboratory and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
5
|
Collagen conjugation to carboxyl-modified poly(3-hydroxybutyrate) microparticles: preparation, characterization and evaluation in vitro. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Zernov A, Baruch L, Machluf M. Chitosan-collagen hydrogel microparticles as edible cell microcarriers for cultured meat. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Fabrication of calcium phosphates with controlled properties using a modular oscillatory flow reactor. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
10
|
Ma T, Wu J, Mu J, Gao J. Biomaterials reinforced MSCs transplantation for spinal cord injury repair. Asian J Pharm Sci 2021; 17:4-19. [PMID: 35261642 PMCID: PMC8888140 DOI: 10.1016/j.ajps.2021.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the complex pathophysiological mechanism, spinal cord injury (SCI) has become one of the most intractable central nervous system (CNS) diseases to therapy. Stem cell transplantation, mesenchymal stem cells (MSCs) particularly, appeals to more and more attention along with the encouraging therapeutic results for the functional regeneration of SCI. However, traditional cell transplantation strategies have some limitations, including the unsatisfying survival rate of MSCs and their random diffusion from the injection site to ambient tissues. The application of biomaterials in tissue engineering provides a new horizon. Biomaterials can not only confine MSCs in the injured lesions with higher cell viability, but also promote their therapeutic efficacy. This review summarizes the strategies and advantages of biomaterials reinforced MSCs transplantation to treat SCI in recent years, which are clarified in the light of various therapeutic effects in pathophysiological aspects of SCI.
Collapse
Affiliation(s)
- Teng Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
11
|
Pedram P, Mazio C, Imparato G, Netti PA, Salerno A. Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward In Vitro Tissue Building. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9589-9603. [PMID: 33595284 DOI: 10.1021/acsami.0c20687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous microscaffolds (μ-scaffs) play a crucial role in modular tissue engineering as they control cell functions and guide hierarchical tissue formation toward building new functional tissue analogues. In the present study, we developed a new route to prepare porous polycaprolactone (PCL) μ-scaffs with a bioinspired trabecular structure that supported in vitro adhesion, growth, and biosynthesis of human dermal fibroblasts (HDFs). The method involved the use of poly(ethylene oxide) (PEO) as a biocompatible porogen and a fluidic emulsion/porogen leaching/particle coagulation process to obtain spherical μ-scaffs with controllable diameter and full pore interconnectivity. To achieve this objective, we investigated the effect of PEO concentration and the temperature of the coagulation bath on the μ-scaff architecture, while we modulated the μ-scaff diameter distribution by varying the PCL-PEO amount in the starting solution and changing the flow rate of the continuous phase (QCP). μ-Scaff morphology, pore architecture, and diameter distribution were assessed using scanning electron microscopy (SEM) analysis, microcomputed tomography (microCT), and Image analysis. We reported that the selection of 60 wt % PEO concentration, together with a 4 °C coagulation bath temperature and ultrasound postprocessing, allowed for the design and fabrication of μ-scaff with porosity up to 80% and fully interconnected pores on both the μ-scaff surface and the core. Furthermore, μ-scaff diameter distributions were finely tuned in the 100-600 μm range with the coefficient of variation lower than 5% by selecting the PCL-PEO concentration in the 1-10% w/v range and QCP of either 8 or 18 mL/min. Finally, we investigated the capability of the HDF-seeded PCL μ-scaff to form hybrid (biological/synthetic) tissue in vitro. Cell culture tests demonstrated that PCL μ-scaff enabled HDF adhesion, proliferation, colonization, and collagen biosynthesis within inter- and intraparticle spaces and guided the formation of a large (centimeter-sized) viable tissue construct.
Collapse
Affiliation(s)
- Parisa Pedram
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| | - Claudia Mazio
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
- Interdisciplinary Research Center on Biomaterials (CRIB), University of Naples Federico II, Naples 80125, Italy
| | - Aurelio Salerno
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy
| |
Collapse
|
12
|
Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, Liu Y, Wang Z, Zhang P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021; 8:rbab013. [PMID: 33763233 PMCID: PMC7975764 DOI: 10.1093/rb/rbab013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haowei Wang
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Qingming Ji
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yi Liu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
13
|
Peticone C, Thompson DDS, Dimov N, Jevans B, Glass N, Micheletti M, Knowles JC, Kim HW, Cooper-White JJ, Wall IB. Characterisation of osteogenic and vascular responses of hMSCs to Ti-Co doped phosphate glass microspheres using a microfluidic perfusion platform. J Tissue Eng 2020; 11:2041731420954712. [PMID: 33178409 PMCID: PMC7592314 DOI: 10.1177/2041731420954712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 01/22/2023] Open
Abstract
Using microspherical scaffolds as building blocks to repair bone defects of
specific size and shape has been proposed as a tissue engineering strategy.
Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO2 and
either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their
ability to support osteogenic and vascular responses of human mesenchymal stem
cells (hMSCs). Together with standard culture techniques, cell-material
interactions were studied using a novel perfusion microfluidic bioreactor that
enabled cell culture on microspheres, along with automated processing and
screening of culture variables. While titanium doping was found to support hMSCs
expansion and differentiation, as well as endothelial cell-derived vessel
formation, additional doping with cobalt did not improve the functionality of
the microspheres. Furthermore, the microfluidic bioreactor enabled screening of
culture parameters for cell culture on microspheres that could be potentially
translated to a scaled-up system for tissue-engineered bone manufacturing.
Collapse
Affiliation(s)
- Carlotta Peticone
- Department of Biochemical Engineering, University College London, London, UK
| | | | - Nikolay Dimov
- Centre for Engineering Research, University of Hertfordshire, Hatfield, Hertfordshire, UK
| | - Ben Jevans
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nick Glass
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Australia
| | - Martina Micheletti
- Department of Biochemical Engineering, University College London, London, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Justin J Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemical Engineering, University of Queensland, St. Lucia, Brisbane, Australia
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, UK.,Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea.,Aston Medical Research Institute and School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
14
|
Veiga A, Castro F, Rocha F, Oliveira A. Silk-based microcarriers: current developments and future perspectives. IET Nanobiotechnol 2020; 14:645-653. [PMID: 33108319 PMCID: PMC8676661 DOI: 10.1049/iet-nbt.2020.0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-seeded microcarriers (MCs) are currently one of the most promising topics in biotechnology. These systems are supportive structures for cell growth and expansion that allow efficient nutrient and gas transfer between the media and the attached cells. Silk proteins have been increasingly used for this purpose in the past few years due to their biocompatibility, biodegradability and non-toxicity. To date, several silk fibroin spherical MCs in combination with alginate, gelatin and calcium phosphates have been reported with very interesting outcomes. In addition, other silk-based three-dimensional structures such as microparticles with chitosan and collagen, as well as organoids, have been increasingly studied. In this study, the physicochemical and biological properties of these biomaterials, as well as the recent methodologies for their processing and for cell culture, are discussed. The potential biomedical applications are also addressed. In addition, an analysis of the future perspectives is presented, where the potential of innovative silk-based MCs processing technologies is highlighted.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Filipa Castro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| | - Fernando Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
15
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
16
|
Yu Y, Guo J, Wang Y, Shao C, Wang Y, Zhao Y. Bioinspired Helical Micromotors as Dynamic Cell Microcarriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16097-16103. [PMID: 32181642 DOI: 10.1021/acsami.0c01264] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micromotors have exhibited great potential in multidisciplinary nanotechnology, environmental science, and especially biomedical engineering due to their advantages of controllable motion, long lifetime, and high biocompatibility. Marvelous efforts focusing on endowing micromotors with novel characteristics and functionalities to promote their applications in biomedical engineering have been taken in recent years. Here, inspired by the flagellar motion of Escherichia coli, we present helical micromotors as dynamic cell microcarriers using simple microfluidic spinning technology. The morphologies of micromotors can be easily tailored because of the highly controllable and feasible fabrication process including microfluidic generation and manual dicing. Benefiting from the biocompatibility of the materials, the resultant helical micromotors could be ideal cell microcarriers that are suitable for cell seeding and further cultivation; the magnetic nanoparticle encapsulation imparts the helical micromotors with kinetic characteristics in response to mobile magnetic fields. Thus, the helical micromotors could be applied as dynamic cell culture blocks and further assembled to complex geometrical structures. The constructed structures out of cell-seeded micromotors could find practical potential in biomedical applications as the stack-shaped assembly embedded in the hydrogel may be used for tissue repairing and the tube-shaped assembly due to its resemblance to vascular structures in the microchannel for organ-on-a-chip study or blood vessel regeneration. These features manifest the possibility to broaden the biomedical application scope for micromotors.
Collapse
Affiliation(s)
- Yunru Yu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
17
|
Bu S, Yan S, Wang R, Xia P, Zhang K, Li G, Yin J. In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto Porous Poly(γ-benzyl-l-glutamate) Microcarriers for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12468-12477. [PMID: 32091198 DOI: 10.1021/acsami.9b22559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bone tissue engineering scaffold based on microcarriers provides an effective approach for the repair of irregular bone defects. The implantation of microcarriers by injection can reduce surgical trauma and fill various irregular shaped bone defects. Microcarriers with porous structure and osteogenic properties have shown great potential in promoting the repair of bone defects. In this study, two kinds of hydroxyapatite/poly-(γ-benzyl-l-glutamate) (HA/PBLG) microcarriers were constructed by emulsion/in situ precipitation method and their structures and properties were studied. First, PBLG porous microcarriers were prepared by an emulsion method. Surface carboxylation of PBLG microcarriers was performed to promote the deposition of HA on PBLG microcarriers. Next, the modified porous PBLG microcarriers were used as the matrix, combined with the in situ precipitation method; the cluster HA and acicular HA were precipitated onto the surface of porous microcarriers in the presence of ammonia water and tri(hydroxymethyl)aminomethane (Tris) solution, respectively. The micromorphology, composition, and element distribution of the two kinds of microcarriers were characterized by TEM, SEM, and AFM. Adipose stem cells (ADSCs) were cultured on the cluster HA/PBLG and acicular HA/PBLG microcarriers, respectively. ADSCs could grow and proliferate normally on both kinds of microcarriers wherein the acicular HA/PBLG microcarriers were more favorable for early cell adhesion and showed a beneficial effect on mineralization and osteogenic differentiation of ADSCs. Successful healing of a rabbit femur defect verified the bone regeneration ability of acicular HA/PBLG microcarriers.
Collapse
Affiliation(s)
- Shuai Bu
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Shifeng Yan
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Ruanfeng Wang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Pengfei Xia
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Guifei Li
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China
| |
Collapse
|
18
|
Huang L, Abdalla AM, Xiao L, Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int J Mol Sci 2020; 21:E1895. [PMID: 32164316 PMCID: PMC7084715 DOI: 10.3390/ijms21051895] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 12/20/2022] Open
Abstract
The concept of three-dimensional (3D) cell culture has been proposed to maintain cellular morphology and function as in vivo. Among different approaches for 3D cell culture, microcarrier technology provides a promising tool for cell adhesion, proliferation, and cellular interactions in 3D space mimicking the in vivo microenvironment. In particular, microcarriers based on biopolymers have been widely investigated because of their superior biocompatibility and biodegradability. Moreover, through bottom-up assembly, microcarriers have opened a bright door for fabricating engineered tissues, which is one of the cutting-edge topics in tissue engineering and regeneration medicine. This review takes an in-depth look into the recent advancements of microcarriers based on biopolymers-especially polysaccharides such as chitosan, chitin, cellulose, hyaluronic acid, alginate, and laminarin-for 3D cell culture and the fabrication of engineered tissues based on them. The current limitations and potential strategies were also discussed to shed some light on future directions.
Collapse
Affiliation(s)
- Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, China;
| | - Ahmed M.E. Abdalla
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Lin Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| |
Collapse
|
19
|
Asadniaye Fardjahromi M, Razmjou A, Vesey G, Ejeian F, Banerjee B, Chandra Mukhopadhyay S, Ebrahimi Warkiani M. Mussel inspired ZIF8 microcarriers: a new approach for large-scale production of stem cells. RSC Adv 2020; 10:20118-20128. [PMID: 35520442 PMCID: PMC9054200 DOI: 10.1039/d0ra04090h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022] Open
Abstract
Metal–organic frameworks (MOFs) have high porosity, large surface area, and tunable functionality and have been widely used for drug loading. The aim of this study was to exploit unique features of zeolitic imidazolate framework-8 (ZIF8) to develop an innovative composite microcarrier (MC) for human mesenchymal stem cells (hMSCs) adhesion and proliferation. ZIF8 MCs were prepared by immobilization of polydopamine/polyethyleneimine (PDA/PEI) and ZIF8 on the surface of polystyrene beads. The chemical properties of MCs such as coating stability and homogeneity were characterized by different techniques such as ATR-FTIR, XRD, EDX, SEM, and contact angle. The prepared MCs were tested using human adipose-derived mesenchymal stem cells (hADSCs) in both static and dynamic conditions, and results were compared to a commercially available MC (Star-Plus), polydopamine coated MCs and amine-functionalized MCs as a control. Results show that PDA/PEI/ZIF8 coated MCs (in short: ZIF8 MCs) provides an excellent biocompatible environment for hADSCs adhesion and growth. In conclusion, ZIF8 MCs represent suitable and low-cost support for hADSCs culture and expansion, which can maximize cell yield and viability while preserving hADSCs multipotency. The present findings have revealed this strategy has the potential for chemical and topographical modification of MCs in tissue engineering applications. Mussel inspired ZIF8 microcarriers with high surface area, biocompatibility, and nanoscale surface roughness are applied to enhance mesenchymal stem cell attachment and proliferation in 3D cell culture.![]()
Collapse
Affiliation(s)
| | - Amir Razmjou
- Department of Biotechnology
- Faculty of Biological Science and Technology
- University of Isfahan
- Isfahan
- Iran
| | | | - Fatemeh Ejeian
- Department of Biotechnology
- Faculty of Biological Science and Technology
- University of Isfahan
- Isfahan
- Iran
| | | | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering
- University of Technology Sydney
- Sydney
- Australia
- Institute of Molecular Medicine
| |
Collapse
|
20
|
Simonneau C, Yang J, Kong X, Kilker R, Edelstein L, Fortina P, Londin E, Horowitz A. Validation of a Miniaturized Permeability Assay Compatible with CRISPR-Mediated Genome-Wide Screen. Sci Rep 2019; 9:14238. [PMID: 31578372 PMCID: PMC6775082 DOI: 10.1038/s41598-019-50588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
The impermeability of the luminal endothelial cell monolayer is crucial for the normal performance of the vascular and lymphatic systems. A key to this function is the integrity of the monolayer's intercellular junctions. The known repertoire of junction-regulating genes is incomplete. Current permeability assays are incompatible with high-throughput genome-wide screens that could identify these genes. To overcome these limitations, we designed a new permeability assay that consists of cell monolayers grown on ~150 μm microcarriers (MCs). Each MC functions as a miniature individual assay of permeability (MAP). We demonstrate that false-positive results can be minimized, and that MAP sensitivity to thrombin-induced increase in monolayer permeability is similar to the sensitivity of impedance measurement. We validated the assay by showing that the expression of single guide RNAs (sgRNAs) that target genes encoding known thrombin signaling proteins blocks effectively thrombin-induced junction disassembly, and that MAPs carrying such cells can be separated effectively by fluorescence-assisted sorting from those that carry cells expressing non-targeting sgRNAs. These results indicate that MAPs are suitable for high-throughput experimentation and for genome-wide screens for genes that mediate the disruptive effect of thrombin on endothelial cell junctions.
Collapse
Affiliation(s)
- Claire Simonneau
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Roche Innovation Center Basel, Zürich, Switzerland
| | - Junning Yang
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Xianguo Kong
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Robert Kilker
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Leonard Edelstein
- Cardeza Center for Hematology Research, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
21
|
Zhu C, Yang H, Shen L, Zheng Z, Zhao S, Li Q, Yu F, Cen L. Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:737-755. [DOI: 10.1080/09205063.2019.1602930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chengcheng Zhu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Haibo Yang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Liang Shen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhuoyuan Zheng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Shicheng Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Yu
- Department of Orthopaedic Surgery, No. 98 Hospital of PLA, Huzhou, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, State Key Laboratory of Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Roberts EL, Dang T, Lepage SIM, Alizadeh AH, Walsh T, Koch TG, Kallos MS. Improved expansion of equine cord blood derived mesenchymal stromal cells by using microcarriers in stirred suspension bioreactors. J Biol Eng 2019; 13:25. [PMID: 30949237 PMCID: PMC6429778 DOI: 10.1186/s13036-019-0153-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022] Open
Abstract
Equine mesenchymal stromal cells (MSCs) are increasingly investigated for their clinical therapeutic utility. Such cell-based treatments can require cell numbers in the millions or billions, with conventional expansion methods using static T-flasks typically inefficient in achieving these cell numbers. Equine cord blood-derived MSCs (eCB-MSCs), are promising cell candidates owing to their capacity for chondrogenic differentiation and immunomodulation. Expansion of eCB-MSCs in stirred suspension bioreactors with microcarriers as an attachment surface has the potential to generate clinically relevant numbers of cells while decreasing cost, time and labour requirements and increasing reproducibility and yield when compared to static expansion. As eCB-MSCs have not yet been expanded in stirred suspension bioreactors, a robust protocol was required to expand these cells using this method. This study outlines the development of an expansion bioprocess, detailing the inoculation phase, expansion phase, and harvesting phase, followed by phenotypic and trilineage differentiation characterization of two eCB-MSC donors. The process achieved maximum cell densities up to 75,000 cells/cm2 corresponding to 40 million cells in a 100 mL bioreactor, with a harvesting efficiency of up to 80%, corresponding to a yield of 32 million cells from a 100 mL bioreactor. When compared to cells grown in static T-flasks, bioreactor-expanded eCB-MSC cultures did not change in surface marker expression or trilineage differentiation capacity. This indicates that the bioreactor expansion process yields large quantities of eCB-MSCs with similar characteristics to conventionally grown eCB-MSCs.
Collapse
Affiliation(s)
- Erin L. Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Sarah I. M. Lepage
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Amir Hamed Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Tylor Walsh
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Gordon St, Guelph, ON N1G 2W1 Canada
| | - Michael S. Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
23
|
Zhou A, Ye Z, Zhou Y, Tan WS. Bioactive poly(ε-caprolactone) microspheres with tunable open pores as microcarriers for tissue regeneration. J Biomater Appl 2019; 33:1242-1251. [PMID: 30782056 DOI: 10.1177/0885328218825371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microparticles with porous structure can be applied as microcarriers for both cell culture and tissue regeneration. While well-controlled pore structure represents a critical challenge to be achieved. In the present study, in order to develop microcarriers for cell culture, a series of poly(ε-caprolactone) microspheres were fabricated with varied macroporous structures. Poly(ε-caprolactone) microspheres were prepared via the integration of the emulsion/solvent evaporation and particle leaching mechanisms. Particularly, by adjusting poly(ε-caprolactone) concentration and the ratio between the porogen paraffin and poly(ε-caprolactone), the microspheres with the pore size of 25.6-84.0 μm and the porosity of 57.4-75.5% were obtained. Further, the microspheres were subjected to alkaline hydrolysis, followed by surface coating with hydroxyapatite. These porous poly(ε-caprolactone) microspheres with surface modification well supported the adhesion and growth of human fibroblasts. Together, bioactive poly(ε-caprolactone) microspheres with controlled pore structure are potential to be applied in cell culture and tissue regeneration.
Collapse
Affiliation(s)
- Anmin Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
24
|
De Silva Thompson D, Peticone C, Burova I, Shipley RJ, Knowles JC, Kim HW, Micheletti M, Wall IB. Assessing behaviour of osteoblastic cells in dynamic culture conditions using titanium-doped phosphate glass microcarriers. J Tissue Eng 2019; 10:2041731419825772. [PMID: 30800261 PMCID: PMC6378638 DOI: 10.1177/2041731419825772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering is a promising approach for bone regeneration; yet challenges remain that limit successful translation to patients. It is necessary to understand how real-world manufacturing processes will affect the constituent cells and biomaterials that are needed to create engineered bone. Bioactive phosphate glasses processed into microspheres are an attractive platform for expanding bone-forming cells and also for driving their osteogenic differentiation and maturation. The aim of this study was to assess whether Ti-doped phosphate glass microspheres could support osteoblastic cell responses in dynamic cell culture environments. Dynamic culture conditions were achieved using microwell studies under orbital agitation. Dimensionless parameters such as the Froude number were used to inform the choice of agitation speeds, and the impact on cell proliferation and microunit formation was quantified. We found that phosphate glass microspheres doped with titanium dioxide at both 5 and 7 mol% provided a suitable biomaterial platform for effective culture of MG63 osteoblastic cells and was not cytotoxic. Dynamic culture conditions supported expansion of MG63 cells and both 150 and 300 rpm orbital shake resulted in higher cell yield than static cultures at the end of the culture (day 13). The Froude number analysis provided insight into how the microunit size could be manipulated to enable an appropriate agitation speed to be used, while ensuring buoyancy of the microunits. These small-scale experiments and analyses provide understanding of the impact of fluid flow on cell expansion that will have increasing importance when scaling up to process technologies that can deliver clinical quantities of cell-microsphere units. Such knowledge will enable future engineering of living bone-like material using processing systems such as bioreactors that use mixing and agitation for nutrient transfer, therefore introducing cells to dynamic culture conditions.
Collapse
Affiliation(s)
| | - Carlotta Peticone
- Department of Biochemical Engineering, University College London, London, UK
| | - Iva Burova
- Department of Mechanical Engineering, University College London, London, UK
| | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London, London, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK.,The Discoveries Centre for Regenerative and Precision Medicine, University College London, London, UK.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Martina Micheletti
- Department of Biochemical Engineering, University College London, London, UK
| | - Ivan B Wall
- Department of Biochemical Engineering, University College London, London, UK.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Aston Medical Research Institute and School of Life & Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
25
|
de Almeida Fuzeta M, de Matos Branco AD, Fernandes-Platzgummer A, da Silva CL, Cabral JMS. Addressing the Manufacturing Challenges of Cell-Based Therapies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:225-278. [PMID: 31844924 DOI: 10.1007/10_2019_118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exciting developments in the cell therapy field over the last decades have led to an increasing number of clinical trials and the first cell products receiving marketing authorization. In spite of substantial progress in the field, manufacturing of cell-based therapies presents multiple challenges that need to be addressed in order to assure the development of safe, efficacious, and cost-effective cell therapies.The manufacturing process of cell-based therapies generally requires tissue collection, cell isolation, culture and expansion (upstream processing), cell harvest, separation and purification (downstream processing), and, finally, product formulation and storage. Each one of these stages presents significant challenges that have been the focus of study over the years, leading to innovative and groundbreaking technological advances, as discussed throughout this chapter.Delivery of cell-based therapies relies on defining product targets while controlling process variable impact on cellular features. Moreover, commercial viability is a critical issue that has had damaging consequences for some therapies. Implementation of cost-effectiveness measures facilitates healthy process development, potentially being able to influence end product pricing.Although cell-based therapies represent a new level in bioprocessing complexity in every manufacturing stage, they also show unprecedented levels of therapeutic potential, already radically changing the landscape of medical care.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - André Dargen de Matos Branco
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
26
|
Nabavinia M, Khoshfetrat AB, Naderi-Meshkin H. Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:67-77. [PMID: 30678955 DOI: 10.1016/j.msec.2018.12.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023]
Abstract
To develop osteogenic building blocks for modular bone tissue engineering applications, influence of gelatin as cell adhesive molecule and nano-hydroxyapatite (nHA) as osteoconductive component was examined on alginate-based hydrogel properties and microencapsulated osteoblast-like cell behavior by using factorial experimental design technique. nHA and alginate showed a statistically significant impact on swelling reduction, and improvement of stability and mechanical strength of hydrogels, respectively. Gelatin influence, however, was in a reverse manner. nHA played imperative roles in promoting microencapsulated osteoblastic cell proliferation and function due to its bioactivity and mechanical strength improvement of hydrogels to the modulus range of mineralized bone tissue in vivo. The results and their statistical analysis also revealed the importance of interaction effect of gelatin and nHA. Proliferation and osteogenic function of the cells fluctuated with increasing gelatin concentration of microcapsules in the presence of nHA, demonstrating that hydrogel properties should be balanced to provide an efficient 3D osteoconductive microcapsule. Alginate (1%)-gelatin (2.5%)-nHA (0.5%) microcapsule with compressive modulus of 0.19 MPa ± 0.02, swelling ratio of 52% ± 8 (24 h) and degradation rate of 12% ± 4 (96 h) revealed a maximum performance for the cell proliferation and function, indicating a potential microcapsule composition to prepare building blocks for modular bone tissue engineering.
Collapse
Affiliation(s)
- Mahboubeh Nabavinia
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Ali Baradar Khoshfetrat
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran.
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center of Education, Culture, and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
27
|
Tavassoli H, Alhosseini SN, Tay A, Chan PP, Weng Oh SK, Warkiani ME. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 2018; 181:333-346. [DOI: 10.1016/j.biomaterials.2018.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
|
28
|
Pereira Chilima TD, Moncaubeig F, Farid SS. Impact of allogeneic stem cell manufacturing decisions on cost of goods, process robustness and reimbursement. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors. Methods Mol Biol 2018; 1502:87-102. [PMID: 26892015 DOI: 10.1007/7651_2015_314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as an important tool for tissue engineering, thanks to their differentiation potential and their broad trophic activities. However, for clinical purposes or for relevant in vitro applications, large quantities of MSCs are required, which could hardly be reached using conventional cultivation in plastic dishes. Microcarriers have high surface to volume ratio, which enables the easy scale-up of the expansion and differentiation of MSCs. In addition, the agitation in stirred tank bioreactors limits the diffusion gradient of nutrients or morphogens, thus providing a physiologically relevant environment to favor MSC production at large scale. This work describes a simple method for the mass expansion and differentiation of MSCs, including the procedures to monitor the proliferation, metabolic status and phenotype of MSCs during suspension culture. Moreover, this work proposes suitable materials for cGMP compliant culture conditions enabling the clinical grade production of MSCs.
Collapse
|
30
|
Gupta P, Geris L, Luyten FP, Papantoniou I. An Integrated Bioprocess for the Expansion and Chondrogenic Priming of Human Periosteum-Derived Progenitor Cells in Suspension Bioreactors. Biotechnol J 2017; 13. [PMID: 28987025 DOI: 10.1002/biot.201700087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/01/2017] [Indexed: 12/12/2022]
Abstract
The increasing use of microcarrier-based suspension bioreactors for scalable expansion of adult progenitor cells in recent years reveals the necessity of such approaches to address bio manufacturing challenges of advanced therapeutic medicinal products. However, the differentiation of progenitor cells within suspension bioreactors for the production of tissue modules is of equal importance but not well investigated. This study reports on the development of a bioreactor-based integrated process for expansion and chondrogenic priming of human periosteum-derived stem cells (hPDCs) using Cultispher S microcarriers. Spinner flask-based expansion and priming of hPDCs were carried out over 12 days for expansion and 14 days for priming. Characterization of the cells were carried out every 3rd day. Our study showed that hPDCs were able to expand till confluency with fold increase of 3.2±0.64 and to be subsequently primed toward a chondrogenic state within spinner flasks. During expansion, the cells maintained their phenotypic markers, trilineage differentiation capabilities and viability. Upon switching to TGF-β containing media the cells were able to differentiate toward chondrogenic lineage by clustering into mm-sized macrotissues containing hundreds of microcarriers. Chondrogenic priming was further evidenced by the expression of relevant markers at the mRNA level while maintaining their viability. Ectopic implantation of macrotissues highlighted that they were able to sustain their chondrogenic properties for 8 weeks in vivo. The method indicated here, suggests that expansion and relevant priming of progenitor cells can be carried out in an integrated bioprocess using spinner flasks and as such could be potentially extrapolated to other stem and progenitor cell populations.
Collapse
Affiliation(s)
- Priyanka Gupta
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Biomechanics Research Unit GIGA-R In Silico Medicine, Université de Liege, Quartier Polytechnique 1, Allée de la découverte 13A, Liège, Belgium.,Biomechanics Section, KU Leuven, Celestijnenlaan 300C (2419), Leuven, Belgium
| | - Frank P Luyten
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| |
Collapse
|
31
|
Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28804984 DOI: 10.1002/adhm.201700298] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Significant progress has been made in the field of cartilage and bone tissue engineering over the last two decades. As a result, there is real promise that strategies to regenerate rather than replace damaged or diseased bones and joints will one day reach the clinic however, a number of major challenges must still be addressed before this becomes a reality. These include vascularization in the context of large bone defect repair, engineering complex gradients for bone-soft tissue interface regeneration and recapitulating the stratified zonal architecture present in many adult tissues such as articular cartilage. Tissue engineered constructs typically lack such spatial complexity in cell types and tissue organization, which may explain their relatively limited success to date. This has led to increased interest in bioprinting technologies in the field of musculoskeletal tissue engineering. The additive, layer by layer nature of such biofabrication strategies makes it possible to generate zonal distributions of cells, matrix and bioactive cues in 3D. The adoption of biofabrication technology in musculoskeletal tissue engineering may therefore make it possible to produce the next generation of biological implants capable of treating a range of conditions. Here, advances in bioprinting for cartilage and osteochondral tissue engineering are reviewed.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Fiona E. Freeman
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tomas Gonzalez-Fernandez
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Susan E. Critchley
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Jessica Nulty
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Advanced Materials and Bioengineering Research Center (AMBER); Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin Ireland
| |
Collapse
|
32
|
Liu Y, Huang Q, Wang J, Fu F, Ren J, Zhao Y. Microfluidic generation of egg-derived protein microcarriers for 3D cell culture and drug delivery. Sci Bull (Beijing) 2017; 62:1283-1290. [PMID: 36659457 DOI: 10.1016/j.scib.2017.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023]
Abstract
Microcarriers have a demonstrated value for biomedical applications, in particular for drug delivery and three-dimensional cell culture. Attempts to develop this technique tend to focus on the fabrication of functional microparticles by using convenient methods with innovative but accessible materials. Inspired by the process of boiling eggs in everyday life, which causes the solidification of egg proteins, we present a new microfluidic "cooking" approach for the generation of egg-derived microcarriers for cell culture and drug delivery. As the egg emulsion droplets are formed with exquisite precision during the microfluidic emulsification, the resultant egg microcarriers present highly monodisperse and uniform morphologies at the size range of hundred microns to one millimeter. Benefiting from the excellent biocompatibility of the egg protein components, the obtained microcarriers showed good performances of cell adherence and growth. In addition, after a freezing treatment, the egg microcarriers were shown to have interconnected porous structures throughout their whole sphere, could absorb and load different kinds of drugs or other active molecules, and work as microcarrier-based delivery systems. These features point to the potential value of the microfluidic egg microcarriers in biomedicine.
Collapse
Affiliation(s)
- Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qian Huang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jie Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jianan Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
33
|
Peticone C, De Silva Thompson D, Owens GJ, Kim HW, Micheletti M, Knowles JC, Wall I. Towards modular bone tissue engineering using Ti–Co-doped phosphate glass microspheres: cytocompatibility and dynamic culture studies. J Biomater Appl 2017; 32:295-310. [DOI: 10.1177/0885328217720812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts. Furthemore, doping with cobalt appears to mimic hypoxic conditions that have a key role in promoting angiogenesis. This characteristic could be exploited to meet the clinical requirement of producing vascularized units of bone tissue. In the current study, the human osteosarcoma cell line MG-63 was cultured on phosphate glass microspheres doped with 5% mol titanium dioxide and different concentrations of cobalt oxide (0%, 2% and 5% mol), under static and dynamic conditions (150 and 300 rpm on an orbital shaker). Cell proliferation and the formation of aggregates of cells and microspheres were observed over a period of two weeks in all glass compositions, thus confirming the biocompatibility of the substrate and the suitability of this system for the formation of compact micro-units of tissue. At the concentrations tested, cobalt was not found to be cytotoxic and did not alter cell metabolism. On the other hand, the dynamic environment played a key role, with moderate agitation having a positive effect on cell proliferation while higher agitation resulting in impaired cell growth. Finally, in static culture assays, the capacity of cobalt doping to induce vascular endothelial growth factor (VEGF) upregulation by osteoblastic cells was observed, but was not found to increase linearly with cobalt oxide content. In conclusion, Ti–Co phosphate glasses were found to support osteoblastic cell growth and aggregate formation that is a necessary precursor to tissue formation and the upregaulation of VEGF production can potentially support vascularization.
Collapse
Affiliation(s)
- Carlotta Peticone
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, UK
| | - David De Silva Thompson
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, UK
| | - Gareth J Owens
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science & Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Martina Micheletti
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
- Department of Nanobiomedical Science & Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, Gower Street, London, UK
| | - Ivan Wall
- Department of Biochemical Engineering, Bernard Katz Building, University College London, Gower Street, London, UK
- Department of Nanobiomedical Science & Institute for Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, Gower Street, London, UK
| |
Collapse
|
34
|
Abstract
Microspheres have long been used in drug delivery applications because of their controlled release capabilities. They have increasingly served as the fundamental building block for fabricating scaffolds for regenerative engineering because of their ability to provide a porous network, offer high-resolution control over spatial organization, and deliver growth factors/drugs and/or nanophase materials. Because they provide physicochemical gradients via spatiotemporal release of bioactive factors and nanophase ceramics, microspheres are a desirable tool for engineering complex tissues and biological interfaces. In this review we describe various methods for microsphere fabrication and sintering, and elucidate how these methods influence both micro- and macroscopic scaffold properties, with a special focus on the nature of sintering. Furthermore, we review key applications of microsphere-based scaffolds in regenerating various tissues. We hope to inspire researchers to join a growing community of investigators using microspheres as tissue engineering scaffolds so that their full potential in regenerative engineering may be realized.
Collapse
Affiliation(s)
- Vineet Gupta
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045;
| | - Yusuf Khan
- Department of Orthopaedic Surgery, University of Connecticut Health Campus, Farmington, Connecticut 06030; ,
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269
- Institute for Regenerative Engineering, University of Connecticut Health Campus, Farmington, Connecticut 06030
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045;
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045;
| | - Cato T Laurencin
- Department of Orthopaedic Surgery, University of Connecticut Health Campus, Farmington, Connecticut 06030; ,
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269
- Institute for Regenerative Engineering, University of Connecticut Health Campus, Farmington, Connecticut 06030
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019;
| |
Collapse
|
35
|
Čebatariūnienė A, Jarmalavičiūtė A, Tunaitis V, Pūrienė A, Venalis A, Pivoriūnas A. Microcarrier culture enhances osteogenic potential of human periodontal ligament stromal cells. J Craniomaxillofac Surg 2017; 45:845-854. [DOI: 10.1016/j.jcms.2017.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 02/22/2017] [Accepted: 03/20/2017] [Indexed: 11/15/2022] Open
|
36
|
Li J, Lam ATL, Toh JPW, Reuveny S, Oh SKW, Birch WR. Tunable Volumetric Density and Porous Structure of Spherical Poly-ε-caprolactone Microcarriers, as Applied in Human Mesenchymal Stem Cell Expansion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3068-3079. [PMID: 28221044 DOI: 10.1021/acs.langmuir.7b00125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymeric microspheres may serve as microcarrier (MC) matrices, for the expansion of anchorage-dependent stem cells. They require surface properties that promote both initial cell adhesion and the subsequent spreading of cells, which is a prerequisite for successful expansion. When implemented in a three-dimensional culture environment, under agitation, their suspension under low shear rates depends on the MCs having a modest negative buoyancy, with a density of 1.02-1.05 g/cm3. Bioresorbable poly-ε-caprolactone (PCL), with a density of 1.14 g/cm3, requires a reduction in volumetric density, for the microspheres to achieve high cell viability and yields. Uniform-sized droplets, from solutions of PCL dissolved in dichloromethane (DCM), were generated by coaxial microfluidic geometry. Subsequent exposure to ethanol rapidly extracted the DCM solvent, solidifying the droplets and yielding monodisperse microspheres with a porous structure, which was demonstrated to have tunable porosity and a hollow inner core. The variation in process parameters, including the molecular weight of PCL, its concentration in DCM, and the ethanol concentration, served to effectively alter the diffusion flux between ethanol and DCM, resulting in a broad spectrum of volumetric densities of 1.04-1.11 g/cm3. The solidified microspheres are generally covered by a smooth thin skin, which provides a uniform cell culture surface and masks their internal porous structure. When coated with a cationic polyelectrolyte and extracellular matrix protein, monodisperse microspheres with a diameter of approximately 150 μm and densities ranging from 1.05-1.11 g/cm3 are capable of supporting the expansion of human mesenchymal stem cells (hMSCs). Validation of hMSC expansion was carried out with a positive control of commercial Cytodex 3 MCs and a negative control of uncoated low-density PCL MCs. Static culture conditions generated more than 70% cell attachment and similar yields of sixfold cell expansion on all coated MCs, with poor cell attachment and growth on the negative control. Under agitation, coated porous microspheres, with a low density of 1.05 g/cm3, achieved robust cell attachment and resulted in high cell yields of ninefold cell expansion, comparable with those generated by commercial Cytodex 3 MCs.
Collapse
Affiliation(s)
- Jian Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| | - Alan Tin-Lun Lam
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research) , 20 Biopolis Way, #06-01, 138668, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research) , 20 Biopolis Way, #06-01, 138668, Singapore
| | - Steve Kah-Weng Oh
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research) , 20 Biopolis Way, #06-01, 138668, Singapore
| | - William R Birch
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore
| |
Collapse
|
37
|
Bhuptani RS, Patravale VB. Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells. Int J Pharm 2016; 515:555-564. [PMID: 27989823 DOI: 10.1016/j.ijpharm.2016.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering.
Collapse
Affiliation(s)
- Ronak S Bhuptani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
38
|
Wrinkling Non-Spherical Particles and Its Application in Cell Attachment Promotion. Sci Rep 2016; 6:30463. [PMID: 27461741 PMCID: PMC4962049 DOI: 10.1038/srep30463] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/06/2016] [Indexed: 12/15/2022] Open
Abstract
Surface wrinkled particles are ubiquitous in nature and present in different sizes and shapes, such as plant pollens and peppercorn seeds. These natural wrinkles provide the particles with advanced functions to survive and thrive in nature. In this work, by combining flow lithography and plasma treatment, we have developed a simple method that can rapidly create wrinkled non-spherical particles, mimicking the surface textures in nature. Due to the oxygen inhibition in flow lithography, the non-spherical particles synthesized in a microfluidic channel are covered by a partially cured polymer (PCP) layer. When exposed to plasma treatment, this PCP layer rapidly buckles, forming surface-wrinkled particles. We designed and fabricated various particles with desired shapes and sizes. The surfaces of these shapes were tuned to created wrinkle morphologies by controlling UV exposure time and the washing process. We further demonstrated that wrinkles on the particles significantly promoted cell attachment without any chemical modification, potentially providing a new route for cell attachment for various biomedical applications.
Collapse
|
39
|
Naqvi SM, Vedicherla S, Gansau J, McIntyre T, Doherty M, Buckley CT. Living Cell Factories - Electrosprayed Microcapsules and Microcarriers for Minimally Invasive Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5662-5671. [PMID: 26695531 DOI: 10.1002/adma.201503598] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Minimally invasive delivery of "living cell factories" consisting of cells and therapeutic agents has gained wide attention for next generation biomaterial device systems for multiple applications including musculoskeletal tissue regeneration, diabetes and cancer. Cellular-based microcapsules and microcarrier systems offer several attractive features for this particular purpose. One such technology capable of generating these types of systems is electrohydrodynamic (EHD) spraying. Depending on various parameters, including applied voltage, biomaterial properties (viscosity, conductivity) and needle geometry, complex structures and arrangements can be fabricated for therapeutic strategies. The advances in the use of EHD technology are outlined, specifically in the manipulation of bioactive and dynamic material systems to control size, composition and configuration in the development of minimally invasive micro-scaled biopolymeric systems. The exciting therapeutic applications of this technology, future perspectives and associated challenges are also presented.
Collapse
Affiliation(s)
- Syeda M Naqvi
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Srujana Vedicherla
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | - Jennifer Gansau
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Tom McIntyre
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | - Michelle Doherty
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
40
|
Fabrication of uniform-sized poly-ɛ-caprolactone microspheres and their applications in human embryonic stem cell culture. Biomed Microdevices 2016; 17:105. [PMID: 26458560 DOI: 10.1007/s10544-015-0010-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of liquefied poly-ɛ-caprolactone (PCL) droplets by means of a microfluidic device results in uniform-sized microspheres, which are validated as microcarriers for human embryonic stem cell culture. Formed droplet size and size distribution, as well as the resulting PCL microsphere size, are correlated with the viscosity and flow rate ratio of the dispersed (Q d) and continuous (Q c) phases. PCL in dichloromethane increases its viscosity with concentration and molecular weight. Higher viscosity and Q d/Q c lead to the formation of larger droplets, within two observed formation modes: dripping and jetting. At low viscosity of dispersed phase and Q d/Q c, the microfluidic device is operated in dripping mode, which generates droplets and microspheres with greater size uniformity. Solutions with lower molecular weight PCL have lower viscosity, resulting in a wider concentration range for the dripping mode. When coated with extracellular matrix (ECM) proteins, the fabricated PCL microspheres are demonstrated capable of supporting the expansion of human embryonic stem cells.
Collapse
|
41
|
Pullulan microcarriers for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:439-49. [DOI: 10.1016/j.msec.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 11/21/2022]
|
42
|
Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond) 2016; 11:1611-28. [PMID: 27230960 PMCID: PMC5619097 DOI: 10.2217/nnm-2016-0083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Biodegradable polymer microspheres have emerged as cell carriers for the regeneration and repair of irregularly shaped tissue defects due to their injectability, controllable biodegradability and capacity for drug incorporation and release. Notably, recent advances in nanotechnology allowed the manipulation of the physical and chemical properties of the microspheres at the nanoscale, creating nanostructured microspheres mimicking the composition and/or structure of natural extracellular matrix. These nanostructured microspheres, including nanocomposite microspheres and nanofibrous microspheres, have been employed as cell carriers for tissue regeneration. They enhance cell attachment and proliferation, promote positive cell-carrier interactions and facilitate stem cell differentiation for target tissue regeneration. This review highlights the recent advances in nanostructured microspheres that are employed as injectable, biomimetic and cell-instructive cell carriers.
Collapse
Affiliation(s)
- Zhanpeng Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Thomas W Eyster
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
43
|
Kawecki M, Kraut M, Klama-Baryła A, Łabuś W, Kitala D, Nowak M, Glik J, Sieroń AL, Utrata-Wesołek A, Trzebicka B, Dworak A, Szweda D. Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:111. [PMID: 27153827 PMCID: PMC4859842 DOI: 10.1007/s10856-016-5718-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/12/2016] [Indexed: 05/05/2023]
Abstract
In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts.
Collapse
Affiliation(s)
- Marek Kawecki
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
- Faculty of Health Sciences, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biała, Poland
| | - Małgorzata Kraut
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Agnieszka Klama-Baryła
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Diana Kitala
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland.
| | - Mariusz Nowak
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Justyna Glik
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
| | - Aleksander L Sieroń
- Dr Stanislaw Sakiel Centre for Burns Treatment, Jana Pawła II 2, 41-100, Siemianowice Śląskie, Poland
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Dawid Szweda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| |
Collapse
|
44
|
Wang W, Dang M, Zhang Z, Hu J, Eyster TW, Ni L, Ma PX. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 2016; 36:63-72. [PMID: 26971664 DOI: 10.1016/j.actbio.2016.03.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/25/2016] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED The aim of this study was to investigate the effects of PLLA nanofibrous microspheres (NF-MS) as a cell delivery carrier in combination with controlled release of BMP-2 from PLGA microspheres on the induction of odontogenic differentiation of human stem cells of apical papilla (SCAP). Injectable NF-MS, which mimic the physical architecture of collagen fibers on the nano scale, were fabricated by combining thermally-induced phase separation techniques with an emulsification process. SCAP cultured in a monolayer or cultured on NF-MS in spinner flasks were treated with 100ng/ml BMP-2 in vitro. Odontogenic differentiation was characterized by measuring alkaline phosphatase activity, odontogenic gene expression levels, calcium content, and dentin sialophosphoprotein accumulation. The results demonstrated that BMP-2 enhanced human SCAP odontogenic differentiation both in monolayer culture and on 3D NF-MS in spinner flask culture in vitro. We also developed and tested a system combining NF-MS with controlled BMP-2 release for dentin regeneration in vivo. The results indicate that controlled release of BMP-2 promoted more mineralization and osteodentin formation compared to a BSA-releasing control in a dose-dependent and time-dependent manner. In summary, the NF-MS combined with controlled release of BMP-2 provides an excellent microenvironment for SCAP to regenerate dentin tissue. STATEMENT OF SIGNIFICANCE Tooth lesion and loss affect masticatory efficiency, speaking function, facial aesthetics and even psychological health. Current treatments depend on "inert" restorative materials, which do not have the healing capacity and may lead to the failure of the restorations over a long term. The aim of this study was to develop an injectable biomaterial and desired growth factor delivery system to support stem cells for mineralized dental tissue regeneration. The study showed that novel injectable and biodegradable nanofibrous microspheres and controlled release of BMP-2 synergistically induce the odontogenic differentiation of human stem cells from the apical papilla and mineralized tissue regeneration, demonstrating the potential of living dental tissue repair.
Collapse
|
45
|
Preparation of microcarriers based on zein and their application in cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:863-9. [DOI: 10.1016/j.msec.2015.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/12/2015] [Accepted: 09/10/2015] [Indexed: 11/22/2022]
|
46
|
Walsh T, Biernaskie J, Midha R, Kallos MS. Bioreactor Expansion of Skin-Derived Precursor Schwann Cells. Methods Mol Biol 2016; 1502:103-110. [PMID: 27115506 DOI: 10.1007/7651_2016_355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Scaling up the production of cells in a culture process is a critical step when trying to develop cell-based regenerative therapies. Static cultures often cannot be easily scaled up to clinically relevant cell numbers. Alternatively, bioreactors offer a highly valuable means to develop a clinical-ready process. To culture adherent cells in suspension, such as skin-derived precursor Schwann cells (SKP-SCs), microcarriers need to be used. Microcarriers are small spherical beads suspended within the vessel that allow for higher growth surface area to volume ratio. Here we describe the procedure of combining microcarriers with the controllability of bioreactors to generate higher cell densities in smaller reactor volumes leading to a more efficient and cost-effective cell production for applications in regenerative medicine.
Collapse
Affiliation(s)
- Tylor Walsh
- Pharmaceutical Production Research Facility (PPRF), University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Rajiv Midha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada, T2N 4N1
| | - Michael S Kallos
- Pharmaceutical Production Research Facility (PPRF), University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4.
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4.
- Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4.
| |
Collapse
|
47
|
Wang J, Cheng Y, Yu Y, Fu F, Chen Z, Zhao Y, Gu Z. Microfluidic Generation of Porous Microcarriers for Three-Dimensional Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27035-27039. [PMID: 26634625 DOI: 10.1021/acsami.5b10442] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Inspired by the microstructure of the stem cell niche, which is generally composed of adjacent cell protection layers and an extracellular matrix (ECM), we present novel microfluidic porous microcarriers for cell culture that consist of external-internal connected scaffold structures and biopolymer matrix fillers. The biomimetic scaffold structure of the porous microcarriers not only avoids the imposition of shear forces on the encapsulated cells but also provides a confined microenvironment for cell self-assembly, whereas the biopolymers in the porous cores of the microcarriers can act as an ECM microenvironment to promote the formation of multicellular spheroid aggregates for biomedical applications.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou , Suzhou 215123, China
| |
Collapse
|
48
|
Lakhkar NJ, M Day R, Kim HW, Ludka K, Mordan NJ, Salih V, Knowles JC. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression. J Tissue Eng 2015; 6:2041731415617741. [PMID: 26668711 PMCID: PMC4674021 DOI: 10.1177/2041731415617741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.
Collapse
Affiliation(s)
- Nilay J Lakhkar
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Richard M Day
- UCL Division of Medicine, University College London, London, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea ; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | | | - Nicola J Mordan
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Vehid Salih
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK ; Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Jonathan C Knowles
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK ; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
49
|
|
50
|
Moisenovich MM, Malyuchenko NV, Arkhipova AY, Kotlyarova MS, Davydova LI, Goncharenko AV, Agapova OI, Drutskaya MS, Bogush VG, Agapov II, Debabov VG, Kirpichnikov MP. Novel 3D-microcarriers from recombinant spidroin for regenerative medicine. DOKL BIOCHEM BIOPHYS 2015; 463:232-5. [PMID: 26335819 DOI: 10.1134/s1607672915040109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/12/2022]
Abstract
Microcarriers generated from recombinant spidroin 1F9 are suitable for use as an injection material. The microcarriers were a heterogeneous mixture of microgel particles ranging from 50 to 300 µm in size with the predominance of particles of 50-150 µm. The surface of these microparticles had a complex topography and ensured efficient cultivation of primary and immortalized fibroblasts. Intradermal injections of microgel suspensions into the area of full-thickness skin wounds did not lead to the development of acute inflammation in mice; instead, they accelerated the recovery of skin tissue and stimulated neurogenesis and angiogenesis.
Collapse
|