1
|
Wu N, Bayatpour S, Hylemon PB, Aseem SO, Brindley PJ, Zhou H. Gut Microbiome and Bile Acid Interactions: Mechanistic Implications for Cholangiocarcinoma Development, Immune Resistance, and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:397-408. [PMID: 39730075 PMCID: PMC11841492 DOI: 10.1016/j.ajpath.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis. It indicates a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome. This leads to enterohepatic recirculation and an increase of toxic secondary bile acids. Alterations of serum and liver bile acid compositions via the disturbed enterohepatic circulation of bile acids and the disturbance of the gut microbiome then activate a series of hepatic and cancer cell signaling pathways that promote CCA carcinogenesis and progression. This review focuses on the mechanistic roles of bile acids and the gut microbiome in the pathogenesis and progression of CCA. It also evaluates the therapeutic potential of targeting the gut microbiome and bile acid-mediated signaling pathways for the therapy and prophylaxis of CCA.
Collapse
Affiliation(s)
- Nan Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Sareh Bayatpour
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sayed O Aseem
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
2
|
Zhang D, Cheng H, Wu J, Zhou Y, Tang F, Liu J, Feng W, Peng C. The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling. Front Pharmacol 2024; 15:1392385. [PMID: 39323631 PMCID: PMC11422068 DOI: 10.3389/fphar.2024.1392385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/18/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction As a widely used traditional Chinese medicine with hot property, aconite can significantly promote energy metabolism. However, it is unclear whether the gut microbiota and bile acids contribute to the energy metabolism-promoting properties of aconite. The aim of this experiment was to verify whether the energy metabolism-promoting effect of aconite aqueous extract (AA) is related to gut microbiota and bile acid (BA) metabolism. Methods The effect of AA on energy metabolism in rats was detected based on body weight, body temperature, and adipose tissue by HE staining and immunohistochemistry. In addition, 16S rRNA high-throughput sequencing and targeted metabolomics were used to detect changes in gut microbiota and BA concentrations, respectively. Antibiotic treatment and fecal microbiota transplantation (FMT) were also performed to demonstrate the importance of gut microbiota. Results Rats given AA experienced an increase in body temperature, a decrease in body weight, and an increase in BAT (brown adipose tissue) activity and browning of WAT (white adipose tissue). Sequencing analysis and targeted metabolomics indicated that AA modulated gut microbiota and BA metabolism. The energy metabolism promotion of AA was found to be mediated by gut microbiota, as demonstrated through antibiotic treatment and FMT. Moreover, the energy metabolism-promoting effect of aconite is associated with the bile acid receptor TGR5 (Takeda G-protein-coupled receptor 5)-UCP1 (uncoupling protein 1) signaling pathway. Conclusion The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
4
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
5
|
Hoang SH, Tveter KM, Mezhibovsky E, Roopchand DE. Proanthocyanidin B2 derived metabolites may be ligands for bile acid receptors S1PR2, PXR and CAR: an in silico approach. J Biomol Struct Dyn 2024; 42:4249-4262. [PMID: 37340688 PMCID: PMC10730774 DOI: 10.1080/07391102.2023.2224886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Bile acids (BAs) act as signaling molecules via their interactions with various nuclear (FXR, VDR, PXR and CAR) and G-protein coupled (TGR5, M3R, S1PR2) BA receptors. Stimulation of these BA receptors influences several processes, including inflammatory responses and glucose and xenobiotic metabolism. BA profiles and BA receptor activity are deregulated in cardiometabolic diseases; however, dietary polyphenols were shown to alter BA profile and signaling in association with improved metabolic phenotypes. We previously reported that supplementing mice with a proanthocyanidin (PAC)-rich grape polyphenol (GP) extract attenuated symptoms of glucose intolerance in association with changes to BA profiles, BA receptor gene expression, and/or downstream markers of BA receptor activity. Exact mechanisms by which polyphenols modulate BA signaling are not known, but some hypotheses include modulation of the BA profile via changes to gut bacteria, or alteration of ligand-availability via BA sequestration. Herein, we used an in silico approach to investigate putative binding affinities of proanthocyanidin B2 (PACB2) and PACB2 metabolites to nuclear and G-protein coupled BA receptors. Molecular docking and dynamics simulations revealed that certain PACB2 metabolites had stable binding affinities to S1PR2, PXR and CAR, comparable to that of known natural and synthetic BA ligands. These findings suggest PACB2 metabolites may be novel ligands of S1PR2, CAR, and PXR receptors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Skyler H. Hoang
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Kevin M. Tveter
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| | - Esther Mezhibovsky
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Diana E. Roopchand
- Department of Food Science, New Jersey Institute for Food, Nutrition, and Health (Rutgers Center for Lipid Research and Center for Nutrition, Microbiome, and Health), Rutgers University, 61 Dudley Road, New Brunswick, New Jersey, 08901 USA
| |
Collapse
|
6
|
Virk MK, Mian MUM, Bashir DA, Wilkes JK, Schlingman T, Flores S, Kennedy C, Lam F, Arikan AA, Nguyen T, Mysore K, Galvan NTN, Coss-Bu J, Karpen SJ, Harpavat S, Desai MS. Elevated bile acids are associated with left ventricular structural changes in biliary atresia. Hepatol Commun 2023; 7:e0109. [PMID: 37058680 PMCID: PMC10109457 DOI: 10.1097/hc9.0000000000000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND In children with biliary atresia (BA), pathologic structural changes within the heart, which define cirrhotic cardiomyopathy, are associated with adverse perioperative outcomes. Despite their clinical relevance, little is known about the pathogenesis and triggers of pathologic remodeling. Bile acid excess causes cardiomyopathy in experimental cirrhosis, but its role in BA is poorly understood. METHODS Echocardiographic parameters of left ventricular (LV) geometry [LV mass (LVM), LVM indexed to height, left atrial volume indexed to BSA (LAVI), and LV internal diameter (LVID)] were correlated with circulating serum bile acid concentrations in 40 children (52% female) with BA listed for transplantation. A receiver-operating characteristic curve was generated to determine optimal threshold values of bile acids to detect pathologic changes in LV geometry using Youden index. Paraffin-embedded human heart tissue was separately analyzed by immunohistochemistry for the presence of bile acid-sensing Takeda G-protein-coupled membrane receptor type 5. RESULTS In the cohort, 52% (21/40) of children had abnormal LV geometry; the optimal bile acid concentration to detect this abnormality with 70% sensitivity and 64% specificity was 152 µmol/L (C-statistics=0.68). Children with bile acid concentrations >152 µmol/L had ∼8-fold increased odds of detecting abnormalities in LVM, LVM index, left atrial volume index, and LV internal diameter. Serum bile acids positively correlated with LVM, LVM index, and LV internal diameter. Separately, Takeda G-protein-coupled membrane receptor type 5 protein was detected in myocardial vasculature and cardiomyocytes on immunohistochemistry. CONCLUSION This association highlights the unique role of bile acids as one of the targetable potential triggers for myocardial structural changes in BA.
Collapse
Affiliation(s)
- Manpreet K. Virk
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | | | - Dalia A. Bashir
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - John K. Wilkes
- Pediatric Cardiology, Cook Children’s Medical Centre, Fort Worth, Texas, USA
| | - Tobias Schlingman
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Saul Flores
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Curtis Kennedy
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Fong Lam
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Ayse A. Arikan
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Section of Nephrology, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Trung Nguyen
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Krupa Mysore
- Department of Pediatrics, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Nhu Thao Nguyen Galvan
- Division of Abdominal Transplantation and Hepatobiliary Surgery, Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Jorge Coss-Bu
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| | - Saul J. Karpen
- Department of Pediatric Gastroenterology and Hepatology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Sanjiv Harpavat
- Department of Pediatrics, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Moreshwar S. Desai
- Department of Pediatrics, Section of Critical Care Medicine, Texas Children’s Hospital Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Zhang N, Zheng W, Bakker W, van Ravenzwaay B, Rietjens IMCM. In vitro models to measure effects on intestinal deconjugation and transport of mixtures of bile acids. Chem Biol Interact 2023; 375:110445. [PMID: 36889625 DOI: 10.1016/j.cbi.2023.110445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Bile acid metabolism and transport are critical to maintain bile acid homeostasis and host health. In this study, it was investigated if effects on intestinal bile acid deconjugation and transport can be quantified in vitro model systems using mixtures of bile acids instead of studying individual bile acids. To this end deconjugation of mixtures of selected bile acids in anaerobic rat or human fecal incubations and the effect of the antibiotic tobramycin on these reactions was studied. In addition, the effect of tobramycin on the transport of the bile acids in isolation or in a mixture across Caco-2 cell layers was characterized. The results demonstrate that both the reduction of bile acid deconjugation and transport by tobramycin can be adequately detected in vitro systems using a mixture of bile acids, thus eliminating the need to characterize the effects for each bile acid in separate experiments. Subtle differences between the experiments with single or combined bile acids point at mutual competitive interactions and indicate that the use of bile acid mixtures is preferred over use of single bile acid given that also in vivo bile acids occurs in mixtures.
Collapse
Affiliation(s)
- Nina Zhang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE Wageningen, the Netherlands.
| | - Weijia Zheng
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE Wageningen, the Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE Wageningen, the Netherlands
| | - Bennard van Ravenzwaay
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE Wageningen, the Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708, WE Wageningen, the Netherlands
| |
Collapse
|
8
|
Sandoval DA, Patti ME. Glucose metabolism after bariatric surgery: implications for T2DM remission and hypoglycaemia. Nat Rev Endocrinol 2023; 19:164-176. [PMID: 36289368 PMCID: PMC10805109 DOI: 10.1038/s41574-022-00757-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Although promising therapeutics are in the pipeline, bariatric surgery (also known as metabolic surgery) remains our most effective strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Of the many available options, Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are currently the most widely used procedures. RYGB and VSG have very different anatomical restructuring but both surgeries are effective, to varying degrees, at inducing weight loss and T2DM remission. Both weight loss-dependent and weight loss-independent alterations in multiple tissues (such as the intestine, liver, pancreas, adipose tissue and skeletal muscle) yield net improvements in insulin resistance, insulin secretion and insulin-independent glucose metabolism. In a subset of patients, post-bariatric hypoglycaemia can develop months to years after surgery, potentially reflecting the extreme effects of potent glucose reduction after surgery. This Review addresses the effects of bariatric surgery on glucose regulation and the potential mechanisms responsible for both the resolution of T2DM and the induction of hypoglycaemia.
Collapse
Affiliation(s)
- Darleen A Sandoval
- Department of Paediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | | |
Collapse
|
9
|
Nigam SK, Granados JC. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu Rev Pharmacol Toxicol 2023; 63:637-660. [PMID: 36206988 DOI: 10.1146/annurev-pharmtox-030322-084058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Department of Pediatrics and Medicine (Nephrology), University of California San Diego, La Jolla, California, USA;
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Gou H, Liu S, Liu L, Luo M, Qin S, He K, Yang X. Obeticholic acid and 5β-cholanic acid 3 exhibit anti-tumor effects on liver cancer through CXCL16/CXCR6 pathway. Front Immunol 2022; 13:1095915. [PMID: 36605219 PMCID: PMC9807878 DOI: 10.3389/fimmu.2022.1095915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy with a high incidence and mortality rate. Previous in vitro and in vivo studies have confirmed that liver sinusoidal endothelial cells (LSEC) secrete CXCL16, which acts as a messenger to increase the hepatic accumulation of CXCR6+ natural killer T (NKT) cells and exert potent antitumor effects. However, evidence for this process in humans is lacking and its clinical significance is still unclear. In this study, by dissecting the human HCC single-cell RNA-seq data, we verified this process through cellphoneDB. NKT cells in patients with high expression of CXCL16 exhibited a higher activation state and produced more interferon-γ (IFN-γ) compared with those with low expression. We next investigated the signaling pathways between activated (CD69 high) and unactivated NKT cells (CD69 low) using NKT cell-developmental trajectories and functional enrichment analyses. In vivo experiments, we found that farnesoid X receptor agonist (obeticholic acid) combined with the takeda G protein coupled receptor 5 antagonist (5β-cholanic acid 3) exhibited significant tumor suppressive effects in the orthotopic liver tumor model and this result may be related to the CXCL16/CXCR6 axis. In conclusion, our study provides the basis and potential strategies for HCC immunotherapy based on NKT cells.
Collapse
Affiliation(s)
- Haoxian Gou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China,Academician Workstation of Sichuan Province, Luzhou, China
| | - Shenglu Liu
- Academician Workstation of Sichuan Province, Luzhou, China
| | - Linxin Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Luo
- Academician Workstation of Sichuan Province, Luzhou, China
| | - Shu Qin
- Academician Workstation of Sichuan Province, Luzhou, China
| | - Kai He
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China,Academician Workstation of Sichuan Province, Luzhou, China,*Correspondence: Xiaoli Yang, ; Kai He,
| | - Xiaoli Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China,Academician Workstation of Sichuan Province, Luzhou, China,*Correspondence: Xiaoli Yang, ; Kai He,
| |
Collapse
|
11
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
12
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
13
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|
14
|
Kovacevic B, Jones M, Ionescu C, Walker D, Wagle S, Chester J, Foster T, Brown D, Mikov M, Mooranian A, Al-Salami H. The emerging role of bile acids as critical components in nanotechnology and bioengineering: Pharmacology, formulation optimizers and hydrogel-biomaterial applications. Biomaterials 2022; 283:121459. [PMID: 35303546 DOI: 10.1016/j.biomaterials.2022.121459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
|
15
|
Xue R, Su L, Lai S, Wang Y, Zhao D, Fan J, Chen W, Hylemon PB, Zhou H. Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells 2021; 10:2806. [PMID: 34831031 PMCID: PMC8616422 DOI: 10.3390/cells10112806] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been significantly increased due to the global epidemic of obesity. The disease progression from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is closely linked to inflammation, insulin resistance, and dysbiosis. Although extensive efforts have been aimed at elucidating the pathological mechanisms of NAFLD disease progression, current understanding remains incomplete, and no effective therapy is available. Bile acids (BAs) are not only important physiological detergents for the absorption of lipid-soluble nutrients in the intestine but also metabolic regulators. During the last two decades, BAs have been identified as important signaling molecules involved in lipid, glucose, and energy metabolism. Dysregulation of BA homeostasis has been associated with NAFLD disease severity. Identification of nuclear receptors and G-protein-coupled receptors activated by different BAs not only significantly expanded the current understanding of NAFLD/NASH disease progression but also provided the opportunity to develop potential therapeutics for NAFLD/NASH. In this review, we will summarize the recent studies with a focus on BA-mediated signaling pathways in NAFLD/NASH. Furthermore, the therapeutic implications of targeting BA-mediated signaling pathways for NAFLD will also be discussed.
Collapse
Affiliation(s)
- Rui Xue
- Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 210092, China; (R.X.); (J.F.)
| | - Lianyong Su
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Shengyi Lai
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Yanyan Wang
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei 230031, China; (Y.W.); (W.C.)
| | - Derrick Zhao
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Jiangao Fan
- Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 210092, China; (R.X.); (J.F.)
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei 230031, China; (Y.W.); (W.C.)
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| |
Collapse
|
16
|
Francis CE, Allee L, Nguyen H, Grindstaff RD, Miller CN, Rayalam S. Endocrine disrupting chemicals: Friend or foe to brown and beige adipose tissue? Toxicology 2021; 463:152972. [PMID: 34606950 DOI: 10.1016/j.tox.2021.152972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
The effects of Endocrine Disrupting Chemicals (EDCs) on the current obesity epidemic is a growing field of interest. Numerous EDCs have shown the potential to alter energy metabolism, which may increase the risk of obesity, in part, through direct actions on adipose tissue. While white adipose tissue has historically been the primary focus of this work, evidence of the EDC-induced disruption of brown and beige adipose tissues continues to build. Both brown and beige fat are thermogenic adipose depots rich in mitochondria that dispense heat when activated. Due to these properties, brown and beige fat are implicated in metabolic diseases such as obesity, diabetes, and cachexia. This review delves into the current literature of different EDCs, including bisphenols, dioxins, air pollutants, phthalates, and phytochemicals. The possible implications that these EDCs have on thermogenic adipose tissues are covered. This review also introduces the possibility of using brown and beige fat as a therapeutic target organ by taking advantage of some of the properties of EDCs. Collectively, we provide a comprehensive discussion of the evidence of EDC disruption in white, brown, and beige fat and highlight gaps worthy of further exploration.
Collapse
Affiliation(s)
| | - Logan Allee
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA
| | - Helen Nguyen
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel D Grindstaff
- Neuroendocrine Toxicology Brach, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Srujana Rayalam
- Department of Pharmaceutical Sciences, School of Pharmacy, Philadelphia College of Osteopathic Medicine, Georgia Campus, Suwanee, GA, USA.
| |
Collapse
|
17
|
Microbiome Metabolites and Thyroid Dysfunction. J Clin Med 2021; 10:jcm10163609. [PMID: 34441905 PMCID: PMC8397005 DOI: 10.3390/jcm10163609] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid diseases are common conditions that have a negative impact on the health of all populations. The literature sheds light on the differences in the composition of the intestinal microbiota in patients suffering from thyroid diseases compared to healthy individuals. The microbiome affects the proper functioning of the thyroid gland, and the existence of the gut–thyroid axis is discussed in the context of both thyroid diseases and intestinal dysbiosis. The purpose of this review is to describe associations between the microbiome and its metabolites and thyroid dysfunction. We try to explain the role of the microbiome in the metabolism of thyroid hormones and the impact of thyroid autoimmune diseases. In addition, we raise issues related to the influence of bacterial metabolites, such as short-chain fatty acids or secondary bile acids, in the functioning of the thyroid gland. Last but not least, we explored the interactions between the gut microbiota and therapeutics and supplements typically administered to patients with thyroid diseases.
Collapse
|
18
|
Sangaraju D, Shi Y, Van Parys M, Ray A, Walker A, Caminiti R, Milanowski D, Jaochico A, Dean B, Liang X. Robust and Comprehensive Targeted Metabolomics Method for Quantification of 50 Different Primary, Secondary, and Sulfated Bile Acids in Multiple Biological Species (Human, Monkey, Rabbit, Dog, and Rat) and Matrices (Plasma and Urine) Using Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2033-2049. [PMID: 33826317 DOI: 10.1021/jasms.0c00435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bile acids (BAs) are biomolecules synthesized in the liver from cholesterol and are constituents of bile. The in-vivo BA pool includes more than 50 known diverse BAs which are unconjugated, amino acid conjugated, sulfated, and glucuronidated metabolites. Hemostasis of bile acids is known to be highly regulated and an interplay between liver metabolism, gut microbiome function, intestinal absorption, and enterohepatic recirculation. Interruption of BA homeostasis has been attributed to several metabolic diseases and drug induced liver injury (DILI), and their use as potential biomarkers is increasingly becoming important. Speciated quantitative and comprehensive profiling of BAs in various biomatrices from humans and preclinical animal species are important to understand their significance and biological function. Consequently, a versatile one single bioanalytical method for BAs is required to accommodate quantitation in a broad range of biomatrices from human and preclinical animal species. Here we report a versatile, comprehensive, and high throughput liquid chromatography-high resolution mass spectrometry (LC-HRMS) targeted metabolomics method for quantitative analysis of 50 different BAs in multiple matrices including human serum, plasma, and urine and plasma and urine of preclinical animal species (rat, rabbit, dog, and monkey). The method has been sufficiently qualified for accuracy, precision, robustness, and ruggedness and addresses the issue of nonspecific binding of bile acids to plastic for urine samples. Application of this method includes comparison for BA analysis between matched plasma and serum samples, human and animal species differences in BA pools, data analysis, and visualization of complex BA data using BA indices or ratios to understand BA biology, metabolism, and transport.
Collapse
Affiliation(s)
- Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yao Shi
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Michael Van Parys
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Adam Ray
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Abigail Walker
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Rachel Caminiti
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Dennis Milanowski
- Bioanalytical Department, Covance Laboratories, Inc., 3301 Kinsman Blvd, Madison, Wisconsin 53704, United States
| | - Allan Jaochico
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Dean
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaorong Liang
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
19
|
Wang Q, Wei S, Li L, Qiu J, Zhou S, Shi C, Shi Y, Zhou H, Lu L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov 2020; 6:116. [PMID: 33298860 PMCID: PMC7604280 DOI: 10.1038/s41420-020-00347-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is responsible for liver injury during hepatic resection and liver transplantation. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) could regulate immune response in multiple liver diseases. Nevertheless, the underlying role of TGR5 in hepatic I/R injury remains largely unknown. This study aimed to investigate the potential mechanism of TGR5 in hepatic I/R injury. Wild-type (WT) and TGR5 knockout (TGR5KO) mice were used to perform hepatic I/R, and macrophages were isolated from mice for in vitro experiments. The results demonstrated that knockout of TGR5 in mice significantly exacerbated liver injury and inflammatory response. TGR5KO mice infused with WT macrophages showed relieved liver injury. Further study revealed that TGR5 knockout inhibited sirtuin 3 (SIRT3) and forkhead box O3 (FOXO3) expression. In vitro experiments indicated that SIRT3 inhibited acetylation, ubiquitination and degradation of FOXO3. FOXO3 inhibited HIF-1α transcription by binding to its promoter. TGR5 knockout inhibited SIRT3 expression, thus promoted the acetylation, ubiquitination, and degradation of FOXO3, which resulted in increased HIF-1α transcription and macrophages proinflammatory response. Collectively, TGR5 plays a critical protective role in hepatic I/R injury. FOXO3 deacetylation mediated by SIRT3 can attenuate hepatic I/R injury. TGR5 deficiency aggravates hepatic I/R injury via inhibiting SIRT3/FOXO3/HIF-1α pathway.
Collapse
Affiliation(s)
- Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Song Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Shun Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chengyu Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Yong Shi
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China. .,School of Medicine, Southeast University, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China. .,State Key Laboratory of Reproductive Medicine, Nanjing, China.
| |
Collapse
|
20
|
Sarcopenia Induced by Chronic Liver Disease in Mice Requires the Expression of the Bile Acids Membrane Receptor TGR5. Int J Mol Sci 2020; 21:ijms21217922. [PMID: 33113850 PMCID: PMC7662491 DOI: 10.3390/ijms21217922] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is a condition of muscle dysfunction, commonly associated with chronic liver disease (CLD), characterized by a decline in muscle strength, the activation of the ubiquitin-proteasome system (UPS), and oxidative stress. We recently described a murine model of CLD-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which presents an increase in plasma bile acids (BA). BA induced skeletal muscle atrophy through a mechanism dependent on the Takeda G protein-coupled receptor 5 (TGR5) receptor. In the present study, we evaluated the role of TGR5 signaling in the development of sarcopenia using a model of DDC-induced CLD in C57BL6 wild-type (WT) mice and mice deficient in TGR5 expression (TGR5−/− mice). The results indicate that the decline in muscle function and contractibility induced by the DDC diet is dependent on TGR5 expression. TGR5 dependence was also observed for the decrease in fiber diameter and sarcomeric proteins, as well as for the fast-to-slow shift in muscle fiber type. UPS overactivation, indicated by increased atrogin-1/MAFbx (atrogin-1) and muscle RING-finger protein-1 (MuRF-1) protein levels and oxidative stress, was abolished in tibialis anterior muscles from TGR5−/− mice. Our results collectively suggest that all sarcopenia features induced by the DDC-supplemented diet in mice are dependent on TGR5 receptor expression.
Collapse
|
21
|
Chiang JY, Ferrell JM. Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. LIVER RESEARCH 2020; 4:47-63. [PMID: 34290896 PMCID: PMC8291349 DOI: 10.1016/j.livres.2020.05.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol 7 alpha-hydroxylase (CYP7A1, EC1.14) is the first and rate-limiting enzyme in the classic bile acid synthesis pathway. Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades. Discovery of bile acid-activated receptors and their roles in the regulation of lipid, glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases, liver cirrhosis, diabetes, obesity and hepatocellular carcinoma. This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.
Collapse
|
22
|
Prete R, Long SL, Gallardo AL, Gahan CG, Corsetti A, Joyce SA. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep 2020; 10:1165. [PMID: 31980710 PMCID: PMC6981223 DOI: 10.1038/s41598-020-58069-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Bile acid (BA) signatures are altered in many disease states. BA metabolism is an important microbial function to assist gut colonization and persistence, as well as microbial survival during gastro intestinal (GI) transit and it is an important criteria for potential probiotic bacteria. Microbes that express bile salt hydrolase (BSH), gateway BA modifying enzymes, are considered to have an advantage in the gut. This property is reported as selectively limited to gut-associated microbes. Food-associated microbes have the potential to confer health benefits to the human consumer. Here, we report that food associated Lactobacillus plantarum strains are capable of BA metabolism, they can withstand BA associated stress and propagate, a recognised important characteristic for GIT survival. Furthermore, we report that these food associated Lactobacillus plantarum strains have the selective ability to alter BA signatures in favour of receptor activation that would be beneficial to humans. Indeed, all of the strains examined showed a clear preference to alter human glycol-conjugated BAs, although clear strain-dependent modifications were also evident. This study demonstrates that BA metabolism by food-borne non-pathogenic bacteria is beneficial to both microbe and man and it identifies an evolutionary-conserved characteristic, previously considered unique to gut residents, among food-associated non-pathogenic isolates.
Collapse
Affiliation(s)
- Roberta Prete
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, Via Balzarini 1, Teramo, Italy
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Louise Long
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alvaro Lopez Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Cormac G Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Aldo Corsetti
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, Via Balzarini 1, Teramo, Italy
| | - Susan A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
23
|
Donkers JM, Roscam Abbing RLP, van Weeghel M, Levels JHM, Boelen A, Schinkel AH, Oude Elferink RPJ, van de Graaf SFJ. Inhibition of Hepatic Bile Acid Uptake by Myrcludex B Promotes Glucagon-Like Peptide-1 Release and Reduces Obesity. Cell Mol Gastroenterol Hepatol 2020; 10:451-466. [PMID: 32330730 PMCID: PMC7363705 DOI: 10.1016/j.jcmgh.2020.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Bile acids are important metabolic signaling molecules. Bile acid receptor activation promotes body weight loss and improves glycemic control. The incretin hormone GLP-1 and thyroid hormone activation of T4 to T3 have been suggested as important contributors. Here, we identify the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as target to prolong postprandial bile acid signaling. METHODS Organic anion transporting polypeptide (OATP)1a/1b KO mice with or without reconstitution with human OATP1B1 in the liver were treated with the NTCP inhibitor Myrcludex B for 3.5 weeks after the onset of obesity induced by high fat diet-feeding. Furthermore, radiolabeled T4 was injected to determine the role of NTCP and OATPs in thyroid hormone clearance from plasma. RESULTS Inhibition of NTCP by Myrcludex B in obese Oatp1a/1b KO mice inhibited hepatic clearance of bile acids from portal and systemic blood, stimulated GLP-1 secretion, reduced body weight, and decreased (hepatic) adiposity. NTCP inhibition did not affect hepatic T4 uptake nor lead to increased thyroid hormone activation. Myrcludex B treatment increased fecal energy output, explaining body weight reductions amongst unaltered food intake and energy expenditure. CONCLUSIONS Pharmacologically targeting hepatic bile acid uptake to increase bile acid signaling is a novel approach to treat obesity and induce GLP1- secretion.
Collapse
Affiliation(s)
- Joanne M Donkers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Reinout L P Roscam Abbing
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes H M Levels
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita Boelen
- Endocrinology Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alfred H Schinkel
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Donkers JM, Kooijman S, Slijepcevic D, Kunst RF, Roscam Abbing RL, Haazen L, de Waart DR, Levels JH, Schoonjans K, Rensen PC, Oude Elferink RP, van de Graaf SF. NTCP deficiency in mice protects against obesity and hepatosteatosis. JCI Insight 2019; 5:127197. [PMID: 31237863 PMCID: PMC6675549 DOI: 10.1172/jci.insight.127197] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate cotransporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP and G protein–coupled bile acid receptor–double KO (TGR5–double KO) mice were equally protected against diet-induced obesity as NTCP–single KO mice. NTCP-KO mice displayed decreased intestinal fat absorption and a trend toward higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure. Targeting bile acid uptake simultaneously dampens intestinal fat absorption and increases energy expenditure, suggesting a potential approach to treat obesity and obesity-related hepatosteatosis.
Collapse
Affiliation(s)
- Joanne M Donkers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Reinout Lp Roscam Abbing
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lizette Haazen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Johannes Hm Levels
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, École Polytechnique Fédérale de Lausanne,, Lausanne, Switzerland
| | - Patrick Cn Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ronald Pj Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Stan Fj van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Abstract
Bile acids facilitate nutrient absorption and are endogenous ligands for nuclear receptors that regulate lipid and energy metabolism. The brain-gut-liver axis plays an essential role in maintaining overall glucose, bile acid, and immune homeostasis. Fasting and feeding transitions alter nutrient content in the gut, which influences bile acid composition and pool size. In turn, bile acid signaling controls lipid and glucose use and protection against inflammation. Altered bile acid metabolism resulting from gene mutations, high-fat diets, alcohol, or circadian disruption can contribute to cholestatic and inflammatory diseases, diabetes, and obesity. Bile acids and their derivatives are valuable therapeutic agents for treating these inflammatory metabolic diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272;
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272;
| |
Collapse
|
26
|
Ise I, Tanaka N, Imoto H, Maekawa M, Kohyama A, Watanabe K, Motoi F, Unno M, Naitoh T. Changes in Enterohepatic Circulation after Duodenal–Jejunal Bypass and Reabsorption of Bile Acids in the Bilio-Pancreatic Limb. Obes Surg 2019; 29:1901-1910. [DOI: 10.1007/s11695-019-03790-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Khalturin K, Billas IML, Chebaro Y, Reitzel AM, Tarrant AM, Laudet V, Markov GV. NR3E receptors in cnidarians: A new family of steroid receptor relatives extends the possible mechanisms for ligand binding. J Steroid Biochem Mol Biol 2018; 184:11-19. [PMID: 29940311 PMCID: PMC6240368 DOI: 10.1016/j.jsbmb.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/21/2023]
Abstract
Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.
Collapse
Affiliation(s)
- Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Isabelle M L Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Yassmine Chebaro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Vincent Laudet
- Sorbonne Université, CNRS, Observatoire océanologique de Banyuls-sur-mer, Avenue de Fontaule, 66650 Banyuls-sur-mer, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, 29688 Roscoff Cedex, France.
| |
Collapse
|
28
|
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr 2018; 12:617-624. [PMID: 29661605 DOI: 10.1016/j.dsx.2018.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Probiotics have beneficial effect on obesity related disorders in animal models. Despite a large number of animal data, randomized placebo-controlled trials (RCT) concluded that probiotics have a moderate effect on glycemic control-related parameters. However, effect of probiotics on insulin resistance are inconsistent. AIM In a double-blind single center RCT, effect of alive multistrain probiotic vs. placebo on insulin resistance in type 2 diabetes patient were assessed. METHODS A total of 53 patients met the criteria for inclusion. They were randomly assigned to receive multiprobiotic "Symbiter" (concentrated biomass of 14 probiotic bacteria genera Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium) or placebo for 8-weeks administered as a sachet formulation. The primary main outcome was the change HOMA-IR (homeostasis model assessment-estimated insulin resistance) which calculated using Matthews et al.'s equation. Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables and cytokines. RESULTS Supplementation with alive multiprobiotic for 8 weeks was associated with significant reduction of HOMA-IR from 6.85 ± 0.76 to 5.13 ± 0.49 (p = 0.047), but remained static in the placebo group. With respect to our secondary outcomes, HbA1c insignificant decreased by 0.09% (p = 0.383) and 0.24% (p = 0.068) respectively in placebo and probiotics groups. However, in probiotic responders (n = 22, patient with decrease in HOMA-IR) after supplementation a significant reduction in HbA1c by 0.39% (p = 0.022) as compared to non-responders was observed. In addition, from markers of chronic systemic inflammatory state only TNF-α and IL-1β changes significantly after treatment with probiotics. CONCLUSION Probiotic therapies modestly improved insulin resistance in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine.
| | - Galyna Mykhalchyshyn
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| | - Dmytro Kyriienko
- Kyiv City Clinical Endocrinology Center, Pushkinska Str., 22a, Kyiv, 01601, Ukraine.
| | - Iuliia Komissarenko
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| |
Collapse
|
29
|
Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, Adorini L, Penny DJ, Desai MS. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther 2018; 36:e12462. [PMID: 30070769 DOI: 10.1111/1755-5922.12462] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Administration of cholic acid, or its synthetic derivative, 6-alpha-ethyl-23(S)-methylcholic acid (INT-777), activates the membrane GPCR, TGR5, influences whole body metabolism, reduces atherosclerosis, and benefits the cardiovascular physiology in mice. Direct effects of TGR5 agonists, and the role for TGR5, on myocardial cell biology and stress response are unknown. METHODS Mice were fed chow supplemented with 0.5% cholic acid (CA) or 0.025% INT-777, a specific TGR5 agonist, or regular chow for 3 weeks. Anthropometric, biochemical, physiologic (electrocardiography and echocardiography), and molecular analysis was performed at baseline. CA and INT-777 fed mice were challenged with acute exercise-induced stress, acute catecholamine-induced stress, and hemodynamic stress induced by transverse aortic constriction (TAC) for a period of 8 weeks. In separate experiments, mice born with constitutive deletion of TGR5 in cardiomyocytes (CM-TGR5del ) were exposed to exercise, inotropic, and TAC-induced stress. RESULTS Administration of CA and INT-777 supplemented diets upregulated TGR5 expression and activated Akt, PKA, and ERK1/2 in the heart. CA and INT-777 fed mice showed improved exercise tolerance, improved sensitivity to catecholamine and attenuation in pathologic remodeling of the heart under hemodynamic stress. In contrast, CM-TGR5del showed poor response to exercise and catecholamine challenge as well as higher mortality and signs of accelerated cardiomyopathy under hemodynamic stress. CONCLUSIONS Bile acids, specifically TGR5 agonists, induce cytoprotective changes in the heart and improve myocardial response to physiologic, inotropic, and hemodynamic stress in mice. TGR5 plays a critical role in myocardial adaptability, and TGR5 activation may represent a potentially attractive treatment option in heart failure.
Collapse
Affiliation(s)
- Zeena Eblimit
- Section of Pediatric Critical Care, Baylor College of Medicine, Houston, Texas
| | | | - Saul J Karpen
- Pediatric Gastroenterology, Emory School of Medicine, Atlanta, Georgia
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - David D Moore
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | | | - Daniel J Penny
- Department of Pediatric Cardiology, Baylor College of Medicine, Houston, Texas
| | - Moreshwar S Desai
- Section of Pediatric Critical Care, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
30
|
Abstract
Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
31
|
Hofmann AF, Herdt T, Ames NK, Chen Z, Hagey LR. Bile Acids and the Microbiome in the Cow: Lack of Deoxycholic Acid Hydroxylation. Lipids 2018; 53:269-270. [PMID: 29668048 DOI: 10.1002/lipd.12036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Alan F Hofmann
- Department of Medicine, University of California, 9500 Gilman Drive, San Diego, CA, 92093-8200, USA
| | - Thomas Herdt
- Nutrition Section, Diagnostic Center for Population and Animal Health, Michigan State University, 784 Wilson Road, Lansing, MI, 48910, USA
| | - Norman Kent Ames
- Nutrition Section, Diagnostic Center for Population and Animal Health, Michigan State University, 784 Wilson Road, Lansing, MI, 48910, USA
| | - Zhouji Chen
- Nutrition Section, Diagnostic Center for Population and Animal Health, Michigan State University, 784 Wilson Road, Lansing, MI, 48910, USA
| | - Lee R Hagey
- Department of Medicine, University of California, 9500 Gilman Drive, San Diego, CA, 92093-8200, USA
| |
Collapse
|
32
|
Chevre R, Trigueros-Motos L, Castaño D, Chua T, Corlianò M, Patankar JV, Sng L, Sim L, Juin TL, Carissimo G, Ng LFP, Yi CNJ, Eliathamby CC, Groen AK, Hayden MR, Singaraja RR. Therapeutic modulation of the bile acid pool by Cyp8b1 knockdown protects against nonalcoholic fatty liver disease in mice. FASEB J 2018; 32:3792-3802. [PMID: 29481310 DOI: 10.1096/fj.201701084rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acids (BAs) are surfactant molecules that regulate the intestinal absorption of lipids. Thus, the modulation of BAs represents a potential therapy for nonalcoholic fatty liver disease (NAFLD), which is characterized by hepatic accumulation of fat and is a major cause of liver disease worldwide. Cyp8b1 is a critical modulator of the hydrophobicity index of the BA pool. As a therapeutic proof of concept, we aimed to determine the impact of Cyp8b1 inhibition in vivo on BA pool composition and as protection against NAFLD. Inhibition of Cyp8b1 expression in mice led to a remodeling of the BA pool, which altered its signaling properties and decreased intestinal fat absorption. In a model of cholesterol-induced NAFLD, Cyp8b1 knockdown significantly decreased steatosis and hepatic lipid content, which has been associated with an increase in fecal lipid and BA excretion. Moreover, inhibition of Cyp8b1 not only decreased hepatic lipid accumulation, but also resulted in the clearance of previously accumulated hepatic cholesterol, which led to a regression in hepatic steatosis. Taken together, our data demonstrate that Cyp8b1 inhibition is a viable therapeutic target of crucial interest for metabolic diseases, such as NAFLD.-Chevre, R., Trigueros-Motos, L., Castaño, D., Chua, T., Corlianò, M., Patankar, J. V., Sng, L., Sim, L., Juin, T. L., Carissimo, G., Ng, L. F. P., Yi, C. N. J., Eliathamby, C. C., Groen, A. K., Hayden, M. R., Singaraja, R. R. Therapeutic modulation of the bile acid pool by Cyp8b1 knockdown protects against nonalcoholic fatty liver disease in mice.
Collapse
Affiliation(s)
- Raphael Chevre
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Laia Trigueros-Motos
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - David Castaño
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Tricia Chua
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Maria Corlianò
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Jay V Patankar
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lareina Sng
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Lauren Sim
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Tan Liang Juin
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology, and Research (A*STAR), Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Cheryl Neo Jia Yi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Chelsea Chandani Eliathamby
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Albert K Groen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; and.,Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael R Hayden
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore.,Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roshni R Singaraja
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology, and Research (A*STAR), Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
33
|
Chen Y, Wu S, Tian Y. Cholecystectomy as a risk factor of metabolic syndrome: from epidemiologic clues to biochemical mechanisms. J Transl Med 2018; 98:7-14. [PMID: 28892095 DOI: 10.1038/labinvest.2017.95] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
Cholecystectomy has long been regarded as a safe procedure with no deleterious influence on the body. However, recent studies provide clues that link cholecystectomy to a high risk for metabolic syndrome (MetS). In the present review, we describe the epidemiologic evidence that links cholecystectomy to MetS. Various components of MetS are investigated, including visceral obesity, dyslipidemia, elevated blood pressure, impaired fasting glucose, and insulin resistance. The possible mechanisms that associate cholecystectomy with MetS are discussed on the basis of experimental studies.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Tapia P, Fernández-Galilea M, Robledo F, Mardones P, Galgani JE, Cortés VA. Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biol Rev Camb Philos Soc 2017; 93:1145-1164. [DOI: 10.1111/brv.12389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Pablo Tapia
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Marta Fernández-Galilea
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Fermín Robledo
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Pablo Mardones
- Research and Innovation Office, School of Engineering; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - José E. Galgani
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
- Departamento Ciencias de la Salud; Carrera de Nutrición y Dietética, Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| | - Víctor A. Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine; Pontificia Universidad Católica de Chile, Marcoleta 367; Santiago, 8330024 Chile
| |
Collapse
|
35
|
Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Front Neurosci 2017; 11:617. [PMID: 29163019 PMCID: PMC5681992 DOI: 10.3389/fnins.2017.00617] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain.
Collapse
Affiliation(s)
- Kim L Mertens
- Master's Program in Biomedical Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Laboratory of Endocrinology, Department Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hannah M Eggink
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
36
|
Yan X, Li P, Tang Z, Feng B. The relationship between bile acid concentration, glucagon-like-peptide 1, fibroblast growth factor 15 and bile acid receptors in rats during progression of glucose intolerance. BMC Endocr Disord 2017; 17:60. [PMID: 28946907 PMCID: PMC5613331 DOI: 10.1186/s12902-017-0211-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent studies show that bile acids are involved in glucose and energy homeostasis through activation of G protein coupled membrane receptor (TGR5) and farnesoid X receptor (FXR). A few researches have explored changes of TGR5 and FXR in animals with impaired glucose regulation. This study aimed to observe changes of plasma total bile acids (TBA), glucagon-like-peptide 1 (GLP-1), fibroblast growth factor 15 (FGF15), intestinal expressions of TGR5 and FXR, and correlations between them in rats with glucose intolerance. METHODS Besides plasma fasting glucose, lipid, TBAs, alanine transaminase (ALT), active GLP-1(GLP-1A) and FGF15, a postprandial meal test was used to compare responses in glucose, insulin and GLP-1A among groups. The expressions of TGR5 and FXR in distal ileum and ascending colon were quantified by real-time PCR and western blot. RESULTS TGR5 expression was significantly decreased in distal ileum in DM group compared to other groups, and TGR5 and FXR expressions in ascending colon were also decreased in DM group compared to other groups. Correlation analysis showed correlations between TBA and GLP-1A or FGF15. GLP-1A was correlated with TGR5 mRNA expression in colon, and FGF15 was correlated with FXR mRNA expression in colon. CONCLUSIONS These results indicates that bile acid-TGR5/FXR axis contributes to glucose homeostasis.
Collapse
Affiliation(s)
- Xinfeng Yan
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Peicheng Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Zhaosheng Tang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120 China
| |
Collapse
|
37
|
Li X, Liu R, Yang J, Sun L, Zhang L, Jiang Z, Puri P, Gurley EC, Lai G, Tang Y, Huang Z, Pandak WM, Hylemon PB, Zhou H. The role of long noncoding RNA H19 in gender disparity of cholestatic liver injury in multidrug resistance 2 gene knockout mice. Hepatology 2017; 66:869-884. [PMID: 28271527 PMCID: PMC5570619 DOI: 10.1002/hep.29145] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022]
Abstract
UNLABELLED The multidrug resistance 2 knockout (Mdr2-/- ) mouse is a well-established model of cholestatic cholangiopathies. Female Mdr2-/- mice develop more severe hepatobiliary damage than male Mdr2-/- mice, which is correlated with a higher proportion of taurocholate in the bile. Although estrogen has been identified as an important player in intrahepatic cholestasis, the underlying molecular mechanisms of gender-based disparity of cholestatic injury remain unclear. The long noncoding RNA H19 is an imprinted, maternally expressed, and estrogen-targeted gene, which is significantly induced in human fibrotic/cirrhotic liver and bile duct-ligated mouse liver. However, whether aberrant expression of H19 accounts for gender-based disparity of cholestatic injury in Mdr2-/- mice remains unknown. The current study demonstrated that H19 was markedly induced (∼200-fold) in the livers of female Mdr2-/- mice at advanced stages of cholestasis (100 days old) but not in age-matched male Mdr2-/- mice. During the early stages of cholestasis, H19 expression was minimal. We further determined that hepatic H19 was mainly expressed in cholangiocytes, not hepatocytes. Both taurocholate and estrogen significantly activated the extracellular signal-regulated kinase 1/2 signaling pathway and induced H19 expression in cholangiocytes. Knocking down H19 not only significantly reduced taurocholate/estrogen-induced expression of fibrotic genes and sphingosine 1-phosphate receptor 2 in cholangiocytes but also markedly reduced cholestatic injury in female Mdr2-/- mice. Furthermore, expression of small heterodimer partner was substantially inhibited at advanced stages of liver fibrosis, which was reversed by H19 short hairpin RNA in female Mdr2-/- mice. Similar findings were obtained in human primary sclerosing cholangitis liver samples. CONCLUSION H19 plays a critical role in the disease progression of cholestasis and represents a key factor that causes the gender disparity of cholestatic liver injury in Mdr2-/- mice. (Hepatology 2017;66:869-884).
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Runping Liu
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Yang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China.,Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Puneet Puri
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Emily C Gurley
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resource Industrialization and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiming Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - William M Pandak
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, and McGuire Veterans Affairs Medical Center, Richmond, VA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA.,Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 2017; 74:2959-2977. [PMID: 28352996 PMCID: PMC11107543 DOI: 10.1007/s00018-017-2509-x] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
Abstract
The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.
Collapse
Affiliation(s)
- G Adrienne Weiss
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
39
|
Chiang JY. Bile acid metabolism and signaling in liver diseases: Emerging trends of liver research and therapy. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
40
|
Yang JP, Anderson AE, McCartney A, Ory X, Ma G, Pappalardo E, Bader J, Elisseeff JH. Metabolically Active Three-Dimensional Brown Adipose Tissue Engineered from White Adipose-Derived Stem Cells. Tissue Eng Part A 2017; 23:253-262. [PMID: 28073315 PMCID: PMC5397238 DOI: 10.1089/ten.tea.2016.0399] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 01/15/2023] Open
Abstract
Brown adipose tissue (BAT) has a unique capacity to expend calories by decoupling energy expenditure from ATP production, therefore BAT could realize therapeutic potential to treat metabolic diseases such as obesity and type 2 diabetes. Recent studies have investigated markers and function of native BAT, however, successful therapies will rely on methods that supplement the small existing pool of brown adipocytes in adult humans. In this study, we engineered BAT from both human and rat adipose precursors and determined whether these ex vivo constructs could mimic in vivo tissue form and metabolic function. Adipose-derived stem cells (ASCs) were isolated from several sources, human white adipose tissue (WAT), rat WAT, and rat BAT, then differentiated toward both white and brown adipogenic lineages in two-dimensional and three-dimensional (3D) culture conditions. ASCs derived from WAT were successfully differentiated in 3D poly(ethylene glycol) hydrogels into mature adipocytes with BAT phenotype and function, including high uncoupling protein 1 (UCP1) mRNA and protein expression and increased metabolic activity (basal oxygen consumption, proton leak, and maximum respiration). By utilizing this "browning" process, the abundant and accessible WAT stem cell population can be engineered into 3D tissue constructs with the metabolic capacity of native BAT, ultimately for therapeutic intervention in vivo and as a tool for studying BAT and its metabolic properties.
Collapse
Affiliation(s)
- Jessica P. Yang
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Amy E. Anderson
- Translational Tissue Engineering Center and Department of Cellular and Molecular Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Annemarie McCartney
- Translational Tissue Engineering Center and Department of Cellular and Molecular Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Xavier Ory
- Department of Biology, Ecole Polytechnique, Palaiseau, France
| | - Garret Ma
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Elisa Pappalardo
- Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland
| | - Joel Bader
- Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
Lee WS, Jung JH, Panchanathan R, Yun JW, Kim DH, Kim HJ, Kim GS, Ryu CH, Shin SC, Hong SC, Choi YH, Jung JM. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells. J Cancer Prev 2017; 22:16-21. [PMID: 28382282 PMCID: PMC5380185 DOI: 10.15430/jcp.2017.22.1.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/03/2022] Open
Abstract
Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer.
Collapse
Affiliation(s)
- Won Sup Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Ji Hyun Jung
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Radha Panchanathan
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jeong Won Yun
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Dong Hoon Kim
- Department of Emergency Medicine, Gyeongsang National University School of Medicine, Jinju, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Gyeongsang National University School of Medicine, Jinju, Korea; Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gon Sup Kim
- School of Veterinary Medicine, Gyeongsang National University, Jinju, Korea; Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Chung Ho Ryu
- Division of Applied Life Science (BK 21 Program), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Korea
| | - Sung Chul Shin
- Research Institute of Life Science, Gyeongsang National University, Jinju, Korea; Department of Chemistry, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| | - Soon Chan Hong
- Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; Department of Surgery, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan, Korea; Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan, Korea
| | - Jin-Myung Jung
- Institute of Health Sciences, Gyeongsang National University, Jinju, Korea; Department of Neurosurgery, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
42
|
van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK, Soeters MR. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol 2017; 5:224-233. [PMID: 27639537 DOI: 10.1016/s2213-8587(16)30155-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023]
Abstract
The bile acid receptor TGR5 (also known as GPBAR1) is a promising target for the development of pharmacological interventions in metabolic diseases, including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. TGR5 is expressed in many metabolically active tissues, but complex enterohepatic bile acid cycling limits the exposure of some of these tissues to the receptor ligand. Profound interspecies differences in the biology of bile acids and their receptors in different cells and tissues exist. Data from preclinical studies show promising effects of targeting TGR5 on outcomes such as weight loss, glucose metabolism, energy expenditure, and suppression of inflammation. However, clinical studies are scarce. We give a summary of key concepts in bile acid metabolism; outline different downstream effects of TGR5 activation; and review available data on TGR5 activation, with a focus on the translation of preclinical studies into clinically applicable findings. Studies in rodents suggest an important role for Tgr5 in Glp-1 secretion, insulin sensitivity, and energy expenditure. However, evidence of effects on these processes from human studies is less convincing. Ultimately, safe and selective human TGR5 agonists are needed to test the therapeutic potential of TGR5.
Collapse
Affiliation(s)
- F Samuel van Nierop
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Matthijs J Scheltema
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Hannah M Eggink
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands
| | - Thijs W Pols
- Department of Biochemistry, Academic Medical Center, Amsterdam, Netherlands
| | - David P Sonne
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Hellerup, Denmark
| | - Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, Netherlands.
| |
Collapse
|
43
|
Martinot E, Sèdes L, Baptissart M, Lobaccaro JM, Caira F, Beaudoin C, Volle DH. Bile acids and their receptors. Mol Aspects Med 2017; 56:2-9. [PMID: 28153453 DOI: 10.1016/j.mam.2017.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Primary bile acids are synthetized from cholesterol within the liver and then transformed by the bacteria in the intestine to secondary bile acids. In addition to their involvement in digestion and fat solubilization, bile acids also act as signaling molecules. Several receptors are sensors of bile acids. Among these receptors, this review focuses on the nuclear receptor FXRα and the G-protein-coupled receptor TGR5. This review briefly presents the potential links between bile acids and cancers that are discussed in more details in the other articles of this special issue of Molecular Aspects of Medicine focused on "Bile acids, roles in integrative physiology and pathophysiology".
Collapse
Affiliation(s)
- Emmanuelle Martinot
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Lauriane Sèdes
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Marine Baptissart
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Françoise Caira
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - David H Volle
- INSERM U 1103, Génétique Reproduction et Développement (GReD), F-63170 Aubière, France; Université Clermont Auvergne, GReD, F-63000 Clermont-Ferrand, F-63170 Aubière, France; CNRS, UMR 6293, GReD, F-63170 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
44
|
Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 2017; 101:47-64. [PMID: 27888332 PMCID: PMC5203956 DOI: 10.1007/s00253-016-8006-6] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
Abstract
Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ∼5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations.
Collapse
Affiliation(s)
- Christopher Staley
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Alexa R Weingarden
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Alexander Khoruts
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
- Division of Gastroenterology, Department of Medicine, Center for Immunology University of Minnesota, Minneapolis, MN
| | - Michael J Sadowsky
- BioTechnology Institute, Center for Immunology University of Minnesota, Minneapolis, MN
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN
| |
Collapse
|
45
|
Yang H, Zhou H, Zhuang L, Auwerx J, Schoonjans K, Wang X, Feng C, Lu L. Plasma membrane-bound G protein-coupled bile acid receptor attenuates liver ischemia/reperfusion injury via the inhibition of toll-like receptor 4 signaling in mice. Liver Transpl 2017; 23:63-74. [PMID: 27597295 DOI: 10.1002/lt.24628] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
Abstract
The plasma membrane-bound G protein-coupled bile acid receptor (TGR5) displays varied levels of expression in different tissues. TGR5-induced liver protection has been demonstrated during several liver diseases, except during ischemia/reperfusion injury (IRI). Male adult wild-type and TGR5 knockout (KO) mice were subjected to liver partial warm ischemia/reperfusion. Hepatic injury was evaluated based on serum alanine aminotransferase and serum aspartate aminotransferase. Liver histological injury and inflammatory cell infiltration were evaluated in tissue sections using liver immunohistochemical analysis. We used quantitative real-time polymerase chain reaction to analyze the liver expression of inflammatory cytokines. The toll-like receptor 4 (TLR4) signaling pathway and its related apoptotic molecules were investigated after reperfusion. Moreover, the effect of TGR5 on inflammation was determined with TGR5+/+ or TGR5-/- primary bone marrow-derived macrophages in vitro. TGR5 significantly attenuated liver damage after IRI. As demonstrated by in vivo experiments, TGR5 significantly reduced the up-regulation of the TLR4-nuclear factor kappa B (NF-κB) pathway and inhibited caspase 8 activation after IRI. Later experiments showed that TGR5 KO significantly increased the expression of TLR4-NF-κB signaling molecules and promoted hepatocellular apoptosis. In addition, in vitro experiments showed that overexpression of 6alpha-ethyl-23(S)-methylcholic acid (INT-777)-activated TGR5 directly down-regulated tumor necrosis factor α (TNF-α) and interleukin (IL) 6 expression but up-regulated IL10 expression in hypoxia/reoxygenation-induced primary TGR5+/+ macrophages. Moreover, the expression of TLR4-NF-κB signaling molecules was significantly inhibited by the activation of TGR5. Importantly, these results were completely reversed in primary TGR5-/- macrophages. This work is the first to provide evidence for a TGR5-inhibited inflammatory response in IRI through suppression of the TLR4-NF-κB pathway, which may be critical in reducing related inflammatory molecules and modulating innate inflammation. Liver Transplantation 23:63-74 2017 AASLD.
Collapse
Affiliation(s)
- Haojun Yang
- Translational Medicine Research Center, Affiliated Jiangning Hospital and Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Changzhou No. 2 People's Hospital, Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Haoming Zhou
- Translational Medicine Research Center, Affiliated Jiangning Hospital and Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Zhuang
- Translational Medicine Research Center, Affiliated Jiangning Hospital and Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Johan Auwerx
- Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Xuehao Wang
- Translational Medicine Research Center, Affiliated Jiangning Hospital and Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Feng
- Translational Medicine Research Center, Affiliated Jiangning Hospital and Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Translational Medicine Research Center, Affiliated Jiangning Hospital and Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Teodoro JS, Rolo AP, Jarak I, Palmeira CM, Carvalho RA. The bile acid chenodeoxycholic acid directly modulates metabolic pathways in white adipose tissue in vitro: insight into how bile acids decrease obesity. NMR IN BIOMEDICINE 2016; 29:1391-1402. [PMID: 27488269 DOI: 10.1002/nbm.3583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Obesity is a worldwide epidemic, and associated pathologies, including type 2 diabetes and cardiovascular alterations, are increasingly escalating morbidity and mortality. Despite intensive study, no effective simple treatment for these conditions exists. As such, the need for go-to drugs is serious. Bile acids (BAs) present the possibility of reversing these problems, as various in vivo studies and clinical trials have shown significant effects with regard to weight and obesity reduction, insulin sensitivity restoration and cardiovascular improvements. However, the mechanism of action of BA-induced metabolic improvement has yet to be fully established. The currently most accepted model involves non-shivering thermogenesis for energy waste, but this is disputed. As such, we propose to determine whether the BA chenodeoxycholic acid (CDCA) can exert anti-obesogenic effects in vitro, independent of thermogenic brown adipose tissue activation. By exposing differentiated 3 T3-L1 adipocytes to high glucose and CDCA, we demonstrate that this BA has anti-obesity effects in vitro. Nuclear magnetic resonance spectroscopic analysis of metabolic pathways clearly indicates an improvement in metabolic status, as these cells become more oxidative rather than glycolytic, which may be associated with an increase in fatty acid oxidation. Our work demonstrates that CDCA-induced metabolic alterations occur in white and brown adipocytes and are not totally dependent on endocrine/nervous system signaling, as thought until now. Furthermore, future exploration of the mechanisms behind these effects will undoubtedly reveal interesting targets for clinical modulation.
Collapse
Affiliation(s)
- João Soeiro Teodoro
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Anabela Pinto Rolo
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra, Coimbra, Portugal
| | - Ivana Jarak
- Center for Functional Ecology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Carlos Marques Palmeira
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
- Center for Neurosciences and Cell Biology, Department of Life Sciences of the University of Coimbra, Coimbra, Portugal.
| | - Rui Albuquerque Carvalho
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- Center for Functional Ecology, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
47
|
Hutch CR, Sandoval DA. Physiological and molecular responses to bariatric surgery: markers or mechanisms underlying T2DM resolution? Ann N Y Acad Sci 2016; 1391:5-19. [DOI: 10.1111/nyas.13194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/30/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Chelsea R. Hutch
- Department of Surgery; University of Michigan; Ann Arbor Michigan
| | | |
Collapse
|
48
|
Guo C, Su J, Li Z, Xiao R, Wen J, Li Y, Zhang M, Zhang X, Yu D, Huang W, Chen WD, Wang YD. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. Oncotarget 2016; 6:34402-13. [PMID: 26417930 PMCID: PMC4741461 DOI: 10.18632/oncotarget.5353] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/11/2015] [Indexed: 01/05/2023] Open
Abstract
Gpbar1 (TGR5), a membrane-bound bile acid receptor, is well known for its roles in regulation of energy homeostasis and glucose metabolism. Here we show that TGR5 is a suppressor of gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. We firstly show that TGR5 activation greatly inhibited proliferation and migration of human gastric cancer cells and strongly induced gastric cancer cell apoptosis. We then found that TGR5 activation antagonized STAT3 signaling pathway through suppressing the phosphorylation of STAT3 and its transcription activity induced by lipopolysaccharide (LPS) or interleukin-6. TGR5 overexpression with ligand treatment inhibited gene expression mediated by STAT3. It suggests that TGR5 antagonizes gastric cancer proliferation and migration at least in part by inhibiting STAT3 signaling. These findings identify TGR5 as a suppressor of gastric cancer cell proliferation and migration that may serve as an attractive therapeutic tool for human gastric cancer.
Collapse
Affiliation(s)
- Cong Guo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Jia Su
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Zhijun Li
- Key Laboratory of Molecular Pathology, School of basic medical science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Rui Xiao
- Key Laboratory of Molecular Pathology, School of basic medical science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Jianxun Wen
- Key Laboratory of Molecular Pathology, School of basic medical science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Yanyan Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Meng Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Xueting Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Donna Yu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Wendong Huang
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, School of basic medical science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, Henan, P. R. China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
49
|
Taoka H, Yokoyama Y, Morimoto K, Kitamura N, Tanigaki T, Takashina Y, Tsubota K, Watanabe M. Role of bile acids in the regulation of the metabolic pathways. World J Diabetes 2016; 7:260-270. [PMID: 27433295 PMCID: PMC4937164 DOI: 10.4239/wjd.v7.i13.260] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome.
Collapse
|
50
|
Tabibian JH, Varghese C, LaRusso NF, O'Hara SP. The enteric microbiome in hepatobiliary health and disease. Liver Int 2016; 36:480-487. [PMID: 26561779 PMCID: PMC4825184 DOI: 10.1111/liv.13009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
Increasing evidence points to the contribution of the intestinal microbiome as a potentially key determinant in the initiation and/or progression of hepatobiliary disease. While current understanding of this dynamic is incomplete, exciting insights are continually being made and more are expected given the developments in molecular and high-throughput omics techniques. In this brief review, we provide a practical and updated synopsis of the interaction of the intestinal microbiome with the liver and its downstream impact on the initiation, progression and complications of hepatobiliary disease.
Collapse
Affiliation(s)
- James H. Tabibian
- Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cyril Varghese
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven P. O'Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|