1
|
Hamele CE, Luo Z, Leonard RA, Spurrier MA, Burke KN, Webb SR, Rountree W, Li Z, Heaton BE, Heaton NS. Headless hemagglutinin-containing influenza viral particles direct immune responses toward more conserved epitopes. J Virol 2024; 98:e0116624. [PMID: 39324791 PMCID: PMC11495035 DOI: 10.1128/jvi.01166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Seasonal influenza vaccines provide mostly strain-specific protection due to the elicitation of antibody responses focused on evolutionarily plastic antigenic sites in the hemagglutinin head domain. To direct the humoral response toward more conserved epitopes, we generated an influenza virus particle where the full-length hemagglutinin protein was replaced with a membrane-anchored, "headless" variant while retaining the normal complement of other viral structural proteins such as the neuraminidase as well as viral RNAs. We found that a single administration of a headless virus particle-based vaccine elicited high titers of antibodies that recognized more conserved epitopes on the major viral glycoproteins. Furthermore, the vaccine could elicit these responses even in the presence of pre-existing, hemagglutinin (HA) head-focused influenza immunity. Importantly, these antibody responses mediated protective, but non-neutralizing functions such as neuraminidase inhibition and antibody-dependent cellular cytotoxicity. Additionally, we show the vaccine can provide protection from homologous and heterologous challenges in mouse models of severe influenza without any measurable HA head-directed antibody responses. Thus, headless hemagglutinin containing viral particles may represent a tool to drive the types of antibody responses predicted to increase influenza vaccine breadth and durability.IMPORTANCECurrent seasonal influenza vaccines provide incomplete protection from disease. This is partially the result of the antibody response being directed toward parts of the virus that are tolerant of mutations. Redirecting the immune response to more conserved regions of the virus has been a central strategy of next-generation vaccine designs and approaches. Here, we develop and test a vaccine based on a modified influenza virus particle that expresses a partially deleted hemagglutinin protein along with the other viral structural proteins. We demonstrate this vaccine elicits antibodies that recognize the more conserved viral epitopes of the hemagglutinin stalk and neuraminidase protein to facilitate protection against influenza viruses despite a lack of classical viral neutralization activity.
Collapse
Affiliation(s)
- Cait E. Hamele
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Zhaochen Luo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Rebecca A. Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - M. Ariel Spurrier
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Stacy R. Webb
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brook E. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine Durham, Durham, North Carolina, USA
| |
Collapse
|
2
|
Sundebo Meldgaard T, Viborg N, Suarez Hernandez S, Vazquez Albacete D, Tamhane T, Reker Hadrup S. Validation of novel conditional ligands and large-scale detection of antigen-specific T cells for H-2D d and H-2K d. Sci Rep 2024; 14:12292. [PMID: 38811654 PMCID: PMC11136991 DOI: 10.1038/s41598-024-62938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
The UV-mediated peptide exchange has enabled the generation of multiple different MHC multimer specificities in parallel, surpassing tedious individual refolding of MHC molecules with peptide ligands. Murine models are acknowledged as an effective tool for preclinical research to advance our understanding of immunological mechanisms, with the potential translatability of key learnings from mouse models to the clinic. The common inbred mouse strain BALB/c is frequently used in immunological research. However, for the BALB/c histocompatibility (H)-2 alleles availability of conditional ligand has been limited. To overcome this challenge, we design and experimentally validate conditional ligands restricted to murine MHC class I alleles H2Dd and H2Kd. In addition, we demonstrate the ability of the three H2d molecules and two additional C57BL/6 H2b molecules folded in-house with conditional ligands to generate fluorescently labeled peptide-H2 tetramers that allow staining of antigen-specific CD8+ T cells in splenocyte samples. Finally, we generate large peptide-H-2 multimer libraries with a DNA-barcode labeling system for high-throughput interrogation of CD8+ T cell specificity in murine splenocyte samples. Consequently, the described techniques will contribute to our understanding of the antigen-specific CD8+ T cell repertoire in murine preclinical models of various diseases.
Collapse
Affiliation(s)
- Trine Sundebo Meldgaard
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novo Nordisk, Copenhagen, Denmark
| | - Nadia Viborg
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Evaxion Biotech, Hørsholm, Denmark
| | - Sara Suarez Hernandez
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- RIVM National Institute for Public Health and the Environment, Utrecht, The Netherlands
| | - Dario Vazquez Albacete
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
- Novonesis, Copenhagen, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev 2021; 59:101-110. [PMID: 33593661 PMCID: PMC8064670 DOI: 10.1016/j.cytogfr.2021.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
GM-CSF acts as a pro-inflammatory cytokine and a key growth factor produced by several immune cells such as macrophages and activated T cells. In this review, we discuss recent studies that point to the crucial role of GM-CSF in the immune response against infections. Upon induction, GM-CSF activates four main signalling networks including the JAK/STAT, PI3K, MAPK, and NFκB pathways. Many of these transduction pathways such as JAK/STAT signal via proteins commonly activated with other antiviral signalling cascades, such as those induced by IFNs. GM-CSF also helps defend against respiratory infections by regulating alveolar macrophage differentiation and enhancing innate immunity in the lungs. Here, we also summarize the numerous clinical trials that have taken advantage of GM-CSF's mechanistic attributes in immunotherapy. Moreover, we discuss how GM-CSF is used as an adjuvant in vaccines and how its activity is interfered with to reduce inflammation such as in the case of COVID-19. This review brings forth the current knowledge on the antiviral actions of GM-CSF, the associated signalling cascades, and its application in immunotherapy.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Jacqueline Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
4
|
Ross P, Nemec PS, Kapatos A, Miller KR, Holmes JC, Suter SE, Buntzman AS, Soderblom EJ, Collins EJ, Hess PR. The canine MHC class Ia allele DLA-88*508:01 presents diverse self- and canine distemper virus-origin peptides of varying length that have a conserved binding motif. Vet Immunol Immunopathol 2018; 197:76-86. [PMID: 29475511 DOI: 10.1016/j.vetimm.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Ideally, CD8+ T-cell responses against virally infected or malignant cells are defined at the level of the specific peptide and restricting MHC class I element, a determination not yet made in the dog. To advance the discovery of canine CTL epitopes, we sought to determine whether a putative classical MHC class Ia gene, Dog Leukocyte Antigen (DLA)-88, presents peptides from a viral pathogen, canine distemper virus (CDV). To investigate this possibility, DLA-88*508:01, an allele prevalent in Golden Retrievers, was expressed as a FLAG-tagged construct in canine histiocytic cells to allow affinity purification of peptide-DLA-88 complexes and subsequent elution of bound peptides. Pattern analysis of self peptide sequences, which were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS), permitted binding preferences to be inferred. DLA-88*508:01 binds peptides that are 9-to-12 amino acids in length, with a modest preference for 9- and 11-mers. Hydrophobic residues are favored at positions 2 and 3, as are K, R or F residues at the C-terminus. Testing motif-matched and -unmatched synthetic peptides via peptide-MHC surface stabilization assay using a DLA-88*508:01-transfected, TAP-deficient RMA-S line supported these conclusions. With CDV infection, 22 viral peptides ranging from 9-to-12 residues in length were identified in DLA-88*508:01 eluates by LC-MS/MS. Combined motif analysis and surface stabilization assay data suggested that 11 of these 22 peptides, derived from CDV hemagglutinin, large polymerase, matrix, nucleocapsid, and V proteins, were processed and presented, and thus, potential targets of anti-viral CTL in DLA-88*508:01-bearing dogs. The presentation of diverse self and viral peptides indicates that DLA-88 is a classical MHC class Ia gene.
Collapse
Affiliation(s)
- Peter Ross
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Paige S Nemec
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Alexander Kapatos
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Keith R Miller
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jennifer C Holmes
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Steven E Suter
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Adam S Buntzman
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - Erik J Soderblom
- Proteomics Core Facility, Institute for Genome Science and Policy, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Edward J Collins
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Paul R Hess
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA.
| |
Collapse
|
5
|
Tabatabaeizadeh SE, Bassami MR, Haghparast A, Dehghani H. Employing XIAP to enhance the duration of antigen expression and immunity against an avian influenza H5 DNA vaccine. Immunol Invest 2015; 44:199-215. [PMID: 25831080 DOI: 10.3109/08820139.2014.988718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA vaccine represents a powerful approach for prevention of avian H5N1 influenza infection. Yet, DNA vaccine-induced immune responses might be limited by the short duration of antigen expression. As a strategy to enhance adaptive immune responses elicited by a hemagglutinin 5 (H5) DNA vaccine, we explored the effect of co-administration of a DNA encoding X-linked inhibitor of apoptosis protein (XIAP) as a modulator of apoptosis and a stimulator of inflammatory signaling. In cultured cells as early as 24 hours (h), we found that the DNA vaccine encoded H5 antigen was a potent stimulator of apoptosis, and the H5 pro-apoptotic activity was significantly suppressed by the co-expression of full-length XIAP or mutant XIAP (ΔRING). However, full-length XIAP showed a higher potency than mutant XIAP (ΔRING) in the inhibition of H5-induced apoptosis. We also compared the immunizing ability of transmembrane and secretory forms of H5. Mice vaccinated (twice with 3-week intervals) with the secretory form of H5 showed higher hemagglutination inhibition (HI) antibody titers than mice vaccinated with the transmembrane form of H5. Furthermore, co-administration of XIAP with the secretory form of H5 resulted into a stronger antibody response than the transmembrane form of H5. Our findings suggest that in the design of DNA vaccines for a given pro-apoptotic antigen, using an anti-apoptotic molecular adjuvant and the secretory form of antigen may be a greater stimulus to induce immune responses.
Collapse
|
6
|
Gottrand G, Taleb K, Ragon I, Bergot AS, Goldstein JD, Marodon G. Intrathymic injection of lentiviral vector curtails the immune response in the periphery of normal mice. J Gene Med 2012; 14:90-9. [PMID: 22228582 DOI: 10.1002/jgm.1650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gene transfer in the thymus, based on HIV-derived lentiviral vectors, is a promising avenue for modulation of T cell selection and autoimmunity. However, the impact of intrathymic (IT) injections on an antigen-specific immune response elicited in the periphery of normal mice has not been investigated yet. METHODS Highly concentrated stocks of lentiviral vectors expressing the soluble form of hemaglutinin of the influenza virus (LvHA) were injected in the thymus of normal BALB/c mice. The CD4 and CD8-mediated immune responses to HA after peripheral immunization were measured by various parameters. RESULTS We first show that a lentiviral vector expressing the luciferase was detected for at least 2 months after IT-injections. We then show that the LvHA vector could elicit a functional CD4- and CD8-T cell-mediated immune responses in the peripheral lymphoid organs of BALB/c mice. IT-injection of the LvHA vector significantly curbed this response: lower numbers of transferred HA-specific CD4(+) T cells were found in LvHA-injected compared to control animals. Furthermore, lower frequencies of HA-specific CD8(+) T cells, interferon γ-producing cells and cytotoxic cells were detected from 3 weeks to 3 months in LvHA-injected mice compared to controls. However, these reduced CD8-mediated responses were not increased after depletion of CD25(+) cells in vitro or in vivo. CONCLUSIONS The results obtained in the present study show that injection of the LvHA lentiviral vector significantly curtailed the immune response to the same antigen in the periphery. Increased selection of HA-specific regulatory T cells and negative selection of HA-specific CD8(+) T cell precursors may explain the results. Our work establish the feasibility of IT-injections of lentiviral vectors to manipulate T cell tolerance in the thymus of normal mice, for basic and pre-clinical research.
Collapse
Affiliation(s)
- Gaëlle Gottrand
- Université Pierre et Marie Curie, UPMC University of Paris 06, Paris, France
| | | | | | | | | | | |
Collapse
|
7
|
Lee JB, Oelke M, Ramachandra L, Canaday DH, Schneck JP. Decline of influenza-specific CD8+ T cell repertoire in healthy geriatric donors. IMMUNITY & AGEING 2011; 8:6. [PMID: 21846352 PMCID: PMC3179433 DOI: 10.1186/1742-4933-8-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023]
Abstract
Background While influenza vaccination results in protective antibodies against primary infections, clearance of infection is primarily mediated through CD8+ T cells. Studying the CD8+ T cell response to influenza epitopes is crucial in understanding the disease associated morbidity and mortality especially in at risk populations such as the elderly. We compared the CD8+ T cell response to immunodominant and subdominant influenza epitopes in HLA-A2+ control, adult donors, aged 21-42, and in geriatric donors, aged 65 and older. Results We used a novel artificial Antigen Presenting Cell (aAPC) based stimulation assay to reveal responses that could not be detected by enzyme-linked immunosorbent spot (ELISpot). 14 younger control donors and 12 geriatric donors were enrolled in this study. The mean number of influenza-specific subdominant epitopes per control donor detected by ELISpot was only 1.4 while the mean detected by aAPC assay was 3.3 (p = 0.0096). Using the aAPC assay, 92% of the control donors responded to at least one subdominant epitopes, while 71% of control donors responded to more than one subdominant influenza-specific response. 66% of geriatric donors lacked a subdominant influenza-specific response and 33% of geriatric donors responded to only 1 subdominant epitope. The difference in subdominant response between age groups is statistically significant (p = 0.0003). Conclusion Geriatric donors lacked the broad, multi-specific response to subdominant epitopes seen in the control donors. Thus, we conclude that aging leads to a decrease in the subdominant influenza-specific CTL responses which may contribute to the increased morbidity and mortality in older individuals.
Collapse
Affiliation(s)
- Jessica B Lee
- Department of Pathology, Johns Hopkins University, 733 N Broadway BRB 632, Baltimore, MD, 21205, USA.
| | | | | | | | | |
Collapse
|
8
|
Huang FF, Barnes PF, Feng Y, Donis R, Chroneos ZC, Idell S, Allen T, Perez DR, Whitsett JA, Dunussi-Joannopoulos K, Shams H. GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med 2011; 184:259-68. [PMID: 21474645 DOI: 10.1164/rccm.201012-2036oc] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Alveolar macrophages contribute to host defenses against influenza in animal models. Enhancing alveolar macrophage function may contribute to protection against influenza. OBJECTIVES To determine if increased expression of granulocyte/macrophage colony-stimulating factor (GM-CSF) in the lung increases resistance to influenza. METHODS Wild-type mice and transgenic mice that expressed GM-CSF in the lung were infected with influenza virus, and lung pathology, weight loss, and mortality were measured. We also administered GM-CSF to the lungs of wild-type mice that were infected with influenza virus. MEASUREMENTS AND MAIN RESULTS Wild-type mice all died after infection with different strains of influenza virus, but all transgenic mice expressing GM-CSF in the lungs survived. The latter also had greatly reduced weight loss and lung injury, and showed histologic evidence of a rapid host inflammatory response that controlled infection. The resistance of transgenic mice to influenza was abrogated by elimination of alveolar phagocytes, but not by depletion of T cells, B cells, or neutrophils. Transgenic mice had far more alveolar macrophages than did wild-type mice, and they were more resistant to influenza-induced apoptosis. Delivery of intranasal GM-CSF to wild-type mice also conferred resistance to influenza. CONCLUSIONS GM-CSF confers resistance to influenza by enhancing innate immune mechanisms that depend on alveolar macrophages. Pulmonary delivery of this cytokine has the potential to reduce the morbidity and mortality due to influenza virus.
Collapse
Affiliation(s)
- Fang-Fang Huang
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Science Center at Tyler, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Combadière B, Vogt A, Mahé B, Costagliola D, Hadam S, Bonduelle O, Sterry W, Staszewski S, Schaefer H, van der Werf S, Katlama C, Autran B, Blume-Peytavi U. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One 2010; 5:e10818. [PMID: 20520820 PMCID: PMC2877091 DOI: 10.1371/journal.pone.0010818] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 03/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Current conventional vaccination approaches do not induce potent CD8 T-cell responses for fighting mostly variable viral diseases such as influenza, avian influenza viruses or HIV. Following our recent study on vaccine penetration by targeting of vaccine to human hair follicular ducts surrounded by Langerhans cells, we tested in the first randomized Phase-Ia trial based on hair follicle penetration (namely transcutaneous route) the induction of virus-specific CD8 T cell responses. METHODS AND FINDINGS We chose the inactivated influenza vaccine - a conventional licensed tetanus/influenza (TETAGRIP) vaccine - to compare the safety and immunogenicity of transcutaneous (TC) versus IM immunization in two randomized controlled, multi-center Phase I trials including 24 healthy-volunteers and 12 HIV-infected patients. Vaccination was performed by application of inactivated influenza vaccine according to a standard protocol allowing the opening of the hair duct for the TC route or needle-injection for the IM route. We demonstrated that the safety of the two routes was similar. We showed the superiority of TC application, but not the IM route, to induce a significant increase in influenza-specific CD8 cytokine-producing cells in healthy-volunteers and in HIV-infected patients. However, these routes did not differ significantly for the induction of influenza-specific CD4 responses, and neutralizing antibodies were induced only by the IM route. The CD8 cell response is thus the major immune response observed after TC vaccination. CONCLUSIONS This Phase Ia clinical trial (Manon05) testing an anti-influenza vaccine demonstrated that vaccines designed for antibody induction by the IM route, generate vaccine-specific CD8 T cells when administered transcutaneously. These results underline the necessity of adapting vaccination strategies to control complex infectious diseases when CD8 cellular responses are crucial. Our work opens up a key area for the development of preventive and therapeutic vaccines for diseases in which CD8 cells play a crucial role. TRIAL REGISTRATION Clinicaltrials.gov NCT00261001.
Collapse
Affiliation(s)
- Behazine Combadière
- Institut National de Santé et de Recherche Médicale, INSERM U945, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Co MDT, Orphin L, Cruz J, Pazoles P, Green KM, Potts J, Leporati AM, Babon JAB, Evans JE, Ennis FA, Terajima M. In vitro evidence that commercial influenza vaccines are not similar in their ability to activate human T cell responses. Vaccine 2009; 27:319-27. [PMID: 18977404 PMCID: PMC2813682 DOI: 10.1016/j.vaccine.2008.09.092] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/19/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
We evaluated three commercial trivalent inactivated vaccines (TIVs) from the 2007-2008 season in terms of their ability to elicit in vitro T cell responses. T cell-mediated immunity may offer a more cross-reactive vaccine approach for the prevention of pandemic or epidemic influenza. Human cytotoxic T cell lines demonstrated differences in matrix protein 1 and nucleocapsid protein recognition of autologous target cells. Peripheral blood mononuclear cells stimulated with each of the TIVs showed statistically significant differences between the vaccines in the numbers of IFNgamma producing cells activated. These data suggest that TIV vaccines are not similar in their ability to activate human T cell responses.
Collapse
Affiliation(s)
- Mary Dawn T Co
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sindbis virus vectors elicit hemagglutinin-specific humoral and cellular immune responses and offer a dose-sparing strategy for vaccination. Vaccine 2008; 26:5641-8. [DOI: 10.1016/j.vaccine.2008.07.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 07/22/2008] [Accepted: 07/27/2008] [Indexed: 10/21/2022]
|
12
|
Co MDT, Orphin L, Cruz J, Pazoles P, Rothman AL, Ennis FA, Terajima M. Discordance between antibody and T cell responses in recipients of trivalent inactivated influenza vaccine. Vaccine 2008; 26:1990-8. [PMID: 18339461 PMCID: PMC2440689 DOI: 10.1016/j.vaccine.2008.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/23/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
Abstract
Thirty adults were tested for humoral and cellular immune responses following immunization with the trivalent inactivated influenza vaccine. Modest but significant inverse correlations between the baseline and the fold changes in the number of IFNgamma-producing cells and the levels of neutralizing antibodies were observed. Specific increases in proliferative responses in the CD8 CD45RA+ population were noted after vaccination. Minimal correlations between neutralizing antibody titers and the number of IFNgamma-producing cells in terms of prevaccination levels or fold increases were observed. These results show specific increases in a CD8 T cell subset and discordant T and B responses induced by the trivalent inactivated influenza vaccine.
Collapse
Affiliation(s)
- Mary Dawn T Co
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| | | | | | | | | | | | | |
Collapse
|
13
|
Developments in Avian Influenza Virus Vaccines. J Poult Sci 2007. [DOI: 10.2141/jpsa.44.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Zhang Y, Kida Y, Kuwano K, Misumi Y, Ikehara Y, Arai S. Role of furin in delivery of a CTL epitope of an anthrax toxin-fusion protein. Microbiol Immunol 2001; 45:119-25. [PMID: 11293477 DOI: 10.1111/j.1348-0421.2001.tb01279.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anthrax toxin lethal factor (LF) in combination with anthrax toxin protective antigen (PA) was endocytosed and translocated to the cytosol of mammalian cells. Residues 1-255 of anthrax toxin lethal factor (LFn) was fused to a cytotoxic T lymphocyte (CTL) epitope of an influenza virus. For processing the toxins, PA must be cleaved into a 63-kDa fragment (PA63) by furin, which is a subtilisin-like processing endo-protease expressed by many eukaryotic cells. To test the ability of cells treated with the LFn fusion protein plus PA to deliver the epitope, CTL assay was performed. Two types of cell lines were identified, one was able to deliver CTL epitope while the other failed to efficiently deliver the epitope. To further elucidate the differences between these cells, the role of furin in these cells was examined. Disruption of the furin gene reduced its ability to deliver the CTL epitope. Furin expression in cells capable of efficiently delivering CTL epitope was quantitatively higher than in cells unable to deliver the epitope. The results suggest that furin plays a critical role in delivery of the CTL epitope of LFn fusion protein.
Collapse
MESH Headings
- Animals
- Anthrax/immunology
- Anthrax Vaccines/chemistry
- Anthrax Vaccines/immunology
- Anthrax Vaccines/metabolism
- Antigens, Bacterial
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacillus anthracis/immunology
- Bacterial Toxins/chemistry
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Blotting, Western
- Cells, Cultured
- Chloroquine/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry
- Furin
- Gene Deletion
- Gene Expression
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Ovalbumin/immunology
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Subtilisins/genetics
- Subtilisins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
Collapse
Affiliation(s)
- Y Zhang
- Department of Microbiology, Kurume University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Zivny J, DeFronzo M, Jarry W, Jameson J, Cruz J, Ennis FA, Rothman AL. Partial Agonist Effect Influences the CTL Response to a Heterologous Dengue Virus Serotype. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Activation of dengue serotype-cross-reactive memory CTL during secondary dengue virus (DV) infection is thought to be important in the pathogenesis of dengue hemorrhagic fever. To model this effect, we studied the CTL responses to DV types 2 (D2V) and 3 (D3V) in PBMC from an individual previously infected with D3V. DV-specific CD8+ CTL from this donor recognized two HLA-B62-restricted epitopes on the NS3 protein, aa 71–79 (SVKKDLISY) and 235–243 (AMKGLPIRY). Both D3V-specific and D2V/D3V-cross-reactive CTL clones were detected for each epitope; all D2V-reactive CTL clones could lyse D2V-infected autologous cells. CTL responses to both epitopes were detected in bulk cultures stimulated with D3V, but PBMC stimulated with D2V recognized only the 235–243 epitope. IFN-γ enzyme-linked immunospot assay showed that the D2V (71–79) peptide (DVKKDLISY) did not efficiently activate T cells. Analysis of a CTL clone suggests that the D2V (71–79) peptide acts as a partial agonist, able to sensitize target cells for lysis and inducing only minimal proliferation at high concentrations. These results suggest that variant peptide sequences present in the heterologous DV serotype can influence the CTL response in vivo during secondary DV infection.
Collapse
Affiliation(s)
- Jaroslav Zivny
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Matthew DeFronzo
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - William Jarry
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Julie Jameson
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - John Cruz
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| | - Alan L. Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
16
|
Tamura M, Kuwano K, Kurane I, Ennis FA. Definition of amino acid residues on the epitope responsible for recognition by influenza A virus H1-specific, H2-specific, and H1- and H2-cross-reactive murine cytotoxic T-lymphocyte clones. J Virol 1998; 72:9404-6. [PMID: 9765498 PMCID: PMC110370 DOI: 10.1128/jvi.72.11.9404-9406.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We defined the epitopes recognized by three influenza A virus-specific, H-2Kd-restricted CD8(+) cytotoxic T-lymphocyte (CTL) clones: H1-specific clone A-12, H2-specific clone F-4, and H1- and H2-cross-reactive clone B7-B7. The A-12 and B7-B7 clones recognized the same peptide, which comprises amino acids 533 to 541 (IYSTVASSL) of A/PR/8 hemagglutinin (HA). The F-4 and B7-B7 clones both recognized the peptide which comprise amino acids 529 to 537 (IYATVAGSL) of A/Jap HA. Amino acids 533 to 541 of A/PR/8 HA are compatible with amino acids 529 to 537 of A/Jap HA. Amino acid S at positions 3 and 7 was responsible for recognition by H1-specific clone A-12, while amino acid G at position 7 was responsible for recognition by H2-specific clone F-4. Two conserved amino acids, T at position 4 and A at position 6, were responsible for recognition by H1-, and H2-cross-reactive clone B7-B7. These results indicate that a single nine-amino-acid region is recognized by HA-specific CTL clones of three different subtype specificities and that the amino acids responsible for the recognition by the CTL clones are different.
Collapse
Affiliation(s)
- M Tamura
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical Center, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
17
|
Coulter A, Wong TY, Drane D, Bates J, Macfarlan R, Cox J. Studies on experimental adjuvanted influenza vaccines: comparison of immune stimulating complexes (Iscoms) and oil-in-water vaccines. Vaccine 1998; 16:1243-53. [PMID: 9682385 DOI: 10.1016/s0264-410x(98)80125-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detergent-disrupted influenza virus vaccines, formulated as Iscoms, or oil-in-water (o/w) emulsions, were administered parenterally to mice and evaluated for immunogenicity and protective efficacy. Both formulations enhanced both primary and secondary serum antibody responses. The magnitude of these responses with o/w emulsions was further enhanced by the addition of the non-ionic block copolymer L121 in the emulsion. Four weeks after primary immunization, mice were challenged by exposure to an aerosol containing infectious virus. Resistance to challenge in terms of survival rate and weight change correlated well with serum antibody titre for all formulations. Two major differences were observed between the adjuvant formulations. Iscom vaccines, formulated with Quil-A or the less toxic Quillaia saponin preparation Iscoprep 703, induced specific cytotoxic T-lymphocyte responses, whereas the o/w-based vaccines did not. In addition, dose-site reactivity studies in sheep showed that Iscom vaccines were less reactive than o/w-based vaccines, the degree of reactivity of the latter increasing sharply with increasing L121 concentration. On the basis of these studies, Iscoms were chosen for development as a potential adjuvant for human influenza vaccines.
Collapse
Affiliation(s)
- A Coulter
- CSL Limited, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Kuwano K, Kawashima T, Arai S. Antiviral effect of TNF-alpha and IFN-gamma secreted from a CD8+ influenza virus-specific CTL clone. Viral Immunol 1993; 6:1-11. [PMID: 8476505 DOI: 10.1089/vim.1993.6.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We observed that an influenza-specific cytotoxic T lymphocyte (CTL) clone (B7B7) stimulated with peptide-antigen could produce TNF-alpha and IFN-gamma simultaneously. The culture supernatant containing both TNF-alpha and IFN-gamma of antigen-stimulated CTL clone B7B7 significantly enhanced the lysis of influenza A/PR/8 virus-infected L-M2d6 cells or Meth A cells. Enhanced lysis of influenza virus-infected cells by the supernatants was inhibited by pretreatment of the supernatant with antimurine TNF-alpha antibody and antimurine IFN-gamma antibody. In addition to a single CTL clone, we observed that bulk-cultured CTLs were able to produce TNF and IFN when incubated with target cells. These results suggest that the protective mechanism mediated by TNF-alpha and IFN-gamma secreted from CTL may be possible in the course of an influenza infection.
Collapse
Affiliation(s)
- K Kuwano
- Department of Microbiology, Kurume University School of Medicine, Fukuoka, Japan
| | | | | |
Collapse
|
19
|
Lo D, Freedman J, Hesse S, Palmiter RD, Brinster RL, Sherman LA. Peripheral tolerance to an islet cell-specific hemagglutinin transgene affects both CD4+ and CD8+ T cells. Eur J Immunol 1992; 22:1013-22. [PMID: 1348026 DOI: 10.1002/eji.1830220421] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To study the basis for immunological tolerance of peripheral tissue-specific antigens, a transgenic mouse line was established that expresses the influenza hemagglutinin (HA) on pancreatic islet beta cells (Ins-HA transgenic mice). When followed up to 14 months of age, Ins-HA transgenic mice did not develop spontaneous autoimmune disease. Upon immunization with HA-expressing viruses, high titers of HA-specific circulating antibody were detected; however, T cell responses by both the T helper and T cytolytic compartment were markedly reduced as compared with transgene-negative littermates, and no evidence could be found for islet infiltrates. Adoptive transfer of histocompatible lymphocytes from transgene-negative mice plus virus into irradiated Ins-HA hosts resulted in islet inflammation dominated by CD4+ T cells, indicating that the HA antigen was accessible to activated T cells. These results suggest that T cells can be rendered tolerant of antigens expressed outside the thymus.
Collapse
Affiliation(s)
- D Lo
- Department of Immunology, Scripps Research Institute, La Jolla, CA 92037
| | | | | | | | | | | |
Collapse
|
20
|
Dillon SB, Demuth SG, Schneider MA, Weston CB, Jones CS, Young JF, Scott M, Bhatnaghar PK, LoCastro S, Hanna N. Induction of protective class I MHC-restricted CTL in mice by a recombinant influenza vaccine in aluminium hydroxide adjuvant. Vaccine 1992; 10:309-18. [PMID: 1349448 DOI: 10.1016/0264-410x(92)90369-u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Induction of class I MHC-restricted cytotoxic T lymphocyte (CTL) responses by soluble proteins or peptides requires complex adjuvants or carrier systems which are not licensed for use with human vaccines. The data presented in this report show that vaccination with a highly purified recombinant influenza protein antigen in aluminium hydroxide adjuvant, the only adjuvant currently licensed for clinical use, elicited class I restricted CTL and protection from lethal challenge with H1N1 and H2N2 viruses. The antigen (D protein, SK&F 106160) is produced by expression of H1N1 influenza virus-derived cDNA (strain A/PR/8/34) in Escherichia coli, and is composed of the first 81 N-terminal amino acids (aa) of the non-structural protein 1 (NS1) fused via a nine nucleotide non-viral linker sequence to the 157 C-terminal aa of the haemagglutinin 2 subunit (HA2). Previous work by Kuwano et al demonstrated that in vitro stimulation of spleen cells from influenza virus-primed mice, with a partially purified preparation of the D protein, selected for CD8+ CTL clones which facilitated lung clearance of H1N1 and H2N2 viruses. In the current study, these results were extended by studying the responses of mice actively immunized with highly purified D protein in the presence or absence of adjuvants. Vaccination of CB6F1 (H-2dxb) mice with D protein in aluminum hydroxide or Freund's complete adjuvant generated H1N1 cross-reactive, H-2d-restricted, CD8+ CTL directed against an immunodominant HA2 epitope (aa 189-199). D protein without adjuvant did not elicit CTL, regardless of the route of injection. However, long-lived (greater than 6 months) splenic memory CTL were elicited by boosting mice intraperitoneally (i.p.) with the D protein in the absence of adjuvant. In mice injected subcutaneously with D protein in aluminium hydroxide at weeks 0 and 3, survival was increased relative to controls up to 16 weeks beyond the second vaccination, after which time additional boosting was required for protection. Studies in H-2b and H-2k mice vaccinated with the D protein showed that induction of CD4+ T-cell or antibody responses, in the absence of CD8+ CTL, did not correlate with protection. Passive transfer of immune sera from CB6F1 mice was also not protective. This prototype H1N1 recombinant subunit vaccine in aluminium adjuvant should directly address the feasibility of achieving a protective cell-mediated immune response in human influenza.
Collapse
Affiliation(s)
- S B Dillon
- Department of Anti-Infectives, Smith-Kline Beecham Pharmaceuticals, King of Prussia, PA 19406
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Gould KG, Scotney H, Brownlee GG. Characterization of two distinct major histocompatibility complex class I Kk-restricted T-cell epitopes within the influenza A/PR/8/34 virus hemagglutinin. J Virol 1991; 65:5401-9. [PMID: 1716691 PMCID: PMC249021 DOI: 10.1128/jvi.65.10.5401-5409.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) clones specific for the influenza A/PR/8/34 virus hemagglutinin (HA) were isolated by priming CBA mice with a recombinant vaccinia virus expressing the HA molecule. The epitopes recognized by two of these clones, which were CD8+, Kk restricted, and HA subtype specific, were defined by using a combination of recombinant vaccinia viruses expressing HA fragments and synthetic peptides. One epitope is in the HA1 subunit at residues 259 to 266 (numbering from the initiator methionine), amino acid sequence FEANGNLI, and the other epitope is in the HA2 subunit at residues 10 to 18 (numbering from the amino terminus of the HA2 subunit), sequence IEGGWTGMI. These two peptides are good candidates for naturally processed HA epitopes presented during influenza infection, as they are the same length (eight and nine residues) as other naturally processed viral peptides presented to CTL. A comparison of the sequences of these two new epitopes with those of the three previously published Kk-restricted T-cell epitopes showed some homology among all of the epitopes, suggesting a binding motif. In particular, an isoleucine residue at the carboxy-terminal end is present in all of the epitopes. On the basis of this homology, we predicted that the Kk-restricted epitope in influenza virus nucleoprotein, previously defined as residues 50 to 63, was contained within residues 50 to 57, sequence SDYEGRLI. This shorter peptide was found to sensitize target cells at a 200-fold lower concentration than did nucleoprotein residues 50 to 63 when tested with a CTL clone, confirming the alignment of Kk-restricted epitopes.
Collapse
Affiliation(s)
- K G Gould
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | |
Collapse
|
23
|
Lo D, Freedman J, Hesse S, Brinster RL, Sherman L. Peripheral tolerance in transgenic mice: tolerance to class II MHC and non-MHC transgene antigens. Immunol Rev 1991; 122:87-102. [PMID: 1682240 DOI: 10.1111/j.1600-065x.1991.tb00598.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D Lo
- Department of Immunology, Research Institute of Scripps Clinic, La Jolla, CA 92037
| | | | | | | | | |
Collapse
|
24
|
Gerhard W, Haberman AM, Scherle PA, Taylor AH, Palladino G, Caton AJ. Identification of eight determinants in the hemagglutinin molecule of influenza virus A/PR/8/34 (H1N1) which are recognized by class II-restricted T cells from BALB/c mice. J Virol 1991; 65:364-72. [PMID: 1702160 PMCID: PMC240526 DOI: 10.1128/jvi.65.1.364-372.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Eight nonoverlapping regions of the hemagglutinin (HA) molecule of influenza virus A/PR/8/34 (PR8), which serve as recognition sites for class II-restricted T cells (TH) from BALB/c mice, have been identified in the form of 10- to 15-amino-acid-long synthetic peptides. These TH determinants are located between residues 110 to 313 of the HA1 polypeptide. From a total of 36 HA-specific TH clones and limiting-dilution cultures of independent clonal origins, 33 (90%) responded to stimulation with one of these peptides. The residual three TH clones appeared to recognize a single additional determinant on the HA1 polypeptide which could not be isolated, however, in the form of a stimulatory peptide. None of the motifs that have been proposed to typify TH determinants were displayed by more than half of these recognition sites. Most unexpected was the finding that none of the TH determinants was located in the ectodomain of the HA2 polypeptide that makes up roughly one-third of the HA molecule. Possible reasons for the preferential recognition of HA1 as opposed to HA2 by TH are discussed.
Collapse
Affiliation(s)
- W Gerhard
- Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104-4268
| | | | | | | | | | | |
Collapse
|
25
|
Hioe CE, Dybdahl-Sissoko N, Philpott M, Hinshaw VS. Overlapping cytotoxic T-lymphocyte and B-cell antigenic sites on the influenza virus H5 hemagglutinin. J Virol 1990; 64:6246-51. [PMID: 1700833 PMCID: PMC248799 DOI: 10.1128/jvi.64.12.6246-6251.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To define the recognition site of cytotoxic T lymphocytes (CTLs) on influenza virus H5 hemagglutinin (HA), an H5 HA-specific CTL clone was examined for the ability to recognize monoclonal antibody-selected HA variants of influenza virus A/Turkey/Ontario/7732/66 (H5N9). On the basis of 51Cr release assays with the variants, a CTL epitope was located near residue 168 of H5 HA. To define the epitope more precisely, a series of overlapping peptides corresponding to this region was synthesized and tested for CTL recognition. The minimum peptide recognized by the CTL clone encompassed residues 158 to 169 of H5 HA. Relative to the H3 HA three-dimensional structure, this CTL epitope is located near the distal tip of the HA molecule, also known as a major B-cell epitope on H3 HA. A single mutation at residue 168 (Lys to Glu) in the H5 HA variants abolished CTL recognition; this same amino acid was shown previously to be critical for B-cell recognition (M. Philpott, C. Hioe, M. Sheerar, and V. S. Hinshaw, J. Virol. 64:2941-2947, 1990). Additionally, mutations within this region of the HA molecule were associated with attenuation of the highly virulent A/Turkey/Ontario/7732/66 (H5N9) (M. Philpott, B. C. Easterday, and V.S. Hinshaw, J. Virol. 63:3453-3458, 1989). When tested for recognition of other H5 viruses, the CTL clone recognized the HA of A/Turkey/Ireland/1378/83 (H5N8) but not that of A/Chicken/Pennsylvania/1370/83 (H5N2), even though these viruses contain identical HA amino acid 158-to-169 sequences. These results suggest that differences outside the CTL epitope affected CTL recognition of the intact HA molecule. The H5 HA site defined in these studies is, therefore, important in both CTL and B-cell recognition, as well as the pathogenesis of the virus.
Collapse
Affiliation(s)
- C E Hioe
- Department of Pathobiological Sciences, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|