1
|
Kuchinsky SC, Duggal NK. Usutu virus, an emerging arbovirus with One Health importance. Adv Virus Res 2024; 120:39-75. [PMID: 39455168 DOI: 10.1016/bs.aivir.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Usutu virus (USUV, Flaviviridae) is an emerging arbovirus that has led to epizootic outbreaks in birds and numerous human neuroinvasive disease cases in Europe. It is maintained in an enzootic cycle with Culex mosquitoes and passerine birds, a transmission cycle that is shared by West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), two flaviviruses that are endemic in the United States. USUV and WNV co-circulate in Africa and Europe, and SLEV and WNV co-circulate in North America. These three viruses are prime examples of One Health issues, in which the interactions between humans, animals, and the environments they reside in can have important health impacts. The three facets of One Health are interwoven throughout this article as we discuss the mechanisms of flavivirus transmission and emergence. We explore the possibility of USUV emergence in the United States by analyzing the shared characteristics among USUV, WNV, and SLEV, including the role that flavivirus co-infections and sequential exposures may play in viral emergence. Finally, we provide insights on the importance of integrated surveillance programs as One Health tools that can be used to mitigate USUV emergence and spread.
Collapse
Affiliation(s)
- Sarah C Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
2
|
Emmerich P, Jakupi X, Sherifi K, Dreshaj S, Kalaveshi A, Hemmer C, Hajdari DP, von Possel R, Cadar D, Tomazatos A. Serologic and Genomic Investigation of West Nile Virus in Kosovo. Viruses 2023; 16:66. [PMID: 38257766 PMCID: PMC10818488 DOI: 10.3390/v16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The prevalence of West Nile virus (WNV) is increasing across Europe, with cases emerging in previously unaffected countries. Kosovo is situated in a WNV-endemic region where the seroepidemiological data on WNV in humans remains absent. To address this issue, we have conducted a seroepidemiological investigation of 453 randomly selected sera from a hospital in Kosovo, revealing a 1.55% anti-WNV IgG seroprevalence. Comparative and phylogeographic analyses of the WNV genomes obtained by sequencing archived samples from patients with West Nile fever indicate at least two recent and distinct introductions of WNV lineage 2 into Kosovo from neighboring countries. These findings confirm the eco-epidemiological status of WNV in southeast Europe, where long- and short-range dispersion of lineage 2 strains contributes to a wider circulation via central Europe. Our results suggest an increasing risk for WNV spreading in Kosovo, underscoring the need for an integrated national surveillance program targeting vectors and avian populations for early epidemic detection, as well as the screening of blood donors to gauge the impact of virus circulation on the human population.
Collapse
Affiliation(s)
- Petra Emmerich
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (P.E.); (R.v.P.)
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany;
| | - Xhevat Jakupi
- National Institute of Public Health of Kosovo, 10000 Pristina, Kosovo; (X.J.); (A.K.); (D.P.H.)
| | - Kurtesh Sherifi
- Faculty of Agriculture and Veterinary, University of Prishtina “Hasan Prishtina”, 10000 Prishtina, Kosovo;
| | - Shemsedin Dreshaj
- University Clinic of Infectious Diseases, Faculty of Medicine, University of Pristina, 10000 Pristina, Kosovo;
| | - Ariana Kalaveshi
- National Institute of Public Health of Kosovo, 10000 Pristina, Kosovo; (X.J.); (A.K.); (D.P.H.)
| | - Christoph Hemmer
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany;
| | - Donjeta Pllana Hajdari
- National Institute of Public Health of Kosovo, 10000 Pristina, Kosovo; (X.J.); (A.K.); (D.P.H.)
| | - Ronald von Possel
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (P.E.); (R.v.P.)
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University of Rostock, 18057 Rostock, Germany;
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (P.E.); (R.v.P.)
| | - Alexandru Tomazatos
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany; (P.E.); (R.v.P.)
| |
Collapse
|
3
|
Angeloni G, Bertola M, Lazzaro E, Morini M, Masi G, Sinigaglia A, Trevisan M, Gossner CM, Haussig JM, Bakonyi T, Capelli G, Barzon L. Epidemiology, surveillance and diagnosis of Usutu virus infection in the EU/EEA, 2012 to 2021. Euro Surveill 2023; 28:2200929. [PMID: 37589592 PMCID: PMC10436690 DOI: 10.2807/1560-7917.es.2023.28.33.2200929] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/08/2023] [Indexed: 08/18/2023] Open
Abstract
BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.MethodsWe collected information through a literature review, an online survey and an expert meeting.ResultsEight countries reported USUV infection in humans (105 cases, including 12 [corrected] with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.
Collapse
Affiliation(s)
- Giorgia Angeloni
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
- These authors contributed equally to the work and share first authorship
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
- These authors contributed equally to the work and share first authorship
| | - Elena Lazzaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
| | - Matteo Morini
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
| | - Giulia Masi
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
| | - Céline M Gossner
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Joana M Haussig
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Tamas Bakonyi
- European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro (Padua), Italy
- These authors contributed equally to the work and share last authorship
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padua (Padua), Italy
- These authors contributed equally to the work and share last authorship
| |
Collapse
|
4
|
Reemtsma H, Holicki CM, Fast C, Bergmann F, Groschup MH, Ziegler U. A Prior Usutu Virus Infection Can Protect Geese from Severe West Nile Disease. Pathogens 2023; 12:959. [PMID: 37513806 PMCID: PMC10386565 DOI: 10.3390/pathogens12070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are closely related pathogens circulating between mosquitoes and birds, but also infecting mammals as dead-end hosts. Both viruses share the same susceptible hosts, vectors, and even distribution areas in Central Europe. The aim of the study was, therefore, to understand their amplification potential and interference upon a successive infection. Two-week old geese were initially infected with an USUV isolate from Germany and with a German WNV isolate17 days later. The geese were susceptible to the USUV and the WNV infections, as evidenced by specific flavivirus antibodies in all of the birds. Furthermore, in half of the USUV-inoculated geese, USUV genomes were detected in the blood and swab samples 2-4 days post-infection. Additionally, most of the examined organs contained USUV genomes and showed signs of encephalitis and ganglioneuritis. Interestingly, upon a sequential infection with WNV, the genome copy numbers in all of the examined samples were significantly lower and less frequent than after a WNV mono-infection. Similarly, the histopathological lesions were less severe. Therefore, it can be concluded that a previous USUV infection can protect birds from clinical disease in a subsequent WNV infection.
Collapse
Affiliation(s)
- Hannah Reemtsma
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Cora M Holicki
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Christine Fast
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Felicitas Bergmann
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Akinsulie OC, Adesola RO, Bakre A, Adebowale OO, Adeleke R, Ogunleye SC, Oladapo IP. Usutu virus: An emerging flavivirus with potential threat to public health in Africa: Nigeria as a case study. Front Vet Sci 2023; 10:1115501. [PMID: 36875996 PMCID: PMC9980716 DOI: 10.3389/fvets.2023.1115501] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Usutu virus (USUV) is an arthropod-borne virus (arbovirus) of the flaviviridae family (genus Flavivirus) which belong to the Japanese encephalitis virus complex. Culex mosquitoes have been implicated in the transmission of this pathogen. The major susceptible hosts of USUV are migratory birds, thereby potentiating its ability to spread from one region to another globally. Nigeria has the largest economy in Africa with a significant percentage of the gross domestic product relying on the agricultural and animal production industry. This review explores the zoonotic potentials of the virus in Africa, especially Nigeria, with special focus on the devastating sequelae this might lead to in the future if necessary precautionary policies are not enacted and adopted to bolster the surveillance system for mosquito-borne viruses.
Collapse
Affiliation(s)
| | | | - Adetolase Bakre
- Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | - Richard Adeleke
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Seto Charles Ogunleye
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | | |
Collapse
|
6
|
Rossi B, Barreca F, Benvenuto D, Braccialarghe N, Campogiani L, Lodi A, Aguglia C, Cavasio RA, Giacalone ML, Kontogiannis D, Moccione M, Malagnino V, Andreoni M, Sarmati L, Iannetta M. Human Arboviral Infections in Italy: Past, Current, and Future Challenges. Viruses 2023; 15:v15020368. [PMID: 36851582 PMCID: PMC9963149 DOI: 10.3390/v15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arboviruses represent a public health concern in many European countries, including Italy, mostly because they can infect humans, causing potentially severe emergent or re-emergent diseases, with epidemic outbreaks and the introduction of endemic circulation of new species previously confined to tropical and sub-tropical regions. In this review, we summarize the Italian epidemiology of arboviral infection over the past 10 years, describing both endemic and imported arboviral infections, vector distribution, and the influence of climate change on vector ecology. Strengthening surveillance systems at a national and international level is highly recommended to be prepared to face potential threats due to arbovirus diffusion.
Collapse
Affiliation(s)
- Benedetta Rossi
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Filippo Barreca
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Benvenuto
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Neva Braccialarghe
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Campogiani
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Camilla Aguglia
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | | | - Maria Laura Giacalone
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitra Kontogiannis
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Martina Moccione
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Vincenzo Malagnino
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Iannetta
- Infectious Disease Clinic, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy
- Department of System Medicine Tor Vergata, University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
7
|
Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: A New Risk on Horizon? Viruses 2022; 15:77. [PMID: 36680117 PMCID: PMC9866956 DOI: 10.3390/v15010077] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The Usutu virus (USUV), a neurotropic mosquito-borne flavivirus discovered in 1959 in South Africa, has spread over the last twenty years across the European continent. This virus follows an enzootic cycle involving mosquitoes and birds. This caused epizootics with significant bird mortality in Europe in 2016 and 2018. It can also occasionally infect humans and other mammals, including horses and bats, which act as incidental or dead-end hosts. The zoonotic risk associated with this succession of avian epizootics in Europe deserves attention, even if, to date, human cases remain exceptional. Human infection is most often asymptomatic or responsible for mild clinical symptoms. However, human Usutu infections have also been associated with neurological disorders, such as encephalitis and meningoencephalitis. One of the major complexities of the study of USUV pathogenesis is the presence of a great diversity of lineages which could co-circulate spatiotemporally. In this review we discuss several aspects of the circulation of Usutu virus in humans in Europe, the neurological disorders associated, involved viral lineages, and the issues and questions raised by their circulation.
Collapse
Affiliation(s)
- Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, 20359 Hamburg, Germany
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France
| |
Collapse
|
8
|
Giglia G, Mencattelli G, Lepri E, Agliani G, Gobbi M, Gröne A, van den Brand JMA, Savini G, Mandara MT. West Nile Virus and Usutu Virus: A Post-Mortem Monitoring Study in Wild Birds from Rescue Centers, Central Italy. Viruses 2022; 14:v14091994. [PMID: 36146800 PMCID: PMC9503110 DOI: 10.3390/v14091994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that have been associated with neurological diseases in humans and wild birds. Wild bird rescue centers are potential significant hot spots for avian infection surveillance, as recognized in the Italian Integrate National Surveillance Plan for Arboviruses. Here we report the results of a post-mortem active monitoring study conducted from November 2017 to October 2020 on animals hosted in five wild bird rescue centers of Central Italy. Five hundred seventy-six (n = 576) wild birds were tested by real-time polymerase chain reaction (RT-PCR) for the presence of WNV or USUV RNA fragments. No birds tested positive for USUV RNA (n = 0; 0.00%). Evidence of WNV RNA (Ct value = 34.36) was found in one bird (n = 1; 0.17%), an adult little grebe (Tachybaptus ruficollis subsp. ruficollis), that tested WNV positive in December 2019. This study highlights the strategic role of wildlife rescue centers in monitoring both the introduction and circulation of avian emerging zoonotic diseases. In addition, the presence of WNV during the cold season evidences the possible role of birds in overwintering mechanisms in the Italian territory and requires further investigations.
Collapse
Affiliation(s)
- Giuseppe Giglia
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence:
| | - Giulia Mencattelli
- OIE National Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale, dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy
- Center Agriculture Food Environment, University of Trento, 38098 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Gianfilippo Agliani
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Marco Gobbi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “T. Rosati”, 06126 Perugia, Italy
| | - Andrea Gröne
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Judith M. A. van den Brand
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Dutch Wildlife Health Centre, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Giovanni Savini
- OIE National Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale, dell’Abruzzo e Molise “G. Caporale”, 64100 Teramo, Italy
| | | |
Collapse
|
9
|
Nagy A, Csonka N, Takács M, Mezei E, Barabás É. West Nile and Usutu virus seroprevalence in Hungary: A nationwide serosurvey among blood donors in 2019. PLoS One 2022; 17:e0266840. [PMID: 35395048 PMCID: PMC8992992 DOI: 10.1371/journal.pone.0266840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022] Open
Abstract
In Hungary, West Nile virus (WNV) has been responsible for 459 laboratory confirmed human cases between 2004 and 2019, while the first human Usutu virus (USUV) infection was confirmed only in 2018. A comprehensive serosurvey was conducted among blood donors to assess the WNV and USUV seroprevalence in 2019, one year after the largest European WNV epidemic. Altogether, 3005 plasma samples were collected and screened for WNV and USUV specific Immunoglobulin G (IgG) antibodies by Enzyme-Linked Immunosorbent Assay (ELISA). All reactive samples were further tested for tick-borne encephalitis virus IgG antibodies by ELISA. Indirect immunofluorescence test and microneutralization assay were used as confirmatory methods. Overall, the WNV seroprevalence was 4.32%, and in five blood donors USUV seropositivity was confirmed. The highest seroprevalence was measured in Central, Eastern and Southern Hungary, while the Western part of the country proved to be less affected. There was a statistically strong association between the WNV seroprevalence of 2019 and the cumulative incidence in the period of 2004 and 2019 calculated for every NUTS 3 region. The last WNV serological screening was performed in 2016 and the prevalence of anti-WNV IgG proved to be 2.19%. One year after the 2018 WNV outbreak, a significant increase in seroprevalence was observed in the Hungarian population and evidence for USUV seropositivity was also obtained. The spatial pattern of seroprevalence can support the identification of high-risk areas raising awareness of the need for increased surveillance, such as screening vector, equine, and avian populations. The communication with general practitioners and other professionals in primary health care services can support the early identification of acute human cases. Education and awareness-raising on the importance of protection against mosquito vectors amongst residents are also important parts of preventive measures.
Collapse
Affiliation(s)
- Anna Nagy
- National Reference Laboratory for Viral Zoonoses, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
- * E-mail:
| | - Nikolett Csonka
- National Reference Laboratory for Viral Zoonoses, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Mária Takács
- National Reference Laboratory for Viral Zoonoses, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Eszter Mezei
- Department of Communicable Diseases Epidemiology and Infection Control, National Public Health Center, Budapest, Hungary
| | - Éva Barabás
- Confirmatory Laboratory, Hungarian National Blood Transfusion Service, Budapest, Hungary
| |
Collapse
|
10
|
Störk T, de le Roi M, Haverkamp AK, Jesse ST, Peters M, Fast C, Gregor KM, Könenkamp L, Steffen I, Ludlow M, Beineke A, Hansmann F, Wohlsein P, Osterhaus ADME, Baumgärtner W. Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci Rep 2021; 11:24191. [PMID: 34921222 PMCID: PMC8683490 DOI: 10.1038/s41598-021-03638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
Collapse
|
11
|
Böszörményi K, Hirsch J, Kiemenyi Kayere G, Fagrouch Z, Heijmans N, Rodriguez Garcia R, Dwarka S, van Dijke A, Aaldijk B, Limpens R, Barcena M, Koster B, Verstrepen B, Bogers W, Kocken C, Cornellissen G, Verschoor E, Faber B. A Bacterially-Expressed Recombinant Envelope Protein from Usutu Virus Induces Neutralizing Antibodies in Rabbits. Vaccines (Basel) 2021; 9:vaccines9020157. [PMID: 33669414 PMCID: PMC7920429 DOI: 10.3390/vaccines9020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.
Collapse
Affiliation(s)
- Kinga Böszörményi
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| | - Janet Hirsch
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Gwendoline Kiemenyi Kayere
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Nicole Heijmans
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Roberto Rodriguez Garcia
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Soesjiel Dwarka
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Amy van Dijke
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Boyd Aaldijk
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Ronald Limpens
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Montserrat Barcena
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Bram Koster
- Section Electron Microscopy, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands; (R.L.); (M.B.); (B.K.)
| | - Babs Verstrepen
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Willy Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Clemens Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
| | - Gesine Cornellissen
- Department of Biotechnology, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany; (J.H.); (G.C.)
| | - Ernst Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (G.K.K.); (Z.F.); (B.V.); (W.B.); (E.V.)
| | - Bart Faber
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.H.); (R.R.G.); (S.D.); (A.v.D.); (B.A.); (C.K.)
- Correspondence: (K.B.); (B.F.); Tel.: +31-152842500 (K.B. & B.F.)
| |
Collapse
|
12
|
Constant O, Bollore K, Clé M, Barthelemy J, Foulongne V, Chenet B, Gomis D, Virolle L, Gutierrez S, Desmetz C, Moares RA, Beck C, Lecollinet S, Salinas S, Simonin Y. Evidence of Exposure to USUV and WNV in Zoo Animals in France. Pathogens 2020; 9:pathogens9121005. [PMID: 33266071 PMCID: PMC7760666 DOI: 10.3390/pathogens9121005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are zoonotic arboviruses. These flaviviruses are mainly maintained in the environment through an enzootic cycle involving mosquitoes and birds. Horses and humans are incidental, dead-end hosts, but can develop severe neurological disorders. Nevertheless, there is little data regarding the involvement of other mammals in the epidemiology of these arboviruses. In this study, we performed a serosurvey to assess exposure to these viruses in captive birds and mammals in a zoo situated in the south of France, an area described for the circulation of these two viruses. A total of 411 samples comprising of 70 species were collected over 16 years from 2003 to 2019. The samples were first tested by a competitive enzyme-linked immunosorbent assay. The positive sera were then tested using virus-specific microneutralization tests against USUV and WNV. USUV seroprevalence in birds was 10 times higher than that of WNV (14.59% versus 1.46%, respectively). Among birds, greater rhea (Rhea Americana) and common peafowl (Pavo cristatus) exhibited the highest USUV seroprevalence. Infections occurred mainly between 2016-2018 corresponding to a period of high circulation of these viruses in Europe. In mammalian species, antibodies against WNV were detected in one dama gazelle (Nanger dama) whereas serological evidence of USUV infection was observed in several Canidae, especially in African wild dogs (Lycaon pictus). Our study helps to better understand the exposure of captive species to WNV and USUV and to identify potential host species to include in surveillance programs in zoos.
Collapse
Affiliation(s)
- Orianne Constant
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Karine Bollore
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Marion Clé
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Jonathan Barthelemy
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Vincent Foulongne
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Baptiste Chenet
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | - David Gomis
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | - Laurie Virolle
- Parc de Lunaret—Zoo de Montpellier, 34090 Montpellier, France; (B.C.); (D.G.); (L.V.)
| | | | - Caroline Desmetz
- bBioCommunication en CardioMétabolique (BC2M), Montpellier University, 34000 Montpellier, France;
| | - Rayane Amaral Moares
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRAE, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France; (R.A.M.); (C.B.); (S.L.)
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, University of Montpellier, INSERM, EFS, 34000 Montpellier, France; (O.C.); (K.B.); (M.C.); (J.B.); (V.F.); (S.S.)
- Correspondence: ; Tel.: +33-(0)4-3435-9114
| |
Collapse
|
13
|
Benzarti E, Garigliany M. In Vitro and In Vivo Models to Study the Zoonotic Mosquito-Borne Usutu Virus. Viruses 2020; 12:E1116. [PMID: 33008141 PMCID: PMC7599730 DOI: 10.3390/v12101116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Usutu virus (USUV), a mosquito-borne zoonotic flavivirus discovered in South Africa in 1959, has spread to many European countries over the last 20 years. The virus is currently a major concern for animal health due to its expanding host range and the growing number of avian mass mortality events. Although human infections with USUV are often asymptomatic, they are occasionally accompanied by neurological complications reminiscent of those due to West Nile virus (another flavivirus closely related to USUV). Whilst USUV actually appears less threatening than some other emergent arboviruses, the lessons learned from Chikungunya, Dengue, and Zika viruses during the past few years should not be ignored. Further, it would not be surprising if, with time, USUV disperses further eastwards towards Asia and possibly westwards to the Americas, which may result in more pathogenic USUV strains to humans and/or animals. These observations, inviting the scientific community to be more vigilant about the spread and genetic evolution of USUV, have prompted the use of experimental systems to understand USUV pathogenesis and to boost the development of vaccines and antivirals. This review is the first to provide comprehensive coverage of existing in vitro and in vivo models for USUV infection and to discuss their contribution in advancing data concerning this neurotropic virus. We believe that this paper is a helpful tool for scientists to identify gaps in the knowledge about USUV and to design their future experiments to study the virus.
Collapse
Affiliation(s)
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium;
| |
Collapse
|
14
|
Bakhshi H, Beck C, Lecollinet S, Monier M, Mousson L, Zakeri S, Raz A, Arzamani K, Nourani L, Dinparast-Djadid N, Failloux AB. Serological evidence of West Nile virus infection among birds and horses in some geographical locations of Iran. Vet Med Sci 2020; 7:204-209. [PMID: 32858762 PMCID: PMC7840194 DOI: 10.1002/vms3.342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/25/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Recent expansion of arboviruses such as West Nile (WNV), Usutu (USUV), and tick‐borne encephalitis (TBEV) over their natural range of distribution needs strengthening their surveillance. As common viral vertebrate hosts, birds and horses deserve special attention with routine serological surveillance. Here, we estimated the seroprevalence of WNV, USUV and TBEV in 160 migrating/resident birds and 60 horses sampled in Mazandaran, Golestan, North Khorasan, Kordestan provinces and Golestan province of Iran respectively. ELISA results showed that of 220 collected samples, 32 samples (14.54%), including 22 birds and 10 horses, were positive. Microsphere immunoassay results showed that 16.7% (10/60) of horse blood samples collected in Golestan province were seropositive against WNV (7; 11.7%), Flavivirus (2; 3.3%) and seropositive for USUV or WNV (1; 1.7%). Furthermore, micro virus neutralization tests revealed that four of seven ELISA‐positive bird blood samples were seropositive against WNV: two Egyptian vultures, and one long‐legged buzzard collected in Golestan province as well as a golden eagle collected in North Khorasan province. No evidence of seropositivity with TBEV was observed in collected samples. We showed that WNV, responsible for neuroinvasive infection in vertebrates, is circulating among birds and horses in Iran, recommending a sustained surveillance of viral infections in animals, and anticipating future infections in humans.
Collapse
Affiliation(s)
- Hasan Bakhshi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Cécile Beck
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Sylvie Lecollinet
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Maëlle Monier
- EURL on Equine Diseases, ANSES, Animal Health Laboratory, UMR 1161 Virology, ANSES, INRAE, ENVA, Maisons-Alfort, France
| | - Laurence Mousson
- Department of virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Arzamani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Leila Nourani
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast-Djadid
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Anna-Bella Failloux
- Department of virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Vilibic-Cavlek T, Petrovic T, Savic V, Barbic L, Tabain I, Stevanovic V, Klobucar A, Mrzljak A, Ilic M, Bogdanic M, Benvin I, Santini M, Capak K, Monaco F, Listes E, Savini G. Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020; 9:699. [PMID: 32858963 PMCID: PMC7560012 DOI: 10.3390/pathogens9090699] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus isolated in 1959 (Usutu River, Swaziland). Previously restricted to sub-Saharan Africa, the virus was introduced in Europe in 1996. While the USUV has received little attention in Africa, the virus emergence has prompted numerous studies with robust epidemiological surveillance programs in Europe. The natural transmission cycle of USUV involves mosquitoes (vectors) and birds (amplifying hosts) with humans and other mammals considered incidental ("dead-end") hosts. In Africa, the virus was isolated in mosquitoes, rodents and birds and serologically detected in horses and dogs. In Europe, USUV was detected in bats, whereas antibodies were found in different animal species (horses, dogs, squirrels, wild boar, deer and lizards). While bird mortalities were not reported in Africa, in Europe USUV was shown to be highly pathogenic for several bird species, especially blackbirds (Turdus merula) and great gray owls (Strix nebulosa). Furthermore, neurotropism of USUV for humans was reported for the first time in both immunocompromised and immunocompetent patients. Epizootics and genetic diversity of USUV in different bird species as well as detection of the virus in mosquitoes suggest repeated USUV introductions into Europe with endemization in some countries. The zoonotic potential of USUV has been reported in a growing number of human cases. Clinical cases of neuroinvasive disease and USUV fever, as well as seroconversion in blood donors were reported in Europe since 2009. While most USUV strains detected in humans, birds and mosquitoes belong to European USUV lineages, several reports indicate the presence of African lineages as well. Since spreading trends of USUV are likely to continue, continuous multidisciplinary interventions ("One Health" concept) should be conducted for monitoring and prevention of this emerging arboviral infection.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, 21000 Novi Sad, Serbia;
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, 10000 Zagreb, Croatia;
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Ana Klobucar
- Department of Epidemiology, Andrija Stampar Teaching Institute of Public Health, 10000 Zagreb, Croatia;
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Maja Ilic
- Department of Epidemiology, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, 10000 Zagreb, Croatia; (I.T.); (M.B.)
| | - Iva Benvin
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (V.S.); (I.B.)
| | - Marija Santini
- Department for Intensive Care Medicine and Neuroinfectology, University Hospital for Infectious Diseases “Dr Fran Mihaljevic”, 10000 Zagreb, Croatia;
| | - Krunoslav Capak
- Environmental Health Department, Croatian Institute of Public Health, 10000 Zagreb, Croatia;
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, 21000 Split, Croatia;
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 64100 Teramo, Italy; (F.M.); (G.S.)
| |
Collapse
|
16
|
Pacenti M, Sinigaglia A, Martello T, De Rui ME, Franchin E, Pagni S, Peta E, Riccetti S, Milani A, Montarsi F, Capelli G, Doroldi CG, Bigolin F, Santelli L, Nardetto L, Zoccarato M, Barzon L. Clinical and virological findings in patients with Usutu virus infection, northern Italy, 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31771697 PMCID: PMC6885746 DOI: 10.2807/1560-7917.es.2019.24.47.1900180] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BackgroundUsutu virus (USUV) is a mosquito-borne flavivirus, which shares its transmission cycle with the phylogenetically related West Nile virus (WNV). USUV circulates in several European countries and its activity has increased over the last 5 years.AimTo describe human cases of USUV infection identified by surveillance for WNV and USUV infection in the Veneto Region of northern Italy in 2018.MethodsFrom 1 June to 30 November 2018, all cases of suspected autochthonous arbovirus infection and blood donors who had a reactive WNV nucleic acid test were investigated for both WNV and USUV infection by in-house molecular methods. Anti-WNV and anti-USUV IgM and IgG antibodies were detected by ELISA and in-house immunofluorescence assay, respectively; positive serum samples were further tested by WNV and USUV neutralisation assays run in parallel.ResultsEight cases of USUV infection (one with neuroinvasive disease, six with fever and one viraemic blood donor who developed arthralgia and myalgia) and 427 cases of WNV infection were identified. A remarkable finding of this study was the persistence of USUV RNA in the blood and urine of three patients during follow-up. USUV genome sequences from two patients shared over 99% nt identity with USUV sequences detected in mosquito pools from the same area and clustered within lineage Europe 2.ConclusionsClinical presentation and laboratory findings in patients with USUV infection were similar to those found in patients with WNV infection. Cross-reactivity of serology and molecular tests challenged the differential diagnosis.
Collapse
Affiliation(s)
- Monia Pacenti
- These authors contributed equally as first authors.,Microbiology and Virology Unit, Padua University Hospital, Padova, Italy
| | - Alessandro Sinigaglia
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | | | | | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | - Silvana Pagni
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| | - Elektra Peta
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Adelaide Milani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | - Gioia Capelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro PD, Italy
| | | | - Francesco Bigolin
- Medicine Unit, Camposampiero Hospital, Azienda ULSS 6 Euganea, Padova, Italy
| | - Luca Santelli
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Lucia Nardetto
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Marco Zoccarato
- Neurology Department, Ospedale S. Antonio, Azienda ULSS 6 Euganea, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy.,These authors contributed equally as first authors
| |
Collapse
|
17
|
Benzarti E, Rivas J, Sarlet M, Franssen M, Moula N, Savini G, Lorusso A, Desmecht D, Garigliany MM. Usutu Virus Infection of Embryonated Chicken Eggs and a Chicken Embryo-Derived Primary Cell Line. Viruses 2020; 12:v12050531. [PMID: 32408481 PMCID: PMC7291025 DOI: 10.3390/v12050531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
Usutu virus (USUV) is a mosquito-borne flavivirus, closely related to the West Nile virus (WNV). Similar to WNV, USUV may cause infections in humans, with occasional, but sometimes severe, neurological complications. Further, USUV can be highly pathogenic in wild and captive birds and its circulation in Europe has given rise to substantial avian death. Adequate study models of this virus are still lacking but are critically needed to understand its pathogenesis and virulence spectrum. The chicken embryo is a low-cost, easy-to-manipulate and ethically acceptable model that closely reflects mammalian fetal development and allows immune response investigations, drug screening, and high-throughput virus production for vaccine development. While former studies suggested that this model was refractory to USUV infection, we unexpectedly found that high doses of four phylogenetically distinct USUV strains caused embryonic lethality. By employing immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction, we demonstrated that USUV was widely distributed in embryonic tissues, including the brain, retina, and feather follicles. We then successfully developed a primary cell line from the chorioallantoic membrane that was permissive to the virus without the need for viral adaptation. We believe the future use of these models would foster a significant understanding of USUV-induced neuropathogenesis and immune response and allow the future development of drugs and vaccines against USUV.
Collapse
Affiliation(s)
- Emna Benzarti
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - José Rivas
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Mathieu Franssen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Nassim Moula
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Giovanni Savini
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 46100 Teramo, Italy; (G.S.); (A.L.)
| | - Alessio Lorusso
- OIE Reference Centre for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, 46100 Teramo, Italy; (G.S.); (A.L.)
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, B-4000 Liège, Belgium; (E.B.); (J.R.); (M.S.); (M.F.); (N.M.); (D.D.)
- Correspondence:
| |
Collapse
|
18
|
Abstract
Usutu virus (USUV) is an emerging arbovirus that was first isolated in South Africa in 1959. This Flavivirus is maintained in the environment through a typical enzootic cycle involving mosquitoes and birds. USUV has spread to a large part of the European continent over the two decades mainly leading to substantial avian mortalities with a significant recrudescence of bird infections recorded throughout Europe within the few last years. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. Nonetheless, a few cases of neurological complications such as encephalitis or meningoencephalitis have been reported. USUV and West Nile virus (WNV) share many features, like a close phylogenetic relatedness and a similar ecology, with co-circulation frequently observed in nature. However, USUV has been much less studied and in-depth comparisons of the biology of these viruses are yet rare. In this review, we discuss the main body of knowledge regarding USUV and compare it with the literature on WNV, addressing in particular virological and clinical aspects, and pointing data gaps.
Collapse
|
19
|
Experimental Usutu Virus Infection in Domestic Canaries Serinus canaria. Viruses 2020; 12:v12020164. [PMID: 32023880 PMCID: PMC7077186 DOI: 10.3390/v12020164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Usutu virus (USUV) is a neurotropic flavivirus closely related to West Nile virus (WNV). Its enzootic cycle mainly involves mosquitoes and birds. Human infection can occur with occasional, but sometimes severe, neurological complications. Since its emergence and spread in Europe over the last two decades, USUV has been linked to significant avian outbreaks, especially among Passeriformes, including European blackbirds (Turdus merula). Strikingly, no in vivo avian model exists so far to study this arbovirus. The domestic canary (Serinus canaria) is a passerine, which is considered as a highly susceptible model of infection by WNV. Here, we experimentally challenged domestic canaries with two different doses of USUV. All inoculated birds presented detectable amounts of viral RNA in the blood and RNA shedding via feathers and droppings during the early stages of the infection, as determined by RT-qPCR. Mortality occurred in both infected groups (1/5 and 2/5, respectively) and was not necessarily correlated to a pure neurological disease. Subsequent analyses of samples from dead birds showed histopathological changes and virus tropism mimicking those reported in naturally infected birds. A robust seroconversion followed the infection in almost all the surviving canaries. Altogether, these results demonstrate that domestic canaries constitute an interesting experimental model for the study of USUV pathogenesis and transmission.
Collapse
|
20
|
West Nile or Usutu Virus? A Three-Year Follow-Up of Humoral and Cellular Response in a Group of Asymptomatic Blood Donors. Viruses 2020; 12:v12020157. [PMID: 32013152 PMCID: PMC7077259 DOI: 10.3390/v12020157] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/17/2020] [Accepted: 01/26/2020] [Indexed: 11/23/2022] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are two related arboviruses (genus Flavivirus, family Flaviviridae), with birds as a reservoir and mosquitoes as transmitting vectors. In recent years, WNV epidemiology changed in many European countries with increased frequency of outbreaks posing the issue of virus transmission risks by blood transfusion. USUV emerged for the first time in birds of the Tuscany region (Italy) in 1996 and in 2001 in Austria. While WNV is responsible for both mild and neuroinvasive diseases, USUV infection is usually asymptomatic and neuroinvasive symptoms are rare. Since WNV and USUV co-circulate, the surveillance of WNV allows also the detection of USUV. Due to the great similarity in amino-acid sequence of major surface proteins of the two viruses, a high cross-reactivity can lead to misinterpretation of serological results. Here, we report the results obtained from 54 asymptomatic blood donors during a three-year follow-up showing an unexpected high positivity (46.3%) for USUV. The major obstacle encountered in the differential diagnosis between these two viruses was the high cross-reactivity found in neutralizing antibodies (NT Abs) and, in some cases, a long follow-up was mandatory for a correct diagnosis. Moreover, two new ELISpot assays were developed for a more rapid and specific differential diagnosis, especially in those cases in which NT Abs were not determinant. Using a combination of Enzyme-linked immunospot (ELISpot), molecular, and serological tests, we could identify 25 true positive WNV and 25 true positive USUV blood donors. Our data highlight the importance of raising awareness for increasing USUV infections in endemic countries involved in blood transfusion and organ donation.
Collapse
|
21
|
Gill CM, Kapadia RK, Beckham JD, Piquet AL, Tyler KL, Pastula DM. Usutu virus disease: a potential problem for North America? J Neurovirol 2019; 26:149-154. [PMID: 31858483 DOI: 10.1007/s13365-019-00818-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/07/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022]
Abstract
Usutu virus is an emerging mosquito-borne flavivirus initially identified in South Africa in 1959 that is now circulating throughout parts of Africa, Europe, and the Middle East. It is closely related to West Nile virus, and has similar vectors, amplifying bird hosts, and epidemiology. Usutu virus infection can occur in humans and may be asymptomatic or cause systemic (e.g., fever, rash, and hepatitis) or neuroinvasive (e.g., meningitis and encephalitis) disease. Given few reported cases, the full clinical spectrum is not known. No anti-viral treatment is available, but it can be largely prevented by avoiding mosquito bites. Because of similar mosquitoes, birds, and climate to Europe, the potential for introduction to North America is possible.
Collapse
Affiliation(s)
- Christine M Gill
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronak K Kapadia
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - J David Beckham
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amanda L Piquet
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kenneth L Tyler
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Immunology-Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel M Pastula
- Neuro-Infectious Diseases Group, Department of Neurology and Division of Infectious Diseases, University of Colorado School of Medicine, Mail Stop B182, Research Complex 2, 12700 East 19th Ave., Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
22
|
Vilibic-Cavlek T, Savic V, Petrovic T, Toplak I, Barbic L, Petric D, Tabain I, Hrnjakovic-Cvjetkovic I, Bogdanic M, Klobucar A, Mrzljak A, Stevanovic V, Dinjar-Kujundzic P, Radmanic L, Monaco F, Listes E, Savini G. Emerging Trends in the Epidemiology of West Nile and Usutu Virus Infections in Southern Europe. Front Vet Sci 2019; 6:437. [PMID: 31867347 PMCID: PMC6908483 DOI: 10.3389/fvets.2019.00437] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/19/2019] [Indexed: 02/05/2023] Open
Abstract
The epidemiology of West Nile (WNV) and Usutu virus (USUV) has changed dramatically over the past two decades. Since 1999, there have been regular reports of WNV outbreaks and the virus has expanded its area of circulation in many Southern European countries. After emerging in Italy in 1996, USUV has spread to other countries causing mortality in several bird species. In 2009, USUV seroconversion in horses was reported in Italy. Co-circulation of both viruses was detected in humans, horses and birds. The main vector of WNV and USUV in Europe is Culex pipiens, however, both viruses were found in native Culex mosquito species (Cx. modestus, Cx. perexiguus). Experimental competence to transmit the WNV was also proven for native and invasive mosquitoes of Aedes and Culex genera (Ae. albopictus, Ae. detritus, Cx. torrentium). Recently, Ae. albopictus and Ae. japonicus naturally-infected with USUV were reported. While neuroinvasive human WNV infections are well-documented, USUV infections are sporadically detected. However, there is increasing evidence of a role of USUV in human disease. Seroepidemiological studies showed that USUV circulation is more common than WNV in some endemic regions. Recent data showed that WNV strains detected in humans, horses, birds, and mosquitoes mainly belong to lineage 2. In addition to European USUV lineages, some reports indicate the presence of African USUV lineages as well. The trends in WNV/USUV range and vector expansion are likely to continue in future years. This mini-review provides an update on the epidemiology of WNV and USUV infections in Southern Europe within a multidisciplinary "One Health" context.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb, Croatia
| | - Tamas Petrovic
- Department for Virology, Scientific Veterinary Institute, Novi Sad, Serbia
| | - Ivan Toplak
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dusan Petric
- Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Hrnjakovic-Cvjetkovic
- Center for Microbiology, Institute of Public Health Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ana Klobucar
- Division of Disinfection, Disinfestation and Pest Control, Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Luka Radmanic
- Department of Microbiology and Infectious Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Federica Monaco
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| | - Eddy Listes
- Laboratory for Diagnostics, Croatian Veterinary Institute, Regional Institute Split, Split, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale “G. Caporale”, Teramo, Italy
| |
Collapse
|
23
|
Impact of genetic diversity on biological characteristics of Usutu virus strains in Africa. Virus Res 2019; 273:197753. [PMID: 31521764 DOI: 10.1016/j.virusres.2019.197753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022]
Abstract
Usutu virus (USUV) previously restricted to Africa where it caused mild infections, emerged in 2001 in Europe and caused more severe infections among birds and humans with neurological forms, suggesting an adaptation and increasing virulence. This evolution suggests the need to better understand USUV transmission patterns for assessing risks and to develop control strategies. Phylogenetic analysis conducted in Africa showed low genetic diversity of African USUV strains except for one human and the USUV subtype (USUVsub) strains, which exhibited a deletion in the 3'UTR and nucleotide substitutions throughout the genome. Here we analyzed their viral replication in vitro in mosquito and mammalian cells, and vector competence of Culex quinquefasciatus, compared to a reference strain. Growth kinetics of the different strains showed comparable replication rates however variations in replication and translation efficiency were observed. Vector competence analysis showed that all strains were able to infect Culex quinquefasciatus the main peridomestic Culex species in Africa, with detection of USUV viral genomes and infectious particles. Dissemination and transmission were observed only for USUVsub, but infectious particles were not detected in Culex quinquefasciatus saliva. Our findings suggest that genetic variability can affect USUV in vitro replication in a cell type-dependent manner and in vivo in mosquitoes. In addition, the results show that Culex quinquefasciatus is not competent for the USUV strains analyzed here and also suggest an aborted transmission process for the USUVsub, which requires further investigations.
Collapse
|
24
|
Benzarti E, Sarlet M, Franssen M, Cadar D, Schmidt-Chanasit J, Rivas JF, Linden A, Desmecht D, Garigliany M. Usutu Virus Epizootic in Belgium in 2017 and 2018: Evidence of Virus Endemization and Ongoing Introduction Events. Vector Borne Zoonotic Dis 2019; 20:43-50. [PMID: 31479400 DOI: 10.1089/vbz.2019.2469] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Wildlife surveillance allowed the monitoring of the zoonotic mosquito-borne Usutu virus (USUV) in birds and bats (Pipistrellus pipistrellus) in southern Belgium in 2017 and 2018. USUV-RNA was detected in 69 birds (of 253) from 15 species, among which 7 species had not previously been reported to be susceptible to the infection. Similarly, 2 bats (of 10) were detected positive by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). USUV-associated lesions were mainly found in Eurasian Blackbirds (Turdus merula), in which USUV antigens were demonstrated by immunohistochemistry in the brain, heart, liver, kidney, intestine, and lung. Partial nonstructural protein 5 gene-based phylogenetic analysis showed several identical or closely related strains from 2016, 2017, and 2018 clustering together within Europe 3 or Africa 3 lineages. Further, one USUV strain detected in a common chaffinch (Fringilla coelebs) manifested a close genetic relationship with the European 1 strains circulating in Hungary and Austria. Our data provide evidence of USUV endemization in southern Belgium in local birds and bats, extension of the host range of the virus and ongoing virus introduction from abroad, likely by migratory birds. Our results highlight the need for vigilance in the forthcoming years toward new virus-associated outbreaks in birds and possible human infections in Belgium.
Collapse
Affiliation(s)
- Emna Benzarti
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Michaël Sarlet
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mathieu Franssen
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Daniel Cadar
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Jose Felipe Rivas
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Annick Linden
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Daniel Desmecht
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mutien Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Usutu Virus: An Arbovirus on the Rise. Viruses 2019; 11:v11070640. [PMID: 31336826 PMCID: PMC6669749 DOI: 10.3390/v11070640] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
The Usutu virus (USUV) is a flavivirus that is drawing increasing attention because of its potential for emergence. First isolated in Africa, it was introduced into Europe where it caused significant outbreaks in birds, such as in Austria in 2001. Since then, its geographical distribution has rapidly expanded, with increased circulation, especially in the last few years. Similar to West Nile virus (WNV), the USUV enzootic transmission cycle involves Culex mosquitoes as vectors, and birds as amplifying reservoir hosts, with humans and other mammals likely being dead-end hosts. A similarity in the ecology of these two viruses, which co-circulate in several European countries, highlights USUV’s potential to become an important human pathogen. While USUV has had a severe impact on the blackbird population, the number of human cases remains low, with most infections being asymptomatic. However, some rare cases of neurological disease have been described, both in healthy and immuno-compromised patients. Here, we will discuss the transmission dynamics and the current state of USUV circulation in Europe.
Collapse
|
26
|
West Nile Virus and Usutu Virus Co-Circulation in Europe: Epidemiology and Implications. Microorganisms 2019; 7:microorganisms7070184. [PMID: 31248051 PMCID: PMC6680635 DOI: 10.3390/microorganisms7070184] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/01/2023] Open
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are neurotropic mosquito-borne flaviviruses that may infect humans. Although WNV is much more widespread and plays a much larger role in human health, the two viruses are characterized by similar envelope antigens, clinical manifestations, and present overlapping in terms of geographic range of transmission, host, and vector species. This review highlights some of the most relevant aspects of WNV and USUV human infections in Europe, and the possible implications of their co-circulation.
Collapse
|
27
|
Cheng Y, Tjaden NB, Jaeschke A, Lühken R, Ziegler U, Thomas SM, Beierkuhnlein C. Evaluating the risk for Usutu virus circulation in Europe: comparison of environmental niche models and epidemiological models. Int J Health Geogr 2018; 17:35. [PMID: 30314528 PMCID: PMC6186058 DOI: 10.1186/s12942-018-0155-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background Usutu virus (USUV) is a mosquito-borne flavivirus, reported in many countries of Africa and Europe, with an increasing spatial distribution and host range. Recent outbreaks leading to regional declines of European common blackbird (Turdus merula) populations and a rising number of human cases emphasize the need for increased awareness and spatial risk assessment. Methods Modelling approaches in ecology and epidemiology differ substantially in their algorithms, potentially resulting in diverging model outputs. Therefore, we implemented a parallel approach incorporating two commonly applied modelling techniques: (1) Maxent, a correlation-based environmental niche model and (2) a mechanistic epidemiological susceptible-exposed-infected-removed (SEIR) model. Across Europe, surveillance data of USUV-positive birds from 2003 to 2016 was acquired to train the environmental niche model and to serve as test cases for the SEIR model. The SEIR model is mainly driven by daily mean temperature and calculates the basic reproduction number R0. The environmental niche model was run with long-term bio-climatic variables derived from the same source in order to estimate climatic suitability. Results Large areas across Europe are currently suitable for USUV transmission. Both models show patterns of high risk for USUV in parts of France, in the Pannonian Basin as well as northern Italy. The environmental niche model depicts the current situation better, but with USUV still being in an invasive stage there is a chance for under-estimation of risk. Areas where transmission occurred are mostly predicted correctly by the SEIR model, but it mostly fails to resolve the temporal dynamics of USUV events. High R0 values predicted by the SEIR model in areas without evidence for real-life transmission suggest that it may tend towards over-estimation of risk. Conclusions The results from our parallel-model approach highlight that relying on a single model for assessing vector-borne disease risk may lead to incomplete conclusions. Utilizing different modelling approaches is thus crucial for risk-assessment of under-studied emerging pathogens like USUV. Electronic supplementary material The online version of this article (10.1186/s12942-018-0155-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanchao Cheng
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.
| | - Nils Benjamin Tjaden
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Anja Jaeschke
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | | | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany.,BayCEER, Bayreuth Center for Ecology and Environmental Research, Bayreuth, Germany
| |
Collapse
|
28
|
Clé M, Salinas S, Lecollinet S, Beck C, Gutierrez S, Baldet T, Vande Perre P, Foulongne V, Simonin Y. [Usutu virus: the phantom menace]. Med Sci (Paris) 2018; 34:709-716. [PMID: 30230467 DOI: 10.1051/medsci/20183408018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Usutu virus, an arbovirus discovered in Africa in 1959, has spread over a large part of Europe over the last twenty years causing significant bird mortality as reported in France since 2015. The zoonotic risk, associated with this succession of avian epizootics in Europe, deserves to be taken into account even if human cases remain rare to date. Human infections are most often asymptomatic or present a benign clinical expression. However, neurological complications such as encephalitis or meningoencephalitis have been described. In addition, the recent description of an atypical case of facial paralysis in France suggests that the clinical spectrum of infections caused by Usutu virus is not fully characterized. Finally, the recent history of other arboviral outbreaks invites the scientific community to be extremely vigilant.
Collapse
Affiliation(s)
- Marion Clé
- Pathogenesis and control of chronic infections, Université de Montpellier, Inserm, EFS, 60, rue de Navacelle, 34000 Montpellier, France
| | - Sara Salinas
- Pathogenesis and control of chronic infections, Université de Montpellier, Inserm, EFS, 60, rue de Navacelle, 34000 Montpellier, France
| | - Sylvie Lecollinet
- Université Paris Est Créteil Val de Marne (UPEC), Anses animal health laboratory, UMR1161 virologie, INRA, Anses, École nationale vétérinaire d'Alfort (ENVA), Maisons-Alfort, France
| | - Cécile Beck
- Université Paris Est Créteil Val de Marne (UPEC), Anses animal health laboratory, UMR1161 virologie, INRA, Anses, École nationale vétérinaire d'Alfort (ENVA), Maisons-Alfort, France
| | - Serafin Gutierrez
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Animal, Santé, Territoire, Risques, Écosystèmes (ASTRE), F-34398 Montpellier, France
| | - Thierry Baldet
- ASTRE, CIRAD, INRA, Univ Montpellier, Montpellier, France
| | - Philippe Vande Perre
- Pathogenesis and control of chronic infections, Université de Montpellier, Inserm, EFS, 60, rue de Navacelle, 34000 Montpellier, France - Pathogenesis and control of chronic infections, Université de Montpellier, Inserm, EFS, CHU Montpellier, Montpellier, France
| | - Vincent Foulongne
- Pathogenesis and control of chronic infections, Université de Montpellier, Inserm, EFS, CHU Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and control of chronic infections, Université de Montpellier, Inserm, EFS, 60, rue de Navacelle, 34000 Montpellier, France
| |
Collapse
|
29
|
Barzon L. Ongoing and emerging arbovirus threats in Europe. J Clin Virol 2018; 107:38-47. [PMID: 30176404 DOI: 10.1016/j.jcv.2018.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 11/17/2022]
Abstract
During the last decades, arboviruses that are endemic in Europe have expanded their geographic range and caused an increasing number of human outbreaks. These viruses include West Nile virus, which is expanding its area of circulation in central and southern Europe; Usutu virus, with increasing evidence of a role in human disease; tick-borne encephalitis virus, which is being detected in northern areas and at higher altitudes as a consequence of climate warming; Crimean-Congo hemorrhagic fever virus, which is endemic in Eastern Europe and the Middle East, but has been recently detected in Spain; other viruses, such as California encephalitis virus antigenic group, which circulate in northern and central Europe but whose relevance for human disease in largely unknown. In addition, the rise in global travel and trade has posed Europe to an increased risk of introduction and expansion of exotic arthropod vectors and autochthonous transmission of arboviruses, like dengue and chikungunya viruses, following new introductions from endemic areas. Implementation of integrated arbovirus surveillance programs has been crucial to adopt proper control measures. The identification of emerging outbreaks is however challenging and requires a high degree of awareness and laboratory capacity, especially for the most neglected but potentially threatening pathogens.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121, Padova, Italy.
| |
Collapse
|
30
|
Faggioni G, De Santis R, Pomponi A, Grottola A, Serpini GF, Meacci M, Gennari W, Tagliazucchi S, Pecorari M, Monaco F, Savini G, Benedetti E, Remoli ME, Fortuna C, Venturi G, Rezza G, Lista F. Prevalence of Usutu and West Nile virus antibodies in human sera, Modena, Italy, 2012. J Med Virol 2018; 90:1666-1668. [PMID: 29797606 DOI: 10.1002/jmv.25230] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
A collection of 3069 human sera collected in the area of the municipality of Modena, Emilia Romagna, Italy, was retrospectively investigated for specific antibodies against Usutu (USUV) and West Nile viruses (WNV). All the samples resulting positive using a preliminary screening test were analyzed with the plaque reduction neutralization test. Overall, 24 sera were confirmed as positive for USUV (0.78%) and 13 for WNV (0.42%). The results suggest that in 2012, USUV was circulating more than WNV in North-eastern Italy.
Collapse
Affiliation(s)
| | | | - Alice Pomponi
- Scientific Department, Army Medical Center, Roma, Italy
| | - Antonella Grottola
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | | | - Marisa Meacci
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - William Gennari
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Sara Tagliazucchi
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Monica Pecorari
- Microbiology and Virology Unit, University Hospital Polyclinic, Modena, Italy
| | - Federica Monaco
- OIE Reference Laboratory for West Nile Fever, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo, Italy
| | - Giovanni Savini
- OIE Reference Laboratory for West Nile Fever, Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise, Teramo, Italy
| | - Eleonora Benedetti
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Roma, ltaly
| | - Maria Elena Remoli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Roma, ltaly
| | - Claudia Fortuna
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Roma, ltaly
| | - Giulietta Venturi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Roma, ltaly
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Roma, ltaly
| | | |
Collapse
|
31
|
First genetic characterization of Usutu virus from Culex pipiens mosquitoes Serbia, 2014. INFECTION GENETICS AND EVOLUTION 2018; 63:58-61. [PMID: 29778766 DOI: 10.1016/j.meegid.2018.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
Since its first appearance in Europe, Usutu virus (USUV) diverged to several different genetic lineages. The virus was reported to date from multiple countries across Europe (Hungary, Italy, Switzerland, Spain, Germany, Czech Republic and Belgium). Considering the more frequently published impact of the virus on humans it is crucial to investigate locally circulating genetic variants and trace its evolution. We retrospectively analyzed mosquito samples from Serbia Vojvodina region, collected during 2014. In this study we report the results of the screening of 23,753 female mosquitoes (753 pools) for USUV-specific nucleic-acid. Out of the 753 pools sampled, the presence of USUV RNA was confirmed in 3 pools of Culex pipiens mosquitoes, collected in August. Based on their partial NS5 sequence, all strains were identical, therefore we adjusted one representative strain for complete genome sequencing. Based on phylogenetic analysis the Serbian USUV sequences were most closely related to the virus that emerged in Austria in 2001, in Hungary in 2005 and was circulating until 2015 in Hungary. This data presents a wider geographic distribution of this genetic variant and provides the first genetic data from this region.
Collapse
|