1
|
O’Dowd K, Isham IM, Vatandour S, Boulianne M, Dozois CM, Gagnon CA, Barjesteh N, Abdul-Careem MF. Host Immune Response Modulation in Avian Coronavirus Infection: Tracheal Transcriptome Profiling In Vitro and In Vivo. Viruses 2024; 16:605. [PMID: 38675946 PMCID: PMC11053446 DOI: 10.3390/v16040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| | - Ishara M. Isham
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| | - Safieh Vatandour
- Department of Animal and Poultry Science, Islamic Azad University, Qaemshahr Branch, Qaem Shahr 4765161964, Iran;
| | - Martine Boulianne
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Carl A. Gagnon
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Molecular Diagnostic and Virology Laboratories, Centre de Diagnostic Vétérinaire de l’Université de Montréal (CDVUM), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Neda Barjesteh
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| |
Collapse
|
2
|
Zhang L, Hou Y, Ma Z, Xie J, Fan J, Jiao Y, Wang F, Han Z, Liu S, Ma D. Effect of oral vitamin A supplementation on host immune response to infectious bronchitis virus infection in specific pathogen-free chicken. Poult Sci 2023; 102:102701. [PMID: 37150176 DOI: 10.1016/j.psj.2023.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Vitamin A is a fat-soluble vitamin that is a crucial mediator of the immune system. In this study, we evaluated the effect of oral vitamin A supplementation on host immune responses to infectious bronchitis virus (IBV) infection in chickens. Forty 1-day-old specific pathogen-free (SPF) chickens were fed a basal diet and randomly divided into 2 groups (n = 20 birds per group). Chickens in the experimental group were treated orally with vitamin A (dissolved in 0.1 mL soybean oil, at a dose of 8,000 IU per kg diet) daily. Birds in the control group were orally administered 0.1 mL soybean oil without vitamin A until 21 d of age. On d 21 after birth, all chickens were infected with 0.1 mL of 106.5 50% median embryo infectious dose of a pathogenic IBV strain (CK/CH/LDL/091022) by intraocular and intranasal routes. The results demonstrated that oral vitamin A supplementation did not affect the clinical course of disease and growth performance of SPF chickens. However, vitamin A supplementation increased the IBV-specific IgG serum levels and decreased the viral load in some tissues of IBV-infected chickens. In addition, the results demonstrated that vitamin A supplementation decreased the expression levels of most immune-related molecules in some tissues of IBV-infected chickens. Vitamin A supplementation decreased the mRNA expression levels of some avian β-defensins (AvBD2, 3, 6, 7, 11, and 13) and increased the expression levels of AvBD9 and AvBD12 in some tissues of IBV-infected chickens. Similarly, vitamin A supplementation decreased the mRNA expression levels of some cytokines (interferon-γ, interleukin-1β [IL-1β], and IL-6) and increased the mRNA expression levels of IL-2 in some tissues of IBV-infected chickens. Furthermore, vitamin A supplementation decreased the mRNA expression levels of myeloid differentiation primary response protein 88, nuclear factor-κB p65, toll-like receptor 3, toll-like receptor 7, and CD4. In summary, the present study suggests that vitamin A supplementation enhances the immune function of SPF chickens against IBV infection by inhibiting viral replication, increasing the IBV-specific antibody titer, and suppressing the excessive inflammatory responses to IBV infection.
Collapse
Affiliation(s)
- Lili Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yutong Hou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Zhanbang Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jinjin Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jiahui Fan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yaru Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Zongxi Han
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shengwang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Al-Rasheed M, Ball C, Manswr B, Leeming G, Ganapathy K. Infectious bronchitis virus infection in chicken: viral load and immune responses in Harderian gland, choanal cleft and turbinate tissues compared to trachea. Br Poult Sci 2022; 63:484-492. [PMID: 35179081 DOI: 10.1080/00071668.2022.2035675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The role of the Harderian gland (HG), choanal cleft (CC) and turbinate in terms of IBV M41 viral load compared to the trachea, and immune (innate, cellular and mucosal) responses were studied in 21-day-old commercial broiler chickens.2. After virulent IBV M41 challenge, the antigen concentration detected either by quantitative RT-PCR or immunohistochemistry peaked at 2-3 days post challenge (dpc) in all tissues. Significant increases of lachrymal IBV-specific IgA and IgY levels were found at 4-5 dpc.3. Gene transcription showed a significant up-regulation of TLR3, MDA5, IL-6, IFN-α and IFN-β, where patterns and magnitude fold-change of mRNA transcription were dependent on the gene and tissue type.4. The results demonstrated active IBV M41 replication in the HG, CC and turbinate, comparable to levels of replication found in the trachea. The data on immune related genes in head-associated tissues provides further understanding on the immunobiology of IBV and offers opportunities to identify their use as quantitative biomarkers in pathogenicity and vaccination-challenge studies.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK.,College of Veterinary Medicine, Avian Research Centre, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| | - Basim Manswr
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK.,Faculty of Veterinary Medicine, Diyala University, Iraq
| | - Gail Leeming
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| | - Kannan Ganapathy
- Institute of Infection, Veterinary & Ecology Sciences (IVES), University of Liverpool, Neston, Cheshire, UK
| |
Collapse
|
4
|
Evaluation of viral load and transcriptome changes in tracheal tissue of two hybrids of commercial broiler chickens infected with avian infectious bronchitis virus: a comparative study. Arch Virol 2022; 167:377-391. [PMID: 34981169 PMCID: PMC8723822 DOI: 10.1007/s00705-021-05322-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Infectious bronchitis virus (IBV) is one of the major threats to the poultry industry, with significant economic consequences. Despite strict measures, the disease is difficult to control worldwide. Experimental evidence demonstrates that the severity of IBV is affected by the genetic background of the chicken, and the selection of appropriate breeds can increase production efficiency. Therefore, the aim of the present study was to assess the strength of the immune response to IBV in tracheal tissues of Ross 308 and Cobb 500 broiler chickens by evaluating transcriptome changes, focusing on immune responses and the viral load in tracheal tissues two days after IBV infection. We identified 899 and 1350 differentially expressed genes (DEGs) in the Cobb 500 and Ross 308 experimental groups compared to their respective control groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated the involvement of signaling pathways (Toll-like receptor [TLR], NOD-like receptor [NLR], and RIG-I-like receptor [RLR] signaling pathways). Interestingly, the RLR signaling pathway appears to be affected only in the Cobb hybrid. Furthermore, the viral loads in tracheal samples obtained from the Ross challenged group were significantly higher than those of the Cobb challenged group. The results of this study indicated that the host transcriptional response to IBV infection as well as the viral load can differ by hybrid. Furthermore, genes such as TLR-3, ChIFN-α, MDA5, LGP2, IRF-7, NF-κB, and TRIM25 may interfere with IBV proliferation.
Collapse
|
5
|
Ganapathy K. Infectious Bronchitis Virus Infection of Chicken: The Essential Role of Mucosal Immunity. Avian Dis 2021; 65:619-623. [DOI: 10.1637/aviandiseases-d-21-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kannan Ganapathy
- Institute of Infection, Veterinary & Ecology Sciences, University of Liverpool, Neston, Cheshire, CH64 7TE, United Kingdom
| |
Collapse
|
6
|
Bhuiyan MSA, Amin Z, Rodrigues KF, Saallah S, Shaarani SM, Sarker S, Siddiquee S. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry Farming: Vaccination, Immune Response and Measures for Mitigation. Vet Sci 2021; 8:273. [PMID: 34822646 PMCID: PMC8623603 DOI: 10.3390/vetsci8110273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia;
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| |
Collapse
|
7
|
Zhang Y, Xu Z, Cao Y. Host Antiviral Responses against Avian Infectious Bronchitis Virus (IBV): Focus on Innate Immunity. Viruses 2021; 13:1698. [PMID: 34578280 PMCID: PMC8473314 DOI: 10.3390/v13091698] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) is an important gammacoronavirus. The virus is highly contagious, can infect chickens of all ages, and causes considerable economic losses in the poultry industry worldwide. In the last few decades, numerous studies have been published regarding pathogenicity, vaccination, and host immunity-virus interaction. In particular, innate immunity serves as the first line of defense against invasive pathogens and plays an important role in the pathogenetic process of IBV infection. This review focuses on fundamental aspects of host innate immune responses after IBV infection, including identification of conserved viral structures and different components of host with antiviral activity, which could provide useful information for novel vaccine development, vaccination strategies, and intervention programs.
Collapse
Affiliation(s)
| | | | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; (Y.Z.); (Z.X.)
| |
Collapse
|
8
|
Zhang Y, Yang CY, Li C, Xu Z, Peng P, Xue C, Tomberlin JK, Hu W, Cao Y. Black soldier fly (Hermetia illucens L.) larval diet improves CD8 + lymphocytes proliferation to eliminate chicken coronavirus at an early infection stage. Vet Microbiol 2021; 260:109151. [PMID: 34237662 DOI: 10.1016/j.vetmic.2021.109151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Avian infectious bronchitis virus (IBV), belonging to Gammacoronavirus, is an economically important respiratory virus affecting poultry industry worldwide. The virus can infect chickens at all ages, whereas young chickens (less than 15 day old) are more susceptible to it. The present study was conducted to investigate effects of dietary supplementation of black soldier fly (Hermetia illucens L.) larvae (BSFL) on immune responses in IBV infected 10-day-old chickens. BSFL were ground to powder and mixed with commercial fodder (1%, 5%, and 10 % [mass] BSFL powder) to feed 1-day-old yellow broilers for ten days and then challenged with IBV. Our results indicated that commercial fodder supplemented with 10 % BSFL [mass] reduced mortalities (20 %) and morbidities (80 %), as well as IBV viral loads in tracheas (65.8 %) and kidneys (20.4 %) from 3-day post challenge (dpc), comparing to that of IBV-infected chickens fed with non-additive commercial fodder. Furthermore, at 3-day post challenge (dpc), 10 % BSFL [mass] supplemented chickens presented more CD8+ T lymphocytes in peripheral blood and a rise in interferon-g (IFN-γ) at both mRNA and protein levels in spleens, comparing with chickens fed with commercial fodder. Furthermore, the mRNA abundance of MHC-I, Fas, LITAF, and IL-2 in the spleens of 10 % BSFL [mass] supplemented chickens increased at different time points after challenge. The present results suggest that supplemental BSFL could improve CD8+ T lymphocytes proliferation, thus benefit young chickens to defend against IBV infection.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chen-Yu Yang
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chujun Li
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, United States
| | - Zhichao Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peng Peng
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, United States
| | - Wenfeng Hu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Transcriptome analysis of primary chicken cells infected with infectious bronchitis virus strain K047-12 isolated in Korea. Arch Virol 2021; 166:2291-2298. [PMID: 34089367 PMCID: PMC8178662 DOI: 10.1007/s00705-021-05124-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 01/21/2023]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, is highly contagious. Chickens with IBV infection develop acute pathogenesis in multiple organs, including the respiratory and urogenital tracts. Frequent recombination in the spike (S) glycoprotein gene has made vaccine strategies ineffective. To understand IBV pathogenesis, we analyzed the genetic distance between Korean IBV isolates and other coronaviruses, including SARS-CoV-2. To obtain comprehensive information about early immune responses such as innate cytokine production and associated immune regulation during IBV infection, we infected primary chicken embryonic kidney cells and performed transcriptome analysis. We observed that the functional pathways of innate immunity are regulated and confirmed expression of genes that coordinate early immune responses. Understanding the immune profile of the host cell may assist in vaccine development.
Collapse
|
10
|
Regulation of Immunity-Related Genes by Infectious Bronchitis Virus Challenge in Spleen of Laying Chickens. Viral Immunol 2020; 33:413-420. [DOI: 10.1089/vim.2019.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Effect of TLR agonist on infections bronchitis virus replication and cytokine expression in embryonated chicken eggs. Mol Immunol 2020; 120:52-60. [PMID: 32065987 PMCID: PMC7112572 DOI: 10.1016/j.molimm.2020.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Avian infectious bronchitis (IB) is an acute, highly infectious and contagious viral disease of chickens caused by avian infectious bronchitis virus (IBV) belonging to the genus Coronavirus and family Coronaviridae. It can affect all age groups of birds. The toll-like receptors (TLRs) are a major class of innate immune pattern recognition receptors that have a key role in immune response and defense against various infections.The TLRs are essential for initiation of innate immune responses and in the development of adaptive immune responses. An in ovo model was employed to study the antiviral activity of TLR ligands (Pam3CSK4, LPS and CpG ODN) on replication of IBV. It was hypothesized that optimum dose and specific timing of TLR ligands may reduce viral load of IBV in specific pathogen free (SPF) embryonated chicken eggs (ECEs). Further, the mechanism involved in the TLR-mediated antiviral response in chorioallantoic membrane (CAM) of ECEs was investigated. The ECEs of 9-11 days old were treated with different doses (high, intermediate and low) of TLR-2 (Pam3CSK4), TLR-4 (LPS) and TLR-21 (CpG ODN) ligands. In addition, to know the timing of TLR ligand treatment, six time intervals were analyzed viz. 36, 24 and 12 h prior to infection, time of infection (co-administration of TLR ligands and avian IBV) and 12 and 24 h post-IBV infection. For studying the relative expression of immuno-stimulatory genes (IFN-α, IFN-β, IFN-γ, IL-1β, iNOS and OAS) in CAM, TLR ligands were administered through intra-allantoicroute and CAM were collected at 4, 8 and 16 h post treatment. The results demonstrated that intermediate dose of all the three TLR ligands significantly reduced virus titers and used in the present study. However, the LPS reduced virus titer pre- and post-IBV infection but Pam3CSK4 and CpG ODN reduced only pre-IBV infection. Further analysis showed that TLR ligands induced IFN-γ, IL-1β and IFN stimulated genes viz. iNOS and OAS genes in CAM. The present study pointed towards the novel opportunities for rational design of LPS as immuno-stimulatory agent in chickens with reference to IBV. It may be speculated that in ovo administration of these TLR ligands may enhance resistance against viral infection in neonatal chicken and may contribute towards the development of more effective and safer vaccines including in ovo vaccines.
Collapse
|
12
|
Systematic Identification of Host Immune Key Factors Influencing Viral Infection in PBL of ALV-J Infected SPF Chicken. Viruses 2020; 12:v12010114. [PMID: 31963363 PMCID: PMC7019883 DOI: 10.3390/v12010114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Although research related to avian leukosis virus subgroup J (ALV-J) has lasted for more than a century, the systematic identification of host immune key factors against ALV-J infection has not been reported. In this study, we establish an infection model in which four-week-old SPF chickens are infected with ALV-J strain CHN06, after which the host immune response is detected. We found that the expression of two antiviral interferon-stimulated genes (ISGs) (Mx1 and IFIT5) were increased in ALV-J infected peripheral blood lymphocytes (PBL). A significant CD8+ T cell response induced by ALV-J appeared as early as seven days post-infection (DPI), and humoral immunity starting from 21 DPI differed greatly in the time scale of induction level. Meanwhile, the ALV-J viremia was significantly decreased before antibody production at 14 DPI, and eliminated at 21 DPI under a very low antibody level. The up-regulated CD8+ T cell in the thymus (14DPI) and PBL (7 DPI and 21 DPI) was detected, indicating that the thymus may provide the output of CD8+ T cell to PBL, which was related to virus clearance. Besides, up-regulated chemokine CXCLi1 at 7 DPI in PBL was observed, which may be related to the migration of the CD8+ T cell from the thymus to PBL. More importantly, the CD8 high+ T cell response of the CD8αβ phenotype may produce granzyme K, NK lysin, or IFN-γ for clearing viruses. These findings provide novel insights and direction for developing effective ALV-J vaccines.
Collapse
|
13
|
Lin J, Wang Z, Wang J, Yang Q. Microarray analysis of infectious bronchitis virus infection of chicken primary dendritic cells. BMC Genomics 2019; 20:557. [PMID: 31286855 PMCID: PMC6615177 DOI: 10.1186/s12864-019-5940-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Avian infectious bronchitis virus (IBV) is a major respiratory disease-causing agent in birds that leads to significant losses. Dendritic cells (DCs) are specialised cells responsible for sampling antigens and presenting them to T cells, which also play an essential role in recognising and neutralising viruses. Recent studies have suggested that non-coding RNAs may regulate the functional program of DCs. Expression of host non-coding RNAs changes markedly during infectious bronchitis virus infection, but their role in regulating host immune function has not been explored. Here, microarrays of mRNAs, miRNAs, and lncRNAs were globally performed to analyse how avian DCs respond to IBV. Results First, we found that IBV stimulation did not enhance the maturation ability of avian DCs. Interestingly, inactivated IBV was better able than IBV to induce DC maturation and activate lymphocytes. We identified 1093 up-regulated and 845 down-regulated mRNAs in IBV-infected avian DCs. Gene Ontology analysis suggested that cellular macromolecule and protein location (GO-BP) and transcription factor binding (GO-MF) were abundant in IBV-stimulated avian DCs. Meanwhile, pathway analysis indicated that the oxidative phosphorylation and leukocyte transendothelial migration signalling pathways might be activated in the IBV group. Moreover, alteration of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) was detected in IBV-stimulated avian DCs. In total, 19 significantly altered (7 up and 12 down) miRNAs and 101 (75 up and 26 down) lncRNAs were identified in the IBV-treated group. Further analysis showed that the actin cytoskeleton and MAPK signal pathway were related to the target genes of IBV-stimulated miRNAs. Finally, our study identified 2 TF-microRNA and 53 TF–microRNA–mRNA interactions involving 1 TF, 2 miRNAs, and 53 mRNAs in IBV-stimulated avian DCs. Conclusions Our research suggests a new mechanism to explain why IBV actively blocks innate responses needed for inducing immune gene expression and also provides insight into the pathogenic mechanisms of avian IBV. Electronic supplementary material The online version of this article (10.1186/s12864-019-5940-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Lin
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Zhisheng Wang
- National Veterinary Product Engineering Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jialu Wang
- College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- College of Life Sciences, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China. .,College of Veterinary medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
14
|
Dai M, Xu C, Chen W, Liao M. Progress on chicken T cell immunity to viruses. Cell Mol Life Sci 2019; 76:2779-2788. [PMID: 31101935 PMCID: PMC11105491 DOI: 10.1007/s00018-019-03117-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
Avian virus infection remains one of the most important threats to the poultry industry. Pathogens such as avian influenza virus (AIV), avian infectious bronchitis virus (IBV), and infectious bursal disease virus (IBDV) are normally controlled by antibodies specific for surface proteins and cellular immune responses. However, standard vaccines aimed at inducing neutralizing antibodies must be administered annually and can be rendered ineffective because immune-selective pressure results in the continuous mutation of viral surface proteins of different strains circulating from year to year. Chicken T cells have been shown to play a crucial role in fighting virus infection, offering lasting and cross-strain protection, and offer the potential for developing universal vaccines. This review provides an overview of our current knowledge of chicken T cell immunity to viruses. More importantly, we point out the limitations and barriers of current research and a potential direction for future studies.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China
| | - Weisan Chen
- T Cell Lab, Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Australia.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Avian infectious bronchitis (IB) is caused by avian infectious bronchitis virus (IBV) belonging to Coronaviridae family. The disease is prevalent in all countries with almost 100% incidence rate. Chicken and commercially reared pheasant are the natural host for IBV. Virus causes respiratory diseases, poor weight gain, feed efficiency in broiler, damage to oviduct, and abnormal egg production in mature hens resulting in economic losses. IBV also replicates in tracheal and renal epithelial cells leading to prominent tracheal and kidney lesions. Virus undergoes spontaneous mutation leading to continual emergence of new variants. The effectiveness of immunization program is diminished because of poor cross-protection among the serotypes. Identification of circulating serotypes is important in controlling IBV infection. Toll-like receptor 3 (TLR3) and TLR21 are involved in early recognition of virus resulting in induction of inflammatory cytokines. Both humoral and cellular immune responses are important in the control of infection. Humoral immunity plays an important role in recovery and clearance of viral infection. IBV-specific cytotoxic T lymphocytes induce lysis of IBV-infected cells. Effective diagnostic tools are required at field level to identify different IBV variants. Embryonated chicken eggs are effective model for virus isolation. Identification by other specific methods like virus neutralization (VN), hemagglutination inhibition (HI), enzyme linked immunosorbent assay (ELISA), immunohistochemistry, or nucleic acid analysis or by electron microscopy is also indispensable. VN test in tracheal organ culture is the best method for antigenic typing for surveillance purposes. Continuous epidemiological surveillance, strict biosecurity measures, and vaccine effective against various serotypes are necessary for controlling IB in chickens.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
16
|
Chhabra R, Ball C, Chantrey J, Ganapathy K. Differential innate immune responses induced by classical and variant infectious bronchitis viruses in specific pathogen free chicks. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:16-23. [PMID: 29751011 PMCID: PMC7173069 DOI: 10.1016/j.dci.2018.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Avian infectious bronchitis virus (IBV) continues to cause serious economic losses in global chicken production. Concurrent circulation of both classic and variant IBVs have been identified in most parts of the world, raising major challenges to global prevention and control efforts. Therefore, immunopathogenesis, particularly early host responses, needs to be better understood for effective control of diseases caused by different strains of IBVs. We investigated differing immunopathogenesis in chickens following infection with IS/885/00-like (885), QX-like (QX) and M41 IBV strains. We confirmed that the histopathological changes, proinflammatory and innate immune gene responses were induced to different magnitudes, depending on the IBV strain. Results indicated that upregulation of proinflammatory cytokines (such as IL-6 and IL-1β) and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) expression is induced by IBV M41 in the trachea and by IBV 885 and QX in the kidney, which mainly coincides with tracheal and renal histopathological lesions respectively caused by these strains. In addition, elevated levels of TLR3, MDA5 and IFN-β expression occurred concurrently with greater lesion severity in IBV infected trachea and kidney tissues. Overall, this study reports marked differences in the activation of early host responses by pathogenic IBV strains.
Collapse
Affiliation(s)
- Rajesh Chhabra
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK; College Central Laboratory, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, 125004, India.
| | - Christopher Ball
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| | - Julian Chantrey
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| | - Kannan Ganapathy
- University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.
| |
Collapse
|
17
|
Li P, Fan W, Everaert N, Liu R, Li Q, Zheng M, Cui H, Zhao G, Wen J. Messenger RNA Sequencing and Pathway Analysis Provide Novel Insights Into the Susceptibility to Salmonella enteritidis Infection in Chickens. Front Genet 2018; 9:256. [PMID: 30061915 PMCID: PMC6055056 DOI: 10.3389/fgene.2018.00256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
Salmonella enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Controlling poultry SE infection will have great practical significance for human public health, as poultry are considered to be important sources and carriers of the disease. In this study, the splenic transcriptomes of challenged-susceptible (S), challenged-resistant (R) and non-challenged (C) chicks (3-days old, specific-pathogen-free White Leghorn) were characterized in order to identify the immune-related gene markers and pathways. A total of 934 significant differentially expressed genes (DEGs) were identified in comparisons among the C, R and S birds. First reported here, the DEGs involved in the Forkhead box O (FoxO) signaling pathway, especially FoxO3, were identified as potential markers for host resistance to SE infection. The challenged-susceptible birds exhibited strong activation of the FoxO signaling pathway, which may be a major defect causing immune cell apoptosis as part of SE-induced pathology; these S birds also showed weak activation of mitogen-activated protein kinase (MAPK)-related genes, contrasting with strong splenic activation in the R birds. Interestingly, suppression of several pathways in the immune response against Salmonella, including cytokine-cytokine receptor interaction and Jak-STAT, was only found in S birds and there was evidence of cross-talk among these pathways, perhaps contributing to susceptibility to Salmonella infection. These findings will help facilitate understanding resistance and susceptibility to SE infection in the earliest phases of the host immune response through Salmonella-induced pathways, provide new approaches to develop strategies for SE prevention and treatment, and may enhance innate resistance by genetic selection in animals.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Wenlei Fan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, Beijing, China
| |
Collapse
|
18
|
Matoo JJ, Bashir K, Kumar A, Krishnaswamy N, Dey S, Chellappa MM, Ramakrishnan S. Resiquimod enhances mucosal and systemic immunity against avian infectious bronchitis virus vaccine in the chicken. Microb Pathog 2018; 119:119-124. [PMID: 29635053 PMCID: PMC7127065 DOI: 10.1016/j.micpath.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/15/2018] [Accepted: 04/06/2018] [Indexed: 12/04/2022]
Abstract
Adjuvant enhancing mucosal immune response is preferred in controlling many pathogens at the portal of entry. Earlier, we reported that a toll-like-receptor 7 (TLR7) agonist, resiquimod (R-848), stimulated the systemic immunity when adjuvanted with the inactivated Newcastle disease virus vaccine in the chicken. Here, we report the effect of R-848 when adjuvanted with live or inactivated avian infectious bronchitis virus (IBV) vaccines with special emphasis on mucosal immunity. Specific pathogen free (SPF) chicks (n = 60) were equally divided into six groups at two weeks of age and immunized with either inactivated or live IBV vaccine adjuvanted with or without R-848. Groups that received either PBS or R-848 served as control. A booster was given on 14 days post-immunization (dpi). R-848 enhanced the antigen specific humoral and cellular immune responses when co-administered with the vaccines as evidenced by an increase in the antibody titre in ELISA and stimulation index in lymphocyte transformation test (LTT) till 35 dpi and increased proportion of CD4+ and CD8+ T cells on 21 dpi in the flow cytometry. Interestingly, it potentiated the IgA responses in the tear and intestinal secretions when used with both live and inactivated IBV vaccines. The combination of IBV vaccine with R-848 significantly up-regulated the transforming growth factor beta 4 (TGFβ4) transcripts in the peripheral blood mononuclear cells (PBMCs) than that of the respective vaccine per se. An enhanced secretory IgA response is likely due to the up-regulation of TGFβ4, which is responsible for class switching to IgA. In conclusion, co-administration of R-848 with inactivated or live IBV vaccine enhanced the systemic as well as mucosal immune responses in the chicken.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- CD4-Positive T-Lymphocytes
- CD8-Positive T-Lymphocytes
- Chickens/immunology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Disease Models, Animal
- Imidazoles/pharmacology
- Immunity/drug effects
- Immunity/immunology
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Immunity, Mucosal/immunology
- Immunization
- Immunoglobulin A
- Infectious bronchitis virus/drug effects
- Infectious bronchitis virus/pathogenicity
- Leukocytes, Mononuclear/immunology
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Specific Pathogen-Free Organisms
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Vaccination
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Javaid Jeelani Matoo
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Khalid Bashir
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Ajay Kumar
- Division of Animal Biochemistry, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Narayanan Krishnaswamy
- Division of Animal Reproduction, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Sohini Dey
- Division of Veterinary Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Saravanan Ramakrishnan
- Immunology Section, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| |
Collapse
|
19
|
Yang X, Li J, Liu H, Zhang P, Chen D, Men S, Li X, Wang H. Induction of innate immune response following introduction of infectious bronchitis virus (IBV) in the trachea and renal tissues of chickens. Microb Pathog 2018; 116:54-61. [PMID: 29330060 DOI: 10.1016/j.micpath.2018.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/07/2018] [Indexed: 12/31/2022]
Abstract
Infectious bronchitis (IB) is a highly contagious respiratory disease of chickens, which is caused by the infectious bronchitis virus (IBV). The innate immune response is crucial for antiviral infections and revealing the pathogenic mechanisms of IBV. In this study, we presents an evaluation of interferon (I, II and III IFNs) in renal and tracheal samples from chickens experimentally infected previously vaccinated or not. The results suggest differential expression of chicken interferon, among them type I IFN elaborate a major role in fighting off virus. And vaccine confers greater induction ability of innate immunity thereby vaccination prior infection occurs might be necessary. Above all, we found that IFN-λ also have an effect on IBV infection in trachea besides many other respiratory virus. This study provides the first comprehensive analysis of host-virus interactions of IBV with chicken innate immune response mediated by interferon in various groups.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Jianan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Peng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Danyu Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Shuai Men
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xiaocheng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
20
|
Liu H, Yang X, Zhang Z, Li J, Zou W, Zeng F, Wang H. Comparative transcriptome analysis reveals induction of apoptosis in chicken kidney cells associated with the virulence of nephropathogenic infectious bronchitis virus. Microb Pathog 2017; 113:451-459. [PMID: 29174688 PMCID: PMC7126322 DOI: 10.1016/j.micpath.2017.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/19/2017] [Indexed: 01/04/2023]
Abstract
Avian infectious bronchitis virus (IBV) that causes respiratory and nephritic diseases in chicken is a major poultry pathogen leading to serious economic loss worldwide. The nephropathogenic IBV strains cause nephritis and kidney lesions intrinsically and the pathogenic mechanism is still unclear. In the present study, SPF chicks were infected with three nephropathogenic IBVs of different virulence and their gene expression profiles in chicken kidney were compared at transcriptome level. As a result, 1279 differentially expressed (DE) genes were found in very virulent SCDY2 inoculated group, 145 in virulent SCK2 group and 74 in non-virulent LDT3-A group when compared to mock infected group. Gene Ontology (GO) and KEGG pathway enrichment analysis on SCDY2 group displayed that the up-regulated DE genes were mainly involved in cell apoptosis, and the down-regulated genes were involved in metabolic processes and DNA replication. Protein-Protein Interaction (PPI) analysis showed that DE genes in SCDY2 group formed a network, and the core of the network was composed by cell apoptosis and immune response proteins. The clustering of gene expression profile among the three virus inoculated groups indicated that the majority of up-regulated DE genes on apoptosis in very virulent SCDY2 group were up-regulated more or less in virulent SCK2 group and those down-regulated on innate immune response in SCDY2 group were also down-regulated differently in SCK2 group. In addition, the number of apoptotic cells detected experimentally in kidney tissue were very different among the three virus inoculated groups and were positively accordant with the viral titer, kidney lesions and viral virulence of each group. Taken all together, the present study revealed that virulent nephropathogenic IBV infection modified a number of gene expression and induction of apoptosis in kidney cells may be a major pathogenic determinant for virulent nephropathogenic IBV. Genes expression in chicken kidney cells post inoculation of three nephro IBVs was studied by transcriptome analysis. DE genes post challenge mainly involved in the pathways of apoptosis, immune response, metabolic and DNA replication. Activation of apoptosis and suppression of innate immune response were accordant with the virulence of inoculated IBVs. Induction of apoptosis is triggered by suppression of immune response and productive replication of virus post infection.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Zhikun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jianan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Wencheng Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fanya Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
21
|
Okino CH, Mores MAZ, Trevisol IM, Coldebella A, Montassier HJ, Brentano L. Early immune responses and development of pathogenesis of avian infectious bronchitis viruses with different virulence profiles. PLoS One 2017; 12:e0172275. [PMID: 28199419 PMCID: PMC5310907 DOI: 10.1371/journal.pone.0172275] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) primarily replicates in epithelial cells of the upper respiratory tract of chickens, inducing both morphological and immune modulatory changes. However, the association between the local immune responses induced by IBV and the mechanisms of pathogenesis has not yet been completely elucidated. This study compared the expression profile of genes related to immune responses in tracheal samples after challenge with two Brazilian field isolates (A and B) of IBV from the same genotype, associating these responses with viral replication and with pathological changes in trachea and kidney. We detected a suppressive effect on the early activation of TLR7 pathway, followed by lower expression levels of inflammatory related genes induced by challenge with the IBV B isolate when compared to the challenge with to the IBV A isolate. Cell-mediated immune (CMI) related genes presented also lower levels of expression in tracheal samples from birds challenged with B isolate at 1dpi. Increased viral load and a higher percentage of birds with relevant lesions were observed in both tracheal and renal samples from chickens exposed to challenge with IBV B isolate. This differential pattern of early immune responses developed after challenge with IBV B isolate, related to the downregulation of TLR7, leading to insufficient pro-inflammatory response and lower CMI responses, seem to have an association with a most severe renal lesion and an enhanced capability of replication of this isolate in chicken.
Collapse
Affiliation(s)
| | | | | | | | - Hélio José Montassier
- Laboratory of Immunology and Virology (Imunovir), Department of Veterinary Pathology, Universidade Estadual Paulista—UNESP, Jaboticabal, SP, Brazil
| | | |
Collapse
|
22
|
Hamzić E, Kjærup RB, Mach N, Minozzi G, Strozzi F, Gualdi V, Williams JL, Chen J, Wattrang E, Buitenhuis B, Juul-Madsen HR, Dalgaard TS. RNA sequencing-based analysis of the spleen transcriptome following infectious bronchitis virus infection of chickens selected for different mannose-binding lectin serum concentrations. BMC Genomics 2016; 17:82. [PMID: 26819139 PMCID: PMC4729133 DOI: 10.1186/s12864-016-2403-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Avian infectious bronchitis is a highly contagious disease of the upper-respiratory tract caused by infectious bronchitis virus (IBV). Understanding the molecular mechanisms involved in the interaction between innate and adaptive immune responses to IBV infection is a crucial element for further improvements in strategies to control IB. To this end, two chicken lines, selected for high (L10H line) and low (L10L line) serum concentration of mannose-binding lectin (MBL) were studied. In total, 32 birds from each line were used. Sixteen birds from each line were infected with IBV and sixteen were left uninfected. Eight uninfected and infected birds from each line were euthanized at 1 and 3 weeks post infection. RNA sequencing was performed on spleen samples from all 64 birds and differential gene expression analysis was performed for four comparisons: L10L line versus L10H line for uninfected birds at weeks 1 and 3, respectively, and in the same way for infected birds. Functional analysis was performed using Gene Ontology (GO) Immune System Process terms specific for Gallus gallus. RESULTS Comparing uninfected L10H and L10L birds, we identified 1698 and 1424 differentially expressed (DE) genes at weeks 1 and 3, respectively. For the IBV-infected birds, 1934 and 866 DE genes were identified between the two lines at weeks 1 and 3, respectively. The two most enriched GO terms emerging from the comparison of uninfected birds between the two lines were "Lymphocyte activation involved in immune response" and "Somatic recombination of immunoglobulin genes involved in immune response" at weeks 1 and 3, respectively. When comparing IBV-infected birds between the two lines, the most enriched GO terms were "Alpha-beta T cell activation" and "Positive regulation of leukocyte activation" at weeks 1 and 3, respectively. CONCLUSIONS Healthy birds from the two lines showed significant differences in expression profiles for subsets of adaptive and innate immunity-related genes, whereas comparison of the IBV-infected birds from the two lines showed differences in expression of immunity-related genes involved in T cell activation and proliferation. The observed transcriptome differences between the two lines indicate that selection for MBL had influenced innate as well as adaptive immunity.
Collapse
Affiliation(s)
- Edin Hamzić
- UMR1313 Animal Genetics and Integrative Biology Unit, AgroParisTech, Université Paris-Saclay, 16 rue Claude Bernard, 75005, Paris, France.
- UMR1313 Animal Genetics and Integrative Biology Unit, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Rikke Brødsgaard Kjærup
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Núria Mach
- UMR1313 Animal Genetics and Integrative Biology Unit, INRA, Université Paris-Saclay, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Guilietta Minozzi
- Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy.
- University of Milan, DIVET, Via Celoria 10, 20133, Milan, Italy.
| | | | | | - John L Williams
- Parco Tecnologico Padano, Via Einstein, 26900, Lodi, Italy.
- School of Animal and Veterinary Sciences, University of Adelaide, SA, 5371, Roseworthy, Australia.
| | - Jun Chen
- Cobb-Vantress Inc, US-412 Road, Siloam Springs, AR, 72761, USA.
| | - Eva Wattrang
- National Veterinary Institute, Ulls väg 2B, 751 89, Uppsala, Sweden.
| | - Bart Buitenhuis
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Helle Risdahl Juul-Madsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| | - Tina Sørensen Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.
| |
Collapse
|
23
|
Smith J, Sadeyen JR, Cavanagh D, Kaiser P, Burt DW. The early immune response to infection of chickens with Infectious Bronchitis Virus (IBV) in susceptible and resistant birds. BMC Vet Res 2015; 11:256. [PMID: 26452558 PMCID: PMC4600211 DOI: 10.1186/s12917-015-0575-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Background Infectious Bronchitis is a highly contagious respiratory disease which causes tracheal lesions and also affects the reproductive tract and is responsible for large economic losses to the poultry industry every year. This is due to both mortality (either directly provoked by IBV itself or due to subsequent bacterial infection) and lost egg production. The virus is difficult to control by vaccination, so new methods to curb the impact of the disease need to be sought. Here, we seek to identify genes conferring resistance to this coronavirus, which could help in selective breeding programs to rear chickens which do not succumb to the effects of this disease. Methods Whole genome gene expression microarrays were used to analyse the gene expression differences, which occur upon infection of birds with Infectious Bronchitis Virus (IBV). Tracheal tissue was examined from control and infected birds at 2, 3 and 4 days post-infection in birds known to be either susceptible or resistant to the virus. The host innate immune response was evaluated over these 3 days and differences between the susceptible and resistant lines examined. Results Genes and biological pathways involved in the early host response to IBV infection were determined andgene expression differences between susceptible and resistant birds were identified. Potential candidate genes for resistance to IBV are highlighted. Conclusions The early host response to IBV is analysed and potential candidate genes for disease resistance are identified. These putative resistance genes can be used as targets for future genetic and functional studies to prove a causative link with resistance to IBV. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0575-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Jean-Remy Sadeyen
- The Pirbright Institute, Compton Laboratory, Compton, Berkshire, RG20 7NN, UK.
| | - David Cavanagh
- The Pirbright Institute, Compton Laboratory, Compton, Berkshire, RG20 7NN, UK.
| | - Pete Kaiser
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - David W Burt
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
24
|
Lagae S, Dumont A, Vanrompay D. Examination of the in vivo immune response elicited by Chlamydia psittaci in chickens. Vet Immunol Immunopathol 2015; 170:54-64. [PMID: 26848049 DOI: 10.1016/j.vetimm.2015.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/07/2015] [Accepted: 09/18/2015] [Indexed: 02/05/2023]
Abstract
It has since long been reported that Chlamydia psittaci is endemic in the poultry industry in Belgium as well as in other European Countries. This can lead to major economic losses because of a lowered egg production, higher mortality and carcass condemnation. Nowadays, expensive antibiotic treatments are necessary to reduce mortality rate but this can lead to antibiotic resistance. Moreover, C. psittaci can easily be transmitted from birds to humans through the inhalation of pathogen-containing aerosols derived from feces and eye and nostril secretions. Therefore, the need for an efficient vaccine against C. psittaci is augmenting. However, more research is needed to develop such a vaccine. Knowledge on the immune mechanisms of C. psittaci infections is crucial to understand the pathogenesis of, and immunity to this zoonotic pathogen and to act as a basis for vaccination studies. This study has investigated the in vivo immune response evoked by C. psittaci in his natural host, the chicken. Excretion of C. psittaci, chlamydial antibody detection in sera, blood immune cells and the mRNA expression levels of different cytokines, chemokines and one Toll-like receptor were investigated in different organs (conchae, lungs, airsacs, harderian gland, bursa fabricius and spleen) at different time points post infection (6 h, 24 h, 48 h, 4 d, 6d, 8 d, 10 d, 14 d and 21 d). A higher frequency of cytotoxic CD8(+) T cells and monocytes/macrophages expressing the MHC II molecule were observed in the infected group. Several cytokines and chemokines are significantly upregulated during infection but remarkably also significantly downregulated, especially at late time points. Furthermore, the only Toll-like receptor investigated, TLR4, was also significant upregulated in several organs. This study can contribute on the elucidation on how C. psittaci interact with his host, leading to the developing of targets for effective vaccination and therapeutic strategies for infection.
Collapse
|
25
|
Chhabra R, Chantrey J, Ganapathy K. Immune Responses to Virulent and Vaccine Strains of Infectious Bronchitis Viruses in Chickens. Viral Immunol 2015; 28:478-88. [PMID: 26301315 DOI: 10.1089/vim.2015.0027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Infectious bronchitis (IB) is an acute and highly contagious chicken viral disease, causing severe economic losses to poultry producers worldwide. In the last few decades, infectious bronchitis virus (IBV) has been extensively studied, but knowledge of immune responses to virulent or vaccine strains of IBVs remains limited. This review focuses on fundamental aspects of immune responses against IBV, including the role of pattern recognition receptors (PRRs) in identification of conserved viral structures and the role of different components of innate immunity (e.g., heterophils, macrophages, dendritic cells, acute phase protein, and cytokines). Studies on adaptive immune activation and the role of humoral and cellular immunity in IBV clearance are also reviewed. Multiple interlinking immune responses are essential for protection against virulent IBVs, including passive, innate, adaptive, and effector T cells active at mucosal surfaces. Although the development of approaches for chicken transcriptome and proteome analyses have greatly helped the understanding of the underlying genetic mechanisms for immunity, there are still major knowledge gaps, such as the role of mucosal and cellular responses to IBVs. In view of recent reports of emergent IBV variants in many countries, there is renewed interest in a more complete understanding of poultry immune responses to both virulent and vaccine strains of IBVs. This will be critical for developing new vaccine or vaccination strategies and other intervention programs.
Collapse
Affiliation(s)
- Rajesh Chhabra
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom .,2 College Central Laboratory, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS) , Hisar, India
| | - Julian Chantrey
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom
| | - Kannan Ganapathy
- 1 University of Liverpool, Institute of Infection and Global Health , School of Veterinary Science, Neston, United Kingdom
| |
Collapse
|
26
|
Xu Y, Zhang T, Xu Q, Han Z, Liang S, Shao Y, Ma D, Liu S. Differential modulation of avian β-defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus. Appl Microbiol Biotechnol 2015; 99:9011-24. [PMID: 26142390 PMCID: PMC7080159 DOI: 10.1007/s00253-015-6786-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022]
Abstract
The host innate immune response either clears invading viruses or allows the adaptive immune system to establish an effective antiviral response. In this study, both pathogenic (passage 3, P3) and attenuated (P110) infectious bronchitis virus (IBV) strains were used to study the immune responses of chicken to IBV infection. Expression of avian β-defensins (AvBDs) and Toll-like receptors (TLRs) in 16 tissues of chicken were compared at 7 days PI. The results showed that P3 infection upregulated the expression of AvBDs, including AvBD2, 4, 5, 6, 9, and 12, while P110 infection downregulated the expression of AvBDs, including AvBD3, 4, 5, 6, and 9 in most tissues. Meanwhile, the expression level of several TLRs showed a general trend of upregulation in the tissues of P3-infected chickens, while they were downregulated in the tissues of P110-infected chickens. The result suggested that compared with the P110 strain, the P3 strain induced a more pronounced host innate immune response. Furthermore, we observed that recombinant AvBDs (including 2, 6, and 12) demonstrated obvious anti-viral activity against IBV in vitro. Our findings contribute to the proposal that IBV infection induces an increase in the messenger RNA (mRNA) expression of some AvBDs and TLRs, which suggests that AvBDs may play significant roles in the resistance of chickens to IBV replication.
Collapse
Affiliation(s)
- Yang Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingting Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianqian Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Shuling Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|
27
|
Kjærup RM, Dalgaard TS, Norup LR, Hamzic E, Sørensen P, Juul-Madsen HR. Characterization of cellular and humoral immune responses after IBV infection in chicken lines differing in MBL serum concentration. Viral Immunol 2014; 27:529-42. [PMID: 25343382 PMCID: PMC4259184 DOI: 10.1089/vim.2014.0088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chickens from two inbred lines selected for high (L10H) or low (L10L) mannose-binding lectin (MBL) serum concentrations were infected with infectious bronchitis virus (IBV), and innate as well as adaptive immunological parameters were measured throughout the experimental period. Chickens with high MBL serum concentrations were found to have less viral load in the trachea than chickens with low MBL serum concentrations indicating that these chickens were less severely affected by the infection. This study is the first to show that MBL expression is present in the lungs of healthy chickens and that the expression is upregulated at days 3 postinfection (p.i.) in L10H chickens. Furthermore, in the liver of infected chickens, the MBL expression was upregulated at day 7 p.i., despite the fact that the MBL serum concentrations were decreased below baseline at that time point. The number of TCRγδ+CD8α+ cells in the blood of noninfected chickens increased from week 0 to 3 p.i. However, the number of cells was higher in L10H chickens than in L10L chickens throughout the experiment. No increase was observed in the number of TCRγδ+CD8α+ cells in the blood of the infected L10H and L10L chickens. The numbers of B cells at week 3 p.i. were higher for noninfected L10L chickens than for the other chickens. No differences were observed between the infected and noninfected L10H chickens or between the infected L10H and L10L chickens. Furthermore, at week 3 p.i., the number of monocytes was higher in infected and noninfected L10H chickens than in the infected and noninfected L10L chickens. Thus, these results indicate that MBL is produced locally and may be involved in the regulation of the cellular immune response after an IBV infection. However, MBL did not appear to influence the humoral immune response after IBV infection in this study.
Collapse
Affiliation(s)
| | | | | | - Edin Hamzic
- AgroParisTech, UMR1313 Génétique Animale et Biologie Integrative, Paris, France
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Poul Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | | |
Collapse
|
28
|
Activation of the chicken type I interferon response by infectious bronchitis coronavirus. J Virol 2014; 89:1156-67. [PMID: 25378498 DOI: 10.1128/jvi.02671-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Coronaviruses from both the Alphacoronavirus and Betacoronavirus genera interfere with the type I interferon (IFN) response in various ways, ensuring the limited activation of the IFN response in most cell types. Of the gammacoronaviruses that mainly infect birds, little is known about the activation of the host immune response. We show that the prototypical Gammacoronavirus, infectious bronchitis virus (IBV), induces a delayed activation of the IFN response in primary renal cells, tracheal epithelial cells, and a chicken cell line. In fact, Ifnβ expression is delayed with respect to the peak of viral replication and the accompanying accumulation of double-stranded RNA (dsRNA). In addition, we demonstrate that MDA5 is the primary sensor for Gammacoronavirus infections in chicken cells. Furthermore, we provide evidence that accessory proteins 3a and 3b of IBV modulate the response at the transcriptional and translational levels. Finally, we show that, despite the lack of activation of the IFN response during the early phase of IBV infection, the signaling of nonself dsRNA through both MDA5 and TLR3 remains intact in IBV-infected cells. Taken together, this study provides the first comprehensive analysis of host-virus interactions of a Gammacoronavirus with avian innate immune responses. IMPORTANCE Our results demonstrate that IBV has evolved multiple strategies to avoid the activation of the type I interferon response. Taken together, the present study closes a gap in the understanding of host-IBV interaction and paves the way for further characterization of the mechanisms underlying immune evasion strategies as well as the pathogenesis of gammacoronaviruses.
Collapse
|
29
|
Okino CH, dos Santos IL, Fernando FS, Alessi AC, Wang X, Montassier HJ. Inflammatory and cell-mediated immune responses in the respiratory tract of chickens to infection with avian infectious bronchitis virus. Viral Immunol 2014; 27:383-91. [PMID: 25105981 DOI: 10.1089/vim.2014.0054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tracheal mucosa is the primary site of replication of avian infectious bronchitis virus (IBV), which leads to both morphologic and immune modulatory changes in this organ. To increase the understanding of the mechanisms involved in these processes, we focused on the evaluation of local inflammatory and cell-mediated immune responses after challenge with the M41 strain of IBV, associating these responses with pathologic changes in the tracheal mucosa. At 24 h post-infection, inflammatory cytokines related genes were significantly upregulated, including peaks of TNFSF15 and TGFβ mRNA production, although no tracheal microscopic alterations were observed and only a slightly increase in viral load occurred. At 3 days post-infection (dpi), we observed that the highest upregulation of IL6, IL1β, and IFNγ coincided with highest scores of viral load and microscopic lesions, suggesting a role of both these cytokines and virus load on the development of tracheal lesions. Later, at 7 dpi, the most prominent increases of CD8αα mRNA and Granzyme homolog A mRNA were followed by a significant decrease of scores of tracheal lesions and viral load. In conclusion, an early upregulation of expression of proinflammatory cytokines such as IL6, IL1β, and IFNγ induced by the M41 strain of IBV may be partially implicated in the viral pathogenicity on trachea tissues of nonimmune challenged chickens, in addition to a late induction of a putative protective immune responses by this virus through upregulation of CD8αα and Granzyme homolog A genes in this organ.
Collapse
Affiliation(s)
- Cintia Hiromi Okino
- 1 Laboratory of Immunology and Virology, Department of Veterinary Pathology, Universidade Estadual Paulista-UNESP , Jaboticabal, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
31
|
Fassbinder-Orth CA, Barak VA, Rainwater EL, Altrichter AM. Buggy Creek virus (Togaviridae: Alphavirus) upregulates expression of pattern recognition receptors and interferons in House Sparrows (Passer domesticus). Vector Borne Zoonotic Dis 2014; 14:439-46. [PMID: 24866749 DOI: 10.1089/vbz.2013.1531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Birds serve as reservoirs for at least 10 arthropod-borne viruses, yet specific immune responses of birds to arboviral infections are relatively unknown. Here, adult House Sparrows were inoculated with an arboviral alphavirus, Buggy Creek virus (BCRV), or saline, and euthanized between 1 and 3 days postinoculation. Virological dynamics and gene expression dynamics were investigated. Birds did not develop viremia postinoculation, but cytopathic virus was found in the skeletal muscle and spleen of birds 1 and 3 days postinoculation (DPI). Viral RNA was detected in the blood of BCRV-infected birds 1 and 2 DPI, in oral swabs 1-3 DPI, and in brain, heart, skeletal muscle, and spleen 1-3 DPI. Multiple genes were significantly upregulated following BCRV infection, including pattern recognition receptors (TLR7, TLR15, RIG-1), type I interferon (IFN-α), and type II interferon (IFN-γ). This is the first study to report avian immunological gene expression profiles following an arboviral infection.
Collapse
|
32
|
Induction of innate immune response following infectious bronchitis corona virus infection in the respiratory tract of chickens. Virology 2013; 450-451:114-21. [PMID: 24503073 PMCID: PMC7111962 DOI: 10.1016/j.virol.2013.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/24/2013] [Accepted: 12/02/2013] [Indexed: 01/16/2023]
Abstract
Infectious bronchitis virus (IBV) replicates in the epithelial cells of trachea and lungs of chicken, however the mechanism of generation of innate immune response against IBV infection in these tissues has not been fully characterized. Our objective was to study innate responses induced early following IBV infection in chickens. Initiation of the transcription of selected innate immune genes such as TLR3, TLR7, MyD88, IL-1β and IFN-β, as well as recruitment of macrophages, were evident following an initial down regulation of some of the observed genes (TLR3, IL-1β, and IFN-γ) in trachea and lung. This initial down-regulation followed by the induction of innate immune response to IBV infection appears to be inadequate for the control of IBV genome accumulation and consequent histopathological changes in these tissues. Potential induction of innate immunity before infection occurs may be necessary to reduce the consequences since vaccine induced immunity is slow to develop. Innate immune response against avian infectious bronchitis virus (IBV) studied. IBV induces toll-like receptor mRNA in lungs and trachea. IBV induces pro-inflammatory and antiviral cytokine mRNA expression. IBV increases macrophages in respiratory tissues.
Collapse
|
33
|
Cong F, Liu X, Han Z, Shao Y, Kong X, Liu S. Transcriptome analysis of chicken kidney tissues following coronavirus avian infectious bronchitis virus infection. BMC Genomics 2013; 14:743. [PMID: 24168272 PMCID: PMC3870970 DOI: 10.1186/1471-2164-14-743] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/26/2013] [Indexed: 12/18/2022] Open
Abstract
Background Infectious bronchitis virus (IBV), a prototype of the Coronaviridae family, is an economically important causative agent of infectious bronchitis in chickens and causes an acute and highly contagious upper respiratory tract infections that may lead to nephritis. However, the molecular antiviral mechanisms of chickens to IBV infection remain poorly understood. In this study, we conducted global gene expression profiling of chicken kidney tissue after nephropathogenic IBV infection to better understand the interactions between host and virus. Results IBV infection contributed to differential expression of 1777 genes, of which 876 were up-regulated and 901 down-regulated in the kidney compared to those of control chickens and 103 associated with immune and inflammatory responses may play important roles in the host defense response during IBV infection. Twelve of the altered immune-related genes were confirmed by real-time RT-PCR. Gene ontology category, KEGG pathway, and gene interaction networks (STRING analysis) were analyzed to identify relationships among differentially expressed genes involved in signal transduction, cell adhesion, immune responses, apoptosis regulation, positive regulation of the I-kappaB kinase/NF-kappaB cascade and response to cytokine stimulus. Most of these genes were related and formed a large network, in which IL6, STAT1, MYD88, IRF1 and NFKB2 were key genes. Conclusions Our results provided comprehensive knowledge regarding the host transcriptional response to IBV infection in chicken kidney tissues, thereby providing insight into IBV pathogenesis, particularly the involvement of innate immune pathway genes associated with IBV infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, The People's Republic of China.
| |
Collapse
|
34
|
Okino CH, Alessi AC, Montassier MDFS, Rosa AJDM, Wang X, Montassier HJ. Humoral and cell-mediated immune responses to different doses of attenuated vaccine against avian infectious bronchitis virus. Viral Immunol 2013; 26:259-67. [PMID: 23865943 DOI: 10.1089/vim.2013.0015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The antibody and cellular immune responses against infectious bronchitis virus (IBV) were evaluated at mucosal sites of chickens after immunization with various doses of an attenuated vaccine at 1 day of age. The correlation of these immune responses with protection of tracheal tissues was evaluated after experimental infection of these birds. Significantly reduced tracheal pathologic effects, measured according to ciliostasis and histology lesions, and reduced viral load were observed only in the full-dose vaccinated group at 5 days post-infection (dpi), while incomplete protection was observed for the subdose vaccinated groups. Moreover, birds of vaccinated groups, especially with full dose, developed higher levels of lachrymal IBV-specific IgG and IgA and increased the expression of cell-mediated immunity (CMI) genes, such as gamma interferon (IFNγ), CD8+ T cell marker, and granzyme homolog A more rapidly. In addition, these humoral and cellular immune responses evaluated at mucosal sites correlated significantly with tracheal protection against homologous IBV challenge in a vaccine dose-dependent manner. The results indicate that IgG, IgA and CD8+ T cell responses developed at mucosal sites after IBV vaccination of day-old chicks, could be taken as good correlates of protection against this virus.
Collapse
Affiliation(s)
- Cintia Hiromi Okino
- Laboratory of Immunology and Virology, Department of Veterinary Pathology, Universidade Estadual Paulista, Jaboticabal, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Rapid NK-cell activation in chicken after infection with infectious bronchitis virus M41. Vet Immunol Immunopathol 2012; 151:337-41. [PMID: 23245429 PMCID: PMC7112528 DOI: 10.1016/j.vetimm.2012.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/16/2012] [Accepted: 11/21/2012] [Indexed: 11/21/2022]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes and play an important role in the early defence against viruses. In this study we focussed on NK cell and interferon (IFN) responses after infection with infectious bronchitis virus (IBV). Based on surface expression of CD107+, enhanced activation of lung NK cells was observed at 1 dpi, whereas in blood prolonged NK-cell activation was found. IFN-α and IFN-β mRNA and proteins were not rapidly induced whereas IFN-γ production in lung, measured by Elispot assay, increased over time at 2 and 4 dpi. In contrast, IFN-γ production in blood was highest at 1 dpi and decreased over time down to levels comparable to uninfected birds at 4 dpi. Collectively, infection with IBV-M41 resulted in activation of NK cells in the lung and blood and rapid production of IFN-γ and not IFN-α and IFN-β compared to uninfected birds.
Collapse
|
36
|
Chen CY, Xie QM, Xue Y, Ji J, Chang S, Ma JY, Bi YZ. Characterization of cytotoxicity-related gene expression in response to virulent Marek's disease virus infection in the bursa of Fabricius. Res Vet Sci 2012; 94:496-503. [PMID: 23164636 DOI: 10.1016/j.rvsc.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Abstract
Cell-mediated cytotoxic responses are critical for control of Marek's disease virus (MDV) infection and tumour development. However, the mechanisms of virus clearance mediated by cytotoxic responses in the bursa of Fabricius of chickens during MDV infection are not fully understood. In this study, the host cytotoxic responses during MDV infection in the bursa were investigated by examining the expression of genes in the cell lysis pathways. Partial up-regulation existed in the expression of the important cytolytic molecule granzyme A (GzmA), Fas, NK lysin and DNA repair enzyme Ape1, whereas little or no expression appeared in other cytolytic molecules, including perforin (PFN) and Fas ligand (FasL), and molecules involved in DNA repair and apoptosis in the bursa during MDV infection. These results suggest that less sustained cytotoxic activities are generated in the bursa of MDV-infected chickens. The findings of this study provide a more detailed insight into the host cytotoxic responses to MDV infection.
Collapse
Affiliation(s)
- Cui-Ying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Liu G, Wang Q, Liu N, Xiao Y, Tong T, Liu S, Wu D. Infectious bronchitis virus nucleoprotein specific CTL response is generated prior to serum IgG. Vet Immunol Immunopathol 2012; 148:353-8. [DOI: 10.1016/j.vetimm.2012.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/11/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
|
38
|
Cao Z, Han Z, Shao Y, Liu X, Sun J, Yu D, Kong X, Liu S. Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo. Proteome Sci 2012; 10:24. [PMID: 22463732 PMCID: PMC3342233 DOI: 10.1186/1477-5956-10-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/31/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV) is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE) and two-dimensional fluorescence difference gel electrophoresis (2-DIGE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected in vivo with the highly virulent ck/CH/LDL/97I P5 strain of infectious bronchitis virus (IBV) and the embryo-passaged, attenuated ck/CH/LDL/97I P115 strain. RESULTS Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P5 strain and those given the embryo-passaged, attenuated P115 stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP) beta-1, annexin A2, and annexin A5. CONCLUSIONS The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections.
Collapse
Affiliation(s)
- Zhongzan Cao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang X, Moutsoglou D. Osteogenic and adipogenic differentiation potential of an immortalized fibroblast-like cell line derived from porcine peripheral blood. In Vitro Cell Dev Biol Anim 2011; 45:584-91. [PMID: 19633899 DOI: 10.1007/s11626-009-9231-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/26/2009] [Indexed: 01/22/2023]
Abstract
Primary fibroblast-like cells isolated from the peripheral blood of a healthy pig were immortalized by transduction of cells with a replication-defective retrovirus vector expressing the E6/E7 proteins of human papillomavirus type 16 (pLXSN-16E6E7). The immortalized cells grow rapidly in cell culture and exhibit a distinct cell surface phenotype that was positive for CD90, CD44, collagen I, and vimentin and negative for CD14 and MHC II. Additionally, these immortalized blood derived-fibroblast-like cells had the potential to differentiate into osteoblasts and adipocytes in vitro as evidenced by the deposition of calcium, increased alkaline phosphatase activity, upregulated osteogenic and adipogenic marker gene expression, and accumulation of fat droplets in cells when osteogenic (dexamethasone, ascorbic acid, and β-glycerophosphate) or adipogenic supplements (dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin) were added to the culture. Overall, the results suggest that the immortalized blood-derived fibroblast-like cells exhibit some of the features of mesenchymal precursor cells, which may have implications in tissue repair and remodeling process.
Collapse
Affiliation(s)
- Xiuqing Wang
- Department of Biology and Microbiology, Center for Infectious Disease Research and Vaccinology, South Dakota State University, NPB 252D, Box 2140D, Brookings, SD 57007, USA.
| | | |
Collapse
|
40
|
Cao Z, Han Z, Shao Y, Geng H, Kong X, Liu S. Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus. Proteome Sci 2011; 9:11. [PMID: 21385394 PMCID: PMC3060854 DOI: 10.1186/1477-5956-9-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 03/08/2011] [Indexed: 12/02/2022] Open
Abstract
Background Avian infectious bronchitis (IB) is one of the most serious diseases of economic importance in chickens; it is caused by the avian infectious coronavirus (IBV). Information remains limited about the comparative protein expression profiles of chicken embryonic tissues in response to IBV infection in ovo. In this study, we analyzed the changes of protein expression in trachea and kidney tissues from chicken embryos, following IBV infection in ovo, using two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS). Results 17 differentially expressed proteins from tracheal tissues and 19 differentially expressed proteins from kidney tissues were identified. These proteins mostly related to the cytoskeleton, binding of calcium ions, the stress response, anti-oxidative, and macromolecular metabolism. Some of these altered proteins were confirmed further at the mRNA level using real-time RT-PCR. Moreover, western blotting analysis further confirmed the changes of annexin A5 and HSPB1 during IBV infection. Conclusions To the best of our knowledge, we have performed the first analysis of the proteomic changes in chicken embryonic trachea and kidney tissues during IBV infection in ovo. The data obtained should facilitate a better understanding of the pathogenesis of IBV infection.
Collapse
Affiliation(s)
- Zhongzan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | | | | | | | | | | |
Collapse
|
41
|
Downing T, Lloyd AT, O'Farrelly C, Bradley DG. The differential evolutionary dynamics of avian cytokine and TLR gene classes. THE JOURNAL OF IMMUNOLOGY 2010; 184:6993-7000. [PMID: 20483729 DOI: 10.4049/jimmunol.0903092] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The potential for investigating immune gene diversity has been greatly enhanced by recent advances in sequencing power. In this study, variation at two categories of avian immune genes with differing functional roles, pathogen detection and mediation of immune mechanisms, was examined using high-throughput sequencing. TLRs identify and alert the immune system by detecting molecular motifs that are conserved among pathogenic microorganisms, whereas cytokines act as mediators of resulting inflammation and immunity. Nine genes from each class were resequenced in a panel of domestic chickens and wild jungle fowl (JF). Tests on population-wide genetic variation between the gene classes indicated that allele frequency spectra at each group were distinctive. TLRs showed evidence pointing toward directional selection, whereas cytokines had signals more suggestive of frequency-dependent selection. This difference persisted between the distributions considering only coding sites, suggesting functional relevance. The unique patterns of variation at each gene class may be constrained by their different functional roles in the immune response. TLRs identify a relatively limited number of exogeneous pathogenic-related patterns and would be required to adapt quickly in response to evolving novel microbes encountered in new environmental niches. In contrast, cytokines interact with many molecules in mediating the power of immune mechanisms, and accordingly respond to the selective stimuli of many infectious diseases. Analyses also indicated that a general pattern of high variability has been enhanced by widespread genetic exchange between chicken and red JF, and possibly between chicken and gray JF at TLR1LA and TLR2A.
Collapse
Affiliation(s)
- Tim Downing
- Smurfit Institute of Genetics, Dublin, Ireland
| | | | | | | |
Collapse
|
42
|
Re-annotation is an essential step in systems biology modeling of functional genomics data. PLoS One 2010; 5:e10642. [PMID: 20498845 PMCID: PMC2871057 DOI: 10.1371/journal.pone.0010642] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/14/2010] [Indexed: 11/19/2022] Open
Abstract
One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data.
Collapse
|
43
|
Sarson AJ, Abdul-Careem MF, Read LR, Brisbin JT, Sharif S. Expression of cytotoxicity-associated genes in Marek's disease virus-infected chickens. Viral Immunol 2008; 21:267-72. [PMID: 18570592 DOI: 10.1089/vim.2007.0094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic host responses to Marek's disease virus (MDV) have been attributed to both natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). However, the mechanisms of cell lysis initiated by these cytotoxic responses during MDV infection are not well defined. Therefore, the current study was aimed at elucidating the molecular mechanisms of host cytotoxic responses to MDV infection by investigating the expression of genes in the cell lysis pathway involving granzyme A. Genes encoding cytolytic proteins, NK lysin, and granzyme A were upregulated during early stages of infection, whereas the genes encoding major histocompatibility complex (MHC) class I and the DNA repair and apoptosis protein, poly(ADP-ribose) polymerase (PARP), were downregulated. These findings shed more light on the mechanisms of host response to MDV infection in chickens.
Collapse
Affiliation(s)
- Aimie J Sarson
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Berlin S, Qu L, Li X, Yang N, Ellegren H. Positive diversifying selection in avian Mx genes. Immunogenetics 2008; 60:689-97. [DOI: 10.1007/s00251-008-0324-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/16/2008] [Indexed: 12/01/2022]
|
45
|
Sarson AJ, Parvizi P, Lepp D, Quinton M, Sharif S. Transcriptional analysis of host responses to Marek's disease virus infection in genetically resistant and susceptible chickens. Anim Genet 2008; 39:232-40. [PMID: 18371127 DOI: 10.1111/j.1365-2052.2008.01710.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Marek's disease virus (MDV) is a cell-associated oncogenic herpesvirus that targets B cells and T cells, inducing lymphoid tumours in chickens. Genetic resistance to Marek's disease (MD) is regulated in a polygenic fashion. In this study, we sought to compare the gene expression profiles following infection of birds that are genetically resistant or susceptible to MD (with the B21 and B19 haplotypes respectively at the MHC locus), including comparisons to uninfected controls. On days 4, 7, 14 and 21 post-infection, gene expression profiles in spleen tissue were obtained using a chicken immune-specific microarray. A number of genes showed significant (P <or= 0.05) differential expression across time and treatments. These included the chemokine AH221, B-cell marker Bu-1, IgG, IgA, IgM, MHC class II beta chain, granzyme A (GZMA) and signal transducers and activators of transcription 2 (STAT2) genes. In several comparisons, genes such as GZMA and STAT2 were induced in infected birds regardless of their genetic background. However, only immunoglobulin genes were differentially expressed by >or=2-fold in resistant compared with susceptible infected chickens. IgM and IgG were significantly induced on day 7 post-infection in susceptible chickens compared to resistant birds, whereas both of these genes were repressed in susceptible birds on day 14 post-infection. Overall, gene expression profiles in the chicken spleen observed after MDV infection were dependent on time and host genetic background. These gene expression profiles provide a platform for defining novel candidate genes for resistance or susceptibility to MD.
Collapse
Affiliation(s)
- A J Sarson
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
46
|
Guo X, Rosa AJM, Chen DG, Wang X. Molecular mechanisms of primary and secondary mucosal immunity using avian infectious bronchitis virus as a model system. Vet Immunol Immunopathol 2007; 121:332-43. [PMID: 17983666 PMCID: PMC7112697 DOI: 10.1016/j.vetimm.2007.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/23/2007] [Accepted: 09/26/2007] [Indexed: 12/02/2022]
Abstract
Although mucosal immune responses are critical for protection of hosts from clinical illness and even mortality caused by mucosal pathogens, the molecular mechanism of mucosal immunity, which is independent of systemic immunity, remains elusive. To explore the mechanistic basis of mucosal protective immunity, gene transcriptional profiling in mucosal tissues was evaluated after the primary and secondary immunization of animals with an attenuated avian infectious bronchitis virus (IBV), a prototype of Coronavirus and a well-characterized mucosal pathogen. Results showed that a number of innate immune factors including toll-like receptors (TLRs), retinoic-acid-inducible gene-1 (RIG-1), type I interferons (IFNs), complements, and interleukin-1 beta (IL-1β) were activated locally after the primary immunization. This was accompanied or immediately followed by a potent Th1 adaptive immunity as evidenced by the activation of T-cell signaling molecules, surface markers, and effector molecules. A strong humoral immune response as supported by the significantly up-regulated immunoglobulin (Ig) gamma chain was observed in the absence of innate, Th1 adaptive immunity, or IgA up-regulation after the secondary immunization, indicating that the local memory response is dominated by IgG. Overall, the results provided the first detailed kinetics on the molecular basis underlying the development of primary and secondary mucosal immunity. The key molecular signatures identified may provide new opportunities for improved prophylactic and therapeutic strategies to combat mucosal infections.
Collapse
Affiliation(s)
- Xueshui Guo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | |
Collapse
|