1
|
Morshed S, Latif R, Davies TF. Signal responses to neutral TSH receptor antibody - A cycle of damage in the pathophysiology of Graves' disease. J Autoimmun 2023; 136:103012. [PMID: 36898184 DOI: 10.1016/j.jaut.2023.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Graves' disease is associated with TSH receptor (TSHR) antibodies of variable bioactivity including "neutral" antibodies (N-TSHR-Ab) that bind to the hinge region of the TSHR ectodomain. We have previously found that such antibodies induced thyroid cell apoptosis via excessive mitochondrial and ER stress with elevated reactive oxygen species (ROS). However, the detailed mechanisms by which excess ROS was induced remained unclear. OBJECTIVES To determine how ROS is induced by N-TSHR-monoclonal antibodies (mAb, MC1) mediated signaling and to measure stress in polyorganelles. METHODS Total ROS and mitochondrial ROS was measured by fluorometry of live rat thyrocytes. Live-cell imaging of labelled organelles was carried out using red or green fluorescent dyes. Proteins were detected by Li-Cor Western immunoblots and immunocytochemistry. RESULTS Endocytosis of N-TSHR-mAb induced ROS, disturbed vesicular trafficking, damaged organelles and failed to induce lysosomal degradation and autophagy. We found that the endocytosis triggered signaling cascades involving Gα13 and PKC-δ leading to intrinsic thyroid cell apoptosis. CONCLUSIONS These studies define the mechanism of ROS induction in thyroid cells following the endocytosis of N-TSHR-Ab/TSHR complexes. We suggest that a viscous cycle of stress initiated by cellular ROS and induced by N-TSHR-mAbs may orchestrate overt intra-thyroidal, retro-orbital, and intra-dermal inflammatory autoimmune reactions in patients with Graves' disease.
Collapse
Affiliation(s)
- Syed Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J, Peters VA Medical Center, New York, NY, USA.
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J, Peters VA Medical Center, New York, NY, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J, Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Abstract
Bioassays using animal models were essential tools in the discovery of thyrotropin and in enhancing our understanding of the physiology of the pituitary-thyroid axis. These same bioassays were also instrumental in the discovery of autoantibodies to the thyrotropin receptor (TSH-R-Ab) and in identifying their role in the pathophysiology of Graves' disease. The development of cell-based bioassays led to further advances in our knowledge of the functional activity of TSH-R-Ab and to the discovery that TSH-R-Ab can be either thyroid-stimulating or thyroid blocking, and that they occur in other types of autoimmune thyroid diseases (AITD) besides Graves' disease. More recently, TSH-R-Ab bioassays have been advanced from research tools to clinical laboratory tests. Whereas TSH-R-Ab can be measured with competitive-binding immunoassays, these assays do not provide information on the functional activity of TSH-R-Ab. Bioassays, in contrast, can differentiate between the stimulatory or blocking activity of TSH-R-Ab which provides clinically useful information that can inform the management of patients with AITD. The clinical use of TSH-R-Ab bioassays, however, has been limited to-date by their inherent complexity and long turn-around-time. Recent advances in biosensors have been applied to the development of TSH-R-Ab bioassays that are rapid and simple to perform. We now are entering an era in which bioassays for TSH-R-Ab can be measured routinely by virtually any clinical laboratory.
Collapse
Affiliation(s)
- Paul D Olivo
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University Medical School, St. Louis, MO, USA.
| |
Collapse
|
3
|
Fernando R, Caldera O, Smith TJ. Therapeutic IGF-I receptor inhibition alters fibrocyte immune phenotype in thyroid-associated ophthalmopathy. Proc Natl Acad Sci U S A 2021; 118:e2114244118. [PMID: 34949642 PMCID: PMC8719891 DOI: 10.1073/pnas.2114244118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 01/20/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) represents a disfiguring and potentially blinding autoimmune component of Graves' disease. It appears to be driven, at least in part, by autoantibodies targeting the thyrotropin receptor (TSHR)/insulin-like growth factor I receptor (IGF-IR) complex. Actions mediated through either TSHR or IGF-IR are dependent on IGF-IR activity. CD34+ fibrocytes, monocyte lineage cells, reside uniquely in the TAO orbit, where they masquerade as CD34+ orbital fibroblasts. Fibrocytes present antigens to T cells through their display of the major histocompatibility complex class II (MHC II) while providing costimulation through B7 proteins (CD80, CD86, and programmed death-ligand 1 [PD-L1]). Here, we demonstrate that teprotumumab, an anti-IGF-IR inhibitor, attenuates constitutive expression and induction by the thyroid-stimulating hormone of MHC II and these B7 members in CD34+ fibrocytes. These actions are mediated through reduction of respective gene transcriptional activity. Other IGF-IR inhibitors (1H7 and linsitinib) and knocking down IGF-IR gene expression had similar effects. Interrogation of circulating fibrocytes collected from patients with TAO, prior to and following teprotumumab treatment in vivo during a phase 2 clinical trial, demonstrated reductions in cell-surface MHC II and B7 proteins similar to those found following IGF-IR inhibitor treatment in vitro. Teprotumumab therapy reduces levels of interferon-γ and IL-17A expression in circulating CD4+ T cells, effects that may be indirect and mediated through actions of the drug on fibrocytes. Teprotumumab was approved by the US Food and Drug Administration for TAO. Our current findings identify potential mechanisms through which teprotumumab might be eliciting its clinical response systemically in patients with TAO, potentially by restoring immune tolerance.
Collapse
Affiliation(s)
- Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Oshadi Caldera
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
4
|
Rescue of thyroid cells from antibody induced cell death via induction of autophagy. J Autoimmun 2021; 126:102746. [PMID: 34801870 DOI: 10.1016/j.jaut.2021.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Graves' disease (GD) is associated with thyroid stimulating hormone (TSH) receptor (TSHR) antibodies of variable bioactivity. We have previously characterized "neutral" TSHR antibodies (N-TSHR-Abs) that bind to the hinge region of the TSHR ectodomain. We showed that an N-TSHR monoclonal antibody (mAb) failed to induce any G proteins to sustain survival signaling and lead to excessive stress and apoptosis. Furthermore, the addition of TSH, or the antioxidant N-acetyl-l-cysteine (NAC), rescued N-TSHR-mAb-induced apoptotic death. However, the detailed mechanisms of this rescue remained unclear. METHODS Autophagy is activated in response to diverse stress related stimuli so we have, therefore, studied the autophagy response in rat thyroid cells (FRTL-5) during N-TSHR-mAb induced thyrocyte stress and apoptosis using the In Cell Western technique for quantitation along with immunocytochemistry. RESULTS Under starvation conditions with N-TSHR-mAb the addition of TSH or NAC prevented thyroid cell death by enhancing autophagy. This was evidenced by elevated levels of autophagy related proteins including beclin 1, LC3A, LC3B, ULK1, p62, and also activated pink and perkin mitophagy related proteins. The phenomenon was further confirmed by image analyses using Cyto-ID and Mito-ID autophagy detection systems. We also found that either TSH or NAC enhanced PKA, Akt, mTORC, AMPK, Sirtuins, PGC1α, NRF-2, mitofusin-2, TFAM and catalase in the N-TSHR-mAb stressed cells. Thus TSH or NAC restored cell survival signaling which reduced cell stress and enhanced mitochondrial biogenesis. The N-TSHR-mAb also activated cytochrome-C, Bax, caspase-9, caspase-3A, and had less effect on FADD or caspase-8 indicating activation of the intrinsic pathway for apoptosis. CONCLUSIONS These findings indicated that TSH or antioxidant can rescue thyroid cells from N-TSHR-mAb induced apoptosis via enhanced autophagy. These observations signify that N-TSHR-mAb in GD under low TSH conditions caused by the hyperthyroidism could be detrimental for thyrocyte survival which would be another factor able to precipitate ongoing autoinflammation.
Collapse
|
5
|
Teprotumumab in Thyroid-Associated Ophthalmopathy: Rationale for Therapeutic Insulin-Like Growth Factor-I Receptor Inhibition. J Neuroophthalmol 2021; 40:74-83. [PMID: 32040069 DOI: 10.1097/wno.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune component of Graves' disease for which no currently available medical therapy provides reliable and safe benefit. Based on insights generated experimentally over the past several decades, the insulin-like growth factor-I receptor (IGF-IR) has been implicated in the pathogenesis of TAO. Furthermore, an IGF-IR inhibitor, teprotumumab, has emerged from 2 clinical trials as a promising treatment for active, moderate to severe TAO. This brief review intends to provide an overview of the rationale underlying the development of teprotumumab for this disease. It is possible that teprotumumab will soon take its place in our therapeutic armamentarium for active TAO.
Collapse
|
6
|
Smith TJ. Thyroid-associated ophthalmopathy: Emergence of teprotumumab as a promising medical therapy. Best Pract Res Clin Endocrinol Metab 2020; 34:101383. [PMID: 32088116 PMCID: PMC7344338 DOI: 10.1016/j.beem.2020.101383] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid-associated ophthalmopathy (TAO) remains a vexing autoimmune component of Graves' disease that can diminish the quality of life as a consequence of its impact on visual function, physical appearance and emotional well-being. Because of its relative rarity and variable presentation, the development of highly effective and well-tolerated medical therapies for TAO has been slow relative to other autoimmune diseases. Contributing to the barriers of greater insight into TAO has been the historical absence of high-fidelity preclinical animal models. Despite these challenges, several agents, most developed for treatment of other diseases, have found their way into consideration for use in active TAO through repurposing. Among these, teprotumumab is a fully human inhibitory monoclonal antibody against the insulin-like growth factor I receptor. It has shown remarkable effectiveness in moderate to severe, active TAO in two completed multicenter, double masked, and placebo controlled clinical trials. The drug exhibits a favorable safety profile. Teprotumumab has recently been approved by the U.S. F.D.A, and may rapidly become the first line therapy for this disfiguring and potentially blinding condition.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
7
|
Smith TJ, Bartalena L. Will biological agents supplant systemic glucocorticoids as the first-line treatment for thyroid-associated ophthalmopathy? Eur J Endocrinol 2019; 181:D27-D43. [PMID: 31370005 PMCID: PMC7398270 DOI: 10.1530/eje-19-0389] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022]
Abstract
In this article, the two authors present their opposing points of view concerning the likelihood that glucocorticoids will be replaced by newly developed biological agents in the treatment of active, moderate-to-severe thyroid-associated ophthalmopathy (TAO). TAO is a vexing, disfiguring and potentially blinding autoimmune manifestation of thyroid autoimmunity. One author expresses the opinion that steroids are nonspecific, frequently fail to improve the disease and can cause sometimes serious side effects. He suggests that glucocorticoids should be replaced as soon as possible by more specific and safer drugs, once they become available. The most promising of these are biological agents. The other author argues that glucocorticoids are proven effective and are unlikely to be replaced by biologicals. He reasons that while they may not uniformly result in optimal benefit, they have been proven effective in many reports. He remains open minded about alternative therapies such as biologicals but remains skeptical that they will replace steroids as the first-line therapy for active, moderate-to-severe TAO without head-to-head comparative clinical trials demonstrating superiority. Despite these very different points of view, both authors are optimistic about the availability of improved medical therapies for TAO, either as single agents or in combination. Further, both agree that better treatment options are needed to improve the care of our patients with active moderate-to-severe TAO.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Division of metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Luigi Bartalena
- Department of Medicine & Surgery,University of Insubria, Endocrine Unit, ASST dei Sette Laghi, Viale Borri, 57, 21100 Varese, Italy
| |
Collapse
|
8
|
Roggenbuck JJ, Veiczi M, Conrad K, Schierack P, Wunderlich G, Kotzerke J, Roggenbuck D, Zöphel K. A novel third-generation TSH receptor antibody (TRAb) enzyme-linked immunosorbent assay based on a murine monoclonal TSH receptor-binding antibody. Immunol Res 2019; 66:768-776. [PMID: 30684216 DOI: 10.1007/s12026-018-9062-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
TSH receptor (TSHR) autoantibody (TRAb) is the serological hallmark of Graves' disease (GD). Third-generation enzyme-linked immunosorbent assays (ELISAs) using monoclonal TRAbs instead of TSH have been found useful for TRAb analysis recently. For the first time, a mouse monoclonal antibody (mAb) against TSHR was analyzed for TRAb detection and compared with human mAb M22 and TSH by the same competitive binding assay technique. A mouse monoclonal antibody (T7) binding to the TSH receptor and inhibiting TSH binding was generated and used for TRAb analysis in a third-generation ELISA. Obtained TRAb levels were compared with a second-generation TRAb assay employing bovine TSH and a third-generation assay with human mAb M22 as TSHR-binding reagents by investigating 89 patients with GD, 56 with Hashimoto's thyroiditis (HT), 73 with non-autoimmune thyroid diseases, 17 with rheumatoid arthritis, and 100 healthy subjects. The T7-based TRAb ELISA did not reveal a significantly different assay performance (area under the curve [AUC]) in contrast to the TSH and M22-based TRAb ELISAs by receiver operating characteristic (ROC) curve analysis (AUC-T7 0.967, AUC-TSH 0.972, AUC-M22 0.958, p > 0.05, respectively). After adjustment of cutoffs by ROC, all three TRAb ELISAs demonstrated sensitivities and specificities above 89.9% and 96.0%, respectively. Both third-generation TRAb ELISAs showed a tendency for a higher prevalence of TRAb positives in HT in contrast to the second-generation ELISA. Mouse mAbs against the TSHR may be used for the reliable detection of TRAb by third-generation TRAb ELISA. The earlier reported higher sensitivity of third-generation TRAb ELISA in GD needs to be considered in the context of a slightly lower specificity regarding HT.
Collapse
Affiliation(s)
- Johannes J Roggenbuck
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307, Dresden, Germany
| | | | - Karsten Conrad
- Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Senftenberg, Germany
| | - Gerd Wunderlich
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307, Dresden, Germany
| | - Joerg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307, Dresden, Germany
| | - Dirk Roggenbuck
- Medipan GmbH, Dahlewitz, Berlin, Germany.,Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Senftenberg, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
9
|
Smith TJ. Challenges in Orphan Drug Development: Identification of Effective Therapy for Thyroid-Associated Ophthalmopathy. Annu Rev Pharmacol Toxicol 2018; 59:129-148. [PMID: 30044728 DOI: 10.1146/annurev-pharmtox-010617-052509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO), the ocular manifestation of Graves' disease, is a process in which orbital connective tissues and extraocular muscles undergo inflammation and remodeling. The condition seems to result from autoimmune responses to antigens shared by the thyroid and orbit. The thyrotropin receptor (TSHR), expressed at low levels in orbital tissues, is a leading candidate antigen. Recent evidence suggests that another protein, the insulin-like growth factor-I receptor (IGF-IR), is overexpressed in TAO, and antibodies against IGF-IR have been detected in patients with the disease. Furthermore, TSHR and IGF-IR form a physical and functional complex, and signaling initiated at TSHR requires IGF-IR activity. Identification of therapy for this rare disease has proven challenging and currently relies on nonspecific and inadequate agents, thus representing an important unmet need. A recently completed therapeutic trial suggests that inhibiting IGF-IR activity with a monoclonal antibody may be an effective and safe treatment for active TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA;
| |
Collapse
|
10
|
Smith TJ. New advances in understanding thyroid-associated ophthalmopathy and the potential role for insulin-like growth factor-I receptor. F1000Res 2018; 7:134. [PMID: 29744034 PMCID: PMC5795270 DOI: 10.12688/f1000research.12787.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), a localized periocular manifestation of the autoimmune syndrome known as Graves’ disease, remains incompletely understood. Discussions of its pathogenesis are generally focused on the thyrotropin receptor, the proposed role for which is supported by substantial evidence. Considerations of any involvement of the insulin-like growth factor-I receptor (IGF-IR) in the disease are frequently contentious. In this brief, topically focused review, I have attempted to provide a balanced perspective based entirely on experimental results that either favor or refute involvement of IGF-IR in TAO. Discussion in this matter seems particularly timely since the currently available treatments of this disfiguring and potentially sight-threatening disease remain inadequate. Importantly, no medical therapy has thus far received approval from the US Food and Drug Administration. Results from a very recently published clinical trial assessing the safety and efficacy of teprotumumab, an inhibitory human anti–IGF-IR monoclonal antibody, in active, moderate to severe TAO are extremely encouraging. That double-masked, placebo-controlled study involved 88 patients and revealed unprecedented clinical responses in the improvement of proptosis and clinical activity as well as a favorable safety profile. Should those results prove reproducible in an ongoing phase III trial, therapeutic inhibition of IGF-IR could become the basis for paradigm-shifting treatment of this vexing disease.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
11
|
Shen Y, Hao T, Ou S, Hu C, Chen L. Applications and perspectives of nanomaterials in novel vaccine development. MEDCHEMCOMM 2018; 9:226-238. [PMID: 30108916 PMCID: PMC6083789 DOI: 10.1039/c7md00158d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/17/2017] [Indexed: 01/22/2023]
Abstract
Vaccines show great potential for both prophylactic and therapeutic use in infections, cancer, and other diseases. With the rapid development of bio-technologies and materials sciences, nanomaterials are playing essential roles in novel vaccine formulations and can boost antigen effectiveness by operating as delivery systems to enhance antigen processing and/or as immune-potentiating adjuvants to induce or potentiate immune responses. The effect of nanoparticles in vaccinology showed enhanced antigen stability and immunogenicity as well as targeted delivery and slow release. However, obstacles remain due to the lack of fundamental knowledge on the detailed molecular working mechanism and in vivo bio-effects of nanoparticles. This review provides a broad overview of the current improvements in nanoparticles in vaccinology. Modern nanoparticle vaccines are classified by the nanoparticles' action based on either delivery system or immune potentiator approaches. The mechanisms of interaction of nanoparticles with the antigens and the immune system are discussed. Nanoparticle vaccines approved for use are also listed. A fundamental understanding of the in vivo bio-distribution and the fate of nanoparticles will accelerate the rational design of new nanoparticles comprising vaccines in the future.
Collapse
Affiliation(s)
- Yingbin Shen
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Tianyao Hao
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Shiyi Ou
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Churan Hu
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| | - Long Chen
- Department of Food Science and Engineering , School of Science and Engineering , Jinan University , Guangzhou 510632 , Guangdong , China . ; ; ; ; ; ; Tel: +86 138 801 32918
| |
Collapse
|
12
|
Morshed SA, Ma R, Latif R, Davies TF. Biased signaling by thyroid-stimulating hormone receptor-specific antibodies determines thyrocyte survival in autoimmunity. Sci Signal 2018; 11:11/514/eaah4120. [PMID: 29363585 DOI: 10.1126/scisignal.aah4120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thyroid-stimulating hormone receptor (TSHR) is a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (GPCR). Autoimmune hyperthyroidism, commonly known as Graves' disease (GD), is caused by stimulating autoantibodies to the TSHR. We previously described TSHR-specific antibodies (TSHR-Abs) in GD that recognize linear epitopes in the cleavage region of the TSHR ectodomain (C-TSHR-Abs) and induce thyroid cell apoptosis instead of stimulating the TSHR. We found that C-TSHR-Abs entered the cell through clathrin-mediated endocytosis but did not trigger endosomal maturation and failed to undergo normal vesicular sorting and trafficking. We found that stimulating TSHR-Abs (S-TSHR-Abs) activated Gαs and, to a lesser extent, Gαq but that C-TSHR-Abs failed to activate any of the G proteins normally activated in response to TSH. Furthermore, specific inhibition of G proteins in the presence of S-TSHR-mAbs or TSH resulted in a similar failure of endosomal maturation as that caused by C-TSHR-mAbs. Hence, whereas S-TSHR-mAbs and TSH contributed to normal vesicular trafficking of TSHR through the activation of major G proteins, the C-TSHR-Abs resulted in GRK2- and β-arrestin-1-dependent biased signaling, which is interpreted as a danger signal by the cell. Our observations suggest that the binding of antibodies to different TSHR epitopes may decrease cell survival. Antibody-induced cell injury and the response to cell death amplify the loss of self-tolerance, which most likely helps to perpetuate GPCR-mediated autoimmunity.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA.
| | - Risheng Ma
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY 10029, USA
| |
Collapse
|
13
|
Abstract
INTRODUCTION Graves' disease (GD) and thyroid-associated ophthalmopathy (TAO) are thought to result from actions of pathogenic antibodies mediated through the thyrotropin receptor (TSHR). This leads to the unregulated consequences of the antibody-mediated receptor activity in the thyroid and connective tissues of the orbit. Recent studies reveal antibodies that appear to be directed against the insulin-like growth factor-I receptor (IGF-IR). Areas covered: In this brief article, I attempt to review the fundamental characteristics of the TSHR, its role in GD and TAO, and its relationship to IGF-IR. Strong evidence supports the concept that the two receptors form a physical and functional complex and that IGF-IR activity is required for some of the down-stream signaling initiated through TSHR. Recently developed small molecules and monoclonal antibodies that block TSHR and IGF-IR signaling are also reviewed in the narrow context of their potential utility as therapeutics in GD and TAO. The Pubmed database was searched from its inception for relevant publications. Expert opinion: Those agents that can interrupt the TSHR and IGF-IR pathways possess the potential for offering more specific and better tolerated treatments of both hyperthyroidism and TAO. This would spare patients exposure to toxic drugs, ionizing radiation and potentially hazardous surgeries.
Collapse
Affiliation(s)
- Terry Smith
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
14
|
Abstract
The availability of human monoclonal antibodies (MAbs) to the TSHR has enabled major advances in our understanding of how TSHR autoantibodies interact with the receptor. These advances include determination of the crystal structures of the TSHR LRD in complex with a stimulating autoantibody (M22) and with a blocking type autoantibody (K1-70). The high affinity of MAbs for the TSHR makes them particularly suitable for use as ligands in assays for patient serum TSHR autoantibodies. Also, M22 and K1-70 are effective at low concentrations in vivo as TSHR agonists and antagonists respectively. K1-70 has important potential in the treatment of the hyperthyroidism of Graves' disease and Graves' ophthalmopathy. Small molecule TSHR antagonists described to date do not appear to have the potency and/or specificity shown by K1-70. New models of the TSHR ECD in complex with various ligands have been built. These models suggest that initial binding of TSH to the TSHR causes a conformational change in the hormone. This opens a positively charged pocket in receptor-bound TSH which attracts the negatively charged sulphated tyrosine 385 on the hinge region of the receptor. The ensuing movement of the receptor's hinge region may then cause activation. Similar activation mechanisms seem to take place in the case of FSH and the FSHR and LH and the LHR. However, stimulating TSHR autoantibodies do not appear to activate the TSHR in the same way as TSH.
Collapse
Affiliation(s)
- J Furmaniak
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - J Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - R Núñez Miguel
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - B Rees Smith
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| |
Collapse
|
15
|
Morshed SA, Davies TF. Graves' Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies. Horm Metab Res 2015; 47:727-34. [PMID: 26361259 PMCID: PMC5047290 DOI: 10.1055/s-0035-1559633] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The immunologic processes involved in Graves' disease (GD) have one unique characteristic--the autoantibodies to the TSH receptor (TSHR)--which have both linear and conformational epitopes. Three types of TSHR antibodies (stimulating, blocking, and cleavage) with different functional capabilities have been described in GD patients, which induce different signaling effects varying from thyroid cell proliferation to thyroid cell death. The establishment of animal models of GD by TSHR antibody transfer or by immunization with TSHR antigen has confirmed its pathogenic role and, therefore, GD is the result of a breakdown in TSHR tolerance. Here we review some of the characteristics of TSHR antibodies with a special emphasis on new developments in our understanding of what were previously called "neutral" antibodies and which we now characterize as autoantibodies to the "cleavage" region of the TSHR ectodomain.
Collapse
Affiliation(s)
- S A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, James J. Peters VA Medical Center, New York, USA
| | - T F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, James J. Peters VA Medical Center, New York, USA
| |
Collapse
|
16
|
Furmaniak J, Sanders J, Rees Smith B. Blocking type TSH receptor antibodies. AUTO- IMMUNITY HIGHLIGHTS 2013; 4:11-26. [PMID: 26000138 PMCID: PMC4389084 DOI: 10.1007/s13317-012-0028-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/29/2012] [Indexed: 01/12/2023]
Abstract
TSH receptor (TSHR) autoantibodies (TRAbs) play a key role in the pathogenesis of Graves' disease. In the majority of patients, TRAbs stimulate thyroid hormone synthesis via activation of the TSHR (stimulating TRAbs, TSHR agonists). In some patients, TRAbs bind to the receptor but do not cause activation (blocking TRAbs, TSHR antagonists). Isolation of human TSHR monoclonal antibodies (MAbs) with either stimulating (M22 and K1-18) or blocking activities (5C9 and K1-70) has been a major advance in studies on the TSHR. The binding characteristics of the blocking MAbs, their interaction with the TSHR and their effect on TSHR constitutive activity are summarised in this review. In addition, the binding arrangement in the crystal structures of the TSHR in complex with the blocking MAb K1-70 and with the stimulating MAb M22 (2.55 Å and 1.9 Å resolution, respectively) are compared. The stimulating effect of M22 and the inhibiting effect of K1-70 on thyroid hormone secretion in vivo is discussed. Furthermore the ability of K1-70 to inhibit the thyroid stimulating activity of M22 in vivo is shown. Human MAbs which act as TSHR antagonists are potentially important new therapeutics. For example, in Graves' disease, K1-70 may well be effective in controlling hyperthyroidism and the eye signs caused by stimulating TRAb. In addition, hyperthyroidism caused by autonomous TSH secretion should be treatable by K1-70, and 5C9 has the potential to control hyperthyroidism associated with TSHR activating mutations. Furthermore, K1-70 has potential applications in thyroid imaging as well as targeted drug delivery to TSHR expressing tissues.
Collapse
Affiliation(s)
- Jadwiga Furmaniak
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen Cardiff, CF14 5DU UK
| | - Jane Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen Cardiff, CF14 5DU UK
| | - Bernard Rees Smith
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen Cardiff, CF14 5DU UK
| |
Collapse
|
17
|
Dietrich JW, Landgrafe G, Fotiadou EH. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis. J Thyroid Res 2012; 2012:351864. [PMID: 23365787 PMCID: PMC3544290 DOI: 10.1155/2012/351864] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022] Open
Abstract
This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range.
Collapse
Affiliation(s)
- Johannes W. Dietrich
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| | - Gabi Landgrafe
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
- Klinik für Allgemein- und Visceralchirurgie, Agaplesion Bethesda Krankenhaus Wuppertal gGmbH, Hainstraße 35, 42109 Wuppertal, NRW, Germany
| | - Elisavet H. Fotiadou
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| |
Collapse
|
18
|
Núñez Miguel R, Sanders J, Sanders P, Young S, Clark J, Kabelis K, Wilmot J, Evans M, Roberts E, Hu X, Furmaniak J, Rees Smith B. Similarities and differences in interactions of thyroid stimulating and blocking autoantibodies with the TSH receptor. J Mol Endocrinol 2012; 49:137-51. [PMID: 22829655 DOI: 10.1530/jme-12-0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Binding of a new thyroid-stimulating human monoclonal autoantibody (MAb) K1-18 to the TSH receptor (TSHR) leucine-rich domain (LRD) was predicted using charge-charge interaction mapping based on unique complementarities between the TSHR in interactions with the thyroid-stimulating human MAb M22 or the thyroid-blocking human MAb K1-70. The interactions of K1-18 with the TSHR LRD were compared with the interactions in the crystal structures of the M22-TSHR LRD and K1-70-TSHR LRD complexes. Furthermore, the predicted position of K1-18 on the TSHR was validated by the effects of TSHR mutations on the stimulating activity of K1-18. A similar approach was adopted for predicting binding of a mouse thyroid-blocking MAb RSR-B2 to the TSHR. K1-18 is predicted to bind to the TSHR LRD in a similar way as TSH and M22. The binding analysis suggests that K1-18 light chain (LC) mimics binding of the TSH-α chain and the heavy chain (HC) mimics binding of the TSH-β chain. By contrast, M22 HC mimics the interactions of TSH-α while M22 LC mimics TSH-β in interactions with the TSHR. The observed interactions in the M22-TSHR LRD and K1-70-TSHR LRD complexes (crystal structures) with TSH-TSHR LRD (comparative model) and K1-18-TSHR LRD (predictive binding) suggest that K1-18 and M22 interactions with the receptor may reflect interaction of thyroid-stimulating autoantibodies in general. Furthermore, K1-70 and RSR-B2 interactions with the TSHR LRD may reflect binding of TSHR-blocking autoantibodies in general. Interactions involving the C-terminal part of the TSHR LRD may be important for receptor activation by autoantibodies.
Collapse
|
19
|
Emerson CH. When will thyrotropin receptor antagonists and inverse thyrotropin receptor agonists become available for clinical use? Thyroid 2011; 21:817-9. [PMID: 21809913 DOI: 10.1089/thy.2011.2108.ed] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Exceptional hyperthyroidism and a role for both major histocompatibility class I and class II genes in a murine model of Graves' disease. PLoS One 2011; 6:e21378. [PMID: 21738647 PMCID: PMC3124500 DOI: 10.1371/journal.pone.0021378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/26/2011] [Indexed: 11/24/2022] Open
Abstract
Autoimmune hyperthyroidism, Graves' disease, can be induced by immunizing susceptible strains of mice with adenovirus encoding the human thyrotropin receptor (TSHR) or its A-subunit. Studies in two small families of recombinant inbred strains showed that susceptibility to developing TSHR antibodies (measured by TSH binding inhibition, TBI) was linked to the MHC region whereas genes on different chromosomes contributed to hyperthyroidism. We have now investigated TSHR antibody production and hyperthyroidism induced by TSHR A-subunit adenovirus immunization of a larger family of strains (26 of the AXB and BXA strains). Analysis of the combined AXB and BXA families provided unexpected insight into several aspects of Graves' disease. First, extreme thyroid hyperplasia and hyperthyroidism in one remarkable strain, BXA13, reflected an inability to generate non-functional TSHR antibodies measured by ELISA. Although neutral TSHR antibodies have been detected in Graves' sera, pathogenic, functional TSHR antibodies in Graves' patients are undetectable by ELISA. Therefore, this strain immunized with A-subunit-adenovirus that generates only functional TSHR antibodies may provide an improved model for studies of induced Graves' disease. Second, our combined analysis of linkage data from this and previous work strengthens the evidence that gene variants in the immunoglobulin heavy chain V region contribute to generating thyroid stimulating antibodies. Third, a broad region that encompasses the MHC region on mouse chomosome 17 is linked to the development of TSHR antibodies (measured by TBI). Most importantly, unlike other strains, TBI linkage in the AXB and BXA families to MHC class I and class II genes provides an explanation for the unresolved class I/class II difference in humans.
Collapse
|
21
|
Morshed SA, Ando T, Latif R, Davies TF. Neutral antibodies to the TSH receptor are present in Graves' disease and regulate selective signaling cascades. Endocrinology 2010; 151:5537-49. [PMID: 20844004 PMCID: PMC2954721 DOI: 10.1210/en.2010-0424] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TSH receptor (TSHR) antibodies (Abs) may be stimulating, blocking, or neutral in their functional influences and are found in patients with autoimmune thyroid disease, especially Graves' disease (GD). Stimulators are known to activate the thyroid epithelial cells via both Gs- and Gq-coupled signaling pathways, whereas blockers inhibit the action of TSH and may act as weak agonists. However, TSHR neutral Abs do not block TSH binding and are unable to induce cAMP via Gsα. The importance of such neutral Abs in GD remains unclear because their functional consequence has been assumed to be zero. We hypothesized that: 1) neutral TSHR Abs are more common to GD than generally recognized; 2) they may induce distinct signaling imprints at the TSHR not seen with TSH itself; and 3) these signaling events may alter cellular function. To evaluate these hypotheses, we first confirmed the presence of neutral TSHR Abs in sera from patients with GD and then, using mouse and hamster neutral TSHR monoclonal Abs (N-mAbs) performed detailed signaling studies, including a proteomic Ab array, with rat thyrocytes (FRTL-5) as targets. This allowed us to examine a battery of signaling cascades and their downstream effectors. Neutral TSHR Abs were indeed frequently present in sera from patients with GD. Sixteen of 27 patients (59%) had detectable neutral TSHR Abs by competition assay with N-mAbs. On examining signaling cascades, we found that N-mAbs induced signal transduction, primarily via the protein kinase A II cascade. In addition to the activation of phosphatidylinositol 3K/Akt, N-mAbs, unlike TSH, had the ability to exclusively activate the mammalian target of rapamycin/p70 S6K, nuclear factor-κB, and MAPK-ERK1/2/p38α signaling cascades and their downstream effectors p90 ribosomal kinase/MAPK-interacting kinase-1/mitogen and stress-activated kinase-1 and N-mAbs activated all forms of protein kinase C isozymes. To define the downstream effector mechanisms produced by these signaling cascades, cytokine production, proliferation, and apoptosis in thyrocytes were investigated. Although N-mAbs produced less cytokines and proliferation compared with TSH, they had the distinction of inducing thyroid cell apoptosis under the experimental conditions used. When dissecting out possible mechanisms of apoptosis, we found that activation of multiple oxidative stress markers was the primary mechanism orchestrating the death signals. Therefore, using oxidative stress-induced apoptosis, N-mAbs may be capable of exacerbating the autoimmune response in GD via apoptotic cells inducing antigen-driven mechanisms. This may help explain the inflammatory nature of this common disorder.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | |
Collapse
|
22
|
Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, Wilmot J, Hu X, Kabelis K, Clark J, Holl S, Richards T, Collyer A, Furmaniak J, Smith BR. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin Endocrinol (Oxf) 2010; 73:404-12. [PMID: 20550534 DOI: 10.1111/j.1365-2265.2010.03831.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Patients who appear to have both stimulating and blocking TSHR autoantibodies in their sera have been described, but the two activities have not been separated and analysed. We now describe the isolation and detailed characterization of a blocking type TSHR monoclonal autoantibody and a stimulating type TSHR monoclonal autoantibody from a single sample of peripheral blood lymphocytes. DESIGN, PATIENTS AND MEASUREMENTS Two heterohybridoma cell lines secreting TSHR autoantibodies were isolated using standard techniques from the lymphocytes of a patient with hypothyroidism and high levels of TSHR autoantibodies (160 units/l by inhibition of TSH binding). The ability of the two new monoclonal antibodies (MAbs; K1-18 and K1-70) to bind to the TSHR and compete with TSH or TSHR antibody binding was analysed. Furthermore, the effects of K1-18 and K1-70 on cyclic AMP production in Chinese hamster ovary cells (CHO) cells expressing the TSHR were investigated. RESULTS One MAb (K1-18) was a strong stimulator of cyclic AMP production in TSHR-transfected CHO cells and the other (K1-70) blocked stimulation of the TSHR by TSH, K1-18, other thyroid-stimulating MAbs and patient serum stimulating type TSHR autoantibodies. Both K1-18 (IgG1 kappa) and K1-70 (IgG1 lambda) bound to the TSHR with high affinity (0.7 x 10(10) l/mol and 4 x 10(10) l/mol, respectively), and this binding was inhibited by unlabelled K1-18 and K1-70, other thyroid-stimulating MAbs and patient serum TSHR autoantibodies with stimulating or blocking activities. V region gene analysis indicated that K1-18 and K1-70 heavy chains used the same V region germline gene but different D and J germline genes as well as having different light chains. Consequently, the two antibodies have evolved separately from different B cell clones. CONCLUSIONS This study provides proof that a patient can produce a mixture of blocking and stimulating TSHR autoantibodies at the same time.
Collapse
Affiliation(s)
- Michele Evans
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chiappori A, Villalta D, Bossert I, Ceresola EM, Lanaro D, Schiavo M, Bagnasco M, Pesce G. Thyrotropin receptor autoantibody measurement following radiometabolic treatment of hyperthyroidism: comparison between different methods. J Endocrinol Invest 2010; 33:197-201. [PMID: 20418655 DOI: 10.1007/bf03346581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND TSH receptor antibodies (TRAb) play a crucial role in the pathogenesis of Graves' disease (GD). The use of human recombinant TSH-receptor far improved the analytical performance of TRAb assays (2nd-generation assays). The 3rd-generation assay is based on the inhibition of binding of a human biotin-labeled monoclonal thyroid- stimulating antibody (M22) to TSH-receptor by the autoantibodies present in the serum. AIM We aimed to assess the ability of the 2nd- and 3rd-generation assays to detect serum TRAb following radioiodine therapy for hyperthyroidism. METHODS Sera from 47 hyperthyroid (25 autoimmune, 22 non-autoimmune) patients were tested using the two different assays before and at different time intervals after radioiodine therapy. The modifications of TRAb were evaluated, as well as the correlation between the two methods. RESULTS The results obtained by the two methods proved to be closely correlated. A rise in TRAb was invariably observed in GD patients following radioiodine, with a median peak at 6 months, irrespective of their initial clinical status, presence of ophthalmopathy, smoking habits or other variables. Such a rise was nearly superimposable using both methods. No TRAb appearance was observed in patients with non-autoimmune hyperthyroidism. CONCLUSIONS The use of methods of higher sensitivity with respect to that formerly used indicate that nearly all GD patients develop TRAb following radioiodine, and that this phenomenon is transient and not related to baseline conditions and clinical outcome/efficacy of treatment.
Collapse
Affiliation(s)
- A Chiappori
- Medical and Radiometabolic Therapy Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
TSH receptor monoclonal antibodies with agonist, antagonist, and inverse agonist activities. Methods Enzymol 2010; 485:393-420. [PMID: 21050929 DOI: 10.1016/b978-0-12-381296-4.00022-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoantibodies in autoimmune thyroid disease (AITD) bind to the TSH receptor (TSHR) and can act as either agonists, mimicking the biological activity of TSH, or as antagonists inhibiting the action of TSH. Furthermore, some antibodies with antagonist activity can also inhibit the constitutive activity of the TSHR, that is, act as inverse agonists. The production of animal TSHR monoclonal antibodies (MAbs) with the characteristics of patient autoantibodies and the isolation of human autoantibodies from patients with AITD has allowed us to analyze the interactions of these antibodies with the TSHR at the molecular level. In the case of animal MAbs, advances such as DNA immunization allowed the production of the first MAbs which showed the characteristics of human TSHR autoantibodies (TRAbs). Mouse MAbs (TSMAbs 1-3) and a hamster MAb (MS-1) were obtained that acted as TSHR agonists with the ability to stimulate cyclic AMP production in CHO cells expressing the TSHR. In addition, a mouse TSHR MAb (MAb-B2) that had the ability to act as an antagonist of TRAbs and TSH was isolated and characterized. Also, a mouse TSHR MAb that showed TSH antagonist and TSHR inverse agonist activity (CS-17) was described. Furthermore, a panel of human TRAbs has been obtained from the peripheral blood lymphocytes of patients with AITD and extensively characterized. These MAbs have all the characteristics of TRAbs and are active at ng/mL levels. To date, two human MAbs with TSHR agonist activity (M22 and K1-18), one human MAb with TSHR antagonist activity (K1-70) and one human MAb (5C9) with both TSHR antagonist and TSHR inverse agonist activity have been isolated. Early experiments showed that the binding sites for TSH and for TRAbs with thyroid stimulating or blocking activities were located on the extracellular domain of the TSHR. Extensive studies using TSHRs with single amino acid mutations identified TSHR residues that were important for binding and biological activity of TSHR MAbs (human and animal) and TSH. The structures of several TSHR MAb Fab fragments were solved by X-ray crystallography and provided details of the topography of the antigen binding sites of antibodies with either agonist or antagonist activity. Furthermore stable complexes of the leucine-rich repeat domain (LRD) of the TSHR with a human MAb (M22) with agonist activity and with a human MAb (K1-70) with antagonist activity have been produced and their structures solved by X-ray crystallography at 2.55 and 1.9Å resolution, respectively. Together these experiments have given detailed insights into the interactions of antibodies with different biological activities (agonist, antagonist, and inverse agonist) with the TSHR. Although the nature of ligand binding to the TSHR is now understood in some detail, it is far from clear how these initial interactions lead to functional effects on activation or inactivation of the receptor.
Collapse
|
25
|
Ochi Y, Hamazu M, Kajita Y, Hachiya T, Hamaoki M. Inhibitory effect of thyroid blocking antibody (TBAb) on the thyroid stimulatory effect of human chorionic gonadotropin (HCG) and equine chorionic gonadotropin (ECG). Endocr J 2010; 57:311-5. [PMID: 20351465 DOI: 10.1507/endocrj.k09e-175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We examined the inhibitory effect of thyroid blocking antibody (TBAb) on the thyroid stimulating activity of human chorionic gonadotropin (HCG) and equine CG (ECG). Five TBAb positive sera obtained from patients who had been hypothyroid but were currently on T4 treatment. The TSH binding inhibitory immunoglobulin (TBII) activities of the sera were 60-160 IU/L. Inhibition of TSH binding to the TSH receptor (TSHR) [TSH binding inhibition (TBI) activity] of HCG or ECG, and inhibition of TBAb on HCG or ECG-stimulated cAMP production were examined. Both HCG and ECG preparations showed weak TBI activity in the presence of small amounts of protein [bovine serum albumin (BSA)] but were negative in the presence of large amounts of protein [normal human serum (NHS) or BSA]. Four thousand IU/mL of HCG and ECG preparation caused cAMP production similar to 100 microU/mL of bovine (b) TSH. The inhibitory effect of TBAb on cAMP production by this amount of HCG or ECG was then examined. The inhibitory effect of TBAb on cAMP production by HCG and ECG was similar to bTSH, and TBAb positive sera with more than 40 IU/L TBII activity completely blocked cAMP production by HCG, ECG and bTSH. This suggests that common alpha -subunit of both HCG and TSH are involved in the inhibitory effect of TBAb. Previous reports demonstrated that the thyroid stimulating activity of thyroid stimulating antibody (TSAb) was blocked by deglycosylated HCG (competitive antagonist of TSH binding to TSHR). The fact and our present study suggest that TSH, HCG ECG, TSAb and TBAb have a similar binding site (alpha-subunit-mimicking binding site) on the TSH receptor.
Collapse
Affiliation(s)
- Yukio Ochi
- Research Institute for Production Development, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
26
|
Neumann S, Raaka BM, Gershengorn MC. Human TSH receptor ligands as pharmacological probes with potential clinical application. Expert Rev Endocrinol Metab 2009; 4:669. [PMID: 20161662 PMCID: PMC2819035 DOI: 10.1586/eem.09.36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biologic role of thyroid-stimulating hormone (TSH; thyrotropin) as an activator (agonist) of the TSH receptor (TSHR) in the hypothalamic-pituitary-thyroid axis is well known and activation of TSHR by recombinant human TSH is used clinically in patients with thyroid cancer. TSHR ligands other than TSH could be used to probe TSHR biology in thyroidal and extrathyroidal tissues, and potentially be employed in patients. A number of different TSHR ligands have been reported, including TSH analogs, antibodies and small-molecule, drug-like compounds. In this review, we will provide an update on all these classes of TSHR agonists and antagonists but place emphasis on small-molecule ligands.
Collapse
Affiliation(s)
- Susanne Neumann
- Clinical Endocrinology Branch, NIDDK, NIH, 50 South Drive, Bethesda, MD 20892-28029, USA, Tel.: +1 301 451 6324, Fax: +1 301 480 4214
| | - Bruce M Raaka
- Clinical Endocrinology Branch, NIDDK, NIH, 50 South Drive, Bethesda, MD 20892-28029, USA, Tel.: +1 301 451 6307, Fax: +1 301 480 4214
| | - Marvin C Gershengorn
- Author for correspondence: Clinical Endocrinology Branch, NIDDK, NIH, 50 South Drive, Bethesda, MD 20892-28029, USA, Tel.: +1 301 451 6305, Fax: +1 301 480 4214,
| |
Collapse
|
27
|
Zhao Y, Wang SL, Li Q, Ye J, Chen KM, Tian EJ, Chen ZP. Characteristics of an scFv antibody fragment that binds to immunoglobulin G of Graves' disease patients and inhibits autoantibody-mediated thyroid-stimulating activity. Hybridoma (Larchmt) 2009; 27:445-51. [PMID: 19108617 DOI: 10.1089/hyb.2008.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thyroid-stimulating antibodies (TSAbs) are responsible for hyperthyroid Graves' disease (GD). Although two peptides that bind to GD immunoglobulin G (IgG), and some monoclonal antibodies to the TSH receptor (TSH-R), have been reported to inhibit stimulation of cAMP production by patient serum TSAb, our work is the first to use phage-display technology to produce a mouse single-chain Fv antibody fragment (scFv) that binds to GD IgG and acts as a powerful TSAb (and TSH) antagonist. The specificity characteristics and relative affinity (2.8 mol/L) of T17 were identified by competitive inhibition ELISA and thiocyanate elution. The purified T17 scFv was then tested for its effect on stimulation of cAMP production by Graves' patients' sera in TSH receptor-transfected Chinese hamster ovary (CHO) cells. T17 was an effective antagonist of TSAb activity in 13 of 16 patients with GD. In addition, (125)I-TSH binding to TSH-R was also inhibited by T17 (57% inhibition at 1 mg/mL). This new scFv suggests in vitro applications such as purification of TSAb or diagnosis of GD. In addition, it may have in vivo usefulness such as treatment of TSH-R mediated ophthalmic symptoms of Graves' disease.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The TSH receptor (TSHR) is constitutively active and is further enhanced by TSH ligand binding or by stimulating TSHR antibodies (TSHR-Abs) as seen in Graves' disease. TSH is known to activate the thyroid epithelial cell via both Galphas-cAMP/protein kinase A/ERK and Galphaq-Akt/protein kinase C coupled signaling networks. The recent development of monoclonal antibodies to the TSHR has enabled us to investigate the hypothesis that different TSHR-Abs may have unique signaling imprints that differ from TSH ligand itself. We have, therefore, performed sequential studies, using rat thyrocytes (FRTL-5, passages 5-20) as targets, to examine the signaling pathways activated by a series of monoclonal TSHR-Abs in comparison with TSH itself. Activation of key signaling molecules was estimated by specific immunoblots and/or enzyme immunoassays. Continuing constitutive TSHR activity in thyroid cells, deprived of TSH and serum for 48 h, was demonstrated by pathway-specific chemical inhibition. Under our experimental conditions, TSH ligand and TSHR-stimulating antibodies activated both Galphas and Galphaq effectors. Importantly, some TSHR-blocking and TSHR-neutral antibodies were also able to generate signals, influencing primarily the Galphaq effectors and induced cell proliferation. Most strikingly, antibodies that used the Galphaq cascades used c-Raf-ERK-p90RSK as a unique signaling cascade not activated by TSH. Our study demonstrated that individual TSHR-Abs had unique molecular signatures which resulted in sequential preferences. Because downstream thyroid cell signaling by the TSHR is both ligand dependent and independent, this may explain why TSHR-Abs are able to have variable influences on thyroid cell biology.
Collapse
Affiliation(s)
- Syed A Morshed
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | |
Collapse
|
29
|
Rees Smith B, Sanders J, Furmaniak J. Implications of new monoclonal antibodies and the crystal structure of the TSH receptor for the treatment and management of thyroid diseases. Biomark Med 2008; 2:567-76. [DOI: 10.2217/17520363.2.6.567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Autoantibodies to the thyroid-stimulating hormone receptor (TSHR) cause the hyperthyroidism of Graves’ disease and contribute to Graves’ eye signs. Human monoclonal TSHR autoantibodies prepared from patients’ lymphocytes have important clinical applications in terms of their ability to stimulate TSHR-containing tissues. Also, TSHR monoclonal antibodies that act as antagonists may well be useful in treating Graves’ eye disease. Recently, the high-resolution (2.55 Å) crystal structure of the TSHR in complex with a monoclonal thyroid-stimulating autoantibody has been determined, and this provides key insights into how the autoantibodies interact with the receptor. Furthermore, the structure can be used in the rational design of small molecules that will disrupt receptor binding by thyroid-stimulating autoantibodies, thus providing new strategies to control TSHR activation in addition to monoclonal antibodies.
Collapse
Affiliation(s)
- Bernard Rees Smith
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, UK
| | - Jane Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, UK
| | - Jadwiga Furmaniak
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, UK
| |
Collapse
|
30
|
Chen CR, McLachlan SM, Rapoport B. Identification of key amino acid residues in a thyrotropin receptor monoclonal antibody epitope provides insight into its inverse agonist and antagonist properties. Endocrinology 2008; 149:3427-34. [PMID: 18388191 PMCID: PMC2453077 DOI: 10.1210/en.2008-0207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/26/2008] [Indexed: 11/19/2022]
Abstract
CS-17 is a murine monoclonal antibody to the human TSH receptor (TSHR) with both inverse agonist and antagonist properties. Thus, in the absence of ligand, CS-17 reduces constitutive TSHR cAMP generation and also competes for TSH binding to the receptor. The present data indicate that for both of these functions, the monovalent CS-17 Fab (50 kDa) behaves identically to the intact, divalent IgG molecule (150 kDa). The surprising observation that CS-17 competes for TSH binding to the human but not porcine TSHR enabled identification of a number of amino acids in its epitope. Replacement of only three human TSHR residues (Y195, Q235, and S243) with the homologous porcine TSHR residues totally abolishes CS-17 binding as detected by flow cytometry. TSH binding is unaffected. Of these residues, Y195 is most important, with Q235 and S243 contributing to CS-17 binding to a much lesser degree. The functional effects of CS-17 IgG and Fab on constitutive cAMP generation by porcinized human TSHR confirm the CS-17 binding data. The location of TSHR amino acid residues Y195, Q235, and S243 deduced from the crystal structure of the FSH receptor leucine-rich domain provides valuable insight into the CS-17 and TSH binding sites. Whereas hormone ligands bind primarily to the concave surface of the leucine-rich domains, a major portion of the CS-17 epitope lies on the opposite convex surface with a minor component in close proximity to known TSH binding residues.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
31
|
Sanders J, Evans M, Betterle C, Sanders P, Bhardwaja A, Young S, Roberts E, Wilmot J, Richards T, Kiddie A, Small K, Platt H, Summerhayes S, Harris R, Reeve M, Coco G, Zanchetta R, Chen S, Furmaniak J, Smith BR. A human monoclonal autoantibody to the thyrotropin receptor with thyroid-stimulating blocking activity. Thyroid 2008; 18:735-46. [PMID: 18631002 DOI: 10.1089/thy.2007.0327] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Human monoclonal autoantibodies (MAbs) are valuable tools to study autoimmune responses. To date only one human MAb to the thyrotropin (TSH) receptor (TSHR) with stimulating activity has been available. We now describe the detailed characterization of a blocking type human MAb to the TSHR. METHODS A single heterohybridoma cell line was isolated from the peripheral blood lymphocytes of a patient with severe hypothyroidism (TSH 278 mU/L) using standard techniques. The line stably expresses a TSHR autoantibody (5C9; IgG1/kappa). Ability of 5C9 to bind and compete with 125I-TSH or TSHR antibodies binding to the TSHR was tested using tubes coated with solubilized TSHR. Furthermore, the blocking effects of 5C9 on stimulation of cyclic AMP production was assessed using Chinese hamster ovary (CHO) cells expressing the wild-type human TSHR or TSHRs with amino acid mutations. MAIN OUTCOME 5C9 IgG bound to the TSHR with high affinity (4 x 10(10) L/mol) and inhibited binding of TSH and a thyroid-stimulating human monoclonal autoantibody (M22) to the receptor. 5C9 IgG preparations inhibited the cyclic AMP-stimulating activities of TSH, M22, serum TSHR autoantibodies and thyroid-stimulating mouse monoclonal antibodies. Furthermore 5C9 reduced the constitutive activity of wild-type TSHR and TSHR with some activating mutations. The effect of different amino acid mutations in the TSHR on 5C9 biological activity was studied and TSHR Lys129Ala or Asp203Ala completely abolished the ability of 5C9 to block TSH-mediated stimulation of cyclic AMP production. CONCLUSIONS The availability of 5C9 provides new opportunities to investigate the binding and biological activity of TSHR blocking type autoantibodies including studies at the molecular level. Furthermore, monoclonal antibodies such as 5C9 may well provide the basis of new drugs to control TSHR activity including applications in thyroid cancer and Graves' ophthalmopathy.
Collapse
Affiliation(s)
- Jane Sanders
- FIRS Laboratories, RSR Ltd, Llanishen, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bartalena L, Lai A, Tanda ML. Perspectives in pharmacological management of Graves' hyperthyroidism and orbitopathy. Expert Rev Clin Immunol 2008; 4:321-9. [PMID: 20476922 DOI: 10.1586/1744666x.4.3.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drugs currently used for Graves' hyperthyroidism (thionamides) or for the major extrathyroidal expression of Graves' disease, Graves' orbitopathy (systemic glucocorticoids with or without orbital radiotherapy), have limited effects on the autoimmune processes underpinning these disorders. Thionamides show a high rate of treatment failure and at least 30% of patients with Graves' orbitopathy are eventually dissatisfied with treatment outcome. Progress in our understanding of the autoimmune basis of Graves' hyperthyroidism and orbitopathy made it possible, similar to other autoimmune disorders, to envision the use of novel immunomodulating drugs. Among the currently available biologic agents, the CD20(+) B-cell-depleting agent, rituximab, and TNF-alpha inhibitors are the drugs that have the highest chance of finding a place in the treatment of Graves' hyperthyroidism and orbitopathy, although randomized, controlled clinical trials are warranted to support their use.
Collapse
Affiliation(s)
- Luigi Bartalena
- Department of Clinical Medicine, University of Insubria, Division of Endocrinology, Ospedale di Circolo, Viale Borri, 57, 21100 Varese, Italy.
| | | | | |
Collapse
|
33
|
Abstract
The application of molecular biology to the study of the thyrotropin receptor (TSHR) has led to major advances in our understanding of its structure, function, and relationship to the pathogenesis of Graves' disease. This review summarizes many of these features and also provides a personal perspective, questioning some assumptions and general concepts, as well as describing remaining challenges. Among the issues raised are the limits in our understanding of the spatial orientation of the structural domains of the TSHR, including the enigmatic hinge region. We review the phenomenon of TSHR intramolecular cleavage, the shedding of the A-subunit component of the ectodomain, and the importance of the latter in generating thyroid-stimulating antibodies. The epitopes of thyroid-stimulating and -blocking autoantibodies have been a confusing and controversial subject that requires review and evaluation of available data. Finally, we address the potential physiological or pathophysiological significance of TSHR multimerization in TSHR. Taken together, this review will, hopefully, convey the fascination and excitement that molecular biology has contributed to the study of the TSHR, especially as it relates to the pathogenesis of Graves' disease.
Collapse
Affiliation(s)
- Basil Rapoport
- Autoimmune Disease Unit, Cedars-Sinai Research Institute and UCLA School of Medicine, Los Angeles, California, USA.
| | | |
Collapse
|
34
|
Abstract
The discovery of thyroid-stimulating autoantibodies by Adams and Purves 50 years ago was one of the most important observations in the history of thyroidology. Since that time, the thyroid-stimulating hormone receptor (TSHR) has been shown to be the antigen recognized by these autoantibodies (1974) and the receptor cloned (1989). More recently, different mouse monoclonal antibodies (MAbs) to the TSHR have been produced, culminating in 2002 in the preparation of mouse and hamster MAbs with strong thyroid-stimulating activity. Further, in 2003 a human MAb to the TSHR (M22) with the characteristics of patient thyroid-stimulating autoantibodies was described. M22 has been particularly useful in advancing our knowledge of the TSHR and TSHR autoimmunity, including the development of new assays for TSHR autoantibodies (2004) and determination of a high-resolution (2.55 A) crystal structure of the TSHR leucine-rich domain in combination with M22 (2007). The structure shows that M22 positions itself on the TSHR in an almost identical way to the native hormone TSH but the evolutionary forces that have resulted in production of a common autoantibody that mimics the actions of TSH so well are far from clear at this time. Very recently, a human MAb (5C9) with the characteristics of blocking-type patient serum TSHR autoantibodies has been isolated (2007). Studies on how 5C9 interacts with the TSHR at the molecular level are planned and should provide key insights as to the differences between TSHR autoantibodies with blocking and with stimulating activities. Also, 5C9 and similar MAbs have considerable potential as drugs to inhibit TSHR stimulation by autoantibodies. Further, now the M22-TSHR structure is known at the atomic level, rational design of specific low-molecular-weight inhibitors of the TSHR-TSHR autoantibody interaction is feasible.
Collapse
Affiliation(s)
- Bernard Rees Smith
- FIRS Laboratories, RSR Ltd., Parc Ty Glas, Llanishen, Cardiff, United Kingdom.
| | | | | |
Collapse
|
35
|
Sanders J, Miguel RN, Bolton J, Bhardwaja A, Sanders P, Nakatake N, Evans M, Furmaniak J, Smith BR. Molecular interactions between the TSH receptor and a Thyroid-stimulating monoclonal autoantibody. Thyroid 2007; 17:699-706. [PMID: 17725428 DOI: 10.1089/thy.2007.0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To study the molecular interactions between the thyroid-stimulating hormone (TSH) receptor (TSHR) and a human thyroid-stimulating monoclonal autoantibody (M22). DESIGN Amino acid mutations were introduced in the variable region gene sequences of M22 and the wild-type (WT) or mutated M22 Fab expressed in Escherichia coli. The ability of WT or mutated M22 Fab to inhibit binding of (125)I-TSH or (125)I-M22 to the TSHR and to stimulate cyclic adenosine monophosphate (AMP) production in Chinese hamster ovary cells expressing WT TSHRs was studied. Mutated TSHRs were also used in these studies in combination with WT or mutated M22 Fab to further identify interacting residues in the TSHR-M22 complex. MAIN OUTCOME Out of 11 amino acid changes in the heavy chain (HC) of M22, 7 had an effect on M22 Fab biological activity, while in the case of 1 mutation the Fab was not expressed. In particular, stimulating activity of M22 Fab mutated at HC residues, D52, D54, and Y56 was markedly reduced. Mutation of M22 light chain (LC) D52 also reduced M22 Fab stimulating activity, while mutations at two further residues (LC D51 and LC D93) showed no effect. Reverse charge mutations at M22 HC D52 and TSHR R80 provided experimental evidence that these two residues interacted strongly with each other. CONCLUSION Mutation of both the TSHR and M22 Fab has allowed identification of some residues critical for the receptor-autoantibody interaction. This approach should lead to detailed mapping of the amino acids important for M22 biological activity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antigen-Antibody Reactions/genetics
- Antigen-Antibody Reactions/immunology
- Autoantibodies/chemistry
- Autoantibodies/genetics
- Autoantibodies/immunology
- CHO Cells
- Cricetinae
- Cricetulus
- Humans
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Immunoglobulins, Thyroid-Stimulating
- Iodine Radioisotopes
- Mutagenesis, Site-Directed
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/immunology
- Thyrotropin/metabolism
Collapse
Affiliation(s)
- Jane Sanders
- FIRS Laboratories, RSR Ltd., Parc Ty Glas, Llanishen, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen CR, McLachlan SM, Rapoport B. Suppression of thyrotropin receptor constitutive activity by a monoclonal antibody with inverse agonist activity. Endocrinology 2007; 148:2375-82. [PMID: 17272389 DOI: 10.1210/en.2006-1754] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TSH binding to the TSH receptor (TSHR) induces thyrocyte growth and proliferation primarily by activating the adenylyl cyclase signaling pathway. Relative to the other glycoprotein hormone receptors, the TSHR has considerable ligand-independent (constitutive) activity. We describe a TSHR monoclonal antibody (CS-17) with the previously unrecognized property of being an inverse agonist for TSHR constitutive activity. This property is retained, even when constitutive activity is extremely high consequent to diverse TSHR extracellular region mutations. A similar effect on an activating mutation at the base of the sixth transmembrane helix (not accessible to direct CS-17 contact) indicates that CS-17 is acting allosterically. Administered to mice in vivo, CS-17 reduces serum T(4) levels. The CS-17 epitope is conformational and a significant portion lies in the C-terminal region of the TSHR leucine-rich domain (residues 260-289). By interacting with the large TSHR extracellular domain, CS-17 is, to our knowledge, the first antibody reported to be an inverse agonist for a member of the G protein receptor superfamily. After humanization of its murine constant region, CS-17 has the potential to be an adjunctive therapeutic agent in athyreotic patients with residual well-differentiated thyroid carcinoma as well as pending definitive treatment in some selected hyperthyroidism states.
Collapse
Affiliation(s)
- Chun-Rong Chen
- Cedars-Sinai Research Institute, University of California, Los Angeles, California 90048, USA
| | | | | |
Collapse
|
37
|
Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton J, Reeve M, Nakatake N, Evans M, Richards T, Powell M, Miguel RN, Blundell TL, Furmaniak J, Smith BR. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 2007; 17:395-410. [PMID: 17542669 DOI: 10.1089/thy.2007.0034] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To analyze interactions between the thyroid-stimulating hormone receptor (TSHR) and a thyroid-stimulating human monoclonal autoantibody (M22) at the molecular level. DESIGN A complex of part of the TSHR extracellular domain (amino acids 1-260; TSHR260) bound to M22 Fab was prepared and purified. Crystals suitable for X-ray diffraction analysis were obtained and the structure solved at 2.55 A resolution. MAIN OUTCOME TSHR260 comprises of a curved helical tube and M22 Fab clasps its concave surface at 90 degrees to the tube length axis. The interface buried in the complex is large (2,500 A(2)) and an extensive network of ionic, polar, and hydrophobic bonding is involved in the interaction. There is virtually no movement in the atoms of M22 residues on the binding interface compared to unbound M22 consistent with "lock and key" binding. Mutation of residues showing strong interactions in the structure influenced M22 activity, indicating that the binding detail observed in the complex reflects interactions of M22 with intact, functionally active TSHR. The receptor-binding arrangements of the autoantibody are very similar to those reported for follicle-stimulating hormone (FSH) binding to the FSH receptor (amino acids 1-268) and consequently to those of TSH itself. CONCLUSIONS It is remarkable that the thyroid-stimulating autoantibody shows almost identical receptor-binding features to TSH although the structures and origins of these two ligands are very different. Furthermore, our structure of the TSHR and its complex with M22 provide foundations for developing new strategies to understand and control both glycoprotein hormone receptor activation and the autoimmune response to the TSHR.
Collapse
Affiliation(s)
- Jane Sanders
- FIRS Laboratories, RSR Ltd., Llanishen, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sanders J, Bolton J, Sanders P, Jeffreys J, Nakatake N, Richards T, Evans M, Kiddie A, Summerhayes S, Roberts E, Miguel RN, Furmaniak J, Smith BR. Effects of TSH receptor mutations on binding and biological activity of monoclonal antibodies and TSH. Thyroid 2006; 16:1195-206. [PMID: 17199429 DOI: 10.1089/thy.2006.16.1195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of an extensive series of mutations in the TSH receptor (TSHR) leucine-rich domain (LRD) on the ability of thyroid-stimulating monoclonal antibodies (TSMAbs) and TSH to bind to the receptor and stimulate cyclic AMP production in TSHR-transfected CHO cells has been investigated. In addition, the ability of a mouse monoclonal antibody with blocking (i.e., antagonist) activity (RSR-B2) to interact with mutated receptors has been studied. Several amino acids distributed along an extensive part of the concave surface of the LRD were found to be important for binding and stimulation by the thyroid-stimulating human MAb M22 but did not appear to be important for TSH binding and stimulation. Most of these amino acids important for M22 interactions were also found to be important for the stimulating activity of six different mouse TSMAbs and a hamster TSMAb. Furthermore, most of these same amino acids were important for stimulation by TSHR autoantibodies in a panel of sera from patients with Graves' disease. Amino acid R255 was the only residue found to be unimportant for TSH stimulation but critical for stimulation by all thyroid-stimulating antibodies tested (23 patient serum TSHR autoantibodies, M22, and all seven animal TSMAbs). About half the amino acids (all located in the N-terminal part of the LRD) found to be important for M22 activity were also important for the blocking activity of RSR-B2 and although the epitopes for the two MAbs overlap they are different. As the two MAbs have similar affinities, their epitope differences are probably responsible for their different activities. Overall our results indicate that different TSMAbs and different patient sera thyroid-stimulating autoantibodies interact with the same region of the TSHR, but there are subtle differences in the actual amino acids that make contact with the different stimulators.
Collapse
Affiliation(s)
- Jane Sanders
- FIRS Laboratories, RSR Ltd., Parc Ty Glas, Llanishen, Cardiff, CF14 5DU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rees Smith B, Nordmeyer P, Sanders J, Furmaniak J. Eye signs of graves' disease and blocking-type thyrotropin receptor autoantibodies. Thyroid 2006; 16:97-8. [PMID: 16487022 DOI: 10.1089/thy.2006.16.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|