1
|
Mohammad Mirzapour S, Jalali F. Stem cell therapy for regenerating periodontal bony defects: A narrative review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2025; 17:1-14. [PMID: 40265031 PMCID: PMC12010474 DOI: 10.34172/japid.025.3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 04/24/2025]
Abstract
Periodontal bony defects pose a significant challenge in periodontology, necessitating advanced regenerative approaches to restore the lost structures. Stem cell-based therapies have emerged as a promising solution due to their ability to differentiate into various cells, modulating the regenerative microenvironment. This narrative review explores the potential of stem cells derived from multiple sources in treating periodontal bony defects. Additionally, we examine evidence from both animal and human studies, highlighting advancements, clinical outcomes, and limitations. By investigating these findings, this article provides a comprehensive overview of the advantages of stem cell-based therapies compared to other regenerative techniques in addressing periodontal bony defects and discusses the limitations of their translation into routine clinical practice.
Collapse
Affiliation(s)
- Samira Mohammad Mirzapour
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Jalali
- Student Research Committee, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Peng Y, Iwasaki K, Taguchi Y, Ishikawa I, Umeda M. Mesenchymal stem cell-derived protein extract induces periodontal regeneration. Cytotherapy 2025; 27:201-212. [PMID: 39545910 DOI: 10.1016/j.jcyt.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Periodontal disease is characterized by chronic inflammation and destruction of supporting periodontal tissues, ultimately leading to tooth loss. In recent years, "cell-free treatment" without stem cell transplantation has attracted considerable attention for tissue regeneration. This study investigated the effects of extracts of mesenchymal stem cells (MSC-extract) and their protein components (MSC-protein) on the proliferation and migration of periodontal ligament (PDL) cells and whether MSC-protein can induce periodontal regeneration. METHODS MSC-extract and MSC-protein were obtained by subjecting mesenchymal stem cells (MSCs) to freeze-thaw cycles and acetone precipitation. Cell proliferation was examined using a WST-8 assay and Ki67 immunostaining, and cell migration was examined using Boyden chambers. The MSC-protein content was analyzed using liquid chromatography-mass spectrometry, protein arrays, and enzyme-linked immunosorbent assays (ELISAs). Gene expression in MSC-protein-treated PDL cells was examined using RNA-sequencing and Gene Ontology analyses. The regenerative potential of MSC-protein was examined using micro-computer tomography (CT) and histological analyses after transplantation into a rat periodontal defect model. RESULTS MSC-extract and MSC-protein promoted the proliferation and migration of PDL cells. Protein array and ELISA revealed that MSC-protein contained high concentrations of basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF). Exogenous bFGF promoted the proliferation and migration of PDL cells. Furthermore, the transplantation of MSC-protein enhanced periodontal tissue regeneration with the formation of new alveolar bone and PDLs. CONCLUSIONS These results indicate that the MSC-protein promotes the proliferation and migration of PDL cells and induces significant periodontal tissue regeneration, suggesting that the MSC-protein could be used as a new cell-free treatment for periodontal disease.
Collapse
Affiliation(s)
- Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka, Japan.
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
3
|
Baheti W, Dong D, Li C, Chen X. Identification of core genes related to exosomes and screening of potential targets in periodontitis using transcriptome profiling at the single-cell level. BMC Oral Health 2025; 25:28. [PMID: 39762852 PMCID: PMC11706113 DOI: 10.1186/s12903-024-05409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The progression and severity of periodontitis (PD) are associated with the release of extracellular vesicles by periodontal tissue cells. However, the precise mechanisms through which exosome-related genes (ERGs) influence PD remain unclear. This study aimed to investigate the role and potential mechanisms of key exosome-related genes in PD using transcriptome profiling at the single-cell level. METHODS The current study cited GSE16134, GSE10334, GSE171213 datasets and 19,643 ERGs. Initially, differential expression analysis, three machine learning (ML) models, gene expression analysis and receiver operating characteristic (ROC) analysis were proceeded to identify core genes. Subsequently, a core gene-based artificial neural network (ANN) model was built to evaluate the predictive power of core genes for PD. Gene set enrichment analysis (GSEA) and immunoinfiltration analysis were conducted based on core genes. To pinpoint key cell types influencing the progression of periodontal at the single-cell level, a series of single-cell analyses covering pseudo-time series analysis were accomplished. The expression verification of core genes was performed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS CKAP2, IGLL5, MZB1, CXCL6, and AADACL2 served as core genes diagnosing PD. Four core gene were elevated in the PD group in addition to down-regulated AADACL2. The core gene-based-ANN model had AUC values of 0.909 in GSE16134 dataset, which exceeded AUC of each core gene, highlighting the accurately and credibly predictive performance of ANN model. GSEA revealed that ribosome was co-enriched by 5 core genes, manifesting the expression of these genes might be critical for protein structure or function. Immunoinfiltration analysis found that CKAP2, IGLL5, MZB1, and CXCL6 exhibited positive correlations with most discrepant immune cells/discrepant stromal cells, which were highly infiltrated in PD. B cells and T cells holding crucial parts in PD were identified as key cell types. Pseudo-time series analysis revealed that the expression of IGLL5 and MZB1 increased during T cell differentiation, increased and then decreased during B cell differentiation. The qRT-PCR proved the mRNA expression levels of CKAP2 and MZB1 were increased in the blood of PD patients compared to controls. But the mRNA expression levels of AADACL2 was decreased in the PD patients compared to controls. This is consistent with the trend in the amount of expression in the dataset. CONCLUSION CKAP2, IGLL5, MZB1, CXCL6 and AADACL2 were identified as core genes associated with exosomes, helping us to understand the role of these genes in PD.
Collapse
Affiliation(s)
- Wufanbieke Baheti
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Diwen Dong
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China
| | - Congcong Li
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China
| | - Xiaotao Chen
- Department of Stomatology, People's Hospital of Xinjiang Autonomous Region, Urumqi City, China.
| |
Collapse
|
4
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sadeghian Dehkord E, De Carvalho B, Ernst M, Albert A, Lambert F, Geris L. Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models. Mater Today Bio 2024; 26:101100. [PMID: 38854953 PMCID: PMC11157282 DOI: 10.1016/j.mtbio.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models. Methods The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes. Results A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength. Conclusion The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Bruno De Carvalho
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
| | - Adelin Albert
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
- Department of Public Health Sciences, University of Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
| |
Collapse
|
6
|
Hu J, Ou-Yang ZY, Zhao YQ, Zhao J, Tan L, Liu Q, Wang MY, Ye Q, Feng Y, Zhong MM, Chen NX, Su XL, Zhang Q, Feng YZ, Guo Y. Evaluation of the Efficacy of Stem Cells Therapy in the Periodontal Regeneration: A Meta-Analysis and Mendelian Randomization Study. Stem Cell Rev Rep 2024; 20:980-995. [PMID: 38388709 DOI: 10.1007/s12015-024-10690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
Stem cell therapy for periodontal defects has shown good promise in preclinical studies. The purpose of this study was to evaluate the impact of stem cell support on the regeneration of both soft and hard tissues in periodontal treatment. PubMed, Cochrane Library, Embase, and Web of Science were searched and patients with periodontal defects who received stem cell therapy were included in this study. The quality of the included articles was assessed using Cochrane's tool for evaluating bias, and heterogeneity was analyzed using the I2 method. An Mendelian randomization investigation was conducted using abstract data from the IEU public databases obtained through GWAS. Nine articles were included for the meta-analysis. Stem cell therapy effectively rebuilds periodontal tissues in patients with periodontal defects, as evidenced by a reduction in probing depth, clinical attachment level and bone defect depth . And delta-like homolog 1 is a protective factor against periodontal defects alternative indicator of tooth loosening. The findings of this research endorse the utilization of stem cell treatment for repairing periodontal defects in individuals suffering from periodontitis. It is recommended that additional extensive clinical investigations be carried out to validate the efficacy of stem cell therapy and encourage its widespread adoption.
Collapse
Affiliation(s)
- Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min-Yuan Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Sun L, Du X, Kuang H, Sun H, Luo W, Yang C. Stem cell-based therapy in periodontal regeneration: a systematic review and meta-analysis of clinical studies. BMC Oral Health 2023; 23:492. [PMID: 37454056 PMCID: PMC10350264 DOI: 10.1186/s12903-023-03186-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Periodontitis is a common and chronic inflammatory disease characterized by irreversible destruction of the tooth surrounding tissues, especially intrabony defects, which eventually lead to tooth loss. In recent years, stem cell-based therapy for periodontitis has been gradually applied to the clinic, but whether stem cell-based therapy plays a positive role in periodontal regeneration is unclear at present. METHODS The clinical studies related to the evaluation of mesenchymal stem cells for periodontal regeneration in PubMed, Cochrane Central Register of Controlled trials (CENTRAL), Web of Science (WOS), Embase, Scopus, Wanfang and China national knowledge infrastructure (CNKI) databases were searched in June 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell free therapy for the treatment periodontitis, and to have a follow-up for at least six months. Two evaluators searched, screened, and assessed the quality and the risk of bias in the included studies independently. Review Manager 5.4 software was used to perform the meta-analysis, and GRADEpro GDT was used to evaluate the level of the evidence. RESULTS Five randomized controlled trials (RCTs) including 118 patients were analyzed. The results of this meta-analysis demonstrated that stem cell-based therapy showed better therapeutic effects on clinical attachment level (CAL) (MD = - 1.18, 95% CI = - 1.55, - 0.80, P < 0.00001), pocket probing depth (PPD) (MD = - 0.75, 95% CI = - 1.35, - 0.14, P = 0.020), and linear distance from bone crest to bottom of defect (BC-BD)( MD = - 0.95, 95% CI = - 1.67, - 0.23, P = 0.010) compared with cell-free group. However, stem cell-based therapy presented insignificant effects on gingival recession (P = 0.14), linear distance from cementoenamel junction to bottom of defect (P = 0.05). CONCLUSION The results demonstrate that stem cell-based therapy may be beneficial for CAL, PPD and BC-BD. Due to the limited number of studies included, the strength of the results in this analysis was affected to a certain extent. The high-quality RCTs with large sample size, multi-blind, multi-centric are still required, and the methodological and normative clinical study protocol should be established and executed in the future.
Collapse
Affiliation(s)
- Liang Sun
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, No 1055 Sanxiang Road, 215004, Soochow, Jiangsu, China
| | - Xinya Du
- Department of Stomatology, The People's Hospital of Longhua, 38 Jinglong Jianshe Road, 518109, Shenzhen, Guangdong, China
| | - Huifang Kuang
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, 570102, Haikou, Hainan, China
- School of Stomatology, Hainan Medical University, 571199, Haikou, Hainan, China
| | - Honglan Sun
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, 570102, Haikou, Hainan, China
- School of Stomatology, Hainan Medical University, 571199, Haikou, Hainan, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, 570102, Haikou, Hainan, China
- School of Stomatology, Hainan Medical University, 571199, Haikou, Hainan, China
| | - Chao Yang
- Department of Stomatology, The People's Hospital of Longhua, 38 Jinglong Jianshe Road, 518109, Shenzhen, Guangdong, China.
- Research and Development Department, Shenzhen Uni-medica technology Co., Ltd, Liuxian Culture Park, 518051, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Alarcón-Apablaza J, Prieto R, Rojas M, Fuentes R. Potential of Oral Cavity Stem Cells for Bone Regeneration: A Scoping Review. Cells 2023; 12:1392. [PMID: 37408226 PMCID: PMC10216382 DOI: 10.3390/cells12101392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Bone loss is a common problem that ranges from small defects to large defects after trauma, surgery, or congenital malformations. The oral cavity is a rich source of mesenchymal stromal cells (MSCs). Researchers have documented their isolation and studied their osteogenic potential. Therefore, the objective of this review was to analyze and compare the potential of MSCs from the oral cavity for use in bone regeneration. METHODS A scoping review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The databases reviewed were PubMed, SCOPUS, Scientific Electronic Library Online (SciELO), and Web of Science. Studies using stem cells from the oral cavity to promote bone regeneration were included. RESULTS A total of 726 studies were found, of which 27 were selected. The MSCs used to repair bone defects were (I) dental pulp stem cells of permanent teeth, (II) stem cells derived from inflamed dental pulp, (III) stem cells from exfoliated deciduous teeth, (IV) periodontal ligament stem cells, (V) cultured autogenous periosteal cells, (VI) buccal fat pad-derived cells, and (VII) autologous bone-derived mesenchymal stem cells. Stem cells associate with scaffolds to facilitate insertion into the bone defect and to enhance bone regeneration. The biological risk and morbidity of the MSC-grafted site were minimal. Successful bone formation after MSC grafting has been shown for small defects with stem cells from the periodontal ligament and dental pulp as well as larger defects with stem cells from the periosteum, bone, and buccal fat pad. CONCLUSIONS Stem cells of maxillofacial origin are a promising alternative to treat small and large craniofacial bone defects; however, an additional scaffold complement is required for stem cell delivery.
Collapse
Affiliation(s)
- Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ruth Prieto
- Department of Pediatrics and Pediatric Surgery, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariana Rojas
- Comparative Embryology Laboratory, Program of Anatomy and Developmental Biology, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile
| | - Ramón Fuentes
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
9
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
10
|
de Souza A, Martignago CCS, Santo GDE, Sousa KDSJ, Cruz MA, Amaral GO, Parisi JR, Estadella D, Ribeiro DA, Granito RN, Renno ACM. 3D printed wound constructs for skin tissue engineering: A systematic review in experimental animal models. J Biomed Mater Res B Appl Biomater 2023; 111:1419-1433. [PMID: 36840674 DOI: 10.1002/jbm.b.35237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Wound dressings are one of the most used treatments for chronic wounds. Moreover, 3D printing has been emerging as a promising strategy for printing 3D printed wound constructs, being able of manufacturing multi layers, with a solid 3D structure. Although all these promising effects of 3D printed wound constructs, there is still few studies and limited understanding of the interaction of these dressings with skin tissue and their effect on the process of skin wound healing. In this context, the aim of this work was to perform a systematic review of the literature to examine the effects of 3D printed wound constructs on the process of skin wound healing in animal models. The articles were selected from three databases following Medical Subject Headings (MeSH) descriptors "3D printing," "skin," "wound," and "in vivo." After the selection, exclusion and inclusion criteria, nine articles were analyzed. This review confirms the significant benefits of using 3D printed wound constructs for skin repair and regeneration. All the used inks demonstrated the ability of mimicking the structure of skin tissue and promoting cell adhesion, proliferation, migration, and mobility. Furthermore, in vivo findings showed full wound closure in most of the studies, with well-organized dermal and epidermal layers.
Collapse
Affiliation(s)
- Amanda de Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | | | | | - Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Gustavo Oliva Amaral
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Débora Estadella
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
11
|
Regeneration of periodontal bone defects with mesenchymal stem cells in animal models. Systematic review and meta-analysis. Odontology 2023; 111:105-122. [PMID: 35788845 PMCID: PMC9810679 DOI: 10.1007/s10266-022-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate the efficacy of mesenchymal stem cells (MSCs) in the regeneration of periodontal bone defects in animal models. A systematic review and meta-analysis were conducted following the PRISMA guidelines, and the study was recorded in PROSPERO under reference number CDR42021247462. The PICO question was: is periodontal regeneration (cementum, periodontal ligament and alveolar bone) with MSCs more effective than other techniques? Three groups were considered: Group 1: MSCs alone or mixed with regenerative materials. Group 2: only regenerative materials. Group 3: no regenerative material nor MSCs. The search was conducted using MeSH with a total of 18 articles for qualitative analysis and 5 for quantitative analysis. For the meta-analysis, a modification of the effect size algorithm was developed, which considered a comparison of means between treatments using the Student's t sample distribution. When comparing the effect size between Group 1 and Group 2, the effect size for the new cementum was 2.83 mm with an estimated confidence interval of 95% (CI 95%) between 0.48 and 5.17 mm. When considering the fit to a random-effects model, the combined variance (τ2) was 6.1573 mm, with a standard deviation (SD) of 5.6008 mm and a percentage of total heterogeneity I2 of 92.33% (p < 0.0001). For new bone, the effect size was 0.88 mm, CI 95% - 0.25 to 2.01 mm, τ2 = 1.3108 mm (SD = 1.2021 mm) and I2 = 80.46%, p = 0.0004). With regard to the new periodontal ligament, it was not possible for the meta-analysis to be performed. MSCs have a greater capacity for tissue regeneration in root cementum than in alveolar bone compared to other regenerative materials.
Collapse
|
12
|
Swanson WB, Yao Y, Mishina Y. Novel approaches for periodontal tissue engineering. Genesis 2022; 60:e23499. [PMID: 36086991 PMCID: PMC9787372 DOI: 10.1002/dvg.23499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
The periodontal complex involves the hard and soft tissues which support dentition, comprised of cementum, bone, and the periodontal ligament (PDL). Periodontitis, a prevalent infectious disease of the periodontium, threatens the integrity of these tissues and causes irreversible damage. Periodontal therapy aims to repair and ultimately regenerate these tissues toward preserving native dentition and improving the physiologic integration of dental implants. The PDL contains multipotent stem cells, which have a robust capacity to differentiate into various types of cells to form the PDL, cementum, and alveolar bone. Selection of appropriate growth factors and biomaterial matrices to facilitate periodontal regeneration are critical to recapitulate the physiologic organization and function of the periodontal complex. Herein, we discuss the current state of clinical periodontal regeneration including a review of FDA-approved growth factors. We will highlight advances in preclinical research toward identifying additional growth factors capable of robust repair and biomaterial matrices to augment regeneration similarly and synergistically, ultimately improving periodontal regeneration's predictability and long-term efficacy. This review should improve the readers' understanding of the molecular and cellular processes involving periodontal regeneration essential for designing comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- W. Benton Swanson
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yao Yao
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Science, Division of ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
13
|
Wang Y, Li J, Zhou J, Qiu Y, Song J. Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies. ULTRASONICS 2022; 121:106678. [PMID: 35051693 DOI: 10.1016/j.ultras.2021.106678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alveolar bone loss is one of the most common consequence for periodontitis, which is a major obstacle in periodontal regeneration. Bone marrow stromal cells (BMSCs) have shown significant promise in the treatment of various disease, which also contribute to the natural bone repair process. Low-intensity pulsed ultrasound (LIPUS) is a therapeutic ultrasound used in our previous studies to promotes alveolar bone regeneration. In addition, LIPUS was found to be a promising method to enhance mesenchymal stromal cell-based therapies. In the current study, we have investigated the effects of LIPUS combined with BMSCs therapies on BMSCs homing and its potential to promote alveolar bone regeneration. METHODS BMSCs were isolated from rat and characterized by multilineages differentiation assay. Then these cells were labeled with luciferase and green fluorescent protein (GFP) by lentivirus in vitro. Periodontal bone defect was made on the mesial area of the maxillary first molar in rats. A total of 1 × 106 Luc-GFP labeled BMSCs were injected into rat tail vein. Bioluminescence imaging was utilized to track BMSCs in vivo. The rats were sacrificed eight weeks after surgery and the samples were harvested. Micro-computed tomography (Micro-CT) was performed to evaluate alveolar bone regeneration. Paraffin sections were made and subject to hematoxylin-eosin staining, masson staining and immunohistochemistry staining. RESULTS BMSCs display a fibroblast-like morphology and can differentiate into adipocytes or osteoblasts under appropriate condition. The transfected BMSCs are strongly positive for GFP express. Bioluminescence imaging showed that most of BMSCs were trapped in the lung. A small portion BMSCs were homed to the alveolar bone defect area in BMSCs group, while more cells were observed in BMSCs/LIPUS group compare to other groups on day 3 and 7. Micro-CT results showed that BMSCs/LIPUS group resulted in more new bone formation than other groups. Immunohistochemical results showed higher expression of COL-I and osteopontin in BMSCs/LIPUS group compared with the other groups. CONCLUSIONS These results suggested that LIPUS can enhance BMSCs-based periodontal alveolar bone regeneration. This study provides new insights into how LIPUS might provide therapeutic benefits by promoting BMSCs homing.
Collapse
Affiliation(s)
- Yunji Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jianpin Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ye Qiu
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
14
|
Aksel H, Zhu X, Gauthier P, Zhang W, Azim AA, Huang GTJ. A new direction in managing avulsed teeth: stem cell-based de novo PDL regeneration. Stem Cell Res Ther 2022; 13:34. [PMID: 35090556 PMCID: PMC8796335 DOI: 10.1186/s13287-022-02700-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Management of avulsed teeth after replantation often leads to an unfavorable outcome. Damage to the thin and vulnerable periodontal ligament is the key reason for failure. Cell- or stem cell-based regenerative medicine has emerged in the past two decades as a promising clinical treatment modality to improve treatment outcomes. This concept has also been tested for the management of avulsed teeth in animal models. This review focuses on the discussion of limitation of current management protocols for avulsed teeth, cell-based therapy for periodontal ligament (PDL) regeneration in small and large animals, the challenges of de novo regeneration of PDL on denuded root in the edentulous region using a mini-swine model, and establishing a prospective new clinical protocol to manage avulsed teeth based on the current progress of cell-based PDL regeneration studies.
Collapse
Affiliation(s)
- Hacer Aksel
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, USA
| | - Xiaofei Zhu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.,VIP Dental Service and Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Philippe Gauthier
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.,Département d'endodontie, Faculté de Médecine Dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Wenjing Zhang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, USA
| | - Adham A Azim
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, USA.,Department of Endodontics, Arthur A Dugoni School of Dental Medicine, University of Pacific, San Francisco, California, USA
| | - George T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA. .,Cancer Research Building, University of Tennessee Health Science Center, 19 S. Manassas St. Lab Rm 256, office 255, Memphis, TN, 38163, USA.
| |
Collapse
|
15
|
Iwasaki K, Peng Y, Kanda R, Umeda M, Ishikawa I. Stem Cell Transplantation and Cell-Free Treatment for Periodontal Regeneration. Int J Mol Sci 2022; 23:ijms23031011. [PMID: 35162935 PMCID: PMC8835344 DOI: 10.3390/ijms23031011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing attention has been paid to cell-based medicines. Many in vivo and in vitro studies have demonstrated the efficacy of stem cell transplantation for the regeneration of periodontal tissues over the past 20 years. Although positive evidence has accumulated regarding periodontal regeneration using stem cells, the exact mechanism of tissue regeneration is still largely unknown. This review outlines the practicality and emerging problems of stem cell transplantation therapy for periodontal regeneration. In addition, possible solutions to these problems and cell-free treatment are discussed.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka 573-1121, Japan;
- Correspondence: ; Tel.: +81-72-864-3125
| | - Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan; (Y.P.); (M.U.)
| | - Ryuhei Kanda
- Institute of Dental Research, Osaka Dental University, Osaka 573-1121, Japan;
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan; (Y.P.); (M.U.)
| | - Isao Ishikawa
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| |
Collapse
|
16
|
Periodontal Cell Therapy: A Systematic Review and Meta-analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:377-397. [DOI: 10.1007/978-3-030-96881-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Fu J, Wang Y, Jiang Y, Du J, Xu J, Liu Y. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:377. [PMID: 34215342 PMCID: PMC8254211 DOI: 10.1186/s13287-021-02456-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV). Conclusion This study concluded that systemic therapy of MSCs promotes bone regeneration in preclinical experiments. These results provided important information for the systemic application of MSCs as a potential application of bone formation in further animal experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02456-w.
Collapse
Affiliation(s)
- Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
18
|
Kukreja BJ, Bhat KG, Kukreja P, Kumber VM, Balakrishnan R, Govila V. Isolation and immunohistochemical characterization of periodontal ligament stem cells: A preliminary study. J Indian Soc Periodontol 2021; 25:295-299. [PMID: 34393399 PMCID: PMC8336774 DOI: 10.4103/jisp.jisp_442_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Context: It is a known fact that periodontal tissue regeneration can be achieved by the use of periodontal ligament stem cells (PDLSCs). Current mainstay of periodontal treatment is focusing on stem cell tissue engineering as an effective therapy, making it important to isolate PDLSCs from periodontal tissues. Aims: The present research endeavor was undertaken to elucidate a technique for isolating PDLSCs for in vivo reconstructing the natural PDL tissue. Settings and Design: The study design involves In vitro prospective study. Materials and Methods: Premolar teeth were extracted from 12 patients who were under orthodontic treatment. PDL cells were scraped from their roots. Using 10 ml of Dulbecco's modified Eagle's medium with pH 7.2, the specimens of the periodontal tissue were transferred to laboratory where cell culture was done. Isolated stem cells were grown on 24-well microtiter plates-containing cover slips. They were incubated overnight at approximately 37°C in 95% air and 5% humidification. Anti-CD 45, CD73, CD90, CD105, and CD146 antibodies were used. After staining, cells were observed under phase-contrast microscopy and in inverted microscope. Results: The cells showed a marked growth and 90% confluence at day 6. Cells presented thin and long fibroblastic spindle morphology. Isolated PDLSCs showed colony-forming ability at the 14th day after seeding. Immunohistochemical staining of PDLSCs showed positive uptake for CD146, CD90, CD73, CD105, and negative uptake for CD45. Conclusions: The human PDLSCs can be clearly isolated and characterized by using CD90, CD73, CD146, and CD105 markers of stem cells.
Collapse
Affiliation(s)
- Bhavna Jha Kukreja
- Department of Periodontology, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Kishore Gajanan Bhat
- Department of Microbiology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Pankaj Kukreja
- Department of Biomedical Dental Sciences, Faculty of Dentistry, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| | - Vijay Mahadev Kumber
- Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Maratha Mandal's Central Research Laboratory, Belagavi, Karnataka, India
| | - Rajkumar Balakrishnan
- Department of Conservative Dentistry and Endodontics, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Vivek Govila
- Department of Periodontology, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Chew JRJ, Tan BL, Lu JX, Tong HJ, Duggal MS. Cell-Based Therapy for Tooth Replantation Following Avulsion: A Systematic Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:351-363. [PMID: 33593127 DOI: 10.1089/ten.teb.2021.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The management of avulsed teeth undergoing delayed replantation remains a clinical challenge as there are currently no effective interventions that can improve periodontal healing and prevent replacement root resorption. While several preclinical studies have reported varied success using cell-based tissue engineering to improve periodontal healing, a consensus is required before further clinical translation. Therefore, this systematic review seeks to evaluate the efficacy of cell-based therapy in promoting periodontal healing following delayed replantation in animal models. MEDLINE (PubMed) and Embase were searched on September 27, 2020. Ten studies involving rodent and dog models met the inclusion criteria. Cell sources included gingiva, periodontal ligament (PDL), bone marrow, and adipose tissues. Generally, cell-based therapy had increased the proportion of root surfaces displaying periodontal healing and concomitantly reduced the proportion presenting with replacement root resorption and ankylosis. The best outcomes were observed following treatment with PDL-derived cells of various potency. Future preclinical studies will benefit from adopting measures to minimize bias during the conduct of animal experiments and the standardization of the outcome measures reporting. This will facilitate future reviews with possible pooling of results in the form of meta-analyses, allowing a consensus to be obtained from the literature. In addition, further research will be required to shed light on the implications of using allogeneic cells as well as the optimization of cell delivery protocols. The findings of this systematic review demonstrated the therapeutic potential of certain cell-based therapies in promoting periodontal healing following delayed replantation, thus highlighting their prospective clinical benefits and translational value.
Collapse
Affiliation(s)
- Jacob Ren Jie Chew
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Bing Liang Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Jacinta Xiaotong Lu
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Huei Jinn Tong
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
20
|
Khoury S, Haj Khalil T, Palzur E, Srouji S. A Multichamber Gas System to Examine the Effect of Multiple Oxygen Conditions on Cell Culture. Tissue Eng Part C Methods 2021; 27:24-34. [PMID: 33353455 DOI: 10.1089/ten.tec.2020.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The classic bone tissue engineering model for bone regeneration combines three elements: scaffolds, biomaterials, and mesenchymal stem cells (MSCs). Incorporation of MSCs and growth factors into a scaffold implanted into the area of bone injury is a proven strategy to achieve successful bone regeneration as demonstrated in the literature. However, a major limitation of using bone grafts or scaffolds is oxygen (O2) deprivation in the inner sections of the construct, due to lack of adequate vascularization. To address this limitation, we proposed two treatment strategies for MSC-seeded constructs or adipose tissue scaffolds before implantation: (1) O2 enrichment and (2) acclimation to hypoxia. Based on previous studies, the significance of the different O2 concentrations on MSC biological characteristics remains controversial. Therefore, the optimal O2 condition for engineered bone tissues should be determined. Thus, we designed an innovative multichamber gas system aimed to simultaneously assess the effects of different O2 levels on cell culture. This system was assembled using three isolated chambers integrated into a single incubator. To explore the efficacy of our method, we investigated the effect of hyperoxia, normoxia, and hypoxia, (50-60%, 21%, and 5-7.5% O2, respectively) on the biological characteristics of human adipose-derived MSCs: immunophenotyping, adhesion, proliferation, and osteogenic, and angiogenic differentiation. Our findings demonstrated that hypoxic adipose-derived mesenchymal stem cells (ASCs) conditions exhibited significantly lower levels of CD34 (p = 0.014), with significantly higher osteogenic and angiogenic differentiation capacities (p = 0.023 and p = 0.0042, respectively) than normoxia. Conversely, hyperoxia-cultured ASCs demonstrated significantly higher levels of CD73 and CD90 expression than both normoxic ASCs (p = 0.006 and p = 0.025, respectively) and hypoxic ASCs (p = 0.003 and p = 0.003, respectively). In addition, hyperoxic ASCs showed significantly reduced proliferation capacity by day 11 (p = 0.032) and significantly enhanced migration rates after 48 h (p = 0.044). The newly developed controllable multichamber gas system was cost-effective and easy to use. Different assays can be performed concurrently while preserving all other conditions identical, and the use of other ranges of O2 concentrations is feasible and also necessary to determine the ideal O2 concentration. Furthermore, the multichamber gas system has the potential for wide application, including other cell cultures, grafts, or scaffolds for in vitro and in vivo experimentation. This study was approved by the Galilee Medical Center Helsinki Committee (No. 0009-19-NHR). Impact statement The introduced multichamber gas system provides a custom-made setup for simultaneous control of three oxygen (O2) levels in a single incubator. The use of our innovative multichamber gas system is essential to determine the ideal O2 levels for engineered tissues by examining multiple O2 concentrations on cells in vitro. The determined ideal O2 concentration will then be used through this system to investigate the engrafted cell survival ex vivo, to ensure successful integration of the engineered tissues and tissue regeneration in vivo. Use of this method may promote a therapeutic tool for a major limitation in tissue engineering due to the problematic O2 insufficiency in tissue scaffolds.
Collapse
Affiliation(s)
- Samira Khoury
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tharwat Haj Khalil
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Institute for Medical Research, Galilee Medical Center, Nahariya, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.,Oral and Maxillofacial Surgery and Oral Medicine Institute, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
21
|
Liu L, Guo S, Shi W, Liu Q, Huo F, Wu Y, Tian W. Bone Marrow Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Periodontal Regeneration. Tissue Eng Part A 2020; 27:962-976. [PMID: 32962564 DOI: 10.1089/ten.tea.2020.0141] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone marrow mesenchymal stem cell-derived small extracellular vesicles (BMSC-sEVs) can be used as a potential cell-free strategy for periodontal tissue regeneration, and we aim to investigate the effect and possible mechanism of BMSC-sEV in periodontal tissue regeneration in this study. The BMSC-sEV was isolated by the Exosome Isolation™ reagent and identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. The human periodontal ligament cells (hPDLCs) were cocultured with BMSC-sEV in vitro to detect the effects of BMSC-sEV on hPDLC migration, proliferation, and differentiation. The BMSC-sEV loaded by hydrogel was injected into experimental periodontitis rats to verify the therapeutic effect and possible mechanism. The results showed that BMSC-sEVs were 30-150 nm vesicles and expressed the exosome protein CD63 and tumor susceptibility 101 (TSG101), which could promote the migration, proliferation, osteogenic differentiation of hPDLCs. The BMSC-sEV-hydrogel had a therapeutic effect on periodontitis rats. After administration for 4-8 weeks, microcomputed tomography and histological analysis showed that alveolar bone loss, inflammatory infiltration, and collagen destruction in the BMSC-sEV-hydrogel group were less than that in the phosphate-buffered saline (PBS)-hydrogel group and periodontitis group. Further immunohistochemical and immunofluorescent staining revealed that the number of tartrate-resistant acid phosphatase-positive cells and the expression ratio of osteoprotegerin (OPG) and receptor-activator of nuclear factor kappa beta ligand (RANKL) in the BMSC-sEV-hydrogel group were lower than that in the PBS-hydrogel group and periodontitis group, while the expression of transforming growth factor-beta 1 (TGF-β1) and the ratio of macrophage type 2 and macrophage type 1 (M2/M1) were opposite. Therefore, BMSC-sEV can promote the regeneration of periodontal tissues, and that may be partly due to BMSC-sEV involvement in the OPG-RANKL-RANK signaling pathway to regulate the function of osteoclasts and affect the macrophage polarization and TGF-β1 expression to modulate the inflammatory immune response, thereby inhibiting the development of periodontitis and immune damage of periodontal tissue. Impact statement Bone marrow mesenchymal stem cell-derived small extracellular vesicles (BMSCs-sEVs) have been proven to have similar functions to BMSCs, such as promoting the regeneration of heart, liver, kidney, and bone tissue and regulating immune responses. BMSCs are candidate seed cells of periodontal regeneration, but it is unclear about the role of BMSC-sEV on periodontal regeneration. In this study, we explored the effects and possible mechanism of BMSC-sEV on periodontal regeneration. The results of this study provide the evidence of BMSC-sEV as a cell-free strategy for periodontal regeneration.
Collapse
Affiliation(s)
- Li Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Shujuan Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weiwei Shi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Qian Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yafei Wu
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
22
|
Xie L, Chen J, Ren X, Zhang M, Thuaksuban N, Nuntanaranont T, Guan Z. Alteration of circRNA and lncRNA expression profile in exosomes derived from periodontal ligament stem cells undergoing osteogenic differentiation. Arch Oral Biol 2020; 121:104984. [PMID: 33217605 DOI: 10.1016/j.archoralbio.2020.104984] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This study investigated circRNA and lncRNA expression profile in exosomes derived from periodontal ligament stem cell (PDLSC) before and after its osteogenic differentiation. DESIGN Exosomes derived from PDLSCs before (EX0) and after osteogenic induction for 5 (EX5) and 7 (EX7) days were harvested and exosomal circRNAs and lncRNAs were analyzed by RNA sequencing. Certain RNAs showing significantly altered expression were selected for qRT-PCR verification. The circRNA-miRNA-mRNA network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. RESULTS All groups of exosomes showed typical characteristics under nanoparticle tracking analysis, flow cytometry assay and transmission electron microscopy. 69-557 circRNAs and 2907-11581 lncRNAs were found in EX0, EX5 and EX7, which were broadly distributed across the 24 pairs of human chromosomes. Compared with EX0, 3 circRNAs and 2 lncRNAs were up-regulated and 39 circRNAs and 5 lncRNAs down-regulated consistently through out of EX5 and EX7, p < 0.05. qRT-PCR confirmed certain those consistently expressed RNAs, such as circ lysophosphatidic acid receptor 1 (LPAR1). KEGG analysis showed that those consistent expressed RNAs closely related to TGF-beta pathway, MAPK pathway, mTOR pathway and FoxO signaling pathways regulating pluripotency of stem cells. CONCLUSIONS Exosomal circRNAs and lncRNAs had significant expression changes during the early phase of osteogenic differentiation of PDLSCs. Further study would be taken for understanding the roles of exosomal circRNAs and lncRNAs playing in osteogenic differentiation of PDLSCs.
Collapse
Affiliation(s)
- Liangkun Xie
- Department of Oral Implantology, the Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Jianzhong Chen
- Department of Oral Anatomy and Physiology, School of Stomatology, Kunming Medical University, Kunming, China
| | - Xiaobin Ren
- Department of Periodontology, the Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Mingzhu Zhang
- Department of Periodontology, the Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Nattawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai, Songkhla, Thailand.
| | - Zheng Guan
- Biomedical Research Center, the Affiliated Calmette Hospital of Kunming Medical University (the First Hospital of Kunming), Kunming, China.
| |
Collapse
|
23
|
Li Q, Yang G, Li J, Ding M, Zhou N, Dong H, Mou Y. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:427. [PMID: 33008471 PMCID: PMC7531120 DOI: 10.1186/s13287-020-01938-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Periodontal tissue regeneration (PTR) is the ultimate goal of periodontal therapy. Currently, stem cell therapy is considered a promising strategy for achieving PTR. However, there is still no conclusive comparison that distinguishes clear hierarchies among different kinds of stem cells. Methods A systematic review and network meta-analysis (NMA) was performed using MEDLINE (via PubMed), EMBASE, and Web of Science up to February 2020. Preclinical studies assessing five types of stem cells for PTR were included; the five types of stem cells included periodontal ligament-derived stem cells (PDLSCs), bone marrow-derived stem cells (BMSCs), adipose tissue-derived stem cells (ADSCs), dental pulp-derived stem cells (DPSCs), and gingival-derived stem cells (GMSCs). The primary outcomes were three histological indicators with continuous variables: newly formed alveolar bone (NB), newly formed cementum (NC), and newly formed periodontal ligament (NPDL). We performed pairwise meta-analyses using a random-effects model and then performed a random-effects NMA using a multivariate meta-analysis model. Results Sixty preclinical studies assessing five different stem cell-based therapies were identified. The NMA showed that in terms of NB, PDLSCs (standardized mean difference 1.87, 95% credible interval 1.24 to 2.51), BMSCs (1.88, 1.17 to 2.59), and DPSCs (1.69, 0.64 to 2.75) were statistically more efficacious than cell carriers (CCs). In addition, PDLSCs were superior to GMSCs (1.49, 0.04 to 2.94). For NC, PDLSCs (2.18, 1.48 to 2.87), BMSCs (2.11, 1.28 to 2.94), and ADSCs (1.55, 0.18 to 2.91) were superior to CCs. For NPDL, PDLSCs (1.69, 0.92 to 2.47) and BMSCs (1.41, 0.56 to 2.26) were more efficacious than CCs, and PDLSCs (1.26, 0.11 to 2.42) were superior to GMSCs. The results of treatment hierarchies also demonstrated that the two highest-ranked interventions were PDLSCs and BMSCs. Conclusion PDLSCs and BMSCs were the most effective and well-documented stem cells for PTR among the five kinds of stem cells evaluated in this study, and there was no statistical significance between them. To translate the stem cell therapies for PTR successfully in the clinic, future studies should utilize robust experimental designs and reports.
Collapse
Affiliation(s)
- Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jialing Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Zhou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China. .,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
24
|
Maeda H. Mass acquisition of human periodontal ligament stem cells. World J Stem Cells 2020; 12:1023-1031. [PMID: 33033562 PMCID: PMC7524700 DOI: 10.4252/wjsc.v12.i9.1023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
The periodontal ligament (PDL) is an essential fibrous tissue for tooth retention in the alveolar bone socket. PDL tissue further functions to cushion occlusal force, maintain alveolar bone height, allow orthodontic tooth movement, and connect tooth roots with bone. Severe periodontitis, deep caries, and trauma cause irreversible damage to this tissue, eventually leading to tooth loss through the destruction of tooth retention. Many patients suffer from these diseases worldwide, and its prevalence increases with age. To address this issue, regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells, scaffolds, and cytokines as well as their combined applications. In particular, PDL stem cells (PDLSCs) have been well studied. In this review, I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Fukuoka 8128582, Japan
| |
Collapse
|
25
|
Shi W, Guo S, Liu L, Liu Q, Huo F, Ding Y, Tian W. Small Extracellular Vesicles from Lipopolysaccharide-Preconditioned Dental Follicle Cells Promote Periodontal Regeneration in an Inflammatory Microenvironment. ACS Biomater Sci Eng 2020; 6:5797-5810. [PMID: 33320548 DOI: 10.1021/acsbiomaterials.0c00882] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipopolysaccharide (LPS)-induced inflammatory microenvironment can enhance the dental follicle cells (DFCs) proliferation, differentiation, and adhesion abilities beneficial to periodontal regeneration, which possibly attributes the success to exosomes according to recent studies. This study aimed to investigate the therapeutic efficacy and underlying mechanisms of LPS-preconditioned DFC-derived small extracellular vesicles (sEVs), which enriched exosomes for periodontal regeneration in an inflammatory microenvironment. LPS preconditioning could significantly increase the secretion of sEVs derived from DFCs. Both LPS-preconditioned dental follicle cell-derived sEV (L-D-sEV) and DFC-derived sEV (D-sEV) promoted the proliferation of periodontal ligament cells from periodontitis (p-PDLCs) with a dose-dependent and saturable manner and also enhanced the migration and differentiation of p-PDLCs. Furthermore, L-D-sEV showed a modest benefit than D-sEV to promote p-PDLCs differentiation. In vivo, an L-D-sEV-loaded hydrogel applied in the treatment of periodontitis was beneficial to repair lost alveolar bone in the early stage of treatment and to maintain the level of alveolar bone in the late stage of treatment in experimental periodontitis rats, which could partly decrease the expression of the RANKL/OPG ratio. In conclusion, L-D-sEV was beneficial to p-PDLCs forming an integrity periodontal tissue. The biological injectable L-D-sEV-loaded hydrogel could be used as a treatment method for experimental periodontitis in rats, promoting periodontal tissue regeneration and providing a new alternative cell therapy method for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Weiwei Shi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shujuan Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Lodoso-Torrecilla I, Klein Gunnewiek R, Grosfeld EC, de Vries RBM, Habibović P, Jansen JA, van den Beucken JJJP. Bioinorganic supplementation of calcium phosphate-based bone substitutes to improve in vivo performance: a systematic review and meta-analysis of animal studies. Biomater Sci 2020; 8:4792-4809. [PMID: 32729591 DOI: 10.1039/d0bm00599a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supplementation of CaP-based bone graft substitutes with bioinorganics such as strontium, zinc or silicon is an interesting approach to increase the biological performance in terms of bone regenerative potential of calcium phosphate (CaP)-based bone substitutes. However, the in vivo efficacy of this approach has not been systematically analyzed, yet. Consequently, we performed a systematic review using the available literature regarding the effect of bioinorganic supplementation in CaP-based biomaterials on new bone formation and material degradation in preclinical animal bone defect models and studied this effect quantitatively by performing a meta-analysis. Additional subgroup analyses were used to study the effect of different bioinorganics, animal model, or phase category of CaP-based biomaterial on bone formation or material degradation. Results show that bioinorganic supplementation increases new bone formation (standardized mean difference [SMD]: 1.43 SD, confidence interval [CI]: 1.13-1.73). Additional subgroup analysis showed that strontium, magnesium and silica significantly enhanced bone formation, while zinc did not have any effect. This effect of bioinorganic supplementation on new bone formation was stronger for DCPD or β-TCP and biphasic CaPs than for HA or α-TCP (p < 0.001). In general, material degradation was slightly hindered by bioinorganic supplementation (mean difference [MD]: 0.84%, CI: 0.01-1.66), with the exception of strontium that significantly enhanced degradation. Overall, bioinorganic supplementation represents an effective approach to enhance the biological performance of CaP-based bone substitutes.
Collapse
|
27
|
Varshney S, Dwivedi A, Pandey V. Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion - A systematic review of human studies. J Oral Biol Craniofac Res 2020; 10:347-355. [PMID: 32714787 DOI: 10.1016/j.jobcr.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022] Open
Abstract
Availability of adequate quantity and quality of bone is prerequisite for longevity and survival of endosseous dental implants. Most of the clinicians face with the problem of lack of bone due to long-standing edentulism during this treatment modality. Conventional therapies with the use of various types of bone grafts and membranes have provided clinicians with unpredictable and compromised results. Cell-based therapies utilizing undifferentiated cells, that have the potential to differentiate into various cell types including osteoblastic lineages, have demonstrated through various previously conducted in-vitro and animal studies, a successful formation of bone in a predictable manner. Thus the main objective of this review was to evaluate the effectiveness of these therapies when applied on human subjects. A search was carried out in MEDLINE (via PubMed) and Cochrane CENTRAL databases for completed randomized and non-randomised clinical trials utilizing stem cell-based therapies with histologic and radiographic analysis written in English up to January 2019. This search of the literature yielded 10 studies meeting the inclusion and exclusion criteria. In all these studies, stem cells were primarily used to achieve bone augmentation during insertion of endosseous dental implants. Results of these therapies conducted on human subjects have shown a positive impact on bone regeneration, in particular, therapies utilizing bone marrow and adipose tissue derived stem cells. But the clinicians need to examine the efficacy, safety, feasibility of these therapies while treating large size defects or planning for shorter healing period and early loading of dental implants.
Collapse
Affiliation(s)
- Shailesh Varshney
- Department of Periodontology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anshuman Dwivedi
- Adv Dip in Stem Cells and Regenerative Medicine (Boston), V 67, Sector 12, Noida, Uttar Pradesh, India
| | - Vibha Pandey
- Noida Psychiatry Centre, P 5, Sector 12, Noida, Uttar Pradesh, India
| |
Collapse
|
28
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
29
|
Liu J, Chen B, Bao J, Zhang Y, Lei L, Yan F. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration. Stem Cell Res Ther 2019; 10:320. [PMID: 31730019 PMCID: PMC6858751 DOI: 10.1186/s13287-019-1409-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background The inflammation and regeneration process may be accompanied by the shift in the M1/M2 polarization of macrophages to adapt to extracellular signals. How the macrophages responded to the altered immunological environment in the periodontal niche after stem cell transplantation has never been explored. The purpose of present study is to investigate whether M1/M2 polarization of macrophages participated in the tissue homeostasis and wound healing during periodontal ligament stem cell (PDLSC)-based periodontal regeneration. Methods A rat periodontal defect model was utilized to observe the regeneration process in the PDLSC transplantation-enhanced periodontal repair. Dynamic changes in the markers of M1/M2 macrophages were observed on days 3, 7, and 21 post surgery. In addition, the outcome of regeneration was analyzed on day 21 after surgery. To further investigate the effect of PDLSCs on macrophage polarization, the conditioned medium of PDLSCs was utilized to treat M0, M1, and M2 macrophages for 24 h; markers of M1/M2 polarization were evaluated in macrophages. Results Elevated bone volume and average thickness of bone trabecular was observed in the PDLSC-treated group by micro-computed tomography on day 21. In addition, enhanced periodontal regeneration was observed in the PDLSC-treated group with cementum-like structure regeneration and collagen fiber formation, which inserted into the newly formed cementum. On day 3, PDLSC transplantation increased IL-10 level in the periodontal tissue, while decreased TNF-α in the early stage of periodontal regeneration. On day 7, enhanced CD163+ cell infiltration and heightened expression of markers of M2 macrophages were observed. Furthermore, conditioned medium from PDLSC culture induced macrophage polarization towards the anti-inflammatory phenotype by downregulating TNF-α and upregulating IL-10, Arg-1, and CD163 in vitro. Conclusions PDLSCs could induce macrophage polarization towards the M2 phenotype, and the shift in the polarization towards M2 macrophages in the early stage of tissue repair contributed to the enhanced periodontal regeneration after stem cell transplantation. Therefore, signals from the transplanted PDLSCs might alter the immune microenvironment to enhance periodontal regeneration.
Collapse
Affiliation(s)
- Jiaying Liu
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Bin Chen
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jun Bao
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Lang Lei
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
30
|
Portron S, Soueidan A, Marsden AC, Rakic M, Verner C, Weiss P, Badran Z, Struillou X. Periodontal regenerative medicine using mesenchymal stem cells and biomaterials: A systematic review of pre-clinical studies. Dent Mater J 2019; 38:867-883. [PMID: 31511473 DOI: 10.4012/dmj.2018-315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The aim of the systematic review was to analyze the use of mesenchymal stem cells (MSC) and biomaterial for periodontal regeneration from preclinical animal models and human. Electronic databases were searched and additional hand-search in leading journals was performed. The research strategy was achieved according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The including criteria were as follows: MSC, biomaterial, in vivo studies, with histologic and radiologic analysis and written in English. The risk of bias was assessed for individual studies. A total of 50 articles were selected and investigated in the systematic review. These results indicate that MSC and scaffold provide beneficial effects on periodontal regeneration, with no adverse effects of such interventions. Future studies need to identify the suitable association of MSC and biomaterial and to characterize the type of new cementum and the organization of the periodontal ligament fiber regeneration.
Collapse
Affiliation(s)
- Sophie Portron
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| | - Assem Soueidan
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| | - Anne-Claire Marsden
- Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| | - Mia Rakic
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| | - Christian Verner
- Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| | - Pierre Weiss
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes
| | - Zahi Badran
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| | - Xavier Struillou
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes.,Department of Periodontology, Faculty of Dental Surgery, University of Nantes
| |
Collapse
|
31
|
Yan XZ, van den Beucken JJJP, Yuan C, Jansen JA, Yang F. Evaluation of polydimethylsiloxane-based substrates for in vitro culture of human periodontal ligament cells. J Biomed Mater Res A 2019; 107:2796-2805. [PMID: 31408269 DOI: 10.1002/jbm.a.36782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Periodontal ligament (PDL) cells are regarded as the cell type with the highest potential for periodontal regeneration. Biophysical cues of the culture substrate are increasingly identified as vital parameters to affect cell behavior. Compared to traditional tissue culture polystyrene (TCPS), polydimethylsiloxane (PDMS) substrates corroborate more closely the elastic modulus values of the physiological environment. Consequently, the aim of this study was to evaluate the effect of PDMS-based substrates with different stiffness on cellular responses of human PDL cells. PDMS substrates with different stiffness were fabricated by varying the ratio of base to curing component. The influence of PDMS substrates on PDL cell spreading and cytoskeletal morphologies, motility, proliferation, stemness gene expression, and osteogenic differentiation was evaluated and compared to that on conventional TCPS. PDL cells cultured on PDMS substrates exhibited a smaller cell size and more elongated morphology, with less spreading area, fewer focal adhesions, and faster migration than cells on TCPS. Compared to TCPS, PDMS substrates promoted the rapid in vitro expansion of PDL cells without interfering with their self-renewal ability. In contrast, the osteogenic differentiation ability of PDL cells cultured on PDMS was lower in comparison to cells on TCPS. PDL cells on PDMS exhibited similar cell morphology, motility, proliferation, and self-renewal gene expression. The stiffer PDMS substrate increased the osteogenic gene expression of PDL cells compared to the soft PDMS group in one donor. These data indicate that PDMS-based substrates have the potential for the efficient PDL cell expansion.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- Department of Periodontology, School and hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | | | - Chunxue Yuan
- College of Materials Science and Engineering, Tongji University, Shanghai, China
| | - John A Jansen
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fang Yang
- Department of Dentistry - Biomaterials, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
32
|
Novello S, Debouche A, Philippe M, Naudet F, Jeanne S. Clinical application of mesenchymal stem cells in periodontal regeneration: A systematic review and meta-analysis. J Periodontal Res 2019; 55:1-12. [PMID: 31378933 DOI: 10.1111/jre.12684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/16/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the potential efficacy of mesenchymal stem cells (MSCs) in periodontal regeneration in humans on the following main outcomes: clinical attachment level (CAL), probing depth (PD), and gingival recession (GR). BACKGROUND The clinical application of stem cells in periodontal regeneration has begun in recent years, but clinical practices are not yet standardized and no recommendations are available at this time. METHODS Electronic database searches and hand searches were conducted. All types of studies, case series, and case reports were qualitatively described. Double-blind randomized controlled trials (RCTs) evaluating MSCs in periodontal regeneration were included in a meta-analysis if they compared administration of MSCs vs application of stem cell-free therapy in the control group, in healthy patients with periodontal defects, with a minimum of three mo of follow-up. RESULTS Fifteen reports were included in qualitative analysis, involving 123 patients and 158 periodontal defects. Only two small RCTs at high risk of bias, with a total of 59 patients and 70 periodontal defects, were included in the meta-analysis. A small but significant difference between test and control groups was found for CAL at three mo (-0.90 mm, 95% CI [-1.51; -0.29]), but not for PD and GR. CONCLUSION Low-quality evidence suggests that MSC-based therapy may have a small impact on periodontal regeneration. However, due to the monocentric character, the small sample size, and potential heterogeneity across the two included RCTs, these results must not be considered as definitive. High-quality RCTs are needed before any clinical use of MSCs in periodontal regeneration.
Collapse
Affiliation(s)
- Solen Novello
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,Pôle d'Odontologie, UF Parodontologie, CHU Rennes, Rennes, France
| | - Alexandre Debouche
- Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France
| | - Marie Philippe
- Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France
| | - Florian Naudet
- CHU Rennes, Inserm, CIC 1414 [(Centre d'Investigation Clinique de Rennes)], Univ Rennes, Rennes, France
| | - Sylvie Jeanne
- ISCR [(Institut des Sciences Chimiques de Rennes)] - UMR 6226, Univ Rennes, Rennes, France.,Unité de Formation et de Recherche d'Odontologie, Univ Rennes, Rennes, France.,Pôle d'Odontologie, UF Parodontologie, CHU Rennes, Rennes, France
| |
Collapse
|
33
|
Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés MÁ. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J Clin Exp Dent 2019; 11:e373-e381. [PMID: 31110618 PMCID: PMC6522106 DOI: 10.4317/jced.55574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The main objective is to evaluate the way to graft the dental pulp stem cells (DPSC) in periodontal defects that best regenerate periodontal tissues. Numerous procedures have been done to promote periodontal regeneration. Bone grafts show good gains clinically and radiographically but histologically seem to have minimal osteoinductive capacity. Another option that exceeds conventional surgery in reducing probing depth and increasing insertion is guided tissue regeneration and tissue engineering that could be an alternative approach to help in the regeneration of living functional bone and peri-dental structures. MATERIAL AND METHODS A search was carried out in Cochrane, PubMed-MEDLINE and Scopus databases with keywords: "dental pulp stem cells", "periodontal regeneration", "guided tissue regeneration, periodontal", "tissue regeneration", "periodontal bone defects", "periodontal tissue engineering" and "periodontal defect". Inclusion criteria were articles in English, maximum 10 years old, in which DPSC were used to regenerate a periodontal defect. Exclusion criteria were studies not published in English, case reports, case series, literature reviews, and studies in which periodontal defect was caused by dental extraction. RESULTS Out of the 185 articles identified, 101 after excluding duplicates, of which 94 were discarded when reading the title and abstract. 7 articles were obtained for the full text reading: a case report and a case series were eliminated. The systematic review is performed with 5 animal testing studies in vivo. The DPSC sheets regenerate a greater amount of bone than the injection. If HGF (hepatocyte growth factor) is added, the maximum bone volume regenerated (69.3 ± 3.9 mm3; p<0.01) is achieved. Similar results were obtained in all carriers tested except in the controls. The periodontal ligament stem cells (PDLSC) formed more new bone, compared to DPSC (p<0.001). The presence of new cementum and periodontal ligament induced by CMLPs, was detected histologically but DPSC cannot achieve it alone. CONCLUSIONS Cementum or PDL regeneration does not depend only on DPSC but on other unknown factors. PDLSC has better periodontal regeneration than DPSC. DPSC significantly favours the regeneration of periodontal bone tissue but has few advantages over other grafts. It is necessary to study which growth factors or matrices can enhance their capacity for periodontal regeneration. Key words:Dental pulp, stem cells, periodontal guided tissue regeneration, periodontal bone loss.
Collapse
Affiliation(s)
- Sara Amghar-Maach
- Dentistry Student, Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Cosme Gay-Escoda
- MD, DDS, MS, PhD, EBOS, OMFS, Chairman and Professor of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Barcelona. Director of Master's Degree Program in Oral Surgery and Implantology (EHFRE International University/FUCSO). Coordinator/Researcher of the IDIBELL Institute. Head of Oral and Maxillofacial Surgery Department of the Teknon Medical Center, Barcelona, Spain
| | - Mª Ángeles Sánchez-Garcés
- MD, DDS, PhD, Aggregate Professor of Oral Surgery. Master's Degree Program in Oral Surgery and Implantology, School of Dentistry, University of Barcelona, Barcelona. Researcher of the IDIBELL Institute, Barcelona, Spain
| |
Collapse
|
34
|
Zeng JH, Qiu P, Xiong L, Liu SW, Ding LH, Xiong SL, Li JT, Xiao ZB, Zhang T. Bone repair scaffold coated with bone morphogenetic protein-2 for bone regeneration in murine calvarial defect model: Systematic review and quality evaluation. Int J Artif Organs 2019; 42:325-337. [PMID: 30905250 DOI: 10.1177/0391398819834944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To systematically assess the effects of hydroxyapatite bone repair scaffold coated with bone morphogenetic protein-2 on murine calvarial defect models and to determine the quality of studies according to the Animal Research Reporting in In Vivo Experiments guidelines. Internet search was performed in duplicate using PubMed, MEDLINE, Ovid and Embase databases (without restrictions on publication date). The Animal Research Reporting in In Vivo Experiments guidelines were used to evaluate the quality of selected studies. Following screening, 12 studies were eligible for the review. Studies with average quality coefficients predominated (66.67%), followed by poor (25%) and excellent (8.33%) quality coefficients. Minimum quality scores were assigned to the Animal Research Reporting in In Vivo Experiments guideline items: housing and husbandry (9), allocation (11), outcomes (12), interpretation (18) and generalizability (19). Sprague–Dawley rats were the most frequently used (50%) species, and most studies had a sample size of more than 30 (58.33%). A defect dimension of 5 mm was the most common (33.33%). The biological hydroxyapatite composite scaffold was common (50%), and the bioactive factors were bone morphogenetic protein-2 (50%) and recombinant human bone morphogenetic protein-2 (50%). Histomorphometric results showed that bone morphogenetic protein-2 enhanced the capacity to regenerate bone considerably. In addition, scaffolds with bone morphogenetic protein-2 resulted in a significant increase in the blood vessel in the new bone. The findings suggested that data on animal experiments of hydroxyapatite scaffold coated with bone morphogenetic protein-2 in murine calvarial defect models lack homogeneity. Animal experiment should follow the Animal Research Reporting in In Vivo Experiments guidelines to promote the high quality, integrity and reproducibility. This systematic review suggested that bone morphogenetic protein-2 enhanced the capacity to regenerate bone and the angiogenesis in the new bone.
Collapse
Affiliation(s)
- Jian-Hua Zeng
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Peng Qiu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Long Xiong
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Shi-Wei Liu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ling-Hua Ding
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | | | - Jing-Tang Li
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ze-Bu Xiao
- Department of Rehabilitation Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Tao Zhang
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| |
Collapse
|
35
|
Abstract
Teeth are exposed to hundreds of oral bacteria and also challenged by the mastication forces; because teeth are situated in oral cavity, the entrance of the digestive tract, and penetrates through the oral epithelium. The periodontal ligament is a noncalcified tissue that possesses abundant blood vessels, which exist between tooth root and alveolar bone. The ligament is thought to play an important role in absorbing the impact of mastication, in the maintenance of periodontal homeostasis, and in periodontal wound healing. We succeeded in isolating mesenchymal stem cells (MSCs), so-called periodontal stem cells (PDLSCs), with self-renewability and multipotency from the periodontal ligament. We also demonstrated that PDLSCs share some cell surface markers with pericytes and that PDLSCs distribute themselves to stay with the endothelial cell networks and that PDLSCs maintain the endothelial cell networks when added to endothelial cell network formation systems. Pericytes are located in the proximity of microvascular endothelial cells and thought to stabilize and supply nutrients to blood vessels. Recently, it was also reported that pericytes possess multipotency and can be the source of tissue stem cells and/or progenitor cells. This review explores the distinctive features of the periodontal ligament tissue and PDLSCs as well as the puzzling similarities between PDLSCs and pericytes.
Collapse
|
36
|
Wang Q, Zhao G, Xing Z, Zhan J, Ma J. Comparative evaluation of the osteogenic capacity of human mesenchymal stem cells from bone marrow and umbilical cord tissue. Exp Ther Med 2018; 17:764-772. [PMID: 30651861 DOI: 10.3892/etm.2018.6975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated in the field of regenerative medicine. Human bone MSCs (BMSCs) have become a common type of seed cell for bone tissue engineering. However, the viability and cell number of BMSCs are negatively correlated with donor age, and as the extraction process is painful, this method has not been widely used. As human umbilical cord MSCs (UCMSCs) may be harvested inexpensively and inexhaustibly, the present study evaluated and compared the regenerative potential of UCMSCs and BMSCs to determine whether UCMSCs may be used as a novel cell type for bone regeneration. In the present study, the proliferation and osteogenic capacity of BMSCs and UCMSCs was compared in vitro. BMSCs and UCMSCs were respectively combined with biofunctionalized macroporous calcium phosphate cement, and their bone regenerative potentials were determined by investigating their capacity for ectopic bone formation in a nude mouse model as well as their efficacy in a rat model of tibia bone defect. The extent of bone regeneration was examined by X-ray, histological and immunohistochemical analyses. The results revealed that UCMSCs exhibited a good osteogenic differentiation potential, similarly to that of BMSCs, and that UCMSCs were able to contribute to the regeneration of bone and blood vessels. Furthermore, no significant differences were identified between BMSCs and UCMSCs in terms of their bone regenerative effect.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Biomedical Science, Tianjin Kang Ting Biological Engineering Co., Ltd., Tianjin 300385, P.R. China
| | - Gang Zhao
- Institute of Biomedical Science, Tianjin Kang Ting Biological Engineering Co., Ltd., Tianjin 300385, P.R. China
| | - Zijun Xing
- Institute of Biomedical Science, Tianjin Kang Ting Biological Engineering Co., Ltd., Tianjin 300385, P.R. China
| | - Juming Zhan
- Institute of Biomedical Science, Tianjin Kang Ting Biological Engineering Co., Ltd., Tianjin 300385, P.R. China
| | - Jie Ma
- Institute of Biomedical Science, Tianjin Kang Ting Biological Engineering Co., Ltd., Tianjin 300385, P.R. China
| |
Collapse
|
37
|
Yan XZ, van den Beucken JJJP, Yuan C, Jansen JA, Yang F. Spheroid formation and stemness preservation of human periodontal ligament cells on chitosan films. Oral Dis 2018. [DOI: 10.1111/odi.12855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- X-Z Yan
- Department of Periodontology; School and Hospital of Stomatology; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Tongji University; Shanghai China
| | - JJJP van den Beucken
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | - C Yuan
- College of Materials Science and Engineering; Tongji University; Shanghai China
| | - JA Jansen
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| | - F Yang
- Department of Biomaterials; Radboud University Medical Center; Nijmegen The Netherlands
| |
Collapse
|
38
|
Moraschini V, Almeida DCF, Calasans-Maia JA, Diuana Calasans-Maia M. The ability of topical and systemic statins to increase osteogenesis around dental implants: a systematic review of histomorphometric outcomes in animal studies. Int J Oral Maxillofac Surg 2018; 47:1070-1078. [PMID: 29352637 DOI: 10.1016/j.ijom.2017.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023]
Abstract
The purpose of this systematic review was to evaluate the quantitative histomorphometric outcomes of animal studies investigating statins as a pro-osteogenic agent to enhance the osseointegration of dental implants. Some animal studies have suggested a beneficial action of statins on bone tissue. Electronic and manual literature searches, without date or language restriction, were performed by two independent review authors up to February 2017. Eligibility criteria included animal trials quantitatively analysing the pro-osteogenic effect of statins on dental implants. The quality of the included studies was assessed using the ARRIVE guidelines. The search and selection process yielded 12 studies, published between 2004 and 2015. The experimental animals models used were rats and dogs. The statins used in the studies were simvastatin and fluvastatin, which were administered locally or systemically, or applied to the implant surface. All of the selected studies showed a statistically significant positive effect of statins on bone formation around implants. The mean quality assessment score (ARRIVE) of the studies was 11.5±2.27 out of a possible total of 25 points. The histomorphometric data from available preclinical studies suggest a positive effect of statins on increasing osteogenesis around dental implants.
Collapse
Affiliation(s)
- V Moraschini
- Department of Periodontology, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.
| | - D C F Almeida
- Department of Implantology, Brazilian Air Force, Odontoclínica de Aeronáutica Santos-Dumont, Rio de Janeiro, Brazil
| | - J A Calasans-Maia
- Department of Orthodontic, School of Dentistry, Fluminense Federal University, Rio de Janeiro, Brazil
| | - M Diuana Calasans-Maia
- Department of Oral Surgery, School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Shalini HS, Vandana KL. Direct application of autologous periodontal ligament stem cell niche in treatment of periodontal osseous defects: A randomized controlled trial. J Indian Soc Periodontol 2018; 22:503-512. [PMID: 30631229 PMCID: PMC6305096 DOI: 10.4103/jisp.jisp_92_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives: The periodontal regenerative techniques using growth factors and stem cells are gaining momentum in periodontics. However, relatively little is known about the biological process and the potential role of direct transplantation of autologous periodontal ligament stem cells (PDLSC) niche in promoting periodontal regeneration. Aim: The aim of this is to clinically and to radiographically evaluate the effects of direct transplantation of autologous PDLSC niche (A-PDLSc Ni) in intrabony defects. Materials and Methods: Among 28 patients, 14 sites in test group were treated with open flap debridement (OFD) followed by direct transplantation of A-PDLSc Ni and other 14 sites in control group were treated with OFD. Clinical and radiographic assessment was done for each site before surgical therapy and at intervals of 3, 6, 9, and 12 months using radiovisiography. For clinical and radiographic parameters, intragroup comparison was made by paired t-test and unpaired t-test for intergroup comparisons. Results: The result showed that significant reduction (P < 0.05) of clinical parameters in both the OFD and A-PDLSc Ni groups. Radiographic parameters such as alveolar crest changes, defect area resolution were not statistically significant in both the OFD and A-PDLSc Ni groups whereas improvement in defect density was statistically significant (P < 0.05) only in the autologous periodontal ligament stem cell niche group. Conclusion: In the present study, treatment of intrabony defect by direct transplantation of autologous periodontal ligament stem cells niche in comparison with OFD showed a significant reduction in probing pocket depth (PPD), gain in clinical attachment level, and there was no gingival recession seen owing to thick gingiva. Radiographically, there was alveolar crest improvement, decrease in defect area, and increase in defect density in A-PDLSC Ni group.
Collapse
|
40
|
Engineered scaffolds and cell-based therapy for periodontal regeneration. J Appl Biomater Funct Mater 2017; 15:e303-e312. [PMID: 29131300 DOI: 10.5301/jabfm.5000389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main objective of regenerative periodontal therapy is to completely restore the periodontal tissues lost. This review summarizes the most recent evidence in support of scaffold- and cell-based tissue engineering, which are expected to play a relevant role in next-generation periodontal regenerative therapy. METHODS A literature search (PubMed database) was performed to analyze more recently updated articles regarding periodontal regeneration, scaffolds and cell-based technologies. RESULTS Evidence supports the importance of scaffold physical cues to promote periodontal regeneration, including scaffold multicompartmentalization and micropatterning. The in situ delivery of biological mediators and/or cell populations, both stem cells and already differentiated cells, has shown promising in vivo efficacy. CONCLUSIONS Porous scaffolds are pivotal for clot stabilization, wound compartmentalization, cell homing and cell nutrients delivery. Given the revolutionary introduction of rapid prototyping technique and cell-based therapies, the fabrication of custom-made scaffolds is not far from being achieved.
Collapse
|
41
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Alveolar bone tissue engineering in critical-size defects of experimental animal models: a systematic review and meta-analysis. J Tissue Eng Regen Med 2017; 11:2935-2949. [PMID: 27524517 DOI: 10.1002/term.2198] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/07/2016] [Accepted: 03/14/2016] [Indexed: 01/17/2023]
Abstract
Regeneration of large, 'critical-size' bone defects remains a clinical challenge. Bone tissue engineering (BTE) is emerging as a promising alternative to autogenous, allogeneic and biomaterial-based bone grafting. The objective of this systematic review was to answer the focused question: in animal models, do cell-based BTE strategies enhance regeneration in alveolar bone critical-size defects (CSDs), compared with grafting with only biomaterial scaffolds or autogenous bone? Following PRISMA guidelines, electronic databases were searched for controlled animal studies reporting maxillary or mandibular CSD and implantation of mesenchymal stem cells (MSCs) or osteoblasts (OBs) seeded on biomaterial scaffolds. A random effects meta-analysis was performed for the outcome histomorphometric new bone formation (%NBF). Thirty-six studies were included that reported on large- (monkeys, dogs, sheep, minipigs) and small-animal (rabbits, rats) models. On average, studies presented with an unclear-to-high risk of bias and short observation times. In most studies, MSCs or OBs were used in combination with alloplastic mineral-phase scaffolds. In five studies, cells were modified by ex vivo gene transfer of bone morphogenetic proteins (BMPs). The meta-analysis indicated statistically significant benefits in favour of: (1) cell-loaded vs. cell-free scaffolds [weighted mean difference (WMD) 15.59-49.15% and 8.60-13.85% NBF in large- and small-animal models, respectively]; and (2) BMP-gene-modified vs. unmodified cells (WMD 10.06-20.83% NBF in small-animal models). Results of cell-loaded scaffolds vs. autogenous bone were inconclusive. Overall, heterogeneity in the meta-analysis was high (I2 > 90%). In summary, alveolar bone regeneration is enhanced by addition of osteogenic cells to biomaterial scaffolds. The direction and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of BTE. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
42
|
Zwetsloot PP, Van Der Naald M, Sena ES, Howells DW, IntHout J, De Groot JA, Chamuleau SA, MacLeod MR, Wever KE. Standardized mean differences cause funnel plot distortion in publication bias assessments. eLife 2017; 6:24260. [PMID: 28884685 PMCID: PMC5621838 DOI: 10.7554/elife.24260] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/21/2017] [Indexed: 01/07/2023] Open
Abstract
Meta-analyses are increasingly used for synthesis of evidence from biomedical research, and often include an assessment of publication bias based on visual or analytical detection of asymmetry in funnel plots. We studied the influence of different normalisation approaches, sample size and intervention effects on funnel plot asymmetry, using empirical datasets and illustrative simulations. We found that funnel plots of the Standardized Mean Difference (SMD) plotted against the standard error (SE) are susceptible to distortion, leading to overestimation of the existence and extent of publication bias. Distortion was more severe when the primary studies had a small sample size and when an intervention effect was present. We show that using the Normalised Mean Difference measure as effect size (when possible), or plotting the SMD against a sample size-based precision estimate, are more reliable alternatives. We conclude that funnel plots using the SMD in combination with the SE are unsuitable for publication bias assessments and can lead to false-positive results.
Collapse
Affiliation(s)
- Peter-Paul Zwetsloot
- Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Mira Van Der Naald
- Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| | - Emily S Sena
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David W Howells
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Joanna IntHout
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joris Ah De Groot
- Julius Center for Health Sciences and Primary care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Steven Aj Chamuleau
- Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Malcolm R MacLeod
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kimberley E Wever
- Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
43
|
Yin X, Li P, Li Y, Cai Y, Wen J, Luan Q. Growth/differentiation factor-5 promotes in vitro/vivo periodontal specific differentiation of induced pluripotent stem cell-derived mesenchymal stem cells. Exp Ther Med 2017; 14:4111-4117. [PMID: 29067102 PMCID: PMC5647693 DOI: 10.3892/etm.2017.5030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) represent a promising alternative source of MSCs for effective periodontal regeneration. Scientific evidence has demonstrated that growth/differentiation factor-5 (GDF-5) supports regeneration of periodontal tissues and has a key role in MSC differentiation. The present study investigated the effects of recombinant human GDF-5 (rhGDF-5) on periodontal specific differentiation of iPSC-derived MSCs (iPSC-MSCs) and bone marrow mesenchymal stem cells (BMSCs). rhGDF-5 treatment in vitro significantly enhanced the expression levels of marker genes associated with osteogenesis (OCN), fibrogenesis (periostin) and cementogenesis (CAP) in the iPSC-MSCs compared with untreated controls (all P<0.05). Interestingly, the rhGDF-5-treated BMSCs failed to exhibit overexpression of periostin and CAP despite highly upregulated expression of OCN. In the presence of rhGDF-5, both the iPSC-MSCs and BMSCs demonstrated marked formation of mineralized nodules. Notably, rhGDF-5 greatly promoted periodontal specific differentiation of the iPSC-MSCs encapsulated in hyaluronic acid (HA) hydrogels in vivo as determined by immunohistochemical and immunofluorescence staining. The majority of the PKH67-labeled iPSC-MSCs implanted with rhGDF-5 exhibited strong expression of OCN, periostin and CAP. In conclusion, iPSC-MSCs demonstrate high periodontal specific differentiation potential in response to rhGDF-5 both in vitro and in vivo. The delivery of iPSC-MSCs and rhGDF-5 with HA hydrogel may have beneficial effects in regenerative periodontal therapy.
Collapse
Affiliation(s)
- Xiaohui Yin
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Peng Li
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China.,Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Yang Li
- Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Yu Cai
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Jinhua Wen
- Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, P.R. China
| | - Qingxian Luan
- Department of Periodontology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
44
|
Shanbhag S, Stavropoulos A, Suliman S, Hervig T, Mustafa K. Efficacy of Humanized Mesenchymal Stem Cell Cultures for Bone Tissue Engineering: A Systematic Review with a Focus on Platelet Derivatives. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:552-569. [PMID: 28610481 DOI: 10.1089/ten.teb.2017.0093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal bovine serum (FBS) is the most commonly used supplement for ex vivo expansion of human mesenchymal stem cells (hMSCs) for bone tissue engineering applications. However, from a clinical standpoint, it is important to substitute animal-derived products according to current good manufacturing practice (cGMP) guidelines. Humanized alternatives to FBS include three categories of products: human serum (HS), human platelet derivatives (HPDs)-including platelet lysate (PL) or platelet releasate (PR), produced by freeze/thawing or chemical activation of platelet concentrates, respectively, and chemically defined media (serum-free) (CDM). In this systematic literature review, the in vitro and in vivo osteogenic potential of hMSCs expanded in humanized (HS-, HPD-, or CDM-supplemented) media versus hMSCs expanded in FBS-supplemented media, was compared. In addition, PL and PR were compared in terms of their growth factor (GF)/cytokine-content and cell-culture efficacy. When using either 10-20% autologous or pooled HS, 3-10% pooled HPDs or CDM supplemented with GFs, in comparison with 10-20% FBS, a majority of studies reported similar or superior in vitro proliferation and osteogenic differentiation, and in vivo bone formation in ectopic or orthotopic rodent models. Moreover, a trend for higher GF content was observed in PL versus PR, although evidence for cell culture efficacy is limited. In summary, humanized supplements seem at least equally effective as FBS for hMSC expansion and osteogenic differentiation. Although pooled HPDs appear to be the most favorable supplement for large-scale hMSC expansion, further efforts are needed to standardize the preparation and composition of these products in compliance with cGMP standards.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Salwa Suliman
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Tor Hervig
- 3 Department of Immunology and Transfusion Medicine, Haukeland University Hospital , Bergen, Norway
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| |
Collapse
|
45
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Bone tissue engineering in oral peri-implant defects in preclinical in vivo research: A systematic review and meta-analysis. J Tissue Eng Regen Med 2017; 12:e336-e349. [PMID: 28095650 DOI: 10.1002/term.2412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/23/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
The regeneration and establishment of osseointegration within oral peri-implant bone defects remains a clinical challenge. Bone tissue engineering (BTE) is emerging as a promising alternative to autogenous and/or biomaterial-based bone grafting. The objective of this systematic review was to answer the focused question: in animal models, do cell-based BTE strategies enhance bone regeneration and/or implant osseointegration in experimental peri-implant defects, compared with grafting with autogenous bone or only biomaterial scaffolds? Electronic databases were searched for controlled animal studies reporting on peri-implant defects and implantation of mesenchymal stem cells (MSC) or other cells seeded on biomaterial scaffolds, following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Random effects meta-analyses were performed for the outcomes histomorphometric bone area fraction (BA) and bone-to-implant contact (BIC). Nineteen studies reporting on large animal models (dogs and sheep) were included. Experimental defects were created surgically (16 studies) or via ligature-induced peri-implantitis (LIPI, three studies). In general, studies presented with an unclear to high risk of bias. In most studies, MSC were used in combination with alloplastic mineral phase or polymer scaffolds; no study directly compared cell-loaded scaffolds vs. autogenous bone. In three studies, cells were also modified by ex vivo gene transfer of osteoinductive factors. The meta-analyses indicated statistically significant benefits in favour of: (a) cell-loaded vs. cell-free scaffolds [weighted mean differences (WMD) of 10.73-12.30% BA and 11.77-15.15% BIC] in canine surgical defect and LIPI models; and (b) gene-modified vs. unmodified cells (WMD of 29.44% BA and 16.50% BIC) in canine LIPI models. Overall, heterogeneity in the meta-analyses was high (I2 70-88%); considerable variation was observed among studies regarding the nature of cells and scaffolds used. In summary, bone regeneration and osseointegration in peri-implant defects are enhanced by the addition of osteogenic cells to biomaterial scaffolds. Although the direction of treatment outcome is clearly in favour of BTE strategies, due to the limited magnitude of treatment effect observed, no conclusive statements regarding the clinical benefit of such procedures for oral indications can yet be made. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway.,Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Jens R Nyengaard
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Stavropoulos
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Norway
| |
Collapse
|
46
|
Shanbhag S, Pandis N, Mustafa K, Nyengaard JR, Stavropoulos A. Cell Cotransplantation Strategies for Vascularized Craniofacial Bone Tissue Engineering: A Systematic Review and Meta-Analysis of Preclinical In Vivo Studies. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:101-117. [PMID: 27733094 DOI: 10.1089/ten.teb.2016.0283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The regenerative potential of tissue-engineered bone constructs may be enhanced by in vitro coculture and in vivo cotransplantation of vasculogenic and osteogenic (progenitor) cells. The objective of this study was to systematically review the literature to answer the focused question: In animal models, does cotransplantation of osteogenic and vasculogenic cells enhance bone regeneration in craniofacial defects, compared with solely osteogenic cell-seeded constructs? Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, electronic databases were searched for controlled animal studies reporting cotransplantation of endothelial cells (ECs) with mesenchymal stem cells (MSCs) or osteoblasts in craniofacial critical size defect (CSD) models. Twenty-two studies were included comparing outcomes of MSC/scaffold versus MSC+EC/scaffold (co)transplantation in calvarial (n = 15) or alveolar (n = 7) CSDs of small (rodents, rabbits) and large animal (minipigs, dogs) models. On average, studies presented with an unclear to high risk of bias. MSCs were derived from autologous, allogeneic, xenogeneic, or human (bone marrow, adipose tissue, periosteum) sources; in six studies, ECs were derived from MSCs by endothelial differentiation. In most studies, MSCs and ECs were cocultured in vitro (2-17 days) before implantation. Coculture enhanced MSC osteogenic differentiation and an optimal MSC:EC seeding ratio of 1:1 was identified. Alloplastic copolymer or composite scaffolds were most often used for in vivo implantation. Random effects meta-analyses were performed for histomorphometric and radiographic new bone formation (%NBF) and vessel formation in rodents' calvarial CSDs. A statistically significant benefit in favor of cotransplantation versus MSC-only transplantation for radiographic %NBF was observed in rat calvarial CSDs (weighted mean difference 7.80% [95% confidence interval: 1.39-14.21]); results for histomorphometric %NBF and vessel formation were inconclusive. Overall, heterogeneity in the meta-analyses was high (I2 > 80%). In summary, craniofacial bone regeneration is enhanced by cotransplantation of vasculogenic and osteogenic cells. Although the direction of treatment outcome is in favor of cotransplantation strategies, the magnitude of treatment effect does not seem to be of relevance, unless proven otherwise in clinical studies.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway .,2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| | - Nikolaos Pandis
- 3 Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern , Bern, Switzerland
| | - Kamal Mustafa
- 1 Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen , Bergen, Norway
| | - Jens R Nyengaard
- 4 Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Aarhus University , Aarhus, Denmark
| | - Andreas Stavropoulos
- 2 Department of Periodontology, Faculty of Odontology, Malmö University , Malmö, Sweden
| |
Collapse
|
47
|
Jian CX, Fan QS, Hu YH, He Y, Li MZ, Zheng WY, Ren Y, Li CJ. IL-7 suppresses osteogenic differentiation of periodontal ligament stem cells through inactivation of mitogen-activated protein kinase pathway. Organogenesis 2016; 12:183-193. [PMID: 27579861 DOI: 10.1080/15476278.2016.1229726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are tissue-specific mesenchymal stem cells (MSCs), having an important role in regenerative therapy for teeth loss. Interleukin-7 (IL-7) is a key cytokine produced by stromal cells including MSCs, and exhibits specific roles for B and T cell development and osteoblasts differentiation of multiple myeloma. However, the effect of IL-7 on osteogenic differentiation of PDLSCs remains unclear. Therefore, in the present study we determined whether IL-7 affects the proliferation and osteogenic differentiation of PDLSCs in vitro and explored the associated signaling pathways for IL-7-mediated cell differentiation. The results demonstrated that the isolated human PDLSCs possessed MSCs features, highly expressing CD90, CD44, CD105, CD29 and CD73, and almost did not expressed CD34, CD45, CD11b, CD14 and CD117. IL-7 could not significantly affect the proliferation of PDLSCs, but it decreased their osteogenic differentiation and inhibited alkaline phosphatase (ALP) activity. The results of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting exhibited that the expression levels of Runx-2, SP7 and osteocalcin (OCN) were significantly reduced by IL-7. Further studies indicated that IL-7 did not significantly change JNK, ERK1/2 and p38 protein production, but markedly suppressed their phosphorylation levels. These data suggest that IL-7 inhibits the osteogenic differentiation of PDLSCs probably via inactivation of mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Cong-Xiang Jian
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Quan-Shui Fan
- b Chengdu Military Garrison Center for Disease Control and Prevention , Chengdu , Sichuan , China
| | - Yong-He Hu
- b Chengdu Military Garrison Center for Disease Control and Prevention , Chengdu , Sichuan , China
| | - Yong He
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Ming-Zhe Li
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Wei-Yin Zheng
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Yu Ren
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Chen-Jun Li
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| |
Collapse
|
48
|
Liu F, Zhou ZF, An Y, Yu Y, Wu RX, Yin Y, Xue Y, Chen FM. Effects of cathepsin K on Emdogain-induced hard tissue formation by human periodontal ligament stem cells. J Tissue Eng Regen Med 2016; 11:2922-2934. [DOI: 10.1002/term.2195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/22/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Fen Liu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
- Department of Oral Medicine; Northwest Women's and Children's Hospital; Xi'an China
| | - Zhi-Fei Zhou
- State Key Laboratory of Military Stomatology, Department of Paediatric Dentistry; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Ying An
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| | - Yang Xue
- State Key Laboratory of Military Stomatology, Department of Oral Biology; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery; School of Stomatology, Fourth Military Medical University; Xi'an Shaanxi China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology; School of Stomatology, Fourth Military Medical University; Xi'an China
- Shaanxi Key Laboratory of Stomatology, Biomaterials Unit; School of Stomatology, Fourth Military Medical University; Xi'an China
| |
Collapse
|
49
|
Arora H, Ivanovski S. Melatonin as a pro-osteogenic agent in oral implantology: a systematic review of histomorphometric outcomes in animals and quality evaluation using ARRIVE guidelines. J Periodontal Res 2016; 52:151-161. [DOI: 10.1111/jre.12386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- H. Arora
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| | - S. Ivanovski
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| |
Collapse
|
50
|
Vandana KL, Desai R, Dalvi PJ. Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int J Stem Cells 2015; 8:235-7. [PMID: 26634072 PMCID: PMC4651288 DOI: 10.15283/ijsc.2015.8.2.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Periodontal regeneration represents the ultimate goal of periodontal therapy. The current regenerative techniques have limited success rates especially in advanced periodontal defects. Currently the research is focused on novel cell-based approaches for periodontal regeneration to overcome the limitations of existing treatment. The human clinical trial on stem cells based periodontal regeneration is promising. The plethora of animal studies provide sound evidence to support the belief that periodontal ligament stem cells (PDLSCs) can be used for periodontal regeneration. The direct application of autologous periodontal stem cells in treatment of intrabony defects is attempted for the first time in periodontal literature. Stem cell Application in Periodontal Regeneration Technique (SAI-PRT) using direct PDLSCs has overcome the limitations and concerns of ex- vivo stem cell culture methods like high cost, technique sensitivity, loss of stemness during cell passage, genetic manipulation and tumorigenic potential. Clinical feasibility, success and cost effectiveness over currently available techniques are encouraging. The clinical utility of this novel idea is recommended.
Collapse
Affiliation(s)
- K L Vandana
- Department of Periodontics, College of Dental Sciences, Davangere
| | - Rajendra Desai
- Department of Oral and Maxillofacial Surgery, College of Dental Sciences, Davangere
| | | |
Collapse
|